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Tetraquarks made of sufficiently heavy quarks are bound in QCD
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Tetraquarks, bound states composed of two quarks and two antiquarks, have been the subject of
intense study but have yet to be understood from first principles. Previous studies of fully-heavy
tetraquarks in nonrelativistic effective field theories of quantum chromodynamics (QCD) suggest
different conclusions for their existence. We apply variational and Green’s function Monte Carlo
methods to compute tetraquarks’ ground- and excited-state energies in potential nonrelativistic
QCD. We robustly demonstrate that fully-heavy tetraquarks are bound in QCD for sufficiently
heavy quark masses. We also predict the masses of tetraquark bound states comprised of b and c
quarks, which are experimentally accessible, and suggest possible resolutions for previous theoretical
discrepancies.

Motivation — Tetraquarks were first proposed
decades ago to explain the structure of the a0(980)
and f0(980) resonances [1]. Recent experiments hint
at tetraquark candidates among the exotic XYZ states,
which are hypothesized to be composed of two heavy b or
c quarks and two light quarks [2–4]. Several frameworks
for describing tetraquarks have been proposed, but mod-
eling their dynamics is complicated because it involves
both short- and long-distance quantum chromodynam-
ics (QCD) [5–11]. Lattice QCD studies of XYZ states
are challenging due to their position in the spectrum and
proximity to multi-hadron thresholds and are being ac-
tively investigated [12–26].

In bound states comprised of heavy quarks, QCD dy-
namics are simpler due to the large hierarchy between
the quark mass mQ and the Landau-pole scale ΛQCD and
can be studied using effective field theory (EFT) [27–31].
Quark velocities are small in such systems, v ≪ 1, lead-
ing to a clear hierarchy of scales: mQ ≫ p ∼ mQv ≫ E ∼
mQv

2 [28]. Integrating out the hard scale mQ leads to
nonrelativistic QCD (NRQCD) [27–30], while further in-
tegrating out the soft scale pQ ∼ mQv leads to potential
NRQCD (pNRQCD) [31]. This soft scale sets the typical
bound state size, which is analogous to the Bohr radius
of the hydrogen atom. In the weak coupling regime of
pNRQCD [32], dynamics at the soft scale are incorpo-
rated by solving the time-independent Schrödinger equa-
tion with a potential that incorporates all NRQCD effects
that are enhanced for small p/mQ and must be treated
nonperturbatively.

Fully-heavy tetraquark states provide a theoretically
simple starting point for understanding exotic states di-
rectly from QCD. A variety of phenomenological poten-
tial models have been proposed and studied for fully-
heavy tetraquarks [33–39], but these potential models
cannot be reliably connected to QCD. Systematically
improvable calculations rooted in QCD for fully heavy
tetraquarks have been studied more recently in lattice
NRQCD [40] and leading order pNRQCD [41]. However,
these two studies suggest opposite conclusions on the ex-
istence of fully-heavy tetraquarks.

Studies of heavy quarkonium have shown that pN-
RQCD can accurately describe properties of fully heavy
quark and antiquark bound states, including masses and
decay widths [31, 32, 42–44]. The potentials needed to
describe more complex systems such as baryons have
been studied more recently [45–48]. Variational meth-
ods have subsequently been used to bound fully-heavy
baryon masses [48–50], and Green’s function Monte Carlo
(GFMC) methods used to solve quantum many-body
problems in nuclear and condensed matter physics [51–
53] were further used to compute baryon masses in pN-
RQCD in Ref. [48]. In this work, we apply the same
quantum Monte Carlo (QMC) methods to study fully-
heavy tetraquarks in pNRQCD.
pNRQCD Formalism — The pNRQCD Hamilto-

nian is given by

H = T + V ψχ + V ψψ + V χχ + . . . , (1)

where T is the nonrelativistic kinetic energy operator de-
fined in terms of heavy quark fields ψ(r) and antiquark
fields χ(r) by

T =

∫
d3r ψ†

i (r)
∇2

2mQ
ψi(r) + χ†

i (r)
∇2

2mQ
χi(r), (2)

where i is a color index, and two-component spinor in-
dices are suppressed. The potential terms in H are com-
puted in a joint expansion in powers of 1/mQ and the
strong coupling constant αs evaluated at scales propor-
tional to mQ. Here, we include only the leading terms
in 1/mQ and refer to terms in the αs expansion as lead-
ing order (LO), next-to-leading-order (NLO), etc. The
quark-antiquark potential operator V ψχ is given by

V ψχ =

∫
d3r1d

3r2 ψ
†
i (r1)χj(r2)χ

†
k(r2)ψl(r1)

×
[
1

3
δijδklV

ψχ
1 (r12) + 2T aijT

a
klV

ψχ
Ad (r12)

