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NOvA is a long-baseline neutrino oscillation experiment that measures oscillations in charged-
current νµ → νµ (disappearance) and νµ → νe (appearance) channels, and their antineutrino
counterparts, using neutrinos of energies around 2GeV over a distance of 810 km. In this work
we reanalyze the dataset first examined in our previous paper [Phys. Rev. D 106, 032004 (2022)]
using an alternative statistical approach based on Bayesian Markov Chain Monte Carlo. We mea-
sure oscillation parameters consistent with the previous results. We also extend our inferences to
include the first NOvA measurements of the reactor mixing angle θ13 and the Jarlskog invariant.
We use these results to quantify the strength of our inferences about CP violation, as well as to
examine the effects of constraints from short-baseline measurements of θ13 using antineutrinos from
nuclear reactors when making NOvA measurements of θ23. Our long-baseline measurement of θ13
is also shown to be consistent with the reactor measurements, supporting the general applicability
and robustness of the PMNS framework for neutrino oscillations.

I. INTRODUCTION

In the three-flavor neutrino oscillation paradigm, tran-
sitions among the three flavor eigenstates νe, νµ, ντ are
governed by the matrix elements between these states
and the mass eigenstates ν1, ν2, ν3.

1 The elements
of this Pontecorvo–Maki–Nakagawa–Sakata (PMNS) ma-
trix have been constrained by numerous experiments us-
ing neutrinos with a variety of energy spectra over various
baselines [1–9]. Decomposing the PMNS matrix yields a
set of rotation-like “mixing angles” θ12, θ13, θ23, and a
phase δCP. Contemporary neutrino oscillation experi-
ments seek to make precision measurements of these pa-
rameters, as well as the differences between the squared
mass eigenvalues (∆m2

ij ≡ m2
i −m2

j ). These results have
fundamental implications for models of neutrino mass
and lepton flavor [10–14], as well as models of baryo-
genesis via charge-parity (CP) symmetry violation [15–
19]. Where multiple experiments can access the same
parameters using different neutrino flavors or energies,

1 The same is true for their antineutrino counterparts ν̄e, ν̄µ, ν̄τ
and ν̄1, ν̄2, ν̄3. Throughout this paper the symbol ν will refer to
both neutrinos and antineutrinos unless otherwise specified.

the overall validity of the three-neutrino framework can
also be tested.

Long-baseline (LBL) accelerator neutrino oscillation
experiments measure oscillations in νµ → νµ (disap-
pearance) and νµ → νe (appearance) channels. These
channels constrain the mixing angles θ13, θ23, the mass-
squared splitting ∆m2

32, and the CP-violating phase δCP.
Current measurements of θ23 are consistent with maxi-
mal mixing (θ23 = π/4), which would suggest a µ-τ sym-
metry in their mixing into the ν3 mass eigenstate; a non-
maximal value such as θ23 < π/4 (lower octant, LO) or
θ23 > π/4 (upper octant, UO) would indicate a preferen-
tial coupling of ντ or νµ, respectively, with ν3. Current
experimental uncertainties on θ23 are the largest among
the mixing angles [20]. LBL oscillation measurements,
where neutrinos traverse significant quantities of matter,
are also impacted by the coherent forward scattering of
νes on electrons in the Earth [21]. This modifies the os-
cillation probabilities P(νµ → νe) and P(ν̄µ → ν̄e) with
opposite signs. The direction of the resulting change in
rate depends on whether ν3 is the heaviest neutrino state
(Normal Ordering, NO) or the lightest (Inverted Order-
ing, IO). Current observations from LBL (and other) ex-
periments prefer the NO, though the strength of the NO
hypothesis depends on which measurements are included
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[22]. The value of δCP is currently essentially unknown;
LBL experiments provide the only constraints, but they
are weak.

NOvA is a long-baseline neutrino oscillation exper-
iment that observes the νµ disappearance and νe ap-
pearance channels using neutrinos of energies around
2GeV over a distance of 810 km. Previously [23–29],
we have presented NOvA constraints on ∆m2

32, sin
2 θ23,

and δCP using a classical frequentist approach. However,
the Feldman–Cousins technique that is required in order
to obtain correct classical confidence regions for these
variables [30, 31] poses challenges when confronted with
highly degenerate sets of parameters. It also does not
allow for post hoc transformations of the variables con-
sidered in the analysis. In this work we present a new
analysis of the dataset from Ref. [29], based on Bayesian
Markov Chain Monte Carlo, which enables us to extend
our inferences to include θ13 and the Jarlskog invariant
J , for which J ̸= 0 unambiguously indicates CP viola-
tion. We use these results to examine the implications
of assuming short-baseline, nuclear-reactor antineutrino
constraints on θ13 when making measurements of other
oscillation parameters in NOvA.

We also investigate the consistency of the PMNS
framework by comparing the constraint from reactor ex-
periments with our long-baseline measurement of θ13.

II. 3-FLAVOR NEUTRINO OSCILLATIONS IN
NOvA

In this paper, we reanalyze data collected from an
exposure of 13.6 × 1020 14 kton-equivalent protons on
target (POT) in the neutrino-enriched beam mode and
12.5×1020 POT in the analogous antineutrino mode. The
dataset, simulations, reconstruction, and estimation of
systematic uncertainties remain unchanged for this anal-
ysis. A brief overview of these components follows, with
detailed descriptions available in Ref. [29]. Extensive dis-
cussion of the new analysis method, its implementations,
and the resulting inferences are presented in Sec. III.

A. The NOvA experiment

NOvA observes oscillations using neutrinos from the
NuMI beamline [32] at Fermilab using two functionally
identical tracking calorimeter detectors that differ pri-
marily in size. The 0.3 kton near detector (ND), the
smaller of the detectors, is located 1 km from the neutrino
production target, 100m underground. The far detector
(FD), by contrast, is 14 kton and is located on the surface
at Ash River, Minnesota, 810 km from the target. Both
detectors are built from PVC cells of 3.9× 6.6 cm2 cross-
sectional area and 3.9m (ND) or 15.5m (FD) length,
which are arranged in alternating horizontal and vertical
planes and filled with a mineral-oil-based liquid scintilla-
tor. A stack of alternating active planes and steel plates

is placed behind the ND to range out muons while a
small rock overburden is placed above the FD to aid in
rejecting the cosmic-ray background. The detectors are
placed 14.6mrad from the central axis of the beam to
receive a narrow-band neutrino flux predominantly be-
tween 1 and 3GeV.

B. Simulation and selection

We use Geant4 (v10.4) [33, 34] to simulate the
production of hadrons from interactions of the pri-
mary proton beam with the target as well as their
transport through the beam optics. These simulations
are reweighted using the Package to Predict the FluX
(PPFX) [35] to include constraints from external hadron
production data [36–54]. Simulated interactions of neu-
trinos that arise from decays of those hadrons are gener-
ated using GENIE 3.0.6 [55, 56] and modified by correc-
tions we derive from NOvA ND and external data. NOvA
ND data is used to produce a NOvA-specific tune of
the IFIC València model [57, 58] that describes charged-
current neutrino scattering from correlated pairs of nu-
cleons. The NOvA tune also modifies final-state inter-
actions (simulated with the GENIE hN full intranuclear
cascade model) using pion–nucleon scattering data [59–
65]. The outgoing final-state particles are propagated
through the detector using Geant4 and a custom NOvA
readout simulation [66].

