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The financial sector is anticipated to be one of the first industries to benefit from the increased
computational power of quantum computers, in areas such as portfolio optimisation and risk management
to financial derivative pricing. Financial mathematics, and derivative pricing in particular, are not areas
quantum physicists are traditionally trained in despite the fact that they often have the raw technical skills
needed to understand such topics. On the other hand, most quantum algorithms have largely focused
on qubits, which are comprised of two discrete states, as the information carriers. However, discrete
higher-dimensional qudits, in addition to possibly possessing increased noise robustness and allowing for
novel error correction protocols in certain hardware implementations, also have logarithmically greater
information storage and processing capacity. In the current NISQ era of quantum computing, a wide
array of hardware paradigms are still being studied and any potential advantage a platform offers is
worth exploring. Here we introduce the basic concepts behind financial derivatives for the unfamiliar
enthusiast as well as outline in great detail the quantum algorithm routines needed to price a European
option, the simplest derivative. This is done within the context of a quantum computer comprised of
qudits and employing the natural higher-dimensional analogue of a qubit-based pricing algorithm with its
various subroutines. From these pieces, one should relatively easily be able to tailor the scheme to more
complex, realistic financial derivatives. Finally, the entire stack is numerically simulated with the results
demonstrating how the qudit-based scheme’s payoff quickly approaches that of both a similarly-resourced
classical computer as well as the true payoff, within error, for a modest increase in qudit dimension.

1 Financial derivatives: a primer’s primer

Financial assets can take a variety of forms, such as company stocks, government bonds, owning the debt of
mortgage holders, as well as raw commodities such as precious metals and important foodstuffs. In reality,
many of these assets are not themselves exchanged between a buyer and seller on the market. Rather,
financial derivatives, which are simply contracts that are based on one or more of these underlying assets,
are entered into and are the items that are in fact traded. The contracts themselves have values ‘derived’
from the underlying assets, and given that the assets’ values are subject to various - largely indeterministic
- market forces and other processes, the prime focus of derivative pricing in financial mathematics is to
determine the fair value of such contracts.

The simplest kind of derivative is called a futures contract. A future is a publicly-traded contract which
obliges the buyer to purchase a particular asset from the seller at a pre-agreed upon price at a later date.
The utility of such a contract is that it allows investors either to make money by speculating (which is a
risky investment strategy focused on taking advantage of price fluctuations to earn a profit), or to hedge
(i.e. reduce the risk of) their betting position against market fluctuations. For example, if one speculates
that the price of an asset is likely to increase at a later date, one could, today, purchase a futures contact in
which one agrees to purchase the asset at the later date at a price lower than the speculated future price.
On the other hand, to hedge their market position, an investor may purchase a futures contract since it
allows them to lock in the purchase price of the asset, thereby creating a degree of certainty and controlling
risk. However, buying or selling such contracts is never without risk: if a speculative investor purchases a
future in the belief that an asset’s price will increase, but the asset’s price in fact decreases at the contract’s
maturation date, the investor will lose money as he will be forced to purchase the cheaper asset for more
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than its actual value. As such, the decision of whether to buy or sell any derivative should take into account
the expected return of investing in the most ‘risk-free’ investment - typically US government treasury bonds
- available on the market.

Financial options contracts, on the other hand, are similar to futures, but with one key difference: they
give the buyer the prerogative, not the obligation, to either buy or sell the asset. In particular, the simplest
option, a European call (put) option, gives the buyer the right to purchase (sell) the asset (which we take to
have a value of St at time t, with today being t = 0), at the strike price K once the contract is exercised at
time t = T . If the asset’s price at the expiration date t = T is ST , the payoff (denoted by f) for the buyer
of the call option would be

f(ST ) = max(0, ST −K). (1)

This formula is intuitive: if it ends up being that ST > K at expiration, it makes sense for the buyer to
exercise the contract as he’ll be acquiring an asset with a value of ST for the cheaper price of K, and hence
making a profit of ST −K. However, if ST < K, the buyer should not exercise the right to buy the asset
since its mandated purchase price of K would be more than its actual market value.