]
,

(3)

where V ψχ1 (r12) and V
ψχ
Ad (r12) are color-singlet and color-

adjoint potentials respectively that are proportional to
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1/r at LO and are presented at NNLO in Refs. [43,
48, 54], and the T a are su(3) generators normalized as
Tr[T aT b] = 1

2δ
ab. The quark-quark potential is given by

V ψψ =

∫
d3r1d

3r2 ψ
†
i (r1)ψ

†
j (r2)ψk(r2)ψl(r1) (4)

×
[
1

4
ϵijoϵkloV

ψψ
A (r12) +

1

4
(δilδjk + δjlδik)V

ψψ
S (r12)

]
,

where V ψψA (r12) and V ψψS (r12) involve color-
antisymmetric and color-symmetric products of quark
fields, respectively, and are presented at NNLO in
Ref. [48]. The antiquark-antiquark potential is identical
by charge conjugation, and V χχ is obtained from Eq. (4)
via the replacement ψ → χ.
Three- and four-quark potentials enter H at

NNLO [46, 48]; however, their effects on baryon masses
have been found numerically to be small in comparison
with NNLO quark-quark potentials [48, 50]. In this work
we therefore include ψχ and ψψ/χχ interactions up to
NNLO but omit NNLO ψψχ/ψχχ and ψψχχ interac-
tions whose form has not yet been explicitly derived; this
approximation is denoted NNLO′ below. Effects from
ultra-soft modes lead to the appearance of additional
non-potential terms in H, but these do not enter until
N3LO and are therefore omitted here [29, 55, 56].

Heavy quarkonium states only involve the color-singlet
ψχ potential, which is attractive and leads to a hydrogen-
like spectrum of QQ bound states. Triply-heavy baryon
states only involve the color-antisymmetric ψψ poten-
tial, which is attractive and leads to the appearance
of QQQ bound states. Tetraquark states involve these
two attractive potentials and also the color-adjoint
ψχ and color-symmetric ψψ / χχ potentials, both of
which are repulsive. For example, the action of the
quark-antiquark potential on a heavy tetraquark state∣∣∣ψi(r1), χ†

j(r2)ψk(r3), χ
†
l (r4)

〉
δijδkl is given by

V ψχ
∣∣∣ψi(r1), χ†

j(r2)ψk(r3), χ
†
l (r4)

〉
δijδkl

=
∣∣∣ψi(r1), χ†

j(r2)ψk(r3), χ
†
l (r4)

〉
×
{
δijδkl

[
V ψχ1 (r12) + V ψχ1 (r34)

]
+

1

3
δilδjk

[
V ψχ1 (r14) + V ψχ1 (r23)

]
+2T ailT

a
jk

[
V ψχAdj(r14) + V ψχAdj(r23)

]}
.

(5)

The contribution proportional to δijδkl represents a prod-
uct of the potentials appearing for two quarkonium
states. In contrast, the other contributions describe in-
teractions between the two quark-antiquark pairs analo-
gous to atomic van der Waals forces. This work studies
whether the combination of attractive and repulsive pN-
RQCD van der Waals interactions arising in Eq. (5) plus
those arising from V ψψ and V χχ lead to the appearance
of fully-heavy tetraquark bound states.

The eigenvalues of H, denoted ∆E below, are the
masses of pNRQCD energy eigenstates minus the rest
massesmQ of their constituent heavy quarks/antiquarks.
The definition of mQ and choice of renormalization
scheme and scale µ will modify ∆E(mQ, µ) such that
the masses of pNRQCD energy eigenstates are scheme-
and scale-independent up to perturbative truncation ef-
fects. We use the quark mass scheme and results for mb

and mc obtained in Ref. [48] in which the “pole masses”
mQ appearing in H are obtained by solving

MQQ = 2mQ +∆EQQ, (6)

using experimental results for MQQ, where

∆EQQ(mQ, µ) is computed using µ = µQp ≡ 4αs(µ
Q
p )mQ.

Quantum Monte Carlo methods — For
an arbitrary trial state |ΨT (ω)⟩ with parameters
ω = (ω1, . . .), the variational principle dictates that
∆E ≤ ⟨ΨT (ω)|H |ΨT (ω)⟩. Numerical minimization
of ⟨ΨT (ω)|H |ΨT (ω)⟩ can therefore be used to deter-
mine the best ground-state approximation within a pa-
rameterized family of wavefunctions [57]. We evaluate
these matrix elements using wavefunctions ΨT (R;ω) ≡
⟨R| ΨT (ω)⟩ that depend on spatial coordinates R ≡
(r1, . . . , rNQ