We use groups of spatially and temporally proximate
cells with activity above threshold to apply basic data
quality and containment selection cuts to events in both
data and simulation. Within these groups we assign
vertices and reconstruct likely particle trajectories. Ul-
timately we divide the events into νµ charged-current
(CC), νe CC, neutral-current (NC), or cosmogenic back-
ground categories using NOvA’s convolutional neural
network (CNN)-based classifier [67]. Boosted decision
trees (BDTs) are used to further reject cosmic back-
grounds in the FD samples. Both sets of tags are utilized
together to create νµ CC and νe CC candidate samples.
Fully contained νe candidates at the FD are further di-
vided into high and low purity samples based on the CNN
score in order to enhance the signal-to-background re-
jection capability of the fit. To improve the statistical
strength of the fit, we recover an additional sample of
“peripheral” events that fail the containment or cosmic
rejection BDT but pass stricter particle ID requirements.
We estimate neutrino energy for νµ CC events using the
muon track length and the total deposited calorimetric
energy of the hadronic system. The energy for νe CC
events is estimated using a function of calorimetric en-
ergy that takes as input the energy of the event’s re-
constructed trajectories divided into electromagnetic and
hadronic components, as identified by a separate CNN-
based classifier [68].
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C. Near-to-far extrapolation and systematics

Predictions for the neutrino event rates at the FD
are constrained using the high-statistics neutrino inter-
actions measured in the ND. These measurements imply
corrections to the ND prediction, which we propagate to
the FD by adjusting for the differing efficiency and flux
between the detectors using simulations. We call this
process “extrapolation.” We apply oscillations to this
data-driven prediction when comparing to FD data dur-
ing inference (Sec. III B below).

The signal spectra for both νµ disappearance and νe
appearance channels are predicted using the νµ spectra
at the ND. The near-to-far extrapolation for the νµ dis-
appearance samples at the FD is performed in quartiles
of hadronic energy fraction (fhad = Ehad/Eν , with Eν

being the reconstructed neutrino energy and Ehad the
reconstructed hadronic energy).

Extrapolating in the fhad bins has the effect of group-
ing events that share similar hadronic system characteris-
tics so that compatible events are constrained together in
the FD sample, despite the detectors’ somewhat different
acceptances. Performing the oscillation fit in these bins
enhances sensitivity to the oscillation dip as a function
of Eν since we achieve a finer energy resolution for bins
with smaller fhad. We further subdivide the near-to-far
extrapolation into three bins of reconstructed transverse
momentum of the outgoing charged lepton pT for both
appearance and disappearance channels. Like the fhad
subdivision, this allows us to better match the constraints
from the much smaller ND to the FD, in this case adjust-
ing for the differing containment of events with leptons
that emerge at large angles relative to the beam direction
(i.e., large pT ). The predictions in pT bins are summed
prior to the oscillation fit. We constrain the small beam
backgrounds in the νe appearance channels with a similar
procedure based on ND νe candidates after first decom-
posing them into NC, νµ CC, and intrinsic νe categories
using data-driven constraints. (ν̄e beam backgrounds are
all constrained together rather than being decomposed
this way.) Cosmic backgrounds for all FD samples are
determined from dedicated FD cosmic data samples. The
remaining minor backgrounds are estimated from simu-
lation. More detail on these procedures can be found in
our previous paper [29].

We evaluate the impact of systematic uncertainties on
the analysis by repredicting the sample spectra described
above with altered parameters in the simulation. Uncer-
tainties in the neutrino flux and interaction model are
treated using event reweighting. Uncertainties in the de-
tector calibration and custom modeling of light in the
detectors, on the other hand, must be fully resimulated.
The 67 systematically shifted simulations that arise from
these techniques are extrapolated to the FD using ND
data via the same process as above, which constrains
the impact of the uncertainties on the predicted spec-
tra. Parameters corresponding to these uncertainties are
marginalized over in the oscillation inference in Sec. III.

Figure 1 shows the reconstructed energy spectra of the
data observed at the FD using the νe and νµ CC selec-
tions described in Sec. II B, separated by the neutrino-
enriched and antineutrino-enriched beam modes. Over-
laid on these plots are bands of FD predictions produced
according to the extrapolation procedure above. These
illustrate the spectra predicted using the 68.3%, 95.4%,
and 99.7% highest probability values of the systematics
just described and of the relevant oscillation parameters,
determined using the MCMC algorithms that will be de-
tailed in the next section.
A Poisson likelihood [20] computed over the bins be-

tween the FD data and predictions such as those shown
here forms the likelihood used in Bayes’ theorem below.

III. OSCILLATION INFERENCES USING
MARKOV CHAIN MONTE CARLO

We derive posterior probability distributions for rel-
evant oscillation parameters using Bayes’ theorem [69].
Marginalizing away the nuisance parameters of our
model, which include the tens of systematic uncertainties
described in Sec. II C, is a challenging problem because it
requires an integral over many dimensions. We therefore
turn to a Monte Carlo method for computing the poste-
rior: Markov Chain Monte Carlo (MCMC). In MCMC,
we draw a collection of sequential samples from the poste-
rior with frequency proportional to the posterior density.
Histograms that approximate the posterior shape (with
accuracy governed by the sample count) may be com-
puted in any variable(s) of interest using these samples.
In so doing, any dimensions not explicitly summed are
implicitly marginalized.2

Numerous algorithms for obtaining MCMC samples
exist; we have implemented two for this analysis. The
conclusions obtained from them agree with one an-
other. Though descriptions of both methods are readily
found in the literature, there are certain implementation
choices that must be made for each, which we discuss in
Sec. III A. Sec. III B lays out our resulting inferences on
the parameters.

A. NOvA MCMC implementations

1. “ARIA:” MR2T2algorithm

The traditional MCMC algorithm, the Metropolis–
Rosenbluth–Rosenbluth–Teller–Teller (MR2T2) method3

2 For an accessible introduction to MCMC, the reader is referred
to Ref. [70]. An exhaustive treatment may be found at Ref. [71].

3 Historically this method was known as the “Metropolis” (or
“Metropolis–Hastings”) method, referring to the first author of
the seminal papers [72, 73]. We follow more recent convention
and hereafter refer to it by all of the authors’ names. See also
Ref. [74].
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FIG. 1: Reconstructed neutrino energy distribution of selected data events (black crosses) in FD νe CC
samples (top) and FD νµ CC samples (bottom) in neutrino-enriched beam mode (left) and antineutrino-enriched
beam mode (right). The colored bands correspond to the range of 68.3% (darkest), 95.4%, and 99.7% (lightest) of
the extrapolated FD spectra produced using the combinations of the oscillation and systematic parameters sampled

by our MCMC algorithms (illustrating the posterior distributions described further in Sec. III B). The FD νe
samples are divided into bins of low (I) and high (II) particle ID confidence as well as the peripheral (III) sample
discussed in Sec. II B. The four Efrac νµ subsamples have been combined together in each of the lower two plots.

is straightforward. We call our implementation ARIA, in
honor of Arianna Rosenbluth, who first implemented the
method in machine code [75]. Proceeding from an initial
seed in the parameter space, subsequent samples are se-
lected by proposing a jump to a new set of coordinates,
and accepting or rejecting that proposal according to an
acceptance rule [20]. This process is repeated until a
sufficient number of samples have been collected. There
is no explicit stopping criterion. The method also does
not specify the distribution to be used in the proposal
algorithm. In our implementation, we use the most com-
mon choice, which is of a multivariate Gaussian. We
determine the characteristic length scale of the Gaussian
empirically in order to optimize sampling efficiency (see
App. A). We also “thin” the resulting chains to reduce
autocorrelations among the samples (see App. B). Our
ARIA results below have 5× 105 effective samples.