If one somehow knew, today, that the asset’s price would be ST at time T , the fair price of a European
call option based on that asset would be the discounted future payoff, namely e−rT f(ST ). Here, r is the
continuously-compounded return rate of risk-free government bonds, and the e−rT discount factor accounts
for the opportunity cost of not having invested in these bonds instead of the asset. However, asset prices
do not evolve deterministically, but stochastically (see Fig. 1). Indeed, the value of a single asset, such
as the price of a barrel of oil or a share of a publicly-listed company, is influenced by a number of factors
such as reserve bank interest rates, traditional supply and demand economics, as well as global geopolitics
and human psychology [1]. Furthermore, the global market is comprised of countless assets, all influencing
one another in a terribly interconnected, unpredictable fashion. This indeterminism complicates matters so
much that one cannot compute the exact future value of an asset, let alone an exotic option based on it.
Instead, we use the discounted, expected payoff, namely e−rTEP[f(ST )]. This expectation value is taken
with respect to a particular probability distribution P of St (we’ll elaborate on the distribution shortly).
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Figure 1: A sample of stochastic asset price paths (modelled using geometric Brownian motion with drift
0.05 and volatility 0.2, c.f. Eqn. 2). The market’s inherent indeterminism means that we don’t know which
path the asset’s price will follow over time; we can only compute the expected payoff, which is ‘averaged’
over all possible paths under the chosen stochastic model.

During early attempts to understand the complicated problem of option pricing, one of the first - and
most important - option pricing models proposed was the Black-Scholes-Merton (BSM) model [2]. It takes
the asset’s price to be primarily steered by the most common stochastic processes: one-dimensional Brownian
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motion (see [3] for an intuitive primer on Brownian motion). If Wt denotes such a Brownian process and
St the price of the asset at time t ≤ T , the BSM model assumes that St follows this stochastic differential
equation (known as geometric Brownian motion)

dSt = αStdt+ σStdWt. (2)

Here, the asset’s evolution comprises two parts: the first term models a deterministic trend, or drift, in
the ‘mean’ price of the asset (with α the percentage drift), whereas the second term (with σ the percentage
volatility and dWt a Brownian increment) models the unpredictable changes in the asset’s price during each
time increment. In the BSM model, the drift and volatility are assumed to be constants, independent of the
asset price St and time (although more realistic stochastic volatility models, in which σ itself is driven by
a separate Brownian process, exist [4]). Finally, it should be noted that in a formal treatment of stochastic
calculus, a process such as Wt would need to be considered with respect to a probability measure. There
are a number of such measures with respect to which Wt models standard Brownian motion. However, such
a formal treatment is beyond the scope of this introduction.

Wt is stochastic and has a quadratic variance proportional to the time increment t, and ordinary calculus
cannot solve Eq. 2 for St as a function of t and Wt. However, using the famed Itô’s lemma (see [4]), we can
solve for St as,

St = S0e
σWt+(α−σ2

2 )t, (3)

where S0 is the asset’s price at t = 0. Fig. 1 represents samples of this function.
Eq. 3 gives, in an informal sense, a relation between St and one particular realisation of the Brownian

motion Wt. One cannot definitively say what value St will assume at a later stage because one cannot defini-
tively say what value Wt will assume: Wt has independent, random increments. Even so, these increments
have a well-defined distribution: one property characterising Wt is that Wt − W0 is normally distribution
with mean 0 and variance t. This suggests that St itself potentially has a well-defined distribution. Indeed,
re-writing Eq. 2 as dSt

St
= αdt + σdWt, the process dSt

St
is an Itô drift-diffusion process comprising a fixed

drift term and a random volatile term. Given this, the Fokker-Planck equation [5, 6] is a partial differential
equation describing the evolution of the probability density of a process subject to these two exact kinds of
forces. Solving it (see [7]) for the probability density p(St; t, α, σ, S0) gives

p(St; t, α, σ, S0) =
1

Stσ
√
2πt

exp

−
(
ln
(

St

S0

)
− (α− 1

2σ
2)t

)2

2σ2t

, (4)

i.e. the asset’s price evolution follows a log-normal distribution.
We almost have all of the ingredients needed to compute the realistic discounted expected payoff for the

European call option of Eq. 1. However, we need to hit all of this mathematics with a dose of real-world
financial economics. Suppose that we start with the assumption that the market is rational (despite much
evidence to the contrary [8] - as noted economist John Maynard Keynes opined: “The market can stay
irrational longer than you can stay solvent”). One characteristic of a rational market is the assumption
that, for a given capital investment, one cannot make a profit larger than the profit from having instead
invested in a risk-free asset, without taking on risk. Such a market is called arbitrage-free and is based on
the presumption that if an arbitrage opportunity were present in reality, market forces would speedily move
to eliminate the opportunity1. In this way, the market moves towards an arbitrage-free equilibrium.

