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Theoretical predictions for lepton-induced single-pion production (SPP) on 12C are revisited in
order to assess the effect of different treatments of the current operator. On one hand we have the
asymptotic approximation, which consists in replacing the particle four-vectors that enter in the
operator by their asymptotic values, i.e., their values out of the nucleus. On the other hand we
have the full calculation, which is a more accurate approach to the problem. We also compare with
results in which the final nucleon is described by a relativistic plane wave, to rate the effect of the
nucleon distortion. The study is performed for several lepton kinematics, reproducing inclusive and
semi-inclusive cross sections belonging to the low-Q2 region (between 0.05 and 1 GeV2), which is of
special interest in charged-current (CC) neutrino-nucleus 1π production. Inclusive electron results
are compared with experimental data. We find non-trivial corrections comparable in size with the
effect of the nucleon distortion, namely, corrections up to 6%, either increasing or diminishing the
asymptotic prediction, and a shift of the distributions towards higher energy transfer. For the
semi-inclusive cross sections, we observe the correction to be prominent mainly at low values of
the outgoing nucleon kinetic energy. Finally, for CC neutrino-induced 1π+ production, we find a
reduction at low-Q2 with respect to both the plane-wave approach and the asymptotic case.

I. INTRODUCTION

In accelerator-based neutrino experiments, such as
DUNE [1], NOνA [2, 3] and MINERνA [4, 5], inelas-
tic interactions constitute the main interaction mecha-
nism that contribute to the total cross sections. In other
experiments such as T2K [6] or the SBN program [7–
9], quasielastic (QE) scattering is the main interaction
mechanism but single-pion production (SPP) in the reso-
nance (∆-baryon) region also plays an important role [10].
Also, SPP is a background in the QE-like or 0π signal, for
example, if the pion is below the detection threshold or
the resonance has a non-pionic decay. These events are
modeled by event generators based on theoretical mod-
els, therefore, realistic predictions are essential to dimin-
ish systematic errors in the neutrino energy reconstruc-
tion [11]. Moreover, at low-Q2, model predictions system-
atically overshoot experimental cross sections from T2K
and, mostly, MINERvA datasets [12]; it makes the study
of model uncertainties in this region interesting.

There are several approaches describing electroweak
SPP on the nucleon [13–23]. By kinematic constraints,
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the amplitudes for SPP on free nucleons can at most de-
pend on the invariant mass W , the squared-four momen-
tum transfer Q2 and the scattering angles of the pion Ωπ.
The underlying description for these amplitudes, usually
in terms of nucleons, mesons and nucleon resonances, can
depend explicitly on the kinematics of all external parti-
cles. Therefore, the use of such a model for SPP in the
nucleus has to deal with this dependence, and with the
fact that the nucleons inside the nucleus are not fixed
momentum-states, i.e., they are off-shell. The study of
this off-shellness is the main purpose of this work. For
this reason we use the model of Ref. [24]. It is based on
the tree-level diagrams from the non-linear sigma model
Lagrangian [25], as used in many descriptions of SPP in
the ∆ region. These diagrams make it straightforward
to compute the amplitude for kinematics reached in SPP
on the nucleus, and to include the off-shell features afore-
mentioned.

The initial nucleon wave function is obtained by solv-
ing the Dirac equation with relativistic mean field (RMF)
potentials [26]. For the final nucleon we work within the
relativistic distorted wave impulse approximation (RD-
WIA) [27, 28], which means that the scattered nucleon
wave function is also a solution of the Dirac equation in
the continuum. In this work, we will use the energy-
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dependent RMF (ED-RMF) potential [29], in which or-
thogonality between initial- and final-nucleon states is
preserved by construction. We describe the pion as a
plane wave, work is in progress on implementing the dis-
tortion of the pion wave function in our framework.