2. “Stan:” Hamiltonian MCMC

Though the MR2T2 method proposes samples quickly,
they are typically highly autocorrelated. Its sampling
proposals can also be inefficient if the posterior is sharply
concentrated. Other MCMC methods have been devel-
oped to address these shortcomings, including one called
“Hamiltonian” MCMC inference (HMCMC). We im-
plemented a C++ interface to the Stan modeling plat-
form [76] to obtain HMCMC samples.

The main difference between HMCMC and MR2T2 is
how proposals are generated. Rather than proposing ran-
domly, HMCMC views the posterior surface as a topo-
graphical one that can be explored by a fictitious particle.
Samples correspond to trajectories under the influence of
a gravitational potential whose gradient corresponds to
that of higher posterior density. Endowing the particle
with an initial momentum that counterbalances the cen-
tripetal force from gravitation produces stable trajecto-
ries that traverse the highest density region of posterior
space [77]. HMCMC does this by numerically integrat-
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ing Hamilton’s equations for the fictitious particle system
with its position q⃗ (which correspond to the parameters
of interest) and momentum p⃗ coordinates, and a Hamil-
tonian H = − log(posterior). This approach produces
samples that are nearly uncorrelated without thinning at
the expense of additional computing cycles to compute
the gradient of the posterior. (Compare the 7× 107 Stan
samples we obtained, which require no thinning, to the
5×105 effective samples mentioned above for ARIA that
remain after thinning.) We find Stan’s default choices of
the sampling distribution for the pseudoparticle kinetic
energies and the integration stopping condition to be suf-
ficient for our needs (see App. C).

Its topographical nature means HMCMC is ill-suited
to parameters that assume only one of a discrete set of
values, which would manifest as discontinuities in the
trajectories considered. This presents a difficulty in neu-
trino oscillation parameter inference, where the absolute
value of ∆m2

32 is known with relatively good precision,
but its sign remains an important unknown. While it is
possible to allow HMCMC to explore the entire range of
∆m2

32, we find in practice that this results in poor ex-
ploration, as few trajectories manage to “jump” across
the wide disfavored region at low |∆m2

32|. Instead, at
the end of each trajectory determination, we introduce
a separate MR2T2-like step which considers the possibil-
ity of changing the sign of ∆m2

32 according to the prior
probability chosen for it (50%, i.e., uniform prior; see
Sec. III A 3 below). If the acceptance ratio between both
mass orderings satisfies the MR2T2 criteria, the proposed
sign is retained; if not, it is reverted to its previous value.

3. Choices of prior

In Bayesian inference, the posterior probabilities are
influenced by the choice of prior probability densities,
which encode assumptions made about the parameters
before the data is examined. If the data used for a mea-
surement is sufficient, its constraint on the posterior will
overwhelm the prior, and the prior choice is unimportant.
However, when data is sparse, the choice of prior may af-
fect the result. The priors we choose differ according to
the parameters being considered.

a. Parameters of interest: |∆m2
32|, sgn(∆m2

32),
sin2 θ23 We prefer to use “uninformed” priors, which do
not favor any particular value, for the physics parameters
we intend to measure directly. In practice, this usually
amounts to a prior uniform in the variable in question.
However, uniformity is not preserved under a change of
variable: for instance, a prior uniform in θ23 is not uni-
form in the measured variable sin2 θ23. In our results be-
low, we have studied the impact of priors uniform both
in a particular variable and relevant functions of it, and
we report when the prior choice significantly affects the
results.

b. Parameter of interest: δCP While δCP is intended
to have a uniform prior as well, it receives additional
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FIG. 2: Special prior distribution from Eq. 1 used for
δCP.

special treatment. Its cyclical nature as the phase of a
complex number results in an infinite set of values hav-
ing identical consistency with the data. This can cause
MCMC samplers never to converge on a single value for
δCP and consequently to sample much more slowly. To
combat this problem, we developed a novel special prior
over δCP:

Π(δCP) =

{
1
2 sin

2
(
1
4 (δCP + π)

)
, −1 ≤ δCP/π ≤ 3

0, otherwise.

(1)
This function is illustrated in Fig. 2. This prior forces
the samplers to remain near a single phase of δCP,
0 ≤ δCP/π ≤ 2, as the prior vanishes outside of [-1, 3].
Because it makes the transition to the vanishing regions
in a differentiable manner, this prior is suitable for use
with HMCMC. Moreover, the sum of the prior’s value at
every point 0 ≤ δCP/π ≤ 2 with that of all its complex
branch points outside that interval is a value that does
not depend on δCP:

∞∑
n=−∞

Π(δCP + 2πn) =
1

2
. (2)

This implies that the prior behaves identically to a uni-
form prior when used in conjunction with the oscillation
probability. For the rest of this paper, whenever we refer
to a “uniform” prior in δCP, we mean this prior.
When in the subsequent sections we study the effect of

choosing a prior uniform in δCP vs. sin(δCP), we reweight
the MCMC samples obtained with the prior above, tak-
ing the Jacobian factor ∂(sin(δCP)) = cos(δCP) as the
weight.
c. Parameter of interest: sin2 2θ13 As discussed fur-

ther in Sec. III B below, we consider two separate cases
for sin2 2θ13: one where its prior is treated identically
to that of sin2 θ23 (see IIIA 3 a), and one where mea-
surements from short-baseline reactor antineutrino oscil-
lations are applied as a constraint. In the latter case,
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we impose a Gaussian prior with standard deviation ob-
tained from the 2019 world average of reactor measure-
ments [78], analogous to the treatment in our most recent
frequentist result [29]: sin2 2θ13 = 0.085± 0.003.
d. Systematic uncertainties For all systematic un-

certainties we use a unit Gaussian distribution as their
prior.

B. Oscillation inferences: results and discussion

In this section we describe our inferences regarding the
PMNS neutrino oscillation parameters, given the data,
model, and the Bayesian methodology described above.
Two separate sets of results are obtained. The first uses
a Gaussian prior on sin2 2θ13, imposing a constraint from
reactor antineutrino experiments (Sec. III B 2-III B 3).
The second uses a prior uniform in sin2 2θ13, yielding
results constrained only by the NOvA data (Sec. III B 4).
Samples obtained from ARIA and Stan produce essen-
tially identical distributions in all the variables consid-
ered (App. D).

1. Goodness of fit

To evaluate the goodness of the fit for this Bayesian
analysis we use posterior predictive p-values (PPP) [79].
In a PPP test, the coordinates from each MCMC sample
are used to form a prediction for the observed spectra.
A χ2 statistic is computed between each prediction and
the data, which we denote as χ2

data. A second predic-
tion is made for each sample by applying Poisson fluctu-
ations to the prediction above, and a second χ2

pseudodata
calculated between this pseudodata and the original pre-
diction. Because the data spectra are unchanged in this
process, χ2

data incorporates only variations in the oscil-
lation parameters and systematic uncertainties. Con-
versely, since the pseudodata distributions have Poisson
fluctuations applied but use the same oscillation param-
eters and systematic uncertainty pulls as the base model
for each MCMC sample, χ2

pseudodata treats only statistical
uncertainties.

