
A model-independent description of B → Dπℓν decays

Erik J. Gustafson,1 Florian Herren,1, 2 Ruth S. Van de Water,1 Raynette van Tonder,3 and Michael L. Wagman1

1Fermi National Accelerator Laboratory, Batavia, Illinois, 60510, USA
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We introduce a new parameterization of B → Dπℓν form factors using a partial-wave expansion
and derive bounds on the series coefficients using analyticity and unitarity. This is the first
generalization of the model-independent formalism developed by Boyd, Grinstein, and Lebed for
B → Dℓν to semileptonic decays with multi-hadron final states, and enables data-driven form-factor
determinations with robust, systematically-improvable uncertainties. Using this formalism, we
extract the form-factor parameters for B → D∗

2(→ Dπ)ℓν decays in a model-independent way from
fits of data from the Belle Experiment, and, for the first time, study the two-pole structure in the
Dπ S-wave in semileptonic decays employing lineshapes from unitarized chiral perturbation theory.

Motivation — Experimental measurements of tree-
level semileptonic B-meson decays enable theoretically
clean determinations of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix elements |Vub| and |Vcb|, allowing for sen-
sitive tests of the Standard Model by overconstraining
the CKM unitarity triangle [1–3]. Further, |Vub| and
|Vcb| are parametric inputs to predictions for loop-level
flavor-changing processes that are sensitive to new high-
scale physics beyond the reach directly detectable by the
LHC [4, 5].

A major challenge for both inclusive and exclusive de-
terminations of |Vub| is suppressing the CKM-favored
B → Xcℓν background, which exhibits a similar exper-
imental signature and is O(100) times more abundant
than B → Xuℓν decays. The background subtraction
process is further complicated by the orbitally excited
states, collectively referred to as D∗∗, whose kinematic
distributions remain poorly understood and branching
fractions exhibit uncertainties of approximately 20% [6].
In measurements performed by the Belle and Belle II Col-
laborations, the remaining “gap” between the sum of all
considered exclusive modes and the inclusive B → Xℓν
branching fraction, comprising unmeasured non-resonant
B → Xcℓν decays, is generally treated in simulation by
assuming a composition of equal parts of B → D(∗)ηℓν
decays, as prescribed in Ref. [7]. Because neither ex-
perimental evidence nor theoretical predictions exist for
B → D(∗)ηℓν decays, a 100% uncertainty is assumed for
the corresponding branching fractions. For these reasons,
the Xcℓν modeling uncertainty is hard to quantify and
becomes dominant for studies of inclusive B → Xc/uℓν
decays [7–11].

Exclusive measurements relying on tagged methods, in
which machine learning algorithms are employed to fully
reconstruct the companion B meson through exclusive
decay modes [12, 13], do not rely as directly on Xcℓν
modeling as inclusive analyses. However, significant dif-
ferences in these reconstruction algorithms’ performances
between data and simulation is accounted for by per-
forming a calibration using a decay with a well known

branching fraction: inclusive B → Xℓν [14]. This cali-
bration, in turn, becomes a leading source of systematic
error for tagged analyses [15–17]. In addition, the limited
knowledge of B → D∗∗ℓ/τν branching fractions and form
factors are large systematic uncertainties in studies of
rare processes such as B → Kνν at Belle II or R(D∗) at
the LHCb experiment [18, 19].

The most commonly used description of B → D∗∗ℓν
decays is the Leibovich-Ligeti-Stewart-Wise (LLSW) pa-
rameterization [20, 21] with central values from the fit
given in Refs. [22, 23]. This parameterization includes
a single D∗

0 resonance. Studies in the context of unita-
rized chiral perturbation theory (UChPT), however, have
shown that the scalar member of the D∗∗ family, the
D∗

0(2300), is an overlap of two states with poles near
(2.1 − i0.1) and (2.45 − i0.13) GeV [24–26]. Consequently,
the S-wave lineshape is not described by a simple Breit-
Wigner distribution, but has a more complex structure.
This conclusion is supported by lattice quantum chromo-
dynamics (LQCD) results from a coupled-channel analysis
performed by the Hadron Spectrum Collaboration [27]
and a reinterpretation [28] of the partial-wave analysis
of B+ → D−π+π+ decays by LHCb [29]. Further, in
Ref. [30], Le Yaouanc, Leroy, and Roudeau point out that
in the fits to the LLSW parametrization tail effects from
the D∗ resonance are omitted and consequently overesti-
mates the D∗

0 contribution.