),

⟨ΨT |H |ΨT ⟩ =
∫
d3RΨT (R)∗H(R)ΨT (R)∫

d3R |ΨT (R)|2
, (7)

where
〈
R
∣∣H ∣∣R′〉 = H(R)δ(R−R′), states are assumed

to be normalized as ⟨ΨT | ΨT ⟩ = 1, and dependence on
ω is suppressed for brevity. We use Monte Carlo meth-
ods to stochastically approximate Eq. (7) by sampling R
from a probability distribution proportional to |ΨT (R)|2
and then obtaining ⟨ΨT |H |ΨT ⟩ as the sample mean of
ΨT (R)∗H(R)ΨT (R) for this ensemble.
The accuracy of ground-state determinations using this

variational Monte Carlo (VMC) approach is limited by
the expressivity of a given family of trial wavefunctions,
and we therefore adopt the standard QMC strategy of us-
ing optimal trial wavefunctions obtained using VMC as
the foundation for subsequent GFMC calculation [51, 53].
GFMC employs imaginary-time τ evolution (analogous
to lattice QCD calculations) to dampen the excited-state
components of |ΨT ⟩ and formally allows the ground-state
for a set of quantum numbers to be obtained from any
trial wavefunction with the same quantum numbers as
limτ→∞ e−Hτ |ΨT ⟩. The imaginary-time evolution oper-
ator e−Hτ cannot be straightforwardly constructed for
arbitrary τ , but it can be approximated by splitting τ
into Nτ intervals of size δτ = τ/Nτ for Nτ ≫ 1 and
using the Lie-Trotter product formula:

〈
R
∣∣ e−Hτ ∣∣ΨT 〉 ≈ ∫ Nτ−1∏

i=0

dRi ⟨RNτ | e−Hδτ |RN−1⟩ × · · ·

× ⟨R1| e−Hδτ |R0⟩ ⟨R0| ΨT ⟩ , (8)
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with equality obtained in the Nτ → ∞ limit. The
Green’s functions Gδτ (R,R

′) ≡
〈
R
∣∣ e−Hδτ ∣∣R′〉 are ap-

proximated with the Trotter-Suzuki expansion

Gδτ (R,R
′) ≡

〈
R
∣∣ e−Hδτ ∣∣R′〉

≈ e−V (R)δτ/2
〈
R
∣∣ e−Tδτ ∣∣R′〉 e−V (R′)δτ/2,

(9)

where the kinetic piece
〈
R
∣∣ e−Tδτ ∣∣R′〉 is proportional to

a Guassian e−(R−R′)2/λ2

with λ2 = 2δτ/mQ [51, 53].
Therefore, GFMC evolution for each Trotter step can
be achieved by sampling R − R′ from a Gaussian dis-
tribution and computing the action of the potential on
coordinate-space states. We further employ strategies to
improve the precision of GFMC by randomly choosing
between updates with ±(R−R′) as detailed in Ref. [53].
The kinetic piece is diagonal in color, while for a state
built from NQ heavy quark/antiquark fields, the poten-
tial is represented as a 3NQ × 3NQ color matrix, and we
approximate the matrix exponentials in Eq. (9) using a
second-order Taylor expansion.

Molecular trial wavefunctions — This work
uses Coulombic trial wavefunctions as QMC inputs for
quarkonium states,

Ψ
QiQj

T (R; a) ∝ δije
−|r12|/a, (10)

where the “Bohr radius” a is a tunable parameter. The
VMC and GFMC results of Ref. [48] suggest that the
optimal value for this parameter is well approximated by

a(Lµ) =
2

αV (|r12|, µ = eLµ−γE/|r12|)CFmQ
, (11)

where CF = 4/3 and αV is

αV (|r12|, µ) = −|r12|
CF

V ψχ1 (|r12|, µ). (12)

At LO the pNRQCD potential is simply the Coulomb po-

tential, αV (|r12|, µ) = αs(µ), and Ψ
QiQj

T (R; a(Lµ)) cor-
responds to the exact ground-state wavefunction.

Tetraquark states can be studied using the family of
“molecular” trial wavefunctions,

Ψ
QiQjQkQl

T (R; a, b) ∝ δijδkle
−|r12|/ae−|r34|/a

× e−|r13|/be−|r14|/be−|r23|/be−|r24|/b,
(13)

where a describes the radii of the color-singlet con-
stituents Qi(r1)Qj(r2)δij and Qk(r3)Ql(r4)δkl, while b
encodes the spatial correlation between the two color-
singlet constituents. With b = a, this wavefunction de-
scribes a compact QQQQ system, while for b/a → ∞,
this wavefunction describes a two-meson product state.
Note that since wavefunctions proportional to δijδkl are
not eigenstates of the pNRQCD potential, as seen in
Eq. (5), the pNRQCD ground-state wavefunction ob-
tained through application of e−Hτ can have a more com-

plicated color structure than ψ
QiQjQkQl

T .