In the present work we go beyond the so-called asymp-
totic approximation, which is widely used, including in
the Hybrid model [12, 30]. It is more often called ‘local
approximation’ [23, 31–33], because it eliminates coordi-
nate derivatives in coordinate space expressions. Analo-
gously, in momentum space the asymptotic approxima-
tion consists in defining the hadronic operator using the
asymptotic values of the particle 4-vectors (i.e., their val-
ues out of the nucleus) instead of those inside the nu-
cleus. In this work, all computations are performed in
momentum space 1, so the non-asymptotic (or non-local)
treatment can be trivially fully implemented. The advan-
tage of the asymptotic approach is that it is computa-
tionally much less demanding (this will become clear in
the next section). In Refs. [23, 31–33, 35–37] comparisons
between the asymptotic approximation and the full cal-
culation were performed for photon- and lepton-induced
coherent and incoherent pion production.

In this work, for the first time, we present a study of
the non-locality effects within the framework of a fully
relativistic nuclear model and for incoherent single-pion
electro- and neutrino-production on nuclei, in particu-
lar for 12C. Both inclusive and semi-inclusive differential
cross sections for different lepton kinematics at low-Q2 are
presented. We find non-trivial differences with corrections
both to the shape and strength of the cross section.

This work is organized as follows. In Sec. II we briefly
describe the SPP process: In Sec. II A we explain the
kinematics and cross section of SPP on the nucleus; in
Sec. II B we summarize the most important aspects about
the pion model we use, and the treatment of the nu-
clear dynamics. Results and Conclusions are displayed
in Secs. III and IV, respectively. Finally, in App. A we
provide details of a change of variables that allows for the
analytic integration over one of the angles that defines
the kinematics, which helps to reduce the computational
effort.

1 To our knowledge, the pioneering works for pion photoproduction
of Refs. [32, 34] were the first ones that computed the amplitude
in momentum space.

II. SINGLE PION PRODUCTION ON THE
NUCLEUS

We describe the SPP process as a one-nucleon interac-
tion instead of a many-body one, and assume that only
one boson is exchanged between leptonic and hadronic
systems. These two deep-rooted considerations are the
so-called impulse approximation (IA) and the first-order
Born approximation, respectively.

The process is sketched in Fig. 1. An initial lepton with
4-vector Ki = (Ei,ki) goes to the final one with Kf =
(Ef ,kf ) via exchange of a single boson with Q = (ω,q).
The boson couples to a bound nucleon with P = (E,p) in
the nucleus A with PA = (EA,pA). After the transition
in which a single pion is produced, represented as Oµ

1π,
the final state is made up of the knockout nucleon with
PN = (EN ,pN ), the final pion with Kπ = (Eπ,kπ) and
the residual system PB = (EB ,pB). For the case of the
nucleon, the interaction with the residual system is taken
into account, so inside the nucleus the 4-vector of the
struck nucleon is P ′

N = (EN ,p′
N ), being off-shell.

A
PA PB

B

P

Q

Ki

Kf

Oµ
1π

Kπ

P ′
N

PN

FSI

FIG. 1. Diagramatic representation of the general SPP process
with all four-momenta depicted.

A. Kinematics and cross section

To describe the kinematics, and therefore, obtain the
cross section of the SPP process, only 9 independent vari-
ables are needed [38]. We choose the following variables
(ki, kf , θf , kπ,Ωπ,ΩN , Em) 2 as our 9-dimensional phase
space.

2 The variable Em represents the missing energy, i.e., the amount
of energy transferred to the residual system B as internal energy.
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The four-momentum of the exchanged boson between
the lepton vertex and the hadronic vertex is given by

Q = Ki −Kf , (1)

its three-momentum q is taken along the ẑ-axis, q =
(0, 0, q). Imposing four-momentum conservation, we ob-
tain, for the hadronic vertex

Q+ PA = Kπ + PN + PB . (2)

With the initial nucleus at rest, PA = (mA,0), momen-
tum and energy conservation give

q = pB + pN + kπ, (3)

ω +mA = EB + EN + Eπ, (4)

where E2
B = p2B +m2

B . The mass of the residual system
is related to the missing energy as mB = Em + mA −
M , being M the mass of the knockout nucleon. From
Eqs. (4) and (3) one obtains a second order equation for
pN . The explicit solution can be found in Ref. [38], such
that for certain kinematics the cross section for the two
energy-momentum conserving solutions should be added
incoherently.

