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Abstract

We calculate the S-factor for proton-proton fusion using chiral effective field theory interactions

and currents. By performing order-by-order calculations with a variety of chiral interactions that

are regularized and calibrated in different ways, we assess the uncertainty in the S-factor from the

truncation of the effective field theory expansion and from the sensitivity of the S-factor to the

short-distance axial current determined from three- and four-nucleon observables. We find that

S(0) = (4.100±0.024(syst)±0.013(stat)±0.008(gA))×10−23 MeV fm2 , where the three uncertainties

arise, respectively, from the truncation of the effective field theory expansion, use of the two-nucleon

axial current fit to few-nucleon observables and variation of the axial coupling constant within the

recommended range. The increased value of S(0) compared to previous calculations is mainly driven

by an increase in the recommended value for the axial coupling constant and is in agreement with

a recent analysis based on pionless effective field theory.
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I. INTRODUCTION

Nuclear reaction rates are among the main sources of systematic uncertainty in stellar

evolution models [1]. The proton-proton (pp) fusion reaction is the rate-determining step

of the pp chains that power the Sun and lighter stars. Available experimental techniques

are not able to directly measure the rate of this process with sufficient precision at energies

relevant for stellar burning, and values predicted by nuclear theory provide critical inputs

to astrophysical simulations [2]. More reliable calculations of this reaction rate can shed

further light on the inconsistencies in observed solar data such as those that exist between

spectroscopic determinations of solar abundances and helioseismology [3, 4]. In concert with

improvements in other physics inputs such as radiative opacities, rigorous constraints on this

rate can also help us use solar data as a powerful probe of new physics [5].

The calculations of this process were traditionally performed using potential models [6–

9]. Over the last few decades, methods based on effective field theory (EFT) techniques [10]

that allow us to obtain theoretical predictions with reliable uncertainty estimates, have been

employed. EFTs provide a simplified yet rigorous description of the process under study

using only those degrees of freedom that are relevant at low energies. The calculations are

organized as systematic expansions in the ratio of the typical momentum scale Q of the

process to a large momentum scale Λb, beyond with the EFT expansion breaks down. The

undetermined parameters—the so-called low-energy constants (LECs)—that appear up to

a given order in this Q/Λb expansion are first fixed, e.g., by fitting to experimental data,

and then predictive calculations are performed for other observables. The first applications

of EFT to the pp fusion process were based on hybrid approaches [11, 12] that employed

wave functions obtained from phenomenological nuclear potentials along with the nuclear

electroweak current operators derived in chiral EFT, which employs pions and nucleons

as dynamical degrees of freedom. Complete chiral EFT calculations, using potentials and

currents both derived consistently within the chiral EFT framework, have been carried out,

first in Ref. [13] and then in Ref. [14]. However, as discussed further below, these calculations

require important updates and corrections.

Over the past few decades, a number of studies have also been performed in pionless EFT,

which uses nucleons as the only dynamical degrees of freedom [15–20]. At energies relevant

for astrophysics, the process lies well within the domain of convergence of pionless EFT. In
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this approach, the pp fusion rate can be calculated with a small number of parameters. The

uncertainties have traditionally been dominated by the limitation of experiments and Lattice

QCD to sufficiently constrain the LEC L1,A that parametrizes the short-distance two-body

axial current [21, 22]. By performing next-to-leading-order calculations of relevant three-

body observables, a recent pionless EFT work [19] has quoted the value S(0) = (4.14 ±
0.01 ± 0.005 ± 0.06) × 10−23) MeV fm2, where the three uncertainties arise, respectively,

from the experimental errors on the nucleon axial coupling and the tritium β decay rate,

and the theory uncertainty of pionless EFT.