We performed QMC calculations using Eq (13) with
1 ≤ b/a ≤ 100 to probe for tetraquark bound states
with various compact or diffuse structures. For small
b/a, it is straightforward to generate Monte Carlo en-
sembles with a probability distribution proportional to

|ΨQiQjQkQl

T (R; a, b)|2 using a simple Metropolis updat-
ing scheme [48]. For b/a ≫ 1, however, large autocorre-
lations prevent reliable QMC results from being obtained
using this approach. We overcome this issue using a di-
rect sampling approach [58]. We draw independent sam-
ples from a product of exponential distributions approxi-

mating |ΨQiQjQkQl

T (R; a, b)|2 and subsequently corrected
to the exact distribution using a Metropolis accept/reject
step as detailed in the supplemental material.
Positronium molecule validation — Di-

positronium bound states Ps2 comprised of e+e−e+e−

provide a simple analog of tetraquarks in quantum elec-
trodynamics (QED) that has been extensively studied
theoretically [33, 38, 59–65] and whose signatures have
been detected experimentally [66, 67]. The static poten-
tial describing nonrelativistic QED interactions is known
to all orders in the coupling αem and in the absence of
relativistic degrees of freedom is given by [68, 69],

VQED(rij) = −αem
qiqj
rij

, (14)

where qi, qj represent the charges of particles with posi-
tions ri and rj . The positronium ground-state wavefunc-
tion is given exactly by Eq. (10) with a = 2/(αemme),
where me is the electron mass and the positronium bind-
ing energy is ∆Ee+e− = −α2

emme/4.
We use the spatial part of the molecular trial wavefunc-

tion in Eq. (13) as our Ps2 trial wavefunction and per-
form VMC calculations to determine the optimal value
of b/a. For αem(me) and me = 0.511 MeV, we find the
optimal value is b/a ≈ 10. The di-positronium bind-
ing energy, defined as BPs2 = −MPs2 + 2Me+e− =
−∆EPs2+2∆Ee+e− , obtained from either VMC or subse-
quent GFMC calculations as BPs2 = 1.11(9) eV. This is
consistent with early calculations indicating a Ps2 bind-
ing energy ofO(1) eV [60, 61] and more recent variational
results [33, 38, 62, 63].
Tetraquark binding energy results — To probe

the existence of bound tetraquarks for asymptotically
large quark masses, which correspond to αs(µp) ≪ 1,
we performed VMC calculations with 10−4 ≤ αs ≤ 0.1
at LO, NLO, and NNLO′. We find that b/a ≈ 5 leads
to near-optimal variational bounds for the family of trial
wavefunctions in Eq. (13) and that ∆EQQQQ < 2∆EQQ,
indicating the precense of bound fully-heavy tetraquark
states over this range of αs.
Subsequent GFMC calculations are used to improve on

these variational bounds. Application of e−Hτ effectively
suppresses excited-state effects if τ is larger than the ex-
citation energy. For a Coulombic potential, this gap is
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FIG. 1. Tetraquark binding energies divided by mQα
2
s as

functions of αs. Error bars show combined statistical and fit-
ting systematic uncertainties computed from GFMC results
as described in the main text with different colors and mark-
ers corresponding to different orders of pNRQCD and NLO-
NNLO′ points horizontally offset for clarity.

expected to be of order δ = mQ/(CFαs)
2. By taking

our GFMC parameters to scale as δτ ∝ 1/(α2
smQ), we

achieve τ > δ even for calculations of αs = 10−4. We
find that excited-state effects are present for τ ≲ δ with
apparent plateaus in

∆E(τ) =
〈
ΨT

∣∣He−Hτ ∣∣ψT 〉 , (15)

visible for τ larger than 0.5− 2 times δ for all αs studied
as shown in the supplemental material. We fit the large-τ
behavior of ∆E(τ) to constants using bootstrap methods,
shrinkage [70], and model averaging over fit ranges [71]
as detailed in Ref. [48].

These GFMC binding energy results are shown in
Fig. 1 and indicate that LO, NLO, and NNLO′ results
give consistent binding energies at the percent level for
αs ≲ 0.01. In this regime, we find that the tetraquark
binding energy is approximately proportional to α2

s and
consistent with

BQQQQ = −∆EQQQQ + 2∆EQQ

= 0.148(2)α2
smQ.

(16)

This demonstrates that bound fully-heavy tetraquark
states exist at asymptotically heavy quark masses where
1/mQ-suppressed effects can be neglected. Note that
this has the same scaling as the LO quarkonium result
BQQ = C2

Fα
2
smQ/4 but with a factor of 0.166(2) smaller

binding energy per particle.
To study tetraquarks over the range of mQ relevant

for heavy quarks in QCD, we perform GFMC calcula-
tions using the same trial wavefunction with b/a ≈ 5
over masses ranging from mc to mt. We take αs(MZ) =
0.1184(7) and compute the Landau pole scale ΛQCD and
matching across quark mass thresholds as described in

5 10 50 100

0

100

200

300

400

500

600

700

FIG. 2. Tetraquark binding energies for equal-mass quarks
with masses ranging from mc to mt. Shaded bands connect
results with renormalization scale choices µ ∈ {µp, 2µp, µp/2}
at each pNRQCD order indicated.