The distribution of these (χ2
data, χ

2
pseudodata) pairs for

the entire ensemble of spectra considered in Fig. 1 is
shown as the purple shading in Fig. 3. The PPP then
consists of the fraction of points in this ensemble that
lie above the χ2

data = χ2
pseudodata line. In the limit of in-

finite MCMC samples, a model that perfectly describes
the data apart from statistical variations will produce a
PPP of 0.5. We observe that the shaded distribution in
Fig. 3 is distributed evenly around 1 unit of χ2 per de-
gree of freedom in both axes, and the PPP we obtain
is 0.56. Both of these imply that the model is a good
representation of the data.

We also find good p-values for the νµ and ν̄µ samples
considered independently, whose 68.3% credible regions

0.5 1 1.5
/DOF

data
2c

0.5

1

1.5

/D
O

F
ps

eu
do

da
ta

2 c

-values:pPosterior predictive 
: 0.92en : 0.14en
: 0.65mn : 0.34mn

Total: 0.56

Both O
rderings

FIG. 3: Posterior predictive p-values from real data
MCMC samples, with θ13 constraint from reactor
experiments applied. The purple distribution is a
scatterplot of the binned χ2 computed between the

model and real data spectra (x-axis), against a similar
χ2 between the model and pseudodata spectra (y-axis),

both divided by the number of degrees of freedom
(DOF) in the fit, computed for each MCMC sample.
(See the text for more on how the pseudodata spectra
are constructed.) The dashed and solid contours show

1σ intervals from the same posterior-predictive
distributions calculated only for νe (dark blue, left

solid), ν̄e (red, right solid), νµ (light blue, left dashed)
and ν̄µ (light red, right dashed) data samples. The
posterior predictive p-value is the fraction of the

distribution that lies above the diagonal
χ2
data = χ2

pseudodata line (black). The fact that the

purple distribution is centered at (1, 1) and is evenly
distributed above and below the the diagonal, with the

associated p-value of 0.56, indicates a good fit.

are indicated by the dashed light blue and light red col-
ored contours in Fig. 3, respectively. By contrast, the
effect of fluctuations in the smaller-statistics samples can
be seen more readily in the analogous νe (solid dark blue)
and ν̄e (solid red) contours. Both contours are much
larger than their νµ counterparts, particularly along the
y-axis, which corresponds to the dimension where sta-
tistical uncertainties are considered. In the νe contour,
the offset downwards from unity along the x-axis, and
the corresponding shift above the diagonal along the y-
axis, together suggest a set of fluctuations that are rela-
tively close to the Asimov (unfluctuated) model predic-
tion. Each member of the ensemble of pseudodata spec-
tra thus typically has larger χ2 relative to the Asimov
than that of the data. This relative closeness of the νe
prediction to the data can also be seen in the top left
panel of Fig. 1. The unusual shape of this contour arises



8

because the PPP distribution for νe consists of two modes
superimposed upon one another, corresponding to the
high-probability regions within the NO that will be dis-
cussed below in Fig. 7. On the other hand, the situation
is reversed for the ν̄e spectra, where the data fluctuations
result in larger deviations from the Asimov prediction
than the bulk of the pseudodata spectra. The fact that
combining all four subsamples together produces a PPP
that is closer to 0.5 than any of them are individually
is good evidence that the deviations from PPP of 0.5 in
the various subsamples are predominantly driven by sta-
tistical, rather than systematic, effects.4 We conclude
therefore that our set of MCMC samples reflect PMNS
parameters with a good description of the physics exhib-
ited in our data.

2. PMNS parameter measurements

We produced Bayesian credible regions for the PMNS
neutrino oscillation parameters using the data spectra
and the MCMC samplers described in sections IIIA
and IIC, respectively. These credible regions together
with the posterior probability distributions are shown in
Figs. 4 and 7. In both cases the reactor θ13 constraint
used is the 2019 PDG’s combination of extant measure-
ments [78] and applied in the form of a Gaussian prior
on sin2 2θ13, as explained in section IIIA 3 c. In the fig-
ures in this section, credible intervals that show the nor-
mal and inverted mass orderings separately are created
by first making one shared credible interval that spans
both. The separate panels then display the relevant re-
gions from this shared interval that apply to the specified
ordering. By constructing them in this manner, we en-
sure the NO and IO intervals share a highest-posterior
density point and posterior probability distribution, pre-
serving any NOvA preference towards one of the mass
orderings in the credible region limits. Similarly, the
distributions and intervals labeled “both orderings” are
created from MCMC samples over all values for ∆m2

32,
summing together the normal and inverted ordering pos-
teriors before extracting the credible intervals.

Table I shows the highest posterior probability points
together with the credible intervals enclosing 68.3% of
the posterior (henceforth called the 1σ contour in analogy
with Gaussian p-values in a frequentist context). These
points are given for all the PMNS oscillation parameters
of interest, split into both, normal, and inverted mass or-
derings (using the same methodology regarding the mass
ordering as for the figures). For some of the parame-
ters the 1σ region spans disjoint areas; we denote this
with a union symbol ∪. These high posterior probability
regions are in generally good agreement with the frequen-
tist analysis of the same dataset [29].

4 The reader may find further information on interpretations of
posterior predictive p-values in Refs. [80, 81].

TABLE I: The highest posterior density points (HPD)
together with the 1 σ Bayesian credible interval limits
for the PMNS parameters of interest marginalized over
all the mass ordering (MO) hypotheses. Marginalization
over the mass orderings is explained at the beginning of

Sec. III B 2. In these results a Gaussian prior
corresponding to reactor constraint on sin2 2θ13 (see sec.

IIIA 3 c) is applied.

MO HPD 1σ

δCP

Both 0.91π [0.02π, 0.31π] ∪ [0.68π, 1.67π]
Normal 0.89π [0.54π, 1.07π] ∪ [1.99π, 0.48π]
Inverted 1.44π [1.26π, 1.65π]

sin2 θ23

Both 0.56 [0.45, 0.49] ∪ [0.52, 0.59]
Normal 0.56 [0.44, 0.59]
Inverted 0.56 [0.55, 0.57]

∆m2
32 Normal 2.39 [2.32, 2.46]

(×10−3) Inverted −2.44 [−2.47,−2.41]
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FIG. 4: Binned posterior probability densities (shaded)
for sin2 θ23–∆m2

32, marginalized over both mass
orderings and plotted separately for the normal (top)

and the inverted (bottom) mass orderings
(marginalization over the mass orderings is explained at
the beginning of Sec. III B 2). Contours indicate regions

enclosing 68.3%, 95.5%, and 99.7% of the posterior
probability, and for convenience are labeled in terms of
Gaussian standard deviations σ using the corresponding

traditional z-scores (i.e., the number of standard
deviations away from the central value).
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Figure 4 shows the sin2 θ23–∆m2
32 plane, where the

denser MCMC samples (darker color) and larger cred-
ible regions in the upper panel relative to the lower in-
dicate a mild preference for the normal ordering. This
conclusion holds in the presence of the entire system-
atic uncertainty model discussed in Sec. II C. However,
the preferred regions in each mass ordering depend in a
nontrivial way on the systematic uncertainties, as illus-
trated in Fig. 5. The most significant effect is in ∆m2