With this in mind, the first fundamental theorem of asset pricing states that a market is arbitrage-free
if and only if there exists a so-called risk-neutral measure [4]. Intuitively, such a measure P is one with
respect to which the spot price (i.e. today’s price) of an asset is exactly equal to the expected future price
of the asset discounted to today, namely S0 ≡ e−rtEP[St], for all t. While we will not delve into such
concepts further, a formal, in-depth definition of derivative pricing and measures is best understood in terms

1For example, if it were possible to purchase a commodity at a lower price on one exchange and immediately sell it on
another at a higher price (with negligible fees), many people would likely exploit this opportunity and earn profit, with no risk.
The lower-priced market would likely quickly become aware of the disparity and consequently increasing the commodity’s price
(so as not to make a loss itself), thereby eliminating the arbitrage opportunity.
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of measure-theoretic probability spaces [9]. However, in the result, choosing a risk-free neutral measure in
the current context is equivalent to setting the drift α of the underling asset to identically equal r, the
risk-free interest rate2. With p(St; t, α = r, σ, S0) from Eq. 4 and the payoff function f from Eq. 1, we can
now compute the European call option’s fair value, denoted ν, according to

ν = e−rTEP[f(ST )]. (5)

An analytic expression for the above quantity exists (see [10]), given the relative simplicity of pricing
a single asset whose payoff depends on only a single time point, namely the contract expiration date T .
Unsurprisingly, a whole host of options far more complex than European options exist. Examples include
American options (whereby one can exercise the option at any time prior to the expiration date of the
contract) and Asian options (in which the payoff f doesn’t depend merely on the asset’s price at the contact’s
expiration date, but rather upon the asset’s average price S sampled at regular intervals over the contract
length). Worth mentioning, too, are barrier options. In the case of ‘knock-out’ barrier options, the payoff
f at the maturation date t = T is 0 if the asset’s price St (with t < T ) ever crosses a pre-defined ‘barrier’
value B at any time before the contract matures (and if it doesn’t, the payoff follows Eq. 1); for ‘knock-in’
barrier options, the payoff is 0 unless the asset’s price crosses the barrier at least once. Finally, one can
string many of these options and concepts together in increasing complexity. For example, options contracts
with a payoff function with multiple barriers are commonplace [11], as are options consisting of baskets of
assets rather than only one. While we only discuss the mathematical details of European options in this
text, it is clear that things can quickly get out of hand when trying to price real-world financial derivatives.

2 Qudit option pricing algorithm

Many real-world options depend not only on the asset’s final price, ST , but rather on the asset’s value St

at a number of time points, 0 < t ≤ T . In other words, the path the asset’s price follows, not merely
the path’s endpoint. Such path-dependent option pricing calculations are expensive and investment firms
typically carry out such computations overnight, on high-performance classical computers using Monte Carlo
integration techniques3. It is path-dependent derivative pricing that is expected to gain the most from
quantum computers [11]. However, our goal here is not to discuss the pricing of such complex options on
a qudit-based quantum computer. Our goal is first to give an introduction to some of the concepts behind
financial option pricing and work through the mathematical details, from start to finish, of how a simple
option would be priced on a qubit-based quantum computer. As such, we will primarily restrict ourselves to a
European call option and outline the protocol in great detail. Simultaneously, our second goal is to simulate
the analogous protocol on a quantum computer with an information register comprised of qudits. While
we don’t expect to see any advantage beyond the expected logarithmic increase in information storage for a
qudit register in the completely analogous qudit protocol, qudit-based quantum computers offer a number
of advantages over their qubit counterparts [13, 14] and any future implementation of derivative pricing on
such a machine would need to begin with just such an analysis as this.