The electroweak cross section, in the most general
way [10], is given by 3

d10σ

dkfdpNdkπdEm
=
ρ(Em)FX

(2π)8
δ(EN+Eπ−ω−E)LµνH

µν ,

(5)
where E = mA −EB . The function ρ(Em) represents the
density of final states for the residual nucleus. The factor
FX is given by

FEM =
(4πα)2

Q4
, FCC =

(GF cos θc)
2

2
, (6)

depending on if the interaction is electromagnetic (EM)
or charged current (CC), being α the fine-structure con-
stant, GF the Fermi coupling constant and θc the Cabibbo
angle. The quantity Q2 is defined as positive:

Q2 = −(Ki −Kf )
2 = q2 − ω2 > 0. (7)

The dimensionless lepton tensor Lµν , which depends on
the type of the interaction (EM or CC), is defined as

LEM
µν =

1

2EiEf
Sµν

LCC
µν =

2

EiEf
(Sµν − ihAµν),

(8)

3 Note that nothing depends on the final lepton azimuth angle ϕf .

where it has been separated into symmetric (S) and an-
tisymmetric (A) tensors, given by

Sµν = Ki,µKf,ν +Ki,νKf,µ − gµνKi ·Kf ,

Aµν = εαβµνK
α
i K

β
f .

(9)

In Eqs. (8) and (9), gµν is the metric tensor given by
gµν = diag(+,−,−,−), εαβµν is the fully antisymmetric
Levi-Civita tensor within the convention ε0123 = +1, i
represents the imaginary unit, and h stands for the initial
lepton helicity, h = −1 (+1) for neutrinos (antineutrinos).

The hadronic tensor is defined for each nuclear shell κ
as

Hµν
κ =

Nκ

2j + 1

∑
mj ,sN

(Jµ)†Jν , (10)

where we are summing over all final spin states, sN being
the projection of the spin of the final nucleon, and aver-
aging over initial spin states, mj being the projection of
the angular momentum j of the bound state. Nκ stands
for the occupation of the nuclear shell 4. All the nuclear
information is enclosed in the hadronic current

Jµ = Jµ(κ,mj , sN , Q, PN ,Kπ). (11)

The discussion of the hadronic current is exposed in
Sec. II B. Integrating the Dirac delta in Eq. (5) over pN
we get

d9σ

dEfdΩdEπdΩπΩNdEm
= FX

EfkfEπkπENpN
(2π)8frec

× ρ(Em)LµνH
µν ,

(12)

where

frec =
∣∣∣1 + EN

EB

(
1 +

pN · (kπ − q)
p2N

)∣∣∣, (13)

is the recoil factor.

B. Nuclear framework and single-pion production
model

The Hybrid model is included in the nuclear dynamics
through the hadronic current of Eq. (11), as all the nuclear

4 Within a pure shell model ρ(Em) =
∑

κ δ(Em −Eκ
m), where Eκ

m
is a fixed value for each shell, and Nκ = 2j + 1.
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information is confined in it. For the most general case,
it is of the form

Jµ =
1

(2π)3/2

∫
dp

∫
dk′

π ψ̄
sN (p′

N ,pN )ϕ∗(k′
π,kπ)

×Oµ
1π(Q,P

′
N ,K

′
π)ψ

mj
κ (p)

(14)

with p′
N = q + p − k′

π. Here Oµ
1π represents the SPP

current operator, ψmj
κ (p) is the Fourier transform of the

bound nucleon relativistic wave function in coordinate
space

ψmj
κ (p) =

1

(2π)3/2

∫
dre−ip·rψmj

κ (r), (15)

ψ
mj
κ (r) is computed within the RMF model [26], which

is an extension of the original Walecka σ − ω model [39].
The single particle wave function ψ

mj
κ (r) is the solution

of the Dirac equation with central and vector potentials,
with well-defined energy and angular momentum. On the
other hand, ψ̄sN (p′

N ,pN ) is the Fourier transform of the
relativistic wave function of the knockout nucleon with
fixed energy and spin

ψ̄sN (p′
N ,pN ) = 4π

√
EN +M

2M

∑
κ,mj ,ml

eiδ
∗
κil

×⟨lml
1

2
sN |jmj⟩Y ml∗

l (ΩpN
)ψmj

κ (p′
N ),

(16)

where δκ is the phase shift, ⟨j1m1j2m2|JM⟩ are Clebsch-
Gordan coefficients, Y ml

l (ΩpN
) are spherical harmonics,

and ψ
mj
κ (p′

N ) is a spinor obtained as in Eq. (15). For
the final nucleon we use the ED-RMF potential [30], so
orthogonality between nucleon initial and final states is
automatically satisfied, which is important to avoid spu-
rious contributions to the cross section [40, 41]. Finally,
ϕ(k′