The goal of this work is to present a state-of-the-art calculation of the pp fusion cross

section in chiral EFT. In addition to correcting [23] the erroneous treatment of the rela-

tionship between the three-nucleon force parameter cD and the two-nucleon axial current

parameter d̂R, we also improve and expand upon the work of Ref. [14] by using recently

developed chiral EFT interactions [24, 25], and by accounting for uncertainty sources not

previously considered in Ref. [14]. We also review and update the work of Ref. [13] by taking

particular care of the convergence [26] in the expansion basis used to calculate the nuclear

wave functions, as well as the range of the integration in the axial current matrix element, by

also correcting the cD-d̂R relation, and by using the most recent values for the fundamental

constants, which leads to a reassessment of the Gamow-Teller matrix element of tritium β-

decay. The same nuclear interaction of Ref. [13] is implemented, limiting the present study

to the case of cutoff Λ = 500 MeV. This calculation also allows us to perform a benchmark

study between the approaches used in Ref. [14] and the one of Ref. [13]. The two approaches

will be labelled LS and VM, respectively, since the former used the Lippmann-Schwinger

equation to solve the two-body problem, while the latter used a variational method [27] as

discussed below.

The paper is organized as follows: we outline the theoretical framework in Section II,

present our results in Section III, and conclude with a summary and outlook in Section IV.

II. THE S-FACTOR

The astrophysical S-factor S(E) at the pp center-of-mass energy E is defined as

S(E) = σ(E)E e2πη , (1)

3



where η =
√

mp/E α/2 is the Sommerfeld parameter, mp is the proton mass, α = 1/137.036

is the fine-structure constant, and σ(E) is the pp fusion cross section at energy E, which

can be written as

σ(E) =

∫

d3pe
(2π)3

d3pν
(2π)3

1

2Ee

1

2Eν

2πδ

(

E + 2mp −md −
q2

2md

− Ee − Eν

)

1

vrel
F (Z,Ee)

1

4

∑

|〈f |ĤW |i〉|2 . (2)

Here pe,ν are the positron and neutrino momenta, Ee,ν their energies, md is the deuteron

mass, vrel is the pp relative velocity, and q is the momentum of the recoiling deuteron.

The function F (Z,Ee) accounts for the distortion of the positron wave function due to the

Coulomb field of the deuteron. Its classical expression, which can be found in Ref. [28], needs

to be augmented with radiative corrections. We enhance F (Z,Ee) by 1.62% to account for

the γW box diagram involving one nucleon, which has been explicitly evaluated in Ref. [29],

and ignore the diagram involving both nucleons, which has not yet been calculated. The

summation in Eq. (2) runs over the spin projections of all the initial- and the final-state

particles. The initial state |i〉 and the final state |f〉 are products of leptonic and nuclear

states and the weak interaction Hamiltonian ĤW can be written in terms of the leptonic

weak current jµ and the nuclear weak current Jµ as

ĤW =
GV√
2

∫

d3x
[

jµ(x)Jµ
†(x) + h.c.

]

, (3)

where GV is the vector coupling constant. Unless otherwise stated, the calculations presented

below adopt the value 1.149589×10−11MeV−2, that corresponds to the CKMmatrix element

Vud = 0.9737 and the process independent radiative corrections ∆V
R = 0.02454 as obtained

in a recent reanalysis of the superallowed beta decay rates [30] (see Ref. [31] for a direct

computation in Lattice QCD and Ref. [32] for a prediction with minimal phenomenological

input).

The matrix element of the leptonic weak current operator jµ between the leptonic wave

functions can be obtained from Dirac algebra and we refer the reader to Refs. [13, 14]

for details of the derivation of the matrix elements of the nuclear weak current operator

Jµ between the nuclear wave functions. In particular, we regularize the currents using

the same Gaussian regulators that were used in Refs. [13, 14]. The incoming pp system

can be considered exclusively in an s-wave, as it has been shown that higher partial-wave

channels are suppressed by several orders of magnitude (see Ref. [20] and also the erratum
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of Ref. [13]). Then, the leading contribution to Jµ comes from the one-body (1B) Gamow-

Teller (GT) operator and the leading two-body (2B) corrections occur atO ([Q/Λb]
3) relative

to 1B, which correspond to next-to-next-to-leading order (NNLO) in the chiral expansion.