To address these and other limitations of existing pa-
rameterizations, in this letter we develop the first model-
independent description of resonant and non-resonant
B → Dπℓν decays based on analyticity and unitarity. We
then apply our formalism, which accommodates arbitrary
lineshapes, to fit experimental spectrum measurements
and draw conclusions about the pole structure of the
S-wave channel.

Form-factor parameterization — Semileptonic
B → Dπℓν decays are characterized by five kinematic
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variables: the momentum transfer square q2,1 the helicity
angle of the charged lepton cos θl, the helicity angle of
the D meson cos θ, the azimuthal angle between the ℓν
and Dπ planes χ, and the invariant mass of the hadronic
system MDπ.

Form-factor decompositions for charged-current

semileptonic decays involving two final state hadrons
have been performed for B → ππℓν decays [31] and
involve a partial-wave decomposition in cos θ to disen-
tangle contributions from different hadronic resonances.
Following a similar strategy, we express the B → Dπℓν
hadronic matrix elements as

⟨D(pD)π(pπ)|Vµ|B(pB)⟩ = 2i

MB + MDπ
ϵµνρσpρ

Dπpσ
B

∑
l>0

L(l),νV (l)(q2, M2
Dπ) ,

⟨D(pD)π(pπ)|Aµ|B(pB)⟩ = MDπ
qµ

q2

∑
l≥0

L(l),νqνA
(l)
0 (q2, M2

Dπ) +
∑
l>0

(
L(l),µ − L(l),νqν

q2 qµ

)
A

(l)
1 (q2, M2

Dπ)

+
[
(pB + pDπ)µ − M2

B − M2
Dπ

q2 qµ

]∑
l≥0

L(l),νqνA
(l)
2 (q2, M2

Dπ) .

(1)

The vector L(l) is related to the angular momentum of
the final-state hadron system in the B-meson rest frame
and fulfills

L(l)
µ pµ

Dπ = 0, L(0)
µ qµ = 1, L(l)

µ qµ = MBW lPl(cos θ),(2)

where W = |q⃗||p⃗D|/(MBMDπ) and Pl are the Legendre
polynomials.

For l = 0 only two form factors — f0 and f+ — con-
tribute (V (l) and A

(l)
1 do not contribute to S-wave decays

since they directly couple the weak current to the angular
momentum of the hadronic system), and we define them
as Boyd, Grinstein, and Lebed (BGL) do for B → Dℓν
decays [32–34]:

A
(0)
0 = M2

B − M2
Dπ

MDπ
f0 , A

(0)
2 = f+ . (3)

For l > 0, we re-write the form factors in Eq. (1) analo-
gously:

V (l) = MB + MDπ

2 gl , A
(l)
0 = F2,l , A

(l)
1 = 1

2fl ,

A
(l)
2 = 1

λB

[
MDπ(M2

B − M2
Dπ)F1,l − (pDπ · q)fl

]
,

(4)

where the threshold factor λB = M4
B + M4

Dπ + q4 −
2(M2

BM2
Dπ + M2

Dπq2 + q2M2
B). With this choice (and a

suitably defined polarization vector L
(l)
µ ), the l = 1 and

l = 2 terms match the standard expressions for B → D∗ℓν
and B → D∗

2ℓν decays, respectively [35, 36].
Using Eqs. (1), (3), and (4), it is straightforward to

derive the B → Dπℓν differential decay rate. After inte-
grating over all angles, the double differential decay rate
for massless leptons can be written on a single line:

d2Γ
dM2

Dπdq2 = G2
F |Vcb|2

(4π)5 MB

(
W

λB

M2
B

4|f+|2

3 + M2
Dπ

∑
l>0

W 2l+1
[

4(M2
B − M2

Dπ)2

3(2l + 1)
|F1,l|2

λB
+ l(l + 1)

(2l + 1)q2
(

|gl|2 + |fl|2

λB

)])
.