π,kπ) corresponds to the final pion wave function in
momentum space. In the most general case, pion and nu-
cleon in Eq. (14) are both off-shell. They are not pure
momentum states, the momentum dependence is given
by the primed momenta, while the unprimed one is the
asymptotic momentum given by pN =

√
E2

N −M2 and
kπ =

√
E2

π −m2
π.

In this work, we describe the pion as a plane wave

ϕ(k′
π,kπ) =

√
(2π)3

2Eπ
δ(3)(k′

π − kπ), (17)

and therefore, Eq. (14) simplifies to

Jµ =
1√
2Eπ

∫
dp ψ̄sN (p′

N ,pN )Oµ
1π(Q,P

′
N ,Kπ)ψ

mj
κ (p)

(18)

with p′
N = q + p − kπ. It is also interesting to consider

the RPWIA case where both the final nucleon and pion
are plane waves. By computing this, the impact of the
distortion in the final nucleon can be assessed. In this
scenario, the hadronic current is

Jµ =

√
(2π)3M

2EπEN
ū(pN , sN )Oµ

1π(Q,PN ,Kπ)ψ
mj
κ (p) (19)

with p = pN + kπ − q.

1. Current operator

The current operator is constructed by summing the
amplitudes coming from several Feynman diagrams. On
one hand, the direct (RP or resonance pole) and crossed
(CRP or crossed-resonance pole) diagrams for nucleon
resonances can be seen in Fig. 2. The resonances included
here are the P33(1232) or ∆-baryon, D33(1515), P11(1430)
and S11(1535).

N

Q

N ′

π

Res

Q π

N N ′Res

FIG. 2. Left: s-channel (resonance pole, RP ). Right: u-
channel (cross-resonance pole, CRP ).

Moreover, the tree level background terms derived from
the πN -lagrangian of chiral perturbation theory (ChPT)
are also included. The background contributions are
shown in Fig. 3.

All these diagrams constitute the Hernandez, Nieves
and Valverde (HNV) model of Refs. [13, 42, 43], which is
valid for invariant masses W ≲ 1.4 GeV, where W =

√
s,

and s = (P + Q)2. Then, this model reaches its limit of
applicability as it only includes lowest-order amplitudes
(see, for instance, Ref. [24]). For that reason, in Ref. [24],
an extension of the model based on Regge phenomenol-
ogy [44–47] was presented. The Regge approach is a well-
tested formalism that permits access to the high energy
regime (W > 2 GeV). The Regge phenomenology was ap-
plied by reggeizing the ChPT-background contributions,
what was denominated in Ref. [24] as the “ReChi model”.
Finally, both models, HNV and ReChi, were combined
by a blending function that transitions from one model
to the another while W increases.
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N

Q

N ′

π

Q π

N N ′

Q π

N N ′ N

Q

N ′

π

Q π

N N ′

FIG. 3. ChPT-background diagrams (from left to right and
top to bottom): s-channel (nucleon pole, NP ), u-channel
(cross-nucleon pole, CNP ), contact term (CT ), pion pole
(PP ), and t-channel (pion-in-flight term, PF ).

The resulting Hybrid model has been used in several
works, both for electro- and neutrino-production. In
Ref. [24], it was tested on free nucleons. In Refs. [48–50],
it was applied within the relativistic plane wave impulse
approximation (RPWIA) to scattering on nuclei. Finally,
in Refs. [12, 30], the distortion of the final nucleon was
included.

As an example, in Fig. 4 we show the contributions
centered on the Delta (and slightly beyond it) of differ-
ent parts of the operator for electron scattering. We also
show the behavior of the ChPT contribution without the
Regge phenomenology so one can judge its impact at high
energies. Note that the final result is not the sum of the
cross section contributions displayed separately in Fig. 4
but the coherent sum of their amplitudes, see Eq. (20).