It should be noted that these differ slightly from the currents used in Ref. [13]: besides

the leading-order GT 1B contribution, relativistic 1/m2
N corrections to the 1B GT term,

where mN is the nucleon mass, were also included since they are O ([Q/Λb]
2) in the power

counting adopted in that work. In order to facilitate comparison with Ref. [13], we retain

these terms in our updates to the study of Ref. [13] (model D discussed below) although

they are small. The 2B current we use are the same as the ones used in Refs. [13, 14], but

with the corrected [23] relation (see also Refs. [33, 34]) to the three-nucleon force parameter

cD as discussed in Sec. IIA. Unless otherwise stated, we use the latest Particle Data Group

(PDG) recommended value of the axial coupling constant gA = 1.2754 ± 0.0013 [35] in the

current operator in the calculations presented below.

The nuclear wave functions are calculated either by solving the Lippmann-Schwinger

(LS) equations as in Ref. [14], or by applying the variational method (VM) of Refs. [13, 27].

The chiral EFT Hamiltonians include nuclear as well as electromagnetic potentials. In this

work, relativistic and radiative corrections to the Coulomb interaction, discussed in Ref. [36],

are included explicitly in the calculation of the wave function, as in Ref. [13]. This is in

contrast to Ref. [14], where we first calculated S(E) using pp wave functions with nuclear

plus Coulomb interaction and applied a phenomenological correction to take such higher-

order electromagnetic effects into account. Finally, in Ref. [14], we used in Eq. (2) the

deuteron mass md obtained from the calculated value of the binding energy, which gave

a negligible numerical error since all of the interactions used in Ref. [14] were fit to the

experimental 2H binding energy. As we discuss below, since some of the interactions we

use in this work do not reproduce this energy very well, we use the experimental value of

md = 1875.61294257 MeV [37] instead. Note that for the interaction models which properly

reproduce the 2H binding energy, the theoretical and experimental value of md obviously

coincide to sufficient precision.
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A. Relationship between the axial current and the the three-nucleon force

The axial 2B current contains a counterterm d̂R that needs to be fixed before predictive

calculations of S(E) can be performed. This LEC has not yet been determined from A < 3

observables. In chiral EFT, fitting to A > 2 data involves the relationship between d̂R, the

πN LECs c3,4 and the pion-exchange part of the 3N force parameter cD:

d̂R = − mN

4gAΛχ
cD + mN

3
c3 +

2mN

3
c4 +

1
6
, (4)

where Λχ ≈ 700 MeV is the breakdown scale of chiral perturbation theory. With c3,4 values

constrained by πN and/or NN data, the LEC d̂R (or cD) can then be obtained by fitting

it, along with the contact 3N force parameter cE, to observables such as 3H β decay rate

and binding energy.

Following the suggestion of Ref. [38], Eq. (4) was first derived in Ref. [33], albeit with

an incorrect factor in front of the cD term (the factor -1/4 was missing). This error, which

propagated widely in the literature and also entered the results of Refs. [13, 14], was first

corrected by Ref. [23]. The corrected relation was used by Ref. [39] to compute S(0). The

value S(0) = 4.058× 10−23MeV fm2 quoted by Ref. [39] was obtained using 3H β decay rate

to constrain d̂R, with a set of chiral interactions not explored in this work. Note that the

main goal of Ref. [39] was to compute the muon-deuteron capture rate Γµd and not S(E)—

no sources of theory errors on S(0) were thoroughly examined other than the uncertainty in

the Γµd − S(0) correlation due to nucleon axial form factor.

Eq. (4) also enables us to constrain the axial current from strong-interaction observables.

Therefore, different sets of experimental observables have been used, e.g., Ref. [40] used 4He

binding energy and elastic 4He-n scattering data whereas Ref. [41] used 3H binding energy

and elastic 3H-n scattering data.

III. RESULTS

We now present our results for S(E) obtained using various chiral EFT interactions: (i)

model A which uses wave functions obtained by solving the Lippmann-Schwinger equation

using a modern potential that is well adapted to EFT truncation studies because it is

formulated at different orders, (ii) model B which uses the interactions of Ref. [36] with

the updated fits [39] to account for the corrected cD-d̂R relation, (iii) model C where the
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Model Method 1/m2
N currents gA cD B(2H)

A LS excluded 1.2754 -1.626 2.22038

B LS excluded 1.2754 see text 2.224
(+0)
(−1) [36]

C LS excluded 1.2724 -0.0047 2.18553

D VM included 1.2754 see Table III 2.22458

TABLE I. Main features of the four models adopted in this work. In particular, for each model we

indicate whether the 1/m2
N one-body currents are included, and we provide the adopted values for

the single-nucleon axial coupling constant gA, the LEC cD, and the calculated deuteron binding

energy B(2H) in MeV.

statistical uncertainty of fitting cD to few-body observables has been studied in detail, and

(iv) model D which uses the variational method of Refs. [13, 27] along with interactions of

Ref. [42], which requires a new fit of cD. In Table I, we summarize the salient features of

these four models.