Ref. [72]. We perform GFMC calculations with µ ∈
{µp, µp/2, 2µp} to study the renormalization scale depen-
dence of our results. Non-zero tetraquark binding ener-
gies are obtained at high statistical significance over the
full range of masses and renormalization scales studied,
as shown in Fig. 2.

To predict the masses and binding energies of physi-
cal tetraquarks, we use the b and c quark poles masses
determined in Ref. [48] by tuning to reproduce exper-
imental results for spin-averaged (J/ψ, ηc) and (Υ, ηb)
masses. We validate our approximations by predicting
spin-averaged (Bc, B

∗
c ) masses that are compared with

experimental [4] and lattice QCD [73] results in Table I.
Our pNRQCD results converge slowly towards experi-
mental and lattice QCD results with 38(7) MeV (corre-
sponding to 0.6%) deviations present at NNLO′ . Pre-
dictions for equal-mass Tbbbb and Tcccc tetraquarks, as
well as unequal-mass tetraquarks involving combinations
of b and c quarks, are shown in Table II. To obtain pre-
cise results for BQQQQ, we compute correlated differences
between ∆EQQQQ and 2∆EQQ by computing the latter
using the same Monte Carlo ensemble proportional to

|ΨQiQjQkQl

T |2 as used for the tetraquark calculation and
only including the terms in the potential appearing for a
product of two non-interacting mesons. For unequal mass
tetraquarks µp is defined as µp = 4αs(µp)mred in terms of
the reduced mass mred = (nb+nc)mbmc/(nbmb+ncmc)
where nb (nc) is the number of constituents with mass mb

(mc). Differences between tetraquark energy results for
different pNRQCD orders are small fractions of MQQQQ

but large fractions of BQQQQ; however, the existence of
non-zero BQQQQ is a robust prediction for all orders and
flavor combinations studied.

Our NLO and NNLO′ results for b and c quark masses
using a range of renormalization scales suggest that fully-
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Mesons Order MQQ̄ [GeV] M
exp/lat

QQ̄
[GeV] [4, 73]

(Bc, B
∗
c )

LO
NLO
NNLO

6.26505
6.273(2)
6.279(3)

6.317(6)

TABLE I. Spin-averaged 1S masses for bc/cb mesons at each
order of pNRQCD indicated. The rightmost column shows
1/4 times the experimentally measured spin-0 Bc mass [4]
plus 3/4 times the spin-1 B∗

c mass (which has not yet been
experimentally determined) from lattice QCD [73].

Tetraquarks Order MQQ̄QQ̄ [GeV] BQQ̄QQ̄ [MeV]

Tcccc

LO
NLO

NNLO′

6.1276(3)
6.078(2)
6.018(3)

16.6(4)
67.9(1)
144(2)

Tcccb/Tbccc

LO
NLO

NNLO′

9.294(3)
9.312(4)
9.259(5)

23.0(4)
72(2)
139(2)

Tbbcc/Tccbb

LO
NLO

NNLO′

12.503(1)
12.457(4)
12.386(3)

23.7(4)
79(2)
157(3)

Tbcbc

LO
NLO

NNLO′

12.471(5)
12.417(5)
12.354(6)

19.5(8)
69(2)
139(2)

Tbbbc/Tbcbb

LO
NLO

NNLO′

15.652(6)
15.50(2)
15.37(7)

27.9(7)
87(2)
169(4)

Tbbbb

LO
NLO

NNLO′

18.8693(5)
18.8207(6)
18.7598(6)

31.2(6)
83.6(1)
151(1)

TABLE II. Predictions for tetraquark masses and binding
energies for all combinations of tetraquarks involving only b
and c quarks at each order of pNRQCD indicated. Pairs of
tetraquarks in the same row have identical binding energies
in our calculations due to charge conjugation.

heavy tetraquarks have binding energies of 50-200 MeV.
The inclusion of higher order and 1/mQ-suppressed ef-
fects will affect these results, but a conservative estimate
of the size of these effects obtained by doubling the dif-
ference between pNRQCD and experiment/lattice for the
(Bc, B

∗
c ) mass (which assumes zero cancellations between

higher-order effects on ∆EQQQQ and ∆EQQ) suggests
that they will not alter the conclusion that fully-heavy b
and c tetraquark bound states exist.