The traditional quantum derivative pricing algorithm is based on quantum Monte Carlo integration (see,
for example, [15]), which is an extension of the quantum amplitude estimation (QAE) algorithm [16] to a
weighted combination of amplitudes. The scheme is relatively simple. First, one prepares a ‘probability’
register of qubits into a weighted superposition of states. Each basis state in the superposition represents
a potential asset price ST , and the weighted coefficient represents the corresponding probability of realising

2Indeed, if this weren’t the case, an arbitrage opportunity would exist: if α < r, one could construct a portfolio consisting
of short positions of the asset St; if α > r, one could purchase the asset St, hold it, and sell it later for more than the purchase
price. In this way, one would be guaranteed to, ‘on average’, make a profit [10].

3To classically price complex options for which nice analytic solutions do not exist, a large number M of potential asset
price paths, {Si}Mi=1 (where Si is a single realisation of the asset’s value evolution over the length of the contract), are first
sampled from the underlying probability distribution P (which can be either known, or implied by market data). An estimator

ÊP[f ] of the true expected payoff EP[f ] is then constructed by simply taking the average over the paths, i.e.

ÊP[f ] =
1

M

M∑
i=1

f(Xi). (6)

Finally, from the central limit theorem, as M grows, the difference between ÊP[f ] and EP[f ] converges as O
(
M−1/2

)
[12]
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ST . Second, a series of controlled entangling gates is applied, with the probability register functioning as
the control, to load the payoff function into the amplitude of a target ancilla qubit’s |1⟩ basis state. As such,
this amplitude becomes a weighted combination of payoffs, with the weights being the probabilities of the
payoffs themselves. This is akin to classically integrating the payoff over the probability density. And finally,
QAE is used to estimate the amplitude of the ancilla’s |1⟩ basis state. The resulting quantity can easily
be classically mapped to the expected payoff EP[f(ST )] and the European option’s fair value computed (as
discounting EP[f(ST )] is computationally cheap).

The chief advantage of pricing options using this algorithm on quantum computers rather than employing
high performance classical resources is due to the quadratic speedup inherent in the quantum algorithm.
Indeed, as outlined in footnote 3, the discrepancy between the true expected payoff and the estimator that
classical Monte Carlo integration outputs, scales as O

(
M−1/2

)
. The more samples paths M taken, the

smaller the error. However, this convergence is not particularly fast: if one takes 100 times as many samples
(i.e. M → 100M), one gains only an order of magnitude of accuracy (M−1/2 → 10M−1/2). In the quantum
algorithm to be outlined, however, this discrepancy scales as O

(
M−1

)
[16], where M here is the quantum

analogue of the number of samples taken (in particular, M in the quantum case is the number of calls to a
particular operator, called an oracle, which we shall discuss later). This is the much-touted speedup quantum
computers provide.

Before the qudit extension of this algorithm is outlined in detail and simulated below, it is worth mention-
ing that the ‘phase estimation’ subroutine in QAE currently presents the biggest bottleneck in experimental
implementations of quantum derivative pricing [17, 18]. However, it has been numerically demonstrated that
one can still asymptotically achieve the quadratic speedup by forgoing the phase estimation subroutines and
instead employing maximum-likelihood estimation [19]. This is also the case in a qudit-based algorithm, and
as such, we shall discuss and implement this version of amplitude estimation without phase estimation.

2.1 Step 1: Load the distribution

Suppose that we have access to a quantum system comprised of n fully-connected qudits, each of which lies in
a d-dimensional Hilbert space (such systems may arise from, for example, the linear modes of superconducting
cavities coupled to transmon qubits [20]). The computational basis states of qudit j, where j ∈ {0, 1, · · · , n−
1}, are {|0⟩j , |1⟩j , · · · , |d− 1⟩j}. As such, the composite Hilbert space H is spanned by the computational
basis states of the form |i⟩(n) = |i0⟩0 ⊗ |i1⟩1 ⊗ · · · ⊗ |in−1⟩n−1. Note that i ∈ {0, 1, · · · , dn − 1}, expressed in

base-d, is i = i0 + d1i1 + · · ·+ dn−1in−1, and hence i holds log2 d
n bits of information.

Our first task is to create an operator P̂ which loads the probability distribution of the asset ST into the
register of qudits. This probability distribution could be derived from either a financial model or implied
from market data the modeller has at hand. For our single asset in the BSM model, the distribution is
p(ST ;T, r, σ, S0) in Eq. 4 (we will suppress the parameters and denote this distribution by p(ST ) from here
onwards).