32,
where the systematic effects not only broaden the pre-
ferred region, but also shift the central value to larger
absolute magnitudes. The most important of the un-
certainties contributing to this movement is in the abso-
lute calibration of the calorimetric energy scale. Because
this directly affects reconstructed neutrino energies, it
shifts the expected number of events in the trough of
the νµ and ν̄µ disappearance spectra and is thus anti-
correlated with ∆m2

32, as can be seen in Fig. 6. Shift-
ing ∆m2

32 in this way also moves sin2 θ23 closer to max-
imal disappearance (sin2 θMD

23 ≈ 0.51; the value depends
slightly on sin2 θ13). Because the νµ disappearance spec-
tra are essentially identical for values reflected across
the maximal disappearance line, the credible regions are
nearly symmetric around it (the degeneracy is broken
only by the νe appearance spectra, which have less sta-
tistical power). Thus, the credible regions for smaller
| sin2 θ23 − sin2 θMD

23 | appear narrower, even though the
sensitivity is unchanged. This effect is responsible for the
apparently slightly tighter constraint on sin2 θ23 observed
in Fig. 5 under the effect of systematic uncertainies.

The situation is different in the δCP–sin
2 θ23 plane,

which is shown in Fig. 7. Here, we observe preferences for
CP-nonconserving values of δCP (i.e., nonintegral values
of δCP/π) in both normal and inverted orderings, and for
the upper octant (sin2 θ23 > 0.5) of θ23 (reflected also in
Fig. 4), though the CP-conserving points are only weakly
disfavored in NO. However, in contrast to the conclu-
sions for sin2 θ23–∆m2

32, these inferences are minimally
affected by the presence of systematic uncertainties, as
Fig. 8 makes clear—even if the resolution does degrade
slightly and the credible regions grow. Here the minimal
impact of systematic uncertainties owes primarily to the
smaller statistics of the νe and especially ν̄e appearance
samples that drive the sensitivity to these parameters,
which results in statistical uncertainties dominating the
uncertainty budget.

To more quantitatively assess the mass ordering and
octant preferences, we give the posterior probabilities in-
ferred for each combination of hypotheses in Table II.
We also express them in a less prior-dependent way us-
ing Bayes factors. In both cases the evidence for either
option is weak.5 The analogous Gaussian p-values also
correspond to significances of less than 1 σ. The interpre-

5 The reader unfamiliar with the interpretation of Bayes fac-
tors is referred to the standard treatments of Jeffreys [82] or
Kass & Raftery [83].
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FIG. 5: Credible interval comparisons for sin2 θ23–∆m2
32

between statistical-only fits and fits including all the
NOvA systematic parameters. The external constraint
on θ13 from the reactor experiments was applied in

these fits.
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FIG. 6: Binned posterior probability density (shaded)
with 1, 2, and 3 σ credible intervals in |∆m2

32| and the
NOvA absolute calibration systematic uncertainty,
where the horizontal axis is measured in units of
standard deviations from the nominal value. The

external constraint on θ13 from reactor experiments was
applied in this fit.
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FIG. 7: Binned posterior probability density (shaded)
with 1, 2, and 3 σ credible intervals for δCP–sin

2 θ23,
marginalized over both mass orderings for the normal

mass ordering (top, blue) and the inverted mass
ordering (bottom, red). In this fit a Gaussian θ13 prior

from reactor experiments was applied.

tations of the octant and the mass ordering hypothesis
preferences are in good agreement with the 2020 frequen-
tist analysis of the same dataset, which used profiling
with Feldman–Cousins corrections instead of marginal-
ization [29, 31]. This general agreement is also true for
the parameters’ intervals, with small differences expected
given the differing statistical methods used. To exam-
ine the CP-conservation situation more comprehensively,
taking the whole PMNS matrix into consideration, we
will use the Jarlskog invariant measure, explored in the
next section.

3. CP violation – Jarlskog invariant

The Jarlskog invariant is a measure of the strength of
charge-parity violation that is independent of how the
mixing matrix is parameterized. The neutrino-mixing
variant [84] parallels its development in the quark sec-
tor [85]. Under the three-neutrino-flavor assumption, its
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FIG. 8: Credible interval comparisons for δCP–sin
2 θ23

between statistical-only fits and fits including all the
NOvA systematic parameters, with external constraint

on θ13 from reactor experiments.

TABLE II: Bayes factors (posterior probabilities) in all
the θ23 octant and mass ordering hypotheses

combinations. A weak preference towards the normal
mass ordering and upper octant is observed. Numbers
extracted from a fit with the external θ13 constraint.

Probabilities summed across rows or columns may differ
slightly from the totals due to rounding. In these results

the reactor constraint on sin2 2θ13 is applied.

Normal Inverted
Total

Ordering Ordering

Upper Octant 0.71 (0.42) 0.26 (0.21) 1.67 (0.63)
Lower Octant 0.35 (0.26) 0.13 (0.12) 0.60 (0.38)

Total 2.08 (0.68) 0.48 (0.33) (1.0)

definition is:

J ≡ cos(θ12) cos
2(θ13) cos(θ23) sin(θ12)

× sin(θ13) sin(θ23) sin(δCP), (3)

where if any of the factors is zero, the invariant van-
ishes and the neutrino mixing matrix is CP-conserving.
Nonzero values of J , on the other hand, indicate CP vi-
olation. We produce this measurement by taking the
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FIG. 9: Posterior probability density for the Jarlskog
invariant in NO (top plot) and IO (bottom plot). The
top half of each panel shows the posterior with a prior
uniform in sin δCP, while the bottom half uses a prior
uniform in δCP. A CP-conserving line is drawn at

J = 0. The external constraint in θ13 from the reactor
experiments is used.

MCMC chain with all the oscillation parameters’ values
and calculating the Jarlskog invariant at each MCMC
step. As NOvA is not sensitive to the value of θ12, for J
we use a Gaussian prior analogous to the one used for the
reactor constraint (sec. III A 3 c) but whose range con-
sists of the PDG’s 2019 average of solar and LBL reactor
neutrino measurements: sin2 θ12 = 0.307±0.013 [78], the
same value used in our previous results.

As described in section IIIA 3, we use uninformed pri-
ors for the oscillation parameters where possible, mean-
ing that the priors are uniform in the variable that is
being shown. Since the Jarlskog invariant is written in
terms of sin δCP, the natural formulation is in terms of
a prior uniform in sin δCP. At the same time, there are
theoretical considerations that suggest a prior uniform in
δCP may be more appropriate [86]. We therefore consider
both a prior uniform in sin δCP and one uniform in δCP.
Priors on the other oscillation parameters were investi-
gated; these showed very weak effects on the J posterior
due to the far higher sensitivity of NOvA data to the
other PMNS parameters constrained above besides δCP.

Figure 9 shows the inferred values of the Jarlskog in-

variant extracted from a fit to the NOvA data with the
external constraint on θ13 from the reactor experiments,
marginalized over the normal (top) and inverted (bot-
tom) mass orderings. The regions most favored by the
data tend towards CP violation in the NO, although the
1σ intervals lie very close to J = 0. The IO’s preferred
regions are more markedly distant from CP conservation,
particularly for the prior uniform in δCP. As expected,
these trends mirror those observed when considering CP-
conserving and CP-violating values of δCP in Sec. III B 2.