The current operator of the hadronic current reads

Oµ
1π =

∑
R

Oµ
R +Oµ

ChPT , (20)

where Oµ
R is the operator of resonance R, taking into ac-

count that Oµ
R = Oµ

RP +Oµ
CRP . Analogously, Oµ

ChPT rep-
resents the sum of the different non-resonant background
current operators.

So far, all the Hybrid model predictions with nucleon
distortion have been carried out using the asymptotic ap-
proximation. It consists in replacing the primed momenta
in the operator by their asymptotic values

Oµ
1π(Q,P

′
N ,K

′
π) −→ Oµ

1π(Q,PN ,Kπ), (21)

hence, the operator does not depend on p anymore and
has to be evaluated only once before the integral over
p in Eq. (18). The current operator Oµ

1π is a complex
object whose evaluation requires a non-negligible compu-
tational effort, so the asymptotic approximation allowed

	1

	3

	5

	7

	9

	11

	13

	350 	450 	550 	650 	750 	850 	950

Ei=1299	MeV
θe=37.5	deg

d2
σ/

dω
dΩ

	[1
0-

1 	n
b/

(M
eV

	sr
)]

ω	[MeV]

Delta
ReChi

D13+S11+P11
ChPT

FIG. 4. Inclusive 12C(e, e′) cross section using different pieces
of the current operator for a specific lepton kinematics. Black
line is for the ∆ contribution, purple line is for reggeized back-
ground and blue line is the contribution from the other three
resonances. Dashed orange line is the ChPT background but
without Regge. Calculation performed within the RPWIA ap-
proach.

us in previous works to produce systematic comparisons
with inclusive electron-nucleus and flux-folded neutrino-
nucleus cross section data [12, 30], which otherwise would
have been too computationally demanding. In the RP-
WIA case, where final particles are described by plane
waves and therefore, they are on-shell, it is meaningless
to talk about asymptotic approximation or full calcula-
tion, both are exactly equivalent.

From the explicit expressions of the diagrams in Figs. 2
and 3, given in Ref. [24], it is easy to see that the terms
that are affected by the asymptotic approximation to
Eq. (18), are the propagators of the direct and crossed
resonances (including the nucleon pole). For the spin-3/2
resonances, the electroweak coupling to the resonance is
affected as well, through the terms proportional to CV

4 ,
CA

4 and CV
5 . As the pion is treated as a plane wave in this

work, the contributions of the PP and PF terms will not
change. When pion distortion would be included, only
the contact terms are unaffected by the asymptotic ap-
proximation.

As an example of how the full or approximate treat-
ments of the operator can change each term in Eq. (20),
in Fig. 5 we show the double differential electromag-
netic cross section for the n → pπ− channel with two
different incoming energies as a function of W free =√
M2

N + 2ωMN −Q2, i.e., the invariant mass if the in-
teraction would occur on a free stationary nucleon. We
observe that the full calculation yields to a small incre-
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	1

	3

	5

	7
	9

	11

	13

	15
	17

	1100 	1200 	1300 	1400 	1500 	1600

P11(1430)	RPP11(1430)	RP Ei	=	1	GeV

Ei	=	2	GeV

θe	=	35	degn	→	pπ-

d2
σ/
dω
dΩ
	[1
0-
3 	n
b/
(M
eV
	sr
)]

Wfree	[MeV]

FULL
	APPROX

FIG. 5. The effect of the asymptotic approximation on the
P11(1430) RP diagram. Double differential cross sections for
the reaction 12C(e, e′) for the channel n → pπ− within two
different incoming energies are presented as function of W free.
Solid lines are for Ei = 1 GeV, dashed lines are for Ei = 2
GeV.

ment and a shift towards higherW free values with respect
to the approximate calulation.

III. RESULTS

Our motivation is to address the effects of the asymp-
totic approximation, identifying the kinematical regions
where it works better and where it fails. For that, we fo-
cus on the study of inclusive and semi-inclusive electron
scattering cross sections on 12C. We also show neutrino
scattering results for a fixed incoming energy. We include
only the SPP channel.