A. Model A: the SMS-RS predictions

Table II shows the threshold values and energy-derivatives of S(E) calculated using the

SMS-RS potential of Ref. [24] at regulator cutoff Λ = 500 MeV and the LS equations as in

Ref. [14]. In contrast to older momentum-space chiral interactions [42–47] that employed

the conventional non-local Gaussian regulators along with an additional spectral function

regularization [48] in the two-pion exchange diagrams, the potential of Ref. [24] uses a

“semi-local” regularization scheme which consists of a local regulator for the pion-exchange

parts and non-local Gaussian regulator for the contact parts of the NN interaction in order

to preserve the long-range parts that are unambiguously determined in chiral EFT. The

subleading πN LECs in this potential have been fixed to the precise values obtained from

a Roy-Steiner analysis [49] of the πN scattering data. The nucleon-nucleon (NN) LECs in

the SMS-RS potential have been fit to mutually consistent np and pp scattering data of the

Granada 2013 database [50]. In the 2B current, we use d̂R given by Eq. (4) with the value

of cD = −1.626 obtained in Ref. [41] by fitting to Nd scattering cross section data; however,
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Order S(0) [MeV fm2] S′(0)/S(0) [MeV−1] S′′(0)/S(0) [MeV−2] S′′′(0)/S(0) [MeV−3]

LO 4.143 ×10−23 10.75 306.75 -5150

NLO 4.094 ×10−23 10.81 312.78 -5370

NNLO 4.100 ×10−23 10.83 313.72 -5382

TABLE II. The threshold S-factor S(0), and the first and second derivatives of the S-factor at

threshold divided by S(0) in units of MeV fm2, MeV−1, MeV−2 and MeV−3, respectively, at

different orders of the chiral EFT expansion for both the nuclear interaction and current. The

SMS-RS interaction is used.

we note that the theoretical uncertainties in the estimation of cD were not explored in that

reference. It should be remarked that, thanks to the availability of the SMS-RS potential at

various orders in the EFT expansion, it is possible to perform an order-by-order calculation

consistently for both potential and current. This is different from the study of Ref. [13],

where the nuclear interaction order was fixed at N3LO, while the different orders were

considered only for the chiral expansion of the axial current.

We evaluate S(E) in the energy interval E = [1, 30] keV and fit a polynomial in E to

obtain the threshold S-factor S(0) and its derivatives. The extracted values depend on the

degree of the fitted polynomial. We obtained stable values, particularly for S(0) and S ′(0),

for third, fourth and fifth degree polynomials. Unless otherwise stated, we quote values from

cubic fits.

We assess the uncertainty of the S-factor due to the EFT truncation by following the

method described in Refs. [51, 52]. We first express the S-factor as

S(0) = SLO

3
∑

n=0

cn

(

Q

Λb

)n

, (5)

where SLO denotes the leading order (LO) result for the S-factor given in Table II, Q denotes

the inherent momentum scale of the problem, and Λb is the breakdown scale. An estimate

of the truncation error is then obtained by calculating (Q/Λb)
4max(|c0|, |c2|, |c3|). Using

the order-by-order results of Table II to obtain the expansion coefficients cn, the pion mass

for the momentum scale Q and a conservative estimate of Λb = 500 MeV, we obtain an

uncertainty 0.024×10−23 MeV fm2 for the SMS-RS interaction, leading to the prediction

S(0) = (4.100 ± 0.024(syst)) × 10−23 MeV fm2. Here we have used the label “syst” to

emphasize that is is an estimate of the systematic uncertainty from the truncation of the
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EFT expansion. We note that this estimate has been found to roughly correspond to a

68% Bayesian credible interval for a particular choice of Bayesian priors for the expansion

coefficients cn [51].