(5)

The fully general five-fold differential decay rate allowing
for interference effects between different partial waves is
provided in the supplemental material [37].

Unitarity bounds — Model-independent constraints
on the B → Dπℓν form factors arise from analyticity and
unitarity. We begin with the two-point functions

ΠL/T
(J) (q) ≡ i

∫
d4x eiq·x ⟨0| JL/T (x) JL/T (0) |0⟩ , (6)

1 It is sometimes useful to instead consider the dependence on the
recoil parameter w = (M2

B + M2
Dπ − q2)/(2MBMDπ).

where Jµ denotes a b → c flavor-changing vector or axial-
vector current and L/T denotes the component longitudi-
nal or transverse to qµ. Susceptibilities χ

L/T
(J) are defined

from derivatives of ΠL/T
(J) (q) as

χL
(J)(Q2) ≡

∂ΠL
(J)

∂q2

∣∣∣
q2=Q2

= 1
π

∫ ∞

0
dq2 Im ΠL

(J)(q2)
(q2 − Q2)2 ,

χT
(J)(Q2) ≡ 1

2
∂2ΠT

(J)

∂(q2)2

∣∣∣
q2=Q2

= 1
π

∫ ∞

0
dq2 Im ΠT

(J)(q2)
(q2 − Q2)3 ,

(7)

and are related to integrals over the imaginary part of
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ΠL/T
(J) (q) via dispersion relations. The susceptibilities

χ
L/T
(V/A) are perturbatively calculable for spacelike q2 and

have been computed to O(α2
S) at Q2 = 0 in Ref. [38].

Separately, the optical theorem relates Im ΠT
(J)(q2) to a

sum of squared amplitudes for all intermediate states that
can appear between the currents in Eq. (6). This sum
includes terms with the matrix element

〈
BDπ|JL/T |0

〉
,

which is related to |
〈
Dπ|JL/T |B

〉
|2 by crossing symmetry

and can therefore be parameterized by the form-factor
decomposition in Eq. (1). The contribution of the B →
Dπℓν channel to the dispersion relations in Eq. (7) is
then given by evaluating the phase space integrals arising
in the sum over states,

Im ΠL
A

∣∣∣
Dπ

= 1
32π3

M4
B

q4

∫ (
√

q2−MB)2

(MD+mπ)2
dM2

Dπ

(
M2

Dπ

∑
l>0

W 2l+1

2l + 1 |F (l)
2 |2 + (M2

B − M2
Dπ)2

M2
B

|f0|2
)

,

Im ΠT
A

∣∣∣
Dπ

= 1
96π3

M4
B

q2λB

∫ (
√

q2−MB)2

(MD+mπ)2
dM2

Dπ

(
M2

Dπ

∑
l>0

W 2l+1

2l + 1

(
|F (l)

1 |2

q2 + l + 1
l

|f (l)|2
)

+ |f+|2

q2M2
B

)
,

Im ΠT
V

∣∣∣
Dπ

= 1
96π3

M4
B

q2

∫ (
√

q2−MB)2

(MD+mπ)2
dM2

Dπ M2
Dπ

∑
l>0

W 2l+1 l + 1
l(2l + 1) |g(l)|2 .