Evidence for an additional near-threshold state
— Increasing the ratio of b/a away from the optimal
value of b/a ∼ 5 obtained through VMC calculations to
values of b/a ∼ 100 leads to larger but much more precise
Hamiltonian matrix elements as shown in Fig. 3 for the
example of the LO potential with a quark mass corre-
sponding to mb. States with zero-variance Hamiltonian
matrix elements are in one-to-one correspondence with

0 100 200 300 400

-0.048

-0.046

-0.044

-0.042

FIG. 3. GFMC results for Tbbbb ∆E(τ) at LO using two differ-
ent values of the trial wavefunction parameter b/a compared
with the analogous results ∆En(τ) from approximate energy
eigenstates obtained by solving a GEVP. The black line shows
the two-meson threshold 2∆EQQ/mQ; matrix elements below
this line indicate bound tetraquark states.

energy eigenstates. The observation of a trial wavefunc-
tion providing low-variance Hamiltonian matrix elements
that are significantly larger than those obtained with
other trial wavefunctions therefore suggests the presence
of an excited state in the spectrum with a wavefunction
that is well approximated by Eq. (13) with b/a ∼ 100.
In order to test whether trial wavefunctions with small

and large b/a are overlapping with two or more energy
eigenstates, we computed a matrix of two-point correla-
tion functions,

CIJ(τ) =
〈
ΨI

∣∣ e−Hτ ∣∣ΨJ〉 , (17)

with different initial- and final-state trial wavefunctions
for I ̸= J using GFMC methods by performing Metropo-
lis sampling with one of the wavefunctions and then in-
cluding appropriate reweighting factors.. We then con-
struct approximate energy eigenstates by solving a gen-
eralized eigenvalue problem (GEVP) [74–77]

CIJ(τref)vJn = λnCIJ(τ0)vJn, (18)

to obtain the generalized eigenvalues λn(τref, τ0) and
eigenvectors vJn(τref, τ0) at a variety of initial and ref-
erence imaginary times τ0 and τref (dependence on these
scales is suppressed in Eq. (18) for brevity). The eigen-
vectors can also be used as a change-of-basis matrix that
is applied to Hamiltonian matrix elements as

∆En(τ) =
v∗In

〈
ΨI

∣∣He−Hτ ∣∣ΨJ〉 vJn
v∗KnCKL(τ)vLn

, (19)

which equals ∆En plus exponentially suppressed excited-
state effects under the assumption that the set of states
used to construct the correlation function matrix overlaps
with the lowest energy eigenstates. We compute statisti-
cal and systematic uncertainties from solving the GEVP
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at a wide range of τ0 and τref by taking different choices
for these parameters for each bootstrap sample.

Results with the LO potential and mQ = mb for solv-
ing the GEVP for a 2× 2 matrix of correlation functions
involving wavefunctions ΨI with I ∈ {1, 2} correspond-
ing to b/a ∈ {5, 100} are shown in Fig. 3. Two approxi-
mately orthogonal states can be resolved with high pre-
cision and results for n = 0 (n = 1) are consistent with
results using a single trial wavefunction with b/a = 5
(b/a = 100). The resulting ground-state energy is 19(1)
MeV below the two-meson threshold, while the excited-
state energy is 1.7(2) MeV below the two-meson thresh-
old. This indicates the presence of a second Tbbbb bound
state very close to threshold.

We further solve the GEVP for a 3 × 3 matrix of
correlation functions involving wavefunctions ΨI with
I ∈ {1, 2, 3} corresponding to b/a ∈ {5, 50, 100}. In this
case, the determinant and eigenvalues of CIJ(τ) cannot
be resolved from zero at 1σ precision. This suggests that
there is no third energy eigenstate with a large overlap
with this set of trial wavefunctions. However, it does not
exclude the possibility of other bound excited states.

Beyond LO, quarkonium masses cannot be computed
analytically, and the location of the two-meson threshold
includes statistical uncertainties. Precise GFMC results
using b/a = 100 wavefunctions are obtained using the
correlated difference strategy described above that cor-
respond to tetraquark binding energies of 4.7(1) MeV
at NLO and 12.0(4) MeV at NNLO′. However, per-
forming a complete GEVP analysis using such correlated
differences is not straightforward, and without exploit-
ing these correlations our statistical uncertainties are too
large to distinguish whether this near-threshold state is
bound. Corrections from higher-order potentials sup-
pressed by 1/mQ could also plausibly change whether
this near-threshold state is bound or unbound; however,
they should not affect the existence of an additional near-
threshold energy level because energies depend smoothly
on the parameters of the potential.