B. Model B: the NNLOsim updates

In Ref. [14], we employed the NNLOsim family of 42 interactions [36] to assess the uncer-

tainty in the pp fusion rate due to the statistical uncertainties in the LECs, the systematic

uncertainty due to the chiral EFT cutoff dependence, and the systematic variations in the

database used to calibrate the NN interaction. At each of the 7 different cutoff values

Λ = [450, 475, 500, 525, 550, 575, 600] MeV, the 26 LECs in the NN and πN sectors were

simultaneously fit to 6 different pools of input data, leading to 42 interactions. Specifically,

the input data consisted of NN scattering data at different truncations of the maximum

scattering energy Tmax
lab , πN cross sections, the binding energies and charge radii of 2,3H and

3He, the one-body quadrupole moment of 2H, as well as the comparative β-decay half-life of

3H. The NNLOsim interactions have been refit [39] to account for the update in the cD-d̂R

relation given in Eq. (4) [23], which enters the calculation of the 3H GT matrix element

fit to tritium β-decay. The resulting values of cD for this model are roughly uniformly dis-

tributed between -2 and 2. We obtain 4.091 × 10−23 MeV fm2 for the average S(0) value

for the refitted NNLOsim interactions. This is an upward revision, by about 1.1%, partly

driven by the refitting of cD but mainly by the change in the gA value recommended by the

PDG [35], from the result S(0) = 4.047+0.024
−0.032 × 10−23 MeV fm2 obtained in Ref. [14], where

the quoted uncertainty mainly reflected the sensitivity of the S-factor to input data used to

calibrate the LECs of the EFT and to the short-distance behavior of the NN interactions.

While a full reanalysis of the uncertainty estimates of Ref. [14] is beyond the scope of this

work, we note that S(0) spans the range 4.081×10−23 to 4.095 ×10−23 MeV fm2 for the

42 interactions. Unlike Ref. [14], this range does not include the statistical fitting errors

of the LECs. It is also instructive to compare the EFT truncation uncertainty obtained

above using SMS-RS interaction to a similar estimate using one of the 42 interactions from

the NNLOsim family. To this end, we choose the interaction with Tmax
lab = 290 MeV and

Λ = 500 MeV, and obtain 13.537×10−23, 4.869×10−23 and 4.092×10−23 MeV fm2 for S(0)

at LO, NLO and NNLO. Using the procedure discussed above to assess the EFT truncation
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error, we obtain S(0) = (4.092 ± 0.178(syst)) × 10−23 MeV fm2. We note that this large

uncertainty is a result of the LO value being rather large because the deuteron properties

are not well reproduced by this interaction at this order. We therefore consider the estimate

of the systematic EFT truncation error obtained from the SMS-RS interaction to be more

reliable for this problem.

C. Model C: uncertainty in calibrating the axial contact current from few-body

observables

An additional uncertainty that has not been included in the SMS-RS result quoted above,

S(0) = (4.100± 0.019(syst))× 10−23 MeV fm2, is the uncertainty arising from the axial 2B

contact current with d̂R determined using Eq. (4). To estimate this, we consider the Bayesian

posterior probability distribution function (PDF) of cD-cE obtained by Ref. [25]. In that

study, as in the SMS-RS interaction, the πN LECs were fixed to central values determined

by the Roy-Steiner analysis in Ref. [49]. The NN LECs at LO, NLO, and NNLO were then

fixed by performing a new fit to the np and pp scattering data with Tmax
lab = 290 MeV gathered

from the Granada 2013 database [50] as well as the empirical nn effective range parameters.

Constraints on cD and cE were obtained from fitting to binding energies of 3H and 4He,

the charge radius of 4He, and the GT matrix element of the 3H extracted from tritium β-

decay followed by marginalization of all other parameters with both the uncertainty of the

chiral EFT Hamiltonian and the uncertainties in the experimental measurements taken into

account. The experimental value of the 3H β decay half life (1129.6± 3) s [55] adopted by

Ref. [25] corresponds to our Fit-2 discussed below.