A. Electroproduction

The inclusive cross section is obtained by explicit inte-
gration over the hadronic variables

d3σ

dωdΩ
=

∫
dTNdΩNdΩπ

d8σ

dωdΩdTNdΩπdΩN
. (22)

In Fig. 6 we show our predictions for the inclusive cross
section and compare them with experimental data. We
present RDWIA with and without the asymptotic ap-
proximation, and RPWIA. For the nucleon distortion,
we have considered the ED-RMF potential; though not
shown here, we also performed calculations with the real
part of the energy dependent A-independent carbon 12

potential (EDAI-C) of Ref. [54], and found only slight
differences with respect to ED-RMF, mainly in the low
TN region, as expected [29, 55].

The panels show three different kinematics. First, we
point out that an underprediction of the experimental
data is expected, as other reaction channels contribut-
ing to the experimental signal, like quasielastic scatter-
ing, multinucleon knockout, two-pion production, among
others, are not included.

In Ref. [30] it was found that, within the asymptotic ap-
proximation, the distortion of the final nucleon resulted in
a reduction of the total strength and a shift of the distri-
butions towards lower ω values, with respect to the RP-
WIA predictions that is taken as reference. Here, we find
that with the full calculation (i.e., RDWIA and without
asymptotic approximation) the reduction of the strength
tends to remain but the shift disappears.

At high energy and momentum transfer, which corre-
sponds to high kinetic energy of the knocked out nucleon,
the three approaches must tend to move closer to each
other, because the energy dependent potentials weaken
for increasing nucleon energies [30]. This is confirmed by
the results in Fig. 6, where we observe that the predictions
from the three models are quite different at low energies,
panel (a), but they tend to get closer for higher energies,
panel (c) and (d).

It is interesting to observe that, for the kinematics of
Fig. 6(c) and (d), the full model is extremely close to
the much simpler RPWIA one. It would be dangerous
to understand from this that the RPWIA treatment is
compatible with the more complete RDWIA approach.
From the results in Fig. 6, we do conclude that the impact
of the approximations in the 1π production operator are
comparable to these of nucleon distortion and around or
below 10% for these inclusive results, depending on the
kinematics.

To better understand the effect of the full calculation,
we present in Fig. 7 semi-inclusive differential cross sec-
tions as a function of the kinetic energy of the nucleon
TN . The semi-inclusive cross section is obtained integrat-
ing over the pion and nucleon solid angles. We find TN to
be the most relevant variable as the nuclear potential felt
by the final nucleon depends on it. First, second, third
and fourth rows correspond to the lepton kinematics of
Fig. 6 (a), (b), (c) and (d), respectively. In every row,
we show the results from low to high ω values in regular
steps, and we set the same scale for x- and y-axes to as-
sess the actual strength that contributes to the inclusive
cross section. We also give the Q2 value in each case.

We find that, in general, the full result and the one
with asymptotic approximation have similar shapes, de-
termined by the distortion of the nucleon. We find that
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σ/
dω
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	[n

b/
(M
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	sr

)]
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APPROX
RPWIA

	0.5
	1
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Ei=961	MeV,	θe=37.5	deg

(b)(b)(b) DATA

	0.2
	0.4
	0.6
	0.8
	1

	1.2
	1.4
	1.6
	1.8
	2

	325 	400 	475 	550 	625 	700 	775

Ei=1299	MeV,	θe=37.5	deg

(c)(c)(c)

d2
σ/
dω

dΩ
	[n

b/
(M
eV

	sr
)]

ω	[MeV]

	1
	3
	5
	7
	9

	11
	13
	15
	17

	325 	400 	475 	550 	625 	700 	775

Ei=2500	MeV,	θe=15	deg

(d)(d)(d)

ω	[MeV]

FIG. 6. Inclusive SPP 12C(e, e′) differential cross section for different kinematics. Plots show the predictions of the RPWIA,
and ED-RMF models with (APPROX) and without (FULL) asymptotic approximation. Data of panel (a) are from [51], data
of panels (b) and (c) are from [52], and data of panel (d) are from [53].

the full calculation is always lower than the approximate
one up to ω ≈ 430 MeV, then it is always larger up to
ω ≈ 655 MeV, where the relative magnitude switches
again. This can explain, in part, that for low incident
energy we have a reduction of the inclusive cross section
and as the incident energy increases, the situation is re-
versed.