The asset price ST can theoretically assume any non-negative real value. However, a finite register
cannot faithfully represent this uncountable set (if the probability distribution for the asset were discrete,
the situation would simplify slightly). So, we first truncate the asset price domain [0,∞) to S = [Smin, Smax]
by choosing Smin and Smax such that most of the probability mass lies within the truncated region4. The
choice of this truncation is ultimately a design choice influenced by the desired accuracy, the distribution
itself and available register size. However, for an underlying distribution P with mean µ and standard
deviation σ, it is reasonable to set Smin = max(0, µ− 3σ) and Smax = µ+ 3σ to capture 3σ worth of data.

Next, we approximate P by sampling it at discrete points in S, since our qudit register can only hold
dn values. This is done by first dividing the region S into dn partitions of equal length ω, where ω =
(Smax − Smin)/d

n. Sampling S at the centre of each of these intervals gives a set {si}, where

si = Smin +

(
i+

1

2

)
ω, with i ∈ {0, · · · , dn − 1}. (7)

4This assumption necessarily introduces an error into the calculations as unlikely but ‘extreme’ events, which reside within
the tails of the distribution, are discarded. The error introduced should be acceptable for short-tailed distributions, but it
should be noted that potential extreme, unlikely events still affect the market in practice [21].
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Eq. 7 provides the affine transformation between the integers i stored in the qudit register and the asset
values {si} they represent. This mapping will become important later.

Next, the distribution P is discretised by sampling it at points {si}. Finally, a set of probability values
{pi}, which will represent P, is formed by normalising the samples of P, i.e. pi = 1

N × p(si) with N =∑dn−1
i=0 p(si). In a rough sense, pi is the chance of the asset’s value assuming a value ‘close to’ si at the

expiration date T .
With this setup, the first step of the qudit option pricing scheme is:

1 Construct a unitary operator P̂ which loads the probabilities {pi} into the coefficients of a register of
qudits initialised in the ground state, i.e.

|0⟩(n)
P̂−→

∑
i

√
pi |i⟩n = P̂ |0⟩(n) . (8)

Creating a general state preparation subroutine P̂ (Fig. 2) often requires very large numbers of fun-
damental gates (see Sec. 2.1.1). Whatever our choice for the unitary P̂ however, the state preparation
step above only requires that the first column in the matrix representation of P̂ , denoted P, be equal to
p = [

√
p0,

√
p1, · · · ,

√
pdn−1]

T (up to permutation, to match the chosen basis). While many potential choices
of P with this property exist, one simple unitary matrix with the requisite first column can be constructed
using Householder transformations [22]: define w = p − e0 (with e0 = [1, 0, 0, · · · , 0]T), and note that
w†w = 2(1−√

p0). Then, a P with the correct first column is given by

P = I− w w†

1−√
p0

. (9)

It can easily be verified that P e0 = p, which is the matrix representation equivalent of Eq. 8. We use
this choice of P̂ in the forthcoming simulations.

...

|0⟩0

P̂
|0⟩1

|0⟩n−1

≡ n|0⟩(n) P̂

Figure 2: Probability loading subroutine

2.1.1 Resource comments for P̂ (and general unitary gates)

Given the relative dearth of studies of quantum computers based on qudits, both theoretical and experimen-
tal, and what their fundamental gate set(s) would be (with which one must decompose the state one wishes
to prepare, into), it is difficult to give accurate resource estimates for arbitrary state preparation as well as
unitary compilation. Furthermore, one cannot make a meaningful ‘apples to apples’ gate resource compari-
son between qubit and qudit architectures without clearly analogous fundamental gate sets. However, some
important comments can nonetheless be made.

Arbitrary state preparation and unitary compilation, using a conventional straightforward ‘decomposi-
tion’ scheme, on an n qubit gate-based system with a fundamental gate set comprised of arbitrary single-qubit
gates and CNOT gates, generally requires O(an) single qubit gates as well as O(an) CNOT gates (where
a = 2 in the case of state preparation [23, 24] and a = 4 for unitary compilation [25, 26]). This exponential
scaling renders probability encoding schemes, via state preparation as above, infeasible for large n. This
is because the current NISQ era of qubit-based quantum computing (which is characterised by imperfect
gates, short qubit coherence times and no algorithmic error correction [27]) precludes algorithms with many
operations and/or long execution times. These same concerns arise in a qudit-based computer comprised
of the natural qudit analogues of the well-known X, Z and CZ gates (see [28, 13] for details). Indeed,
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decomposing an arbitrary unitary gate U ∈ SU(dn), given n d-dimensional qudits and equipping the system
with the aforementioned analogue qudit gates, requires O(ndn) primitive operations [28], which is still a
prohibitive scaling.