It was found that, at the older PDG value of gA = 1.2724 [53], the joint PDF of cD-cE

was well described by a multivariate t-distribution tν(m,S) with ν ≈ 2.8 degrees of freedom,

a mean vector m = [−0.0047,−0.1892] and a scale matrix of

S =





0.250 0.043

0.043 0.008



 (6)

at one standard deviation (1σ). At least for the energy range considered in this work, S(E)

has approximately linear dependence on the values of cD within the 1σ range for this joint

PDF. The uncertainty on S(E) can therefore be very well approximated by sampling cD from

its marginal t-distribution, which spans the approximate 1σ range cD ∈ [−0.615, 0.615], and
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computing S(E) at the 1σ margins. This gives S(0) = (4.155±0.013(stat))×10−23 MeV fm2.

Here we used the label “stat” to indicate that this is an estimate of the statistical uncertainty

from the cD probability distribution. The rather large S(0), in spite of the smaller value

of 1.2724 adopted for gA, is a result of slow convergence of the deuteron properties in

this EFT expansion up through NNLO. This indicates that the fitting procedure adopted

for this interaction results in large EFT truncation error even at NNLO for extreme low-

energy observables. Nevertheless, we consider the quoted uncertainty from cD variation to

be a reasonable estimate of the uncertainty in S(0) from fitting the two-body contact axial

current to few-body observables.

D. Model D: updates to Idaho-N3LO results

We now turn our attention to the study of the pp fusion performed using the VM to

calculate the deuteron and pp wave functions as in Ref. [13] from the Idaho-N3LO potential

with Λ = 500 MeV [42]. With respect to Ref. [13], we have put particular attention to the

convergence on the basis expansion for the deuteron wave function, and on the integration

range used to calculate the transition operator matrix element. In particular, we have verified

that not only the deuteron binding energy, but also the asymptotic normalization constants

and the so-called D/S-state ratio η = AD/AS are well reproduced. Furthermore, we have

verified that the integral range of rmax = 50 fm is sufficient to reach convergence of the

results. In fact, by going from rmax = 50 fm to rmax = 60 fm, the change in S(0) is beyond

the third decimal digit. Therefore, the results we are going to present are at convergence

at least up to the the third decimal digit of S(0). We note that such an accuracy was not

the primary goal of the work of Ref. [13], where the results were obtained with a theoretical

accuracy of the order of 1%.

In order to use the most recent values for the fundamental constants entering the calcu-

lations, we, first of all, update the value for the experimental GT matrix element in tritium

β-decay 〈GTexp〉. Note that 〈GTexp〉 and the A = 3 binding energies were the observables

of choice used to fix the LEC cD, and consequently d̂R, and the LEC cE , that parametrizes

the three-nucleon contact interaction entering at NNLO (see, for instance, Ref. [27]). The
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〈GTexp〉 cD

Fit-1 0.9488 ± 0.0019 0.1836–0.7680

Fit-2 0.9514 ± 0.0019 0.3830–0.9690

Fit-3 0.9501 ± 0.0024 0.2833–0.8685

TABLE III. Values for 〈GTexp〉 as obtained using three different values for ft3H, 1134.6 ± 3.1

s labelled Fit-1, 1129.6 ± 3 s labelled Fit-2, and 1132.1 ± 4.3 labelled Fit-3, respectively. The

corresponding ranges for the LEC cD obtained using the Idaho-N3LO potential with Λ = 500 MeV

are also listed.

GT matrix element is defined as

〈GT 〉2 =
[

2ft0+→0+

ft3H
− 〈F 〉2

]

1

f g2A
, (7)

where gA is the single-nucleon axial coupling constant, f = fA/fV = 1.00529 is the ratio of

the axial and vector Fermi functions, ft3H and ft0+→0+ are the ft-values for tritium β-decay

and for superallowed 0+ → 0+ transitions. From 〈GT 〉, we define 〈GTexp〉 as 〈GTexp〉 =

〈GT 〉/
√
3. With this definition, 〈GTexp〉 is related to the reduced matrix element of the

electric dipole axial operator E1 used in Refs. [25, 33] via the relation 〈GTexp〉 =
√
πE1/gA.