Discussion — In this work, we have used quantum
Monte Carlo methods to determine the ground-state en-
ergies of four heavy-quark systems in pNRQCD, a sys-
tematically improvable EFT of QCD. Our results ro-
bustly demonstrate that tetraquarks exist as stable QCD
bound states for asymptotically heavy quark masses.
Calculations for physical b and c quark masses further
suggest the existence of tetraquark states that are bound
by 50-200 MeV.

These results motivate experimental searches for
tetraquark states at the LHC and other colliders. Sig-
nals for the observations of such tetraquark states have
been studied theoretically [41, 78–80], and hints of pos-
sible detection of a Tcccc state have recently been seen
at the LHC [81, 82]. Although a search for Tbbbb bound
states decaying through virtual Υ states did not provide
evidence for their existence [83], this could be due to a

small branching fraction for Tbbbb → Υµµ [84].
Previous lattice NRQCD calculations have not found

evidence for bound Tbbbb tetraquarks [40]; however, the
results of these studies may be affected by systematic un-
certainties, including excited-state effects and discretiza-
tion effects that were not explicitly studied. In particu-
lar, we have found evidence for a second near-threshold
bound state in pNRQCD that has a significant overlap
with the same family of molecular trial wavefunctions
with a large overlap with the ground state. If an interpo-
lating operator used in Ref. [40] has significant overlap
with this near-threshold state, or with unbound finite-
volume analogs of scattering states, it would be challeng-
ing to detect any evidence for the existence of a bound
state using computationally accessible imaginary times.
Future lattice NRQCD studies should apply variational
methods to a set of multiple interpolating operators to
explore this possibility. Such studies could also explicitly
test the alternative possibility that 1/mQ-suppressed ef-
fects explain the differences between our results and those
of Ref. [40] by performing calculations with and without
1/mQ-suppressed effects included.
Applying QMC methods to pNRQCD further opens a

new avenue for studying newly discovered or undiscov-
ered exotic hadrons using computationally efficient and
systematically improvable EFT approximations to QCD.
Future studies will provide insight into the structure of
exotic hadrons comprised of heavy quarks and illuminate
which aspects of the complex dynamics of QCD are es-
sential for forming multi-hadron bound states and reso-
nances.
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SUPPLEMENTAL MATERIAL

Direct sampling

Quantum Monte Carlo methods involve evaluating in-
tegrals over the spatial coordinates for all spin, and in
our case, color, components of particles in a many-body
system. Heavy-quark spin components decouple at lead-
ing order in 1/mQ, and this work, therefore, requires
evaluating 3NQ-dimensional integrals such as Eq. (7) for
systems with NQ heavy quarks/antiquarks with Monte
Carlo methods. This approach stochastically approxi-
mates the integral, with the trial wavefunction’s magni-
tude forming the basis for a probability distribution:

P(R) ∝ Ψ
i1...iNq

T (R)Ψ
i1...iNq

T (R)∗, (20)

where i1, . . . , iNQ
are the wavefunction color indices. Ra-

tios of wavefunction integrals such as Eq. (7) can be de-
scribed as expectation values ⟨·⟩ of coordinates R sam-
pled from this distribution,

⟨ΨT |H |ΨT ⟩ =
〈
ΨT (R)∗H(R)ΨT (R)

|ΨT (R)|2

〉
, (21)

Note that the wavefunction factors cancel from Eq. (21)
for terms involving the potential, but the action of the
kinetic term on the wavefunction leads to factors of
(∇2ΨT )/ΨT .

For quarkonium wavefunctions, it is straightforward to
sample from Eq. (20) using a simple iterative updating
scheme in which, for instance, the coordinates Ri at each
step are replaced by coordinates Ri+1 = εξ where ξ is
a three-vector of zero-norm unit-variance Gaussian ran-
dom variable and ε is a tunable step size. These updates
are accepted as elements of a Markov chain with prob-
ability wi+1 = P(Ri+1)/P(Ri), and rejected otherwise.
Elements of such a Markov chain are correlated with one
another, and obtaining approximately independent ran-
dom variables requires several updates that are larger
than the autocorrelation time. Samples drawn with step
size ε ≈ 2/(αVmQ) can achieve manageable autocorrela-
tion times of order 10 for quarkonium over a wide range
of mQ as described in Ref. [48]. Similar results are found
when applying this scheme to tetraquark wavefunctions
that are relatively compact, b/a ≲ 5. Autocorrelation
times increase with increasing b/a; however, they are un-
desirably large for very diffuse molecular wavefunctions
with b/a ≳ 10. These autocorrelations lead to significant
statistical uncertainties for large b/a.