The three models tend to overlap as TN grows, where
the distortion effect diminishes. At low TN (< 100 MeV)
we find large differences between the three approaches;
this is relevant when the cross section is large in that
TN region, as is the case of first row in Fig. 7, which
corresponds to Fig. 6(a), but irrelevant when the cross

section is small for those TN values.

B. Neutrino CC1π+ production

We have computed CC νµ-induced 1π+-production on
12C differential cross section as a function of Q2 to assess
the effect of the full calculation at the low-Q2 region in the
neutrino sector, where also the axial part of the current
operator contributes. The double differential cross section
as a function of ω and Q2 reads

d2σ

dωdQ2
=

π

Eνkµ
× d2σ

dωd cos θµ
. (23)
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The squared four-momentum transfer is given by

Q2 = 2Eν(Eµ − kµ cos θµ)−m2
µ.

The final single differential cross section is obtained by
explicit integration over ω in Eq. (23). Apart from full or
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approximated calculations within the RDWIA approach,
we also show the RPWIA to account for the effect of the
nucleon distortion, as in the 12C(e, e′) results.

In Fig. 8 we show the single differential cross section as
function of Q2 for different incoming neutrino energies.
We find a reduction in the low-Q2 region. However, this
reduction gets smaller as the incoming energy increases,
because the kinetic energy of the final nucleon TN is less
restricted to low values. In general, we obtain a slight shift
towards higher Q2 values. The neutrino Q2-distribution
is a topic that raises a lot of interest in the neutrino com-
munity. The MINERνA collaboration reported a strong
deficit of pion production at low-Q2, where a suppres-
sion is implemented ad hoc in that region in order to get
agreement with the data [56]. Note that within our full
calculation we have a reduction specifically in this region,
so the effect of the nucleon distortion is incremented with
respect to the plane-wave approach. We expect the pion
distortion to reduce the strength of the cross section even
more, in particular, at low Tπ, which (ignoring nuclear
recoil) corresponds to high TN .

IV. CONCLUSIONS

In this work, we have evaluated the impact of using
an approximated treatment of the hadronic current for
SPP, in the context of electron and neutrino scattering
off 12C. In particular, we have compared the results ob-
tained with a local (or asymptotic approximation) and a
non-local current operator. This study is of relevance be-
cause the asymptotic approximation, which makes calcu-
lations computationally more tractable in distorted-wave
approaches, has been used in the past, by our group and
others.

For the electromagnetic interaction, we show results for
four different lepton kinematics comparing the RPWIA
and the ED-RMF with and without the asymptotic ap-
proximation in the SPP operator. Non-trivial differences
are found between the three approaches. The most promi-
nent features are that the two RDWIA approaches pro-
vide a reduction of the strength with respect to the plane-
wave picture at low and moderate energy-momentum
transfer; and that the position of the peak of the cross sec-
tion for the full model agrees well with the peak position
from RPWIA, while with the asymptotic approximation
one observes a shift towards lower ω values.

For increasing incident energy (and hence inscreasing
energy-momentum transfer), the three models tends to
get closer to each other, as expected.

While results from only the inclusive cross section seem
to imply that the full calculation is closer to the RPWIA

than the approximate results, this is not the case for the
semi-inclusive cross section. In this case we see that the
approximated and full RDWIA models, in fact, are close
to each other particularly in shape, with RPWIA the most
different one. The difference at low TN is most apparent.

In the neutrino sector, where for the first time this ef-
fect has been studied on 12C, we find corrections to the
differential cross section similar to the electroproduction
case. We see a reduction at low Q2 and a mild shift to-
wards higher Q2 values compared to the asymptotic ap-
proximation. These changes are more noticeable as the
incoming energy decreases. This implies a larger differ-
ence between RDWIA and RPWIA treatments for the
final nucleon, which shows the importance of taking into
account nuclear effects and FSI.

Overall, we find the impact of this effect to be impor-
tant to describe lepton-induced SPP cross section data,
either inclusive or semi-inclusive. In particular, this effect
is more prominent at low energies.

The distortion and Pauli exclusion principle can only be
correctly addressed in a fully quantum mechanical frame-
work, we find that these nuclear effects play an impor-
tant role in the interpretation of neutrino-nucleus inter-
actions, specially at low and moderate energy and mo-
mentum transfer or, equivalently, at low-Q2.