A more quantitative way of measuring the NOvA pref-
erence for CP conservation with the Jarlskog invariant
is through Bayes factors. These can be calculated with
the Savage–Dickey density ratio method, which computes
Bayes factors for point hypotheses [87, 88]. Using this
method we can calculate the Bayes factor for the CP-
conserving value J = 0, nested under the unconstrained
hypothesis where J can take any value. Bayes factors al-
ways depend formally on the choice of prior, but in many
circumstances (such as those discussed above), if two hy-
potheses being compared use the same prior, it will can-
cel. This is not the case in the Savage–Dickey method.
Therefore, we compute the Bayes factor for J = 0 under
both priors for δCP considered above. We then invert it
to obtain the associated Bayes factors for CP violation
over CP conservation, J ̸= 0.

TABLE III: Bayes factors for preference of CP violation
over CP conservation, extracted using the

Savage–Dickey method at J = 0. Priors uniform in δCP

and sin δCP are both shown. The preferences are given
for the normal (NO), inverted (IO), and both (BO)

mass orderings.

Prior NO IO BO

Uniform sin δCP 1.3 3.5 1.5
Uniform δCP 1.1 4.4 1.5

Table III shows the Bayes factors for CP violation
against CP conservation for normal, inverted, and both
mass orderings, calculated for priors uniform in sin δCP

or δCP. All of these probabilities point towards a pref-
erence for CP nonconservation, although the preferences
are minimal regardless of the δCP prior or the mass order-
ing (and an analogous frequentist p-value would indicate
significances less than 1 σ, apart from the inverted order-
ing, where they range 1.1− 1.2σ6).

6 We emphasize that these significances cannot be read off of Fig. 9.
The probability density shown there is marginalized indepen-
dently at each value of J . However, the binary hypothesis test
J = 0 vs. J ̸= 0 requires a simultaneous marginalization across
the whole J ̸= 0 space. For the latter, a point-hypothesis treat-
ment, such as the the Savage–Dickey formalism we use here, is
necessary.
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FIG. 10: Posterior probability density (purple shading)—that is, the probability that a given (νe, ν̄e) pair of counts
is the true underlying value in nature (see text)—compared to the measurement and associated expected statistical
variance (black cross) of the total number of ν̄e candidates vs. νe candidates. The black solid contours indicate the
regions enclosing 68.3% of the posterior. Each panel overlays a set of ellipses corresponding to the predicted event
counts over the range of possible values of δCP, with the parameter notated nearby held at that value (blue for NO,

red for IO, with varying shading depending on the parameter value) and other parameter values as given in
Table IV. The triangular markers show the highest posterior density in the νe–ν̄e space for when restricting to NO

(blue) and IO (red) hypotheses. The posteriors shown here employ a uniform prior over sin2 2θ13.

4. Using only NOvA constraints on θ13

NOvA’s oscillation measurements simultaneously con-
strain a combination of mixing angles (θ23, θ13), the
mass-squared splitting ∆m2

32, the CP phase δCP, and
the neutrino mass ordering. Therefore, applying a strong
external 1D constraint on θ13 from reactor antineutrino
experiments—and thereby reducing the available solu-
tion space—increases the sensitivity to other parameters.
This is especially true of the octant of θ23, as we will show
below. However, using an uninformed (uniform) prior in
sin2 2θ13 enables us to directly compare a NOvA-only
measurement against that of the reactor experiments. In
so doing we can examine the robustness of the PMNS
description across short-baseline reactor antineutrino ex-
periments and long-baseline accelerator-based oscillation
experiments. We also may study whether our preferences
change in the presence of an external constraint on the
data.

Without an external constraint on sin2 2θ13, the rel-
evant degrees of freedom present a complex space with
many intercorrelations among the parameters and nu-
merous possible solutions. We can use the type of poste-
rior distributions shown in Fig. 1 to explore these possi-
bilities: for example, by computing the total number of
predicted νe and ν̄e candidates for the parameters of each
MCMC sample and comparing the distribution of these
predictions in (νe, ν̄e) candidate space to what we ob-
serve in the data. This is shown in Fig. 10. To guide our
intuition, we overlay ellipses corresponding to the ranges

of predicted number of events for the possible values of
δCP at fixed values of the other parameters, subject to
constraint from our data in that the highest posterior
density (HPD) value in each ordering is used for param-
eters not explicitly varied. We note several important
features. First, the highest-density (highest-probability)
region lies essentially equally along the overlap region
between NO and IO ellipses in all panels, meaning we
will find good solutions for either, given an appropriate
value of δCP. However, the NO ellipses subtend more of
the posterior region, which will result in a slight over-
all preference for NO. Second, it is clear from the left
panel that the value of sin2 2θ13 preferred by the reactor
average, sin2 2θ13 = 0.085, is very close to the highest-
probability region for NOvA. Third, comparing the left
and center panels, there is obvious degeneracy between
sin2 2θ13 and sin2 θ23, since independently varying them
produces similar effects on the predictions. And finally,
the right panel demonstrates that the value of ∆m2

32

plays a minor (though not negligible) role in the appear-
ance channel; its primary constraints arise from the νµ
disappearance measurement. These features will be ex-
amined more quantitatively in the distributions that fol-
low. Table IV shows the highest posterior probability
points together with the 1 σ credible intervals for all the
PMNS oscillation parameters of interest, extracted from
the fit with a prior uniform in sin2 2θ13. Similarly to Ta-
ble I, the values are split into both, normal, and inverted
mass orderings with any disjoint 1σ regions denoted with
a union symbol ∪. As compared to the results of the fit
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FIG. 11: Posterior probability density (shaded) with 1, 2, and 3 σ credible intervals for δCP–sin
2 θ23 (left) and

sin2 θ23–∆m2
32 (right), marginalized over both mass orderings, plotted separately for NO (top, blue) and IO

(bottom, red). Contours extracted from a fit with prior uniform in sin2 2θ13.

with the external constraint from reactor experiments,
the central values for δCP and sin2 θ23 shown here are
the most different. This is not unexpected since there
is also a degeneracy between these two parameters, and
both δCP and sin2 θ23 have multiple areas of high proba-
bility.

Fig. 11 shows our preferred regions in δCP–sin
2 θ23 and

sin2 θ23–∆m2
32 spaces without the external θ13 constraint.

Comparing with Figs. 4 and 7, it is evident that removing
the constraint diminishes the NOvA sensitivity especially
to the octant of θ23 (there is now near symmetry across
sin2 θ23 = 0.5). Although the octant preference is weak-
ened, the central values of the PMNS parameters sin2 θ23,
∆m2

32, and especially δCP do not otherwise see any sig-
nificant change. This is as expected from Fig. 10. The
results without the reactor constraint are therefore fully
compatible with the standard NOvA results with the ex-
ternal constraint on sin2 2θ13 applied. We also observe
that although the sensitivity is reduced, and although
that for a given value of δCP there is always a combina-
tion of parameters within either mass ordering compati-
ble with the data, certain δCP–sin

2 θ23–ordering combina-
tions are still excluded with reasonable confidence, such
as (δCP = π

2 , IO) and (δCP = 3π
2 , sin2 θ23 = 0.5,NO).