In the present calculation, we have used gA = 1.2754 ± 0.0013, according to the PDG,

and ft0+→0+ = (3072.24 ± 1.85) s, according to Ref. [30]. This value is consistent with

the value of GV used in Eq. (3). Furthermore, we have used 〈F 〉2 = 0.99967, as it was

obtained in Refs. [27] with the Idaho-N3LO potentials. This value is quite different from

the one obtained using the phenomenological AV18/UIX interaction model, and used for

instance in Ref. [9], 〈F 〉2 = 0.9987. However, we have verified that the impact on 〈GTexp〉
of this different 〈F 〉2 is negligible. Finally, we have adopted for ft3H three different values:

(1134.6± 3.1) s as obtained in Ref. [54], (1129.6± 3) s as obtained in Ref. [55] and adopted

by Model C above, and (1132.1± 4.3) s as used already in Ref. [27] and obtained averaging

these two values and summing the errors in quadrature. The 〈GTexp〉 obtained with these

three values for ft3H will be labelled Fit-1, Fit-2 and Fit-3, respectively. The three values

for 〈GTexp〉, together with their uncertainties arising from the experimental errors on gA,

ft0+→0+ and ft3H, are listed in Table III. In the table, we report also the corresponding

ranges for cD obtained, as mentioned above, with the fitting procedure of Ref. [27]. With

the new values for the LEC cD, or equivalently d̂R, we present in Table IV the results
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Method 1/m2
N currents S(0) S′(0)/S(0) S′′(0)/S(0) S′′′(0)/S(0)

Fit-1 VM included 4.115(4) 10.60 347.1 -6908

LS excluded 4.101(4) 10.83 313.8 -5382

Fit-2 VM included 4.118(4) 10.60 347.1 -6907

LS excluded 4.104(4) 10.83 313.8 -5381

Fit-3 VM included 4.117(4) 10.60 347.1 -6908

LS excluded 4.104(4) 10.83 313.8 -5382

TABLE IV. Values for the zero-energy astrophysical S-factor S(0) (in 10−23 MeV fm2), its first,

second and third derivatives S′(0)/S(0) (in MeV−1), S′′(0)/S(0) (in MeV−2) and S′′′(0)/S(0) (in

MeV−3) obtained with the Idaho-N3LO potential with Λ = 500 MeV, using the variational method

(VM) of Ref. [13], or the Lippmann-Schwinger (LS) equation as in Ref. [14]. The results labelled

Fit-1, Fit-2, and Fit-3 are obtained consistently with the values of cD listed in Table III. The

numbers in parentheses are the theoretical error arising from the range of cD values allowed for

each fitting procedure. For S′(0)/S(0) these errors are beyond the quoted digits.

for the zero-energy astrophysical S-factor S(0), and its first, second and third derivatives,

S ′(0)/S(0), S ′′(0)/S(0) and S ′′′(0)/S(0). We list in the table also the results obtained with

the same constants and the same potential using the LS equation and the axial current

of Ref. [14]. By inspecting the values in the table, we can conclude that (i) the VM and

LS calculations are in very good agreement as the small differences are consistent with the

anticipated size of the relativistic corrections to the GT 1B operator which were neglected

in the LS calculations but were retained in the VM calculations; (ii) the dependence on

the adopted value for ft3H is very weak; (iii) the theoretical uncertainty arising from the

range of cD values allowed for each fitting procedure, and therefore ultimately related to the

experimental error on 〈GTexp〉, is extremely small for S(0) and S ′′(0)/S(0), and beyond the

second decimal digit for S ′(0)/S(0); (iv) the calculated S(0) is in excellent agreement with

the S(0) value obtained with the SMS-RS and NNLOsim interactions. (v) The value for

S(0) is ∼ 2.2% larger than the value of Ref. [13]. The difference arises from the improved

convergence of the nuclear wave functions adopted in this work, as well as from the increased

values for the single-nucleon axial coupling constant gA.
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IV. SUMMARY AND OUTLOOK

We calculated the proton-proton fusion rate using various chiral interactions: the Idaho-