(8)

Positivity of the squared amplitudes appearing in the
sum over states implies Im ΠL/T

J

∣∣∣
Dπ

≤ Im ΠL/T
J . Inequal-

ities for the B → Dπℓν form factors can then be derived
from this inequality by inserting Eq. (8) and the pertur-
bative expression for Im ΠL/T

J . These so-called unitarity
bounds provide q2-dependent constraints that should be
incorporated in determinations of the B → Dπℓν form
factors. Conveniently, the unitarity bounds apply only to
either the single form factorF (l)

2 , the pair of form factors
F (l)

1 /f (l), or the single form factor g(l) rather than more
general linear combinations. A parameterization of the
q2-dependence of the form factors is required to concretely
specify how the bounds are imposed; we turn to this next.

Coupled-channel S-wave and z-expansion —
The model-independent parameterization and bounds pre-
sented in previous sections make no assumptions about
the number, energies, or lineshapes of possible resonances.
To render fitting the measured B → Dπℓν decay spectra
to our parameterization more tractable, it is helpful to
include additional theoretical information and make some
plausible assumptions.

The semileptonic B-decay form factors can be factorized
into a part describing the short-distance weak decay and
a part encoding the long-ranged final-state interactions
between the hadrons [39, 40]:

f (l)(q2, M2
Dπ) = f̂ (l)(q2, M2

Dπ)g(l)(M2
Dπ) . (9)

The weak-interaction contribution to the form factors
of QCD resonances is approximately independent of
MDπ [41]:

f̂ (l)(q2, M2
Dπ) ≈ f̃ (l)(q2) + O((M2

R − M2
Dπ)/M2

B) , (10)

Indeed, studies of B → ππ(K) in the context of light cone

sum rules (LCSR) [42] and recent LQCD studies of the
B → ρ form factors [43] point towards the smallness of
the neglected contributions.

The interaction potentials relevant for coupled-channel
S-wave Dπ, Dη and DsK scattering have been determined
to next-to-leading order in UChPT [44] and the S-matrix
has been obtained from those results in Ref. [24]. To
connect the semileptonic-decay form factors to the known
S-matrix, we make use of the dispersion relation [45]

Im f⃗(q2, M2
Dπ + iϵ)

= T ∗(M2
Dπ + iϵ)Σ(M2

Dπ)f⃗(q2, M2
Dπ + iϵ) ,

(11)

where the form-factor f is a vector in channel space and
stands for either f+ or f0. Here, T is the T -matrix, and Σ
contains the relevant phase-space factors and is defined in
Ref. [45]. The solution of Eq. (11) is well known and given
by the Muskhelishvili-Omnès (MO) matrix Ω [45, 46]

f⃗(q2, M2
Dπ) = Ω(M2

Dπ)P⃗ (q2, M2
Dπ) ,

Im Ω(s + iϵ) = 1
π

∫ ∞

sthr

T ∗(s′)Σ(s′)Ω(s′)
s′ − s − iϵ

ds′ ,
(12)

where, P⃗ are boundary functions and we neglect higher
order terms in MDπ following the same arguments as
for Eq. (10). A numerical algorithm to solve the above
integral equation is outlined in Ref. [47].

The q2-dependent remainder of a given form factor f
defined in Eq. (10), as well as the boundary functions P⃗
in Eq. (12) can be expanded as [32–34]

f̃l(q2) = 1
ϕ

(f)
l (q2)Bf (q2)

∞∑
i=0

a
(f)
li zi (13)

where Bf is a Blaschke product taking into account the
poles of all subthreshold Bc resonances for a given channel
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and ϕ
(f)
l is the relevant outer function. Additional details

on the derivation and numerical calculation of the outer
functions can be found in the supplemental material [37]
and Ref. [48]. The variable z is given by

z(q2, q2
0) = q2

0 − q2

(
√

q2
+ − q2 −

√
q2

+ − q2
0)2

(14)

where q2
+ = (MB + MD + mπ) and ranges from 0 to 0.06

for q2
0 = 0 GeV2 . In terms of the coefficients a

(f)
li the

unitarity bounds in Eq. (8) take the form∑
i,l

|a(f)
li |2 < 1 , (15)

allowing for an easy integration of the form factors in a fit,
including priors on the coefficients. Recently discussed
problems associated to lower-lying branch cut at q2 =
(MB + MD)2 can be incorporated as outlined in Refs.
[49–52].