Alternative approaches in which a distribution approx-
imating P(R) that can be directly sampled from are
used to propose new Markov chain elements have been
shown to successfully reduce large autocorrelations in lat-
tice field theory applications [58]. Machine learning tech-
niques are often used to expressively parameterize distri-
butions that can be trained to approximate complicated

distributions, but in our case, the relative simplicity of
our trial wavefunctions defining P(R) allows us to con-
struct a simple two-parameter distribution as described
below that is effective for direct sampling.
We build our direct sampling distribution Q(R) ap-

proximating P(R) from functions of exponentially dis-
tributed random variables. Random variables can be
drawn from an exponential distribution P(x) = e−λx/λ
by first generating uniform random variables z ∈ [0, 1]
and then applying the change of variables x = −1/λ ln z,
which has Jacobean ∂x

∂z = P(x). The coordinates ri
and rj for the quark and antiquark in each color-singlet
quarkonium pair in our molecular trial wavefunction
are defined from exponentially distributed random vari-
ables x1ij , x

2
ij , x

3
ij with width λ and a second set of ex-

ponentially distributed variables ρ1ij , ρ
2
ij , ρ

3
ij with width

L. These variables are multiplied by a random sign ±1
and then taken to be the Cartesian components of vec-
tors xij and ρij that define the relative and center-of-
mass position of this quarkonium pair as ri = xij + ρij ,
rj = −xij + ρij . To fix the total center-of-mass posi-
tion to zero, the shift for the second quarkonium pair is
defined as r34 = −ρ12. The resulting probability distri-
bution is

Q(R) =
1

λ6L3

3∏
α=1

e−λ|x
α
12|e−λ|x

α
34|e−L|ρ

α
12|. (22)

In our direct sampling approach, we construct a Markov
chain in which each new element Ri+1 is sampled from
Q(Ri+1) with no reference to Ri. Correlations between
Markov chain elements only enter through the accep-
tance probabilities for adding a proposed element to the
Markov chain, which are [58]

wi+1 =
P(Ri+1)

P(Ri)

[
Q(Ri)

Q(Ri+1)

]
. (23)

This acceptance probability corrects for the approxima-
tion of sampling from Q(R) instead of P(R). For a poor
approximation with wi+1 ≪ 1, many updates will be re-
quired to generate approximately independent samples,
while for an approximation with wi+1 ≈ 1, all updates
will be approximately independent and autocorrelation
times will be negligible.
We find that taking λ = a/4 and L = b/12 leads to

a direct sampling scheme with Metropolis acceptance ra-
tios of 0.4-0.8 over the full range of αs studied in this
work. Results using this direct sampling scheme are con-
sistent with those obtained using a simple iterative up-
dating scheme for small b/a and successfully avoid rapid
growth in autocorrelation times with increasing b/a.

GFMC results

In our GFMC calculations, we ensure that τ is greater
than the energy gap between the ground and excited state
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FIG. 4. Matrix elements of the pNRQCD Hamiltonian for
fully-heavy tetraquark states with αs = 0.1, 10−3.

energy, which translates to Nτδτ/mQ > 2/(CFαs)
2 with

statistical ensembles of size Nwalkers = 10, 000. In par-
ticular we take Nτ = 500 and δτ/mQ = 0.4 for all the
physical quark mass results shown in Tables I and II as
well as the mass scan in Fig. 2. For the small αs scan in
Fig. 1, we again use Nτ = 500 and increase δτ to main-
tain τ > 2/(CFαs)

2 and for example for αs = 10−4 for
which we take δτ/mQ = 4× 106.

In our GFMC calculations, we take the correlated dif-
ference between the effective mass of the tetraquark sys-
tem and the associated two-meson system to determine
the tetraquark binding energy. These two systems are not
necessarily independent, and thus, the correlated differ-
ence enhances the statistical precision of GFMC results.
In order to use the same ΨT for the two-meson system,
we do one GFMC calculation with the full potential and
another with the so-called product potential. The prod-
uct potential is as given in Eq. (5) except solely includ-
ing potential terms involving the intra-meson coordinate
diffs r12 and r34. To obtain the correlated difference, we

use the same ΨT and random seed to generate the same
ensembles of walkers used for the full Hamiltonian and
for a product Hamiltonian. This allows us to compute
the correlated difference between the energies from the
full and product Hamiltonian with the same trial state,
which leads to the binding energies we present.

GFMC effective masses and binding energies using
the trial wavefunctions ΨT (r1...4) are shown in Figs. 4
and 5, respectively. We present systems with con-
stituent quark masses corresponding to αs(µp) = 10−1

and αs(µp) = 10−3 using the renormalization scale
choice µp = 4αs(µp)mQ. We further studied a range
of smaller δτ and larger Nτ to verify that Trotterization
effects are negligible for the full range of scales studied
here. Slightly less imaginary-time evolution is required
to achieve ground-state saturation at a given level of pre-
cision for LO versus higher orders in pNRQCD.
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FIG. 5. Correlated differences between tetraquark Hamilto-
nian matrix elements and two time quarkonium matrix ele-
ments with αs = 0.1, 10−3 .