Combinations such as these produce strong asymmetries
in the (νe, ν̄e) counts, and as Fig. 10 makes clear, such pa-
rameter values lie in regions outside the posterior point
cloud, and are thus disfavored. Table V examines the
posterior probabilities for each of the octant and mass-
ordering hypotheses more quantitatively. Compared to
Table II, we note a similar weakened preference for the
upper octant of θ23 for the fit without the reactor con-
straint.

In Fig. 12 we study the impact of applying the reactor
constraint on our mass-ordering inference. As expected
from Fig. 10, the normal ordering contains more poste-
rior probability, as evidenced by the larger NO contour
in the lower panel. Moreover, as we see in the marginal
posterior distribution shown in the top panel, the pos-
terior restricted to IO prefers generally larger values of
sin2 2θ13. The associated correlation with sin2 θ23 also
pushes θ23 into the lower octant, as seen in the lower
panel; this point will be developed further momentarily.
Because the reactor value (the yellow bar indicates its 1 σ
range) lies at lower sin2 2θ13, this results in the slightly
stronger preference for the NO in Table II as compared to
V. However, the difference is small, which indicates that
the (mild) NO preference observed in the data is largely



14

TABLE IV: The highest posterior density points (HPD)
together with the 1 σ Bayesian credible interval limits
for the PMNS parameters of interest marginalized over
all the mass ordering (MO) hypotheses. Marginalization
over the mass orderings is explained at the beginning of
Sec. III B 2. Extracted from a fit with prior uniform in

sin2 2θ13.

MO HPD 1σ

δCP

Both 1.53π [0.67π, 1.88π] ∪ [0.06π, 0.12π]
Normal 0.85π [0.48π, 1.04π] ∪ [1.99π, 0.41π]
Inverted 1.52π [1.25π, 1.75π]

sin2 2θ13

Both 0.087 [0.071, 0.107]
Normal 0.084 [0.065, 0.108]
Inverted 0.094 [0.083, 0.106]

sin2 θ23

Both 0.46 [0.43, 0.50] ∪ [0.53, 0.58]
Normal 0.46 [0.43, 0.59]
Inverted 0.46 [0.44, 0.48]

∆m2
32 Normal 2.39 [2.33, 2.46]

(×10−3) Inverted −2.44 [−2.48,−2.40]

TABLE V: Bayes factors (posterior probabilities) for all
the θ23 octant and mass ordering hypotheses, with a
marginal preference towards the normal mass ordering
and upper octant. Numbers extracted from a fit with a
uniform prior in sin2 2θ13. Probabilities summed across
rows or columns may differ slightly from the totals due

to rounding.

Normal Inverted
Total

Ordering Ordering

Upper Octant 0.53 (0.35) 0.20 (0.17) 1.05 (0.51)
Lower Octant 0.39 (0.28) 0.42 (0.20) 0.95 (0.49)

Total 1.70 (0.63) 0.59 (0.37) (1.0)

independent of the reactor constraint.

The degeneracy in the measurement between sin2 θ23
and sin2 2θ13 we noted in Fig. 10 can be studied directly
by examining their joint posterior probability distribu-
tion, marginalized over all other parameters and the mass
ordering. We show this in Fig. 13. The central panel ex-
hibits a clear anticorrelation between the octant of θ23
and the value of sin2 2θ13, which is expected since both
parameters enter at leading order in the νµ → νe and
ν̄µ → ν̄e oscillation probabilities. Here the overlap of
the reactor measurements (again indicated by the yellow
hatched bar) with our marginal posterior for sin2 2θ13
(right panel) favors the upper octant over the lower oc-
tant when we constrain the results to specifically the up-
per or lower octant of θ23. Thus, we see that the prefer-
ence for the upper octant of θ23 in Table II is an emergent
behavior that arises from the application of the reactor
constraint. We also note that though the marginal poste-
rior for sin2 θ23, in the top panel, shows a higher posterior
density in the lower octant, the total posterior probabil-
ity integrated across the upper octant is slightly larger
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FIG. 12: Comparison of the 2D sin2 2θ13–sin
2 θ23

credible intervals (bottom) and 1D sin2 2θ13 posterior
probability densities (top) between both (purple),

normal (light-blue) and inverted (red) mass orderings
with a prior uniform in sin2 2θ13 and sin2 θ23. The

reactor experiments’ 1 σ interval in sin2 2θ13 from the
PDG 2019 [78] is shown in yellow hatched bar.

than the corresponding lower octant probability; but as
Table V makes clear, this preference is entirely insignifi-
cant.

We emphasize that reactor neutrino experiments and
accelerator neutrino experiments measure the PMNS
sin2 2θ13 by examining different sectors of neutrino os-
cillations, over a wide range of baselines. Reactor neu-
trino experiments measure the ν̄e survival probability
P(ν̄e → ν̄e) with low-energy (few-MeV) ν̄es over a short
(few-km) baseline. Conversely, accelerator neutrino ex-
periments simultaneously measure νe appearance in a
few-GeV νµ beam, and ν̄e appearance in a ν̄µ beam, both
over a long (hundreds-of-km) baseline. In long-baseline
measurements P(νµ → νµ), P(ν̄µ → ν̄µ), P(νµ → νe),
and P(ν̄µ → ν̄e) are all exploited to constrain the PMNS

oscillation parameters, including sin2 2θ13. Thus, the
consistency observed between long- and short-baseline
measurements lends strong support to the PMNS inter-
pretation of neutrino oscillations.
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IV. CONCLUSIONS

We have refit the NOvA dataset of 13.6 × 1020 POT
in neutrino beam mode and 12.5× 1020 POT in antineu-
trino mode using a Bayesian statistical approach. NOvA
data continues to be consistent with maximal mixing for
sin2 θ23 and the regions of the sin2 θ23–∆m2

32 and δCP–
sin2 θ23 spaces preferred by this analysis are consistent
with those of the previous analysis done using a frequen-
tist fit.

With the introduction of the Bayesian analysis, we
also expand the neutrino oscillation parameters measured
by NOvA. We report for the first time NOvA measure-
ments that do not require constraints on sin2 2θ13 from
reactor antineutrino oscillations. Moreover, we are also
able to include new results for sin2 2θ13 and the Jarl-
skog invariant J ; these were impractical to produce under
the preceding frequentist method due to the necessity of

Feldman–Cousins corrections. The inferences on J pro-
vide a model-independent measurement of CP violation
and indicate that NOvA data has a weak preference for
CP violation, which becomes more pronounced when as-
suming the inverted mass ordering.

As NOvA measures a convolution of mixing angles,
δCP, and mass ordering in the oscillation probabilities,
removing the external constraint on θ13 reduces our con-
straining power to determine the octant of θ23, mass or-
dering, and δCP. While our sensitivity is reduced without
the external constraint (particularly for the octant), we
note that the conclusions arising from the analysis remain
unchanged.

This measurement of sin2 2θ13 using electron neutrinos
and antineutrinos with energies in the GeV range and
propagating for hundreds of kilometers is fully consistent
with measurements performed using few-MeV electron
antineutrinos from nuclear reactors propagating for a few
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kilometers. The consistency of results using the PMNS
framework across a broad regime of conditions bolsters
its applicability. More stringent tests of CP violation and
the consistency of our sin2 2θ13 measurement with those
of reactors will be possible with increased statistics in
upcoming NOvA measurements.
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Appendix A: Determining step sizes for ARIA

As noted in Sec. IIIA 1, an MR2T2 chain is derived
sample-by-sample using a repeated two-step procedure:

1. Proposal: The coordinates of a potential new sam-
ple are selected from a probability distribution cen-
tered on the current sample (or initial seed).