Experimental fits — To test our new B → Dπℓν
form-factor description and extract the coefficients of the z
expansion from data, we proceed in two steps. First, we fit
the measured w- and cos θ-dependence of the B → D∗

2ℓν
differential decay width [53] and B0 → D∗−

2 π+ branching
fraction [6] constraining the a

(f)
li with Gaussian priors

centered at zero with unit width. We employ the least-
squares fitting package lsqfit and use the augmented
χ2

aug defined in Refs. [54, 55] to assess the goodness of fit.
Additional numerical inputs are taken from Refs. [56–59]
as discussed in the supplemental material [37]. The loose
constraints help the fit converge more quickly but have
little impact on the final results since the magnitudes
of the resulting z-coefficients are all of order a tenth or
smaller.

As shown in Fig. 1, we find a harder, i.e., enhanced
for high values of q2, D∗

2 w-spectrum than Refs. [22, 23]
and also better describe the data. The most likely reason
for this is the greater flexibility in the model independent
approach employed here in comparison to the heavy-quark
effective theory (HQET) based approach of these works.

Next, we fit the B → Dπℓν MDπ-spectrum measured
recently by Belle [60] using the z-expansion coefficients
from the first fit as priors to constrain the shape the D∗

2
form factors. Following Refs. [30, 61], we parameterize
the D∗ and D∗

2 lineshapes by a Breit-Wigner distribution
and with Blatt-Weisskopf damping factors [62, 63]. In
contrast to Ref. [30] we allow the Blatt-Weisskopf radius
to be determined in the fit. As shown in Fig. 2, our
form-factor parameterization provides a good description
of the data over the entire invariant-mass range.

Our fit to the B → Dπℓν invariant-mass spectrum
can be used to make predictions for related quantities.
Figure 3 shows the predicted partial-wave contributions
to the q2-spectrum. After integrating over the momentum
transfer, we obtain for the D-wave channel Br(B → D∗

2(→
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FIG. 1. Normalized B → D∗
2ℓν w-spectrum. The black data

points are from Ref. [53]. The blue solid curve with error band
is our fit result, while the orange dashed curve and band are
from Refs. [22, 23]. The χ2

aug/dof = 6.4/12 and Q = 0.9.
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FIG. 2. Fit of the measured MDπ-spectrum [60] using the
z-expansion to parameterize D∗

2 and S-wave form factors. The
χ2

aug/dof = 124.4/133 and Q = 0.69. Only data for the more
precise B+ mode is shown.

Dπ±)ℓν) = (1.90 ± 0.11) × 10−3, which is larger than
Belle’s determination in Ref. [60]. This is because the
smooth falling function employed by Belle to describe the
seemingly nonresonant contributions overlaps with the
D∗

2 resonance, whereas in our description, the S-wave and
D∗ components are negligible near the resonance. For
the S-wave contribution, we obtain Br(B → (Dπ)Sℓν) =
(1.03±0.27)×10−3, which agrees with the arguments made
in Ref. [30] but is smaller than the branching fraction
usually assigned in experimental analyses.