N3LO interaction at regulator cutoff of 500 MeV [42], the NNLOsim family of 42 interactions

fit at 7 different regulator cutoffs to 6 different pools of input data, and two additional sets

of interactions—one non-local [25] and another “semi-local” [24]—in which the pion-nucleon

coupling constants are fixed to precise values determined from Roy-Steiner analysis. We

obtained an estimate for the uncertainty from the truncation of the EFT expansion and

also assessed the uncertainty from fixing the LEC d̂R in the two-body axial current using cD

fitted to A ≥ 3 data. Furthermore, by using the Idaho-N3LO potential, we have performed a

benchmark calculation between the two different approaches first applied to the pp reaction

in Refs. [13] and [14]. We have used recent values of the fundamental constants and have

used the corrected relationship between the axial current LEC d̂R and the three-body force

parameter cD.

The threshold S-factor S(0) obtained from the various EFT interactions indicate an

upward revision from the recommendation made by Ref. [2]. It is remarkable that the S-

factor value obtained using the SMS-RS interactions [24] is in excellent agreement with the

NNLOsim result although its cD value was obtained without fitting to electroweak data. We

also show that variation in cD within the 68% Bayesian credible interval obtained from the

joint cD−cE distribution calculated in Ref. [25] translates to an uncertainty of 0.013 MeV fm2

in S(0), which is smaller than the uncertainty of 0.019 MeV fm2 stemming from the trun-

cation of the chiral expansion in the SMS-RS potential. We do note, however, that the

potential of Ref. [25] underbinds the deuteron at all orders (by about 75% at LO, 15% at

NLO and 1% at NNLO) which causes S(E) to be overpredicted, even with just one-body

current. We encounter this issue also at LO and NLO in the NNLOsim interactions, which

again impacts the extraction of truncation error. This highlights the importance of en-

suring that the low-energy properties of the NN system, e.g. the binding energy and the

asymptotic normalization coefficient of the deuteron, are reasonably well reproduced while

fitting the LECs of chiral EFT. Given the difficulty in assessing the truncation error of the

EFT expansion due to slow order-by-order convergence in the non-local chiral interactions

used in this work, we consider the central value obtained using the SMS-RS interaction to

be more reliable and the corresponding truncation error estimate to be better calibrated.
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Combining the systematic EFT truncation error with the statistical uncertainty that arises

from the PDF of cD and the range obtained by varying gA within the PDG recommendation

of 1.2754± 0.0013, we recommend

S(0) = (4.100± 0.024(syst)± 0.013(stat)± 0.008(gA))× 10−23 MeV fm2 . (8)

Note that this value is consistent with the ones obtained using the NNLOsim and Idaho-

N3LO interactions, and with the value S(0) = (4.14± 0.01± 0.005± 0.06)× 10−23 MeV fm2

recently obtained by De-Leon and Gazit in Pionless EFT [19]. Furthermore, we find with

the SMS-RS potential S ′(0)/S(0) and S ′′(0)/S(0) values of 10.83 MeV−1 and 313.72 MeV−2,

respectively. The values of these energy derivatives of S(E) depend on the interaction used,

calculation method and degree of the fitted polynomial. We refrain from performing a

detailed analysis of uncertainties for them as they are not relevant at currently achievable

precision in the energy range of interest for solar conditions.

Finally, we would like to remark that the S-factor is not accurately predicted by the

chiral EFT interactions of Refs. [25, 36] at low chiral orders if the deuteron bound-state

properties are not adequately reproduced. This highlights the importance of calibrating the

interactions by fitting to experimental data using strategies that also lead to systematic

convergence pattern for very low-energy observables such as pp fusion at solar conditions.

Bayesian model mixing between chiral and pionless EFT to ensure that the deuteron and

the pp effective-range parameters are well reproduced appears to be a promising strategy

for reliably predicting solar pp fusion rate. Furthermore, we believe that a thorough study

of the pp fusion reaction should be performed using the largest possible variety of chiral

EFT interactions, local or non-local, regularized in co-ordinate or momentum space, with

or without the inclusion of ∆-isobar degrees of freedom, possibly available a different chiral

orders, as, for instance, those of Refs. [47, 56–58]. Such a study is beyond the scope of

this work, but is definitely highly recommended. Work along this line, on the footsteps of

Refs. [59, 60], is currently underway.
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