2. Acceptance: The proposal selected above is ei-
ther accepted or rejected according to the rule of
detailed balance, i.e., that every step in the chain
be exactly reversible.

If accepted, the proposed coordinates become the next
sample. If rejected, the previous sample is repeated to
become the next sample.
The MR2T2 algorithm does not specify the distribu-

tion to be used in step 1 above, however. In our imple-
mentation, we use the most common choice, a multivari-
ate Gaussian:

g(x⃗ ′|x⃗) = (2π)−
N
2 (detΣ)−

1
2 exp

(
−1

2
(x⃗ ′ − x⃗ )

T
Σ−1 (x⃗ ′ − x⃗ )

)
, (A1)

where x⃗ represents the current sample coordinates, x⃗ ′

the proposed next coordinates, and N the dimensional-
ity of the coordinate space. The matrix Σ imposes a
length scale on the “distance” between successive sam-
ples, and (especially when it is diagonal) its elements are
usually called the “step sizes” of the sampling for each
degree of freedom. The ideal asymptotic fraction of sam-
ples accepted in step 2, α, is 23.4% under a wide range
of circumstances [89, 90]. Though this figure is strictly
true only for N → ∞, it has been shown to hold approx-
imately even for parameter counts as low as N = 5 [91].
Because the outcome of step 2 is related to the proposals
generated in step 1, we tuned the values of Σ to arrive at
α = 23.4%.

Our overall heuristic in the tuning procedure is to
maintain step sizes that yield similar autocorrelations
(defined rigorously below) across all the parameters. This
results in the most efficient exploration of the parame-
ter space [71]. We first optimized the step sizes for the
parameters of interest, θ13, θ23, |∆m2

32|, and δCP. We
constructed a chain that sampled only those parameters
using a unit matrix for Σ. We computed α for this chain
and scaled the relevant elements of Σ in order to arrive at
a tolerable preliminary acceptance rate of about 20%. We

then computed the k-lag autocorrelation for each param-
eter θ, which measures the average correlation between
MCMC sample n and sample n+ k across all n [92]:

rk =

∑N−k
n=1

(
θn − θ̄

) (
θn+k − θ̄

)∑N
n=1

(
θn − θ̄

)2 , (A2)

where θn refers to the value of parameter θ at step n, and
θ̄ is its mean value. These autocorrelations are shown in
Fig. 14. Using these rk, we further adjusted the elements
of Σ so the oscillation parameters would have similar au-
tocorrelations.
To optimize the step sizes for the nuisance parame-

ters (systematic uncertainties), we constructed a chain
sampling only those parameters, again beginning with Σ
entries of unity for them. As with the oscillation parame-
ters, we adjusted Σ to ensure none of the nuisance param-
eters had significantly different autocorrelations from the
others. We then constructed a new, much longer chain,
and subsequently computed a covariance matrix over the
nuisance parameters from it. The Cholesky decomposi-
tion of this matrix, L, was used in the next step.
A final chain, this time sampling both oscillation and

nuisance parameters, was constructed using the adjusted
Σ entries for both. While sampling, the proposed val-
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FIG. 14: Lag autocorrelation (see Eq. A2) computed
using a MR2T2 chain sampling only oscillation

parameters.

ues for the nuisance parameters were multiplied by the
decomposed covariance scaled by a tunable factor, βL.
Using this chain, we recomputed the autocorrelations for
all the parameters. The elements of Σ were readjusted
to obtain similar autocorrelations from the oscillation pa-
rameters, now in the presence of the nuisance parameters.
We also adjusted β to yield similar autocorrelations to
those of the oscillation parameters. A final global scale
was applied to Σ and β to finally arrive at α = 23.4%.
The autocorrelations for the oscillation parameters at the
end of the tuning procedure are shown in Fig. 15.
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FIG. 15: Lag autocorrelation (see Eq. A2) computed
using a MR2T2 chain after step size tuning with all

parameters included.

Appendix B: Determining warmup and thinning
fractions for ARIA

The property of sample proportionality to posterior
density in the MR2T2 method is only guaranteed as

asymptotic behavior. Therefore, it is usually necessary to
discard some number of samples N0 at the beginning of
the Markov chain while the chain “burns in” or “warms
up.” Moreover, it is usually impossible to find a choice
of step sizes Σ in Eq. A1 that proposes samples that are
both fully uncorrelated with the previous one and whose
acceptance probabilities are high enough to not impose
severe computing requirements. We “thin” our chains by
discarding all but the kth sample to reduce autocorre-
lations. The resulting fraction Neff = 1

k (N − N0), the
“number of effective samples,” corresponds to the statis-
tical power of the chain.
Because autocorrelations in our analysis are relatively

long (see Fig. 15) and ARIA runs fairly quickly, we pro-
duced very long chains of 5 × 106 samples each. Thus,
when we compared our posterior densities using N0 = 0,
N0 = {1, 3, 5} × 103, N0 = {1, 3, 5} × 104, and N0 =
{1, 3} × 105, we found them all to be indistinguishable.
Proper thinning results in minimal autocorrelations.

Though there is no universally agreed-upon threshold be-
low which autocorrelations are considered acceptable, we
found the plateau in Fig. 15 of around or less than 1% to
be sufficient for our needs. Therefore we chose to thin at
k = 104.

Appendix C: Algorithm choices for HMCMC

As noted in Sec. III, HMCMC generates proposals
by numerically integrating a Hamiltonian for a fictitious
particle, whose potential arises from treating the log-
posterior in analogy to gravity:

dq⃗

dt
=

∂H

∂p⃗
=

∂T

∂p⃗
(C1)

dp⃗

dt
= −∂H

∂q⃗
= −∂T

∂q⃗
− ∂V

∂q⃗

where T and V are the kinetic and potential energies of
the system, respectively.
There are two ingredients of HMCMC left unspecified

by the method. In both cases Stan’s default choices were
found to be suitable for our needs. The first is the dis-
tribution of kinetic energies from which T in Eq. C1 is
chosen. Stan’s default is the Euclidean-Gaussian kinetic
energy distribution:

T (q⃗, p⃗) =
1

2
p⃗TM−1p⃗+ log |M |+ const. (C2)

Here the mass matrix M (analogous to the effect of mass
in gravitation) is a parameter that is automatically in-
ferred by Stan during its warm-up sampling by iterative
adjustments based on a running covariance over the sam-
ples. The second implementation choice is how long the
integrator is allowed to run for each particular trajectory.
Stan uses an algorithm called No-U-Turns (NUTS) [93],
which is a heuristic method that halts integration when
two trajectories, extending in each direction from the
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FIG. 17: Posterior probability density in sin2 θ23 (left) and δCP (right), marginalized over both mass orderings. Line
styles as in Fig. 16.

starting point along the initial momentum, begin to con-
verge towards one another. An upper limit of integrator
steps is also supplied as a parameter to Stan; in this
analysis, we find that all our trajectories end within 211

steps.

Appendix D: Equivalence of ARIA and Stan results

We extracted the posterior distributions for all of the
results shown in this paper using both the ARIA and

Stan samplers described in Sec. III. The posteriors were
in all cases nearly indistinguishable, with tiny differences
that occasionally caused the boundaries of credible inter-
vals to shift by single bins. This is illustrated in Figs. 16-
17.
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