Implications and outlook — We present the first
model-independent description of B → Dπℓν decays
based on unitarity and analyticity of the relevant form fac-



5

0 2 4 6 8 10
q2 (GeV2)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
d

/d
q2  (

Ge
V

1 )
1e 16 B D

Combination
B DV

B (D )S

B D2

FIG. 3. Predicted partial-wave decomposition of the B →
Dπℓν q2-spectrum (dashed and dotted curves with error bands)
and their total (solid curve with error band) from the fit in
Fig. 2.

tors and the factorization of final-state interactions. This
constitutes the first generalization of the BGL parameter-
ization to multi-hadron final states and provides the first
step towards a model-independent study of semileptonic
B-meson decays into higher resonances and non-resonant
final states. Our framework does not include any assump-
tions about lineshapes of resonances and is extendable to
other decay processes with charmed mesons in the final
state such as B → D∗πℓν or Bs → DKℓν. Further, it is
also valid for final states with more than two hadrons, and
can be combined with other known b → c form factors
in a global fit to obtain constraints on less well-known
form factors (see e.g Ref. [64]). By replacing the D me-
son by a pion, the unitarity bounds can be applied to
B → ππℓν decays, including the phenomenologically in-
teresting B → ρℓν channel, which is the target of first
LQCD calculations beyond the narrow-width limit [43],
as well as non-resonant backgrounds, which constitute
the dominant systematic uncertainty [65].

Taking into account recent theoretical considerations
and measurements of B → Dπℓν decays by Belle, we
provide precise predictions for semileptonic decays into the
broad two-pole structure in the S-wave and determine the
form-factor parameters for B → D∗

2ℓν decays from data.
This marks the first time in which a three-component
hypothesis consisting of S-wave contributions, D∗ virtual
contributions and D∗

2 contributions, is compared to the
measured MDπ-spectrum. Previous works either do not
include all three components simultaneously [22, 53, 66]
or do not compare to the measured MDπ-spectra [30].
We demonstrate, in contrast to existing literature, that
our treatment of the S-wave is compatible with the MDπ-
spectrum measured by Belle and thus is favored over
previous models that assume a single, broad S-wave state,

the D∗
0(2300). While more careful studies need to be

conducted, the change in the shape for B → D∗
2ℓν decays,

as well as the inclusion of the virtual D∗ contribution lead
to an overall harder q2-spectrum, potentially resolving
some of the discrepancies seen in inclusive analyses at
high q2 [7, 10].

The coupled channel nature of the S-wave contribution
enables us to obtain predictions for B → Dηℓν and B →
DsKℓν decays purely based on measurements of B →
Dπℓν decays. For the Dη S-wave contribution we obtain
Br(B → (Dη)Sℓν) = (1.9 ± 1.7) × 10−5, two orders of
magnitude too small to constitute a sizeable portion of
the semileptonic gap. Consequently, both approaches
utilized by the Belle and Belle II Collaborations in recent
measurements to fill the semileptonic gap in terms of
B → D(∗)ηℓν decays, either via a broad S-wave resonance
or equidistributed in phase space, are ruled out.

Additional theoretical work, such as LCSR computa-
tions of the S-wave form factors [67], would greatly im-
prove the results presented in this letter.

Future experimental measurements of the q2- and cos θl-
spectra of B → D∗

2ℓν decays by Belle II with the already
available data set, as well as updated angular analyses
of B0 → D0π−π+ and B0 → D0π−K+ decays by LHCb,
would improve the precision of the form factors presented
in this letter. In the long term, a full partial-wave analysis
of B → Dπℓν decays is required to ultimately determine
the exact composition of the Dπ spectrum in semilep-
tonic decays. Additionally, the final state interactions
between D mesons and light hadrons can be tested by
measuring femtoscopic correlation functions at the AL-
ICE experiment [68]. This result could provide a direct,
orthogonal test of the S-wave two-pole structure in heavy
ion collisions [69].
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SUPPLEMENTAL MATERIAL