The next step is to develop the RDWIA formalism for
the final pion, and test the effect together with the other
ingredients of the nuclear matrix elements.
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Appendix A: Analytical integration of one azimuth
angle

We provide the explicit expressions of a simple change
of variable which allows to integrate one phase space az-
imuth angle analytically. This is a very useful tool, espe-
cially when the phase space is vast, as in the pion pro-
duction regime. In the reference frame where q = (0, 0, q)
(denoted as {x̂, ŷ, ẑ}), the three-momenta of the final nu-
cleon and pion read

p(xyz)
N = pN (sin θN cosϕN , sin θN sinϕN , cos θN ),

k(xyz)
π = kπ(sin θπ cosϕπ, sin θπ sinϕπ, cos θπ).

(A1)

The auspicius variable transformation [57, 58] will be

ϕ =
ϕπ + ϕN

2
, ∆ϕ = ϕN − ϕπ, (A2)

where ϕ ∈ (0, 2π] and ∆ϕ ∈ (−2π, 2π].
The inverse transformation is therefore

ϕπ = ϕ− ∆ϕ

2
, ϕN = ϕ+

∆ϕ

2
. (A3)

ϕN

ϕπ

2π

2π

(0, 0) ∆ϕ

ϕ

2π

π

2π−2π

(0, 0)

FIG. 9. Sketch of the domain (shaded area) of the variables
before and after the transformation.

From Eqs. (A3) and (A1), we obtain

p(xyz)
N = pN

(
sin θN (cosϕ cos

∆ϕ

2
− sinϕ sin

∆ϕ

2
), sin θN (sinϕ cos

∆ϕ

2
+ cosϕ sin

∆ϕ

2
), cos θN

)
,

k(xyz)
π = kπ

(
sin θπ(cosϕ cos

∆ϕ

2
+ sinϕ sin

∆ϕ

2
), sin θπ(sinϕ cos

∆ϕ

2
− cosϕ sin

∆ϕ

2
), cos θπ

)
.

(A4)

Rotating the whole hadronic system an angle ϕ along ẑ
(this reference system is denoted as {1̂, 2̂, 3̂}) we get for
the three-momenta of the final hadrons

p(123)
N = pN (sin θN cos

∆ϕ

2
, sin θN sin

∆ϕ

2
, cos θN ),

k(123)
π = kπ(sin θπ cos

∆ϕ

2
, − sin θπ sin

∆ϕ

2
, cos θπ),

(A5)

where none of both depend on ϕ. Finally, the hadronic
current in the original reference frame, expressed in terms
of the current in the new one, reads

J0 = J ′
0,

J1 = cosϕJ ′
1 − sinϕJ ′

2,

J2 = sinϕJ ′
1 + cosϕJ ′

2,

J3 = J ′
3,

(A6)

being Jµ ≡ J
(xyz)
µ and J ′

µ ≡ J
(123)
µ . Following Eq. (A6), it

is straightforward to obtain the hadron tensor in {x̂, ŷ, ẑ}
as a linear combination of the hadron tensor in {1̂, 2̂, 3̂}.

The dependence on ϕ has factorized and then can be in-
tegrated analytically. For the analytic integration over
ϕ one must take into account that the Jacobian for the
transformation {ϕπ ∈ (0, 2π], ϕN ∈ (0, 2π]} to {ϕ ∈
(0, 2π],∆ϕ ∈ (−2π, 2π]} is 1 and the integration limits
for an integral over ϕ depend on ∆ϕ, as is sketched in
Fig. 9.

This has been for the particular case of two azimuth
angles as we have two particles in the final state. How-
ever, this can be trivially extended to an N -particle final
state, with N azimuth angles ϕ1, ..., ϕN , being always pos-
sible to integrate one of them analytically. Analogously
to Eq. (A2), we will have

ϕ =
1

N

N∑
i=1

ϕi , ∆ϕ1i = ϕ1 − ϕi, (A7)

for i = 2, ..., N . Thus, the new N variables are
ϕ, ∆ϕ12, ..., ∆ϕ1N . Now, the procedure is the same as in
the two angles case.
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