For the particular case, however, where a state encodes a classically efficiently-integrable distribution
(such as the log-concave BSM model, Eq. 4) in a register of qubits (and qudits), state preparation can be
efficiently accomplished [29]. But, in any event, the efficient loading of log-normal distributions requires pre-
computing integrals of the probability distribution - often using classical Monte Carlo integration - whereas
the crux of employing quantum amplitude estimation-based option pricing in the first place was to avoid the
need for classical integration. Furthermore, the underlying distributions of more realistic financial models
which capture important market dynamics which the BSM model does not, or distributions suggested purely
by market data, may not have analytic representations at all. In these cases, the distributions may need
to be encoded using other, contemporary techniques. With this in mind, it almost goes without saying
that machine learning and neural networks are becoming increasingly important tools in classical finance to
capture highly complex and inter-connected market dynamics efficiently (see, for example, [30, 31]), as well
as model the market without assuming an underlying financial mathematical model [32]. The same holds
true in the quantum context. Indeed, in [33], the authors outlined how a quantum version of a Generative
Adversarial Network [34] can be used to create a circuit encoding the underlying distribution of training
data samples by tuning the parameters of a parameterised model ansatz circuit. The parameters are tuned
according to the feedback from a classical discriminator which is fed both the training data as well as the
corresponding data generated from measurements of the parameterised quantum circuit itself. The upshot
of such a protocol is the freedom to choose a polynomial-length parameterised ansatz circuit which can be
efficiently deployed on the available quantum computing platform [35]. While incorporating neural network
and machine learning techniques into quantum computing is still at the relative cutting edge of qubit-based
systems, such techniques hold enormous promise and are almost certain to eventually feature in qudit-based
systems too.

Finally, it is foolish to completely separate theoretical discussions of quantum circuit compilation from
hardware considerations. The X, Z and CZ qudit gate analogues mentioned above naturally lend themselves
to linear ion-trap [36, 13] and multi-port photonics [37, 38] quantum computing systems. As such, future
commercial quantum computers based on such hardware would likely have access to these fundamental
gate operations. On the other hand, circuit QED systems [39] and/or microwave cavities [40] are a novel
technology which also hold much promise, as they have the potential for very long coherence times [41],
relatively efficient universal control [42] and error correction protocols [43]. A popular potential gate set
for cavity systems is one comprised of so-called SNAP gates along with cavity displacements [44, 42], which
are intuitively different operations from qubit gates. SNAP and displacement gates are universal in that
they can implement any arbitrary operation on the cavity qudit/transmon system, and importantly, if one
wishes to address the first N Fock states of the cavity mode, the number of SNAP and displacement gate
pairs scales as O(N) [42]. This potential linear scaling of the number of gates required to affect a chosen
N -dimensional chosen unitary could offer a potential boon for microwave cavity based systems. As always
though, much more work remains to be done to fully understand such systems.

2.2 Step 2: Compute the payoff

Suppose that we have constructed the operator P̂ , which loads the random variable (namely the asset price
ST at time T ) into the register of qudits. We next move on to the subroutine which computes the payoff
for the European call option. This payoff, Eq. 1, is f(ST ) = max(0, ST −K) for a predetermined, classical
strike price K (with K ∈ [Smin, Smax]), and will be loaded into the amplitude of a ‘payoff’ ancilla qubit5.
The subroutine for this part of the option pricing protocol comprises two parts: a part which first compares
the integer representation of ST (i.e. i) with the integer representation of K (which we call k), and then a
part which loads either 0 or ST −K into the ancilla’s amplitude, depending on the result of this comparison6.
In both the qubit [35] as well as the current qudit option pricing schemes, these comparison-payoff encoding

5One could use a qudit instead of a qubit, but the most natural qudit analogue of the ordinary qubit option pricing protocol
does not need the higher-dimensional nature of a potential payoff qudit.

6For a simpler payoff, such as that of a futures derivative (for which f(ST ) = ST − K), this need for a comparison would
fall away and result in a simpler payoff circuit subroutine.
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steps happen ‘in parallel’ for all asset prices |i⟩(n) in the superposition state of Eq. 8. Finally, note that

k can easily be found using the mapping in Eq. 7: with K = Smin + (k∗ + 1
2 )ω for some k∗, k is found

by rounding k∗ to the nearest integer. k, an integer in {0, 1, · · · , dn − 1}, has a base-d representation of
k = k0 + d1k1 + d2k2 + · · ·+ dn−1kn−1.

The first ‘part’ needed in the subroutine is an operator which compares the classical variable k with i
from the qudit basis state |i⟩(n) and then changes the state of a ‘comparator’ ancilla qubit depending on
which integer is greater. Specifically:

2.1 Create an operator Ĉk which flips the state of an ancilla qubit |0⟩c depending on the computational
basis state of the qudit register, according to

|i⟩(n) |0⟩c
Ĉk−−→

{
|i⟩(n) |0⟩c if i < k,

|i⟩(n) |1⟩c if i ≥ k.
(10)

Once such a circuit for Ĉk has been constructed, it can be used to split the superposition state P̂ |0⟩(n)
from the first step, into two parts: one part corresponds to the cases where the asset price is less than the
strike price K, and the other when it’s greater than K. In other words,

P̂ |0⟩(n) |0⟩c =
∑
i

√
pi |i⟩n |0⟩c

Ĉk−−→
∑
i<k

√
pi |i⟩(n) |0⟩c +

∑
i≥k

√
pi |i⟩(n) |1⟩c . (11)

We shall see that the circuit for Ĉk corresponds to a qudit version of the qubit quantum comparator
(see, for example, [45]) and consists of a number of steps. First, the so-called (d − 1)’s complement of k is
found7. Next, the integer 1 is added to this complement, giving a string of digits we call kc. Then, the sum
of kc and the quantum variable i, which is encoded in the state |i⟩(n), is computed by creating the quantum

circuit equivalent of a full-adder for each individual qudit comprising the state |i⟩(n) [47, 48, 45]. A single full

adder subroutine computes the sum of the j’th qudit state |ij⟩j , the corresponding j’th digit in kc, as well
as any input carry digit from the previous step, and outputs the sum of these digits along with any output
carry digit (which is fed into the full adder of the next step). As an example in Appendix 6.1 demonstrates,
adding kc to i in this manner is equivalent to calculating the difference i− k. Finally, the overall carry digit
in the classical sum of i and kc is identically encoded in the state of the comparator qubit of step 2.1 above.
This qubit state hence indicates whether k is larger than or equal to i (in which case the comparator’s state
is set to |1⟩c) or not (in which case it is |0⟩c). These steps are potentially confusing, especially for those
unfamiliar with classical computing arithmetic. However, the logic behind these steps as well as potential
gate representations for the subroutine Ĉk, are outlined in great detail in Appendix 6.1.

...

|0⟩0

P̂
Ĉk

|0⟩1

|0⟩n−1

|0⟩c

≡

n|0⟩(n) P̂
Ĉk|0⟩c

Figure 3: The state of play so far: the probability loading and comparator subroutines. Note that any
intermediate carry ancilla qubits aren’t shown.

Given Ĉk, the next step is to encode the linear part of the payoff function in the amplitude of a payoff
ancilla qubit (our analogous qudit protocol only requires a payoff qubit, and not a qudit). This is done

7The method of complements, particularly finding nine’s complement of an integer, is a well-known procedure in classical
computing which is used, among other things, to find the difference between integers using a machine which can only perform
addition (for more on arithmetic on classical computers, see [46].
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using controlled-Y rotations8 where, in our case, the asset price qudit register will act as the control.
This encoding isn’t exact: it is not possible to perfectly encode a linear function in the amplitude of the
ancilla using qubit rotations on a machine with finite resources since these rotations only faithfully encode
trigonometric functions. However, as outlined in [49], we will shift and scale the rotations such that an
accurate approximation of the true payoff function is encoded.

Since the Y rotations will approximately encode the payoff function samples f(i) ≡ f