Fivefold differential decay rate

The fivefold differential decay rate for B → Dπℓν decays is given by

dΓB→Dπℓν

dM2
Dπdq2d cos θd cos θldχ

= G2
F |Vcb|2

MB

1
(4π)6

(
1 − m2

l

q2

)
W
∑
a,b

|Mab|2 , (16)

where a, b label the partial waves and GF is Fermi’s constant and the matrix.
The matrix element squared is given by

|Mab|2 = ⟨D(pD)π(pπ)|Vµ − Aµ|B(pB)⟩ ⟨D(pD)π(pπ)|Vν − Aν |B(pB)⟩ Lµν(pl, pν) (17)

where

Lµν(pl, pν) = Tr
(

γµPL(/pl
− ml)γνPL/pν

)
(18)

is the leptonic tensor and PL = (1 − γ5)/2.
Inserting Eq. (1), we obtain

|Mab|2 = M2
BM2

Dπ(q2 − m2
l )W a+b

{[
F̃1,aF∗

1,b

λ(M2
B , M2

Dπ, q2)q2 + m2
l

q4 F2,aF∗
2,b − faf∗

b

λ(M2
B , M2

Dπ, q2) − gag∗
b

]
P 0

a P 0
b

−
(

1 − m2
l

q2

) F̃1,aF∗
1,b

λ(M2
B , M2

Dπ, q2)q2 cos2 θlP
0
a P 0

b

+
(

faf∗
b

λ(M2
B , M2

Dπ, q2) + gag∗
b

)[
P 0

a−1P 0
b−1 +

P 1
a−1P 1

b−1
ab

]
−
(

1 − m2
l

q2

)
gag∗

b

P 1
a P 1

b

ab
(1 − cos2 θl)

−
(

1 − m2
l

q2

)(
faf∗

b

λ(M2
B , M2

Dπ, q2) − gag∗
b

)
P 1

a P 1
b

ab
cos2 χ(1 − cos2 θl)

− fag∗
b + gaf∗

b√
λ(M2

B , M2
Dπ, q2)

[
P 0
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b−1 +

P 1
a−1P 1

b−1
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]
cos θl +
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+ i
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l
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q2λ(M2
B , M2

Dπ, q2)
P 1

a P 0
b

a

]
cos θl sin θl cos χ

+ i

(
1 − m2

l

q2

)[
F̃1,ag∗

b√
q2
√

λ(M2
B , M2

Dπ, q2)
P 0

a P 1
b

b
−

gaF∗
1,b√

q2
√

λ(M2
B , M2

Dπ, q2)
P 1

a P 0
b

a

]
cos θl sin θl sin χ

−
[(

F̃1,ag∗
b + m2

l

q2 F2,af∗
b

)
P 0

a P 1
b

b
+
(

gaF∗
1,b + m2

l

q2 faF∗
2,b

)
P 1

a P 0
b

a

]
cos χ sin θl√

q2
√

λ(M2
B , M2

Dπ, q2)

− i

[(
F̃1,af∗

b + m2
l

2q2 F2,ag∗
b

)
P 0

a P 1
b

b
−
(

faF∗
1,b + m2

l

2q2 gaF∗
2,b

)
P 1

a P 0
b

a

]
sin χ sin θl√

q2λ(M2
B , M2

Dπ, q2)

}
,

(19)

where we have introduced F̃1,i = (M2
B − M2

Dπ)F1,i for brevity. The P i
a are the associated Legendre polynomials with

arguments of cos θ. Note, that this expression is also valid for massive leptons and incorporates all interference terms
between different partial waves.
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Unitarity bounds and outer functions

The derivation of outer functions from the contributions to the unitarity bounds in Eq.(8) is complicated by the
appearance of integrals of the form

I(l,i)(q2) =
∫ (

√
q2−MB)2

(MD+mπ)2
dM2

Dπ M2
DπW 2l+1λi(M2

B , M2
Dπ, q2)g(l)(M2

Dπ) . (20)

In the narrow-width limit these integrals can be evaluated analytically and for l = 1 lead to the standard expressions
of Ref. [34].

For more complicated g(l) no simple analytic solution exists. Consequently the contribution to the outer functions
from the integrals needs to be computed numerically through the equation [48]

ϕ̃
(f)
l (q2) = eiφ exp

(
1

2π

∫ π

−π

dt
eit + z

eit − z
log |I(l,i)(eit)|

)
. (21)

Here φ is an arbitrary phase and the full outer function ϕ
(f)
l is the product of the appropriate ϕ̃

(f)
l (q2), as well as

constants and simple functions of z that can be derived following Ref. [34].

Fit of experimental data

To fit to the available data from the Belle experiment [53, 60] we need to parametrize the lineshapes of the D∗ and
D∗

2 . To this end, we write the MDπ-dependent part of form factors such as g(l) in the decomposition of Eq. (9) as

g(l)(MDπ) = gl

(M2
Dπ − M2

R,l) + iMR,lΓR(M2
Dπ)X(l)(|p⃗D|rBW, |p⃗D,0|rBW) . (22)

Here, MR,l are the respective nominal resonance masses, gl is the coupling of the resonances to a D-meson and a pion,
ΓR the energy-dependent width and the X(l) are Blatt-Weisskopf damping factors. We take the masses, widths and
branching ratios for the D∗ and D∗

2 from Ref. [6] and determine gl from them. The damping factors are given by

X(1)(z, z0) =

√
1 + z2

0
1 + z2 , X(2)(z, z0) =

√
9 + 3z2

0 + z4
0

9 + 3z2 + z4 . (23)

The D-meson three-momentum is evaluated in the resonance center-of-mass frame, |p⃗D,0| denotes the D-meson
three-momentum for MDπ = MR. The Blatt-Weisskopf radius rBW is treated as a parameter in the fit with a prior of
4 ± 1 GeV−1, where the central value corresponds to the value chosen by the LHCb experiment for their amplitude
analysis of B− → D+π−π− decays [29].

Uncertainties in the scattering phase shifts from Ref. [24] are obtained using resampling techniques. In particular,
we compute our results using an ensemble of 150 samples provided by the authors of Ref. [24] that describe the
combined 1σ confidence interval of the parameters fitted in that work [56], compute statistical uncertainties from the
variation of our results across these resampled ensembles, and combine these uncertainties in quadrature with the
other uncertainties appearing in our analysis.

To obtain the P-Wave form factors, we integrate the five-fold differential decay rate over MDπ and match the
four-fold differential decay rate to the one obtained from the LQCD determination of the B → D∗ℓν form factors by
the Fermilab/MILC collaboration [57]:∫

dM2
Dπ

d5Γ
dM2

Dπdq2d cos θd cos θldχ
= Br(D∗ → Dπ) d4Γ

dq2d cos θd cos θldχ

∣∣∣∣∣
FNAL/MILC

. (24)

In a first step, we obtain the D-Wave form factor parameters by performing a simultaneous fit to the w- and | cos θ|-
spectra from Ref. [53], as well as the world averages for the nonleptonic rates for B0 → D∗−

2 π+ and B0 → D∗−
2 K+ [6].

We require regularity at q2 = 0

A
(l)
1 (0, M2

Dπ) = MDπA
(l)
0 (0, M2

Dπ)

− (M2
B − M2

Dπ)A(l)
2 (0, M2

Dπ) ,
(25)
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connecting the longitudinal form factor A2, which appears in the nonleptonic decays under consideration, to the other
three form factors. We subtract the contribution of Bc meson states for which the leptonic decay constants are known
from the susceptibilities to strengthen the unitarity bounds following Refs. [58, 59] and truncate the z-expansion of
the form factors at linear order in z.

We then perform a fit to the MDπ-spectra of Ref. [60] with the S-, P- and D-Wave form factor parameters entering
the fit with priors set to the previously extracted values and covariances, masses and widths constrained by their world
averages and rBW treated as described above. Both charge modes are fitted simultaneously, unlike in experimental fits
to the mass spectrum, with the sole difference being the exact values of the involved masses. Since D∗0 → D+π−

decays are not allowed on-shell, this leads to slightly different shapes in the MDπ spectrum at low masses. As a
cross-check, we also considered the MDπ-spectra of Ref. [53], finding good agreement and compatible results with the
main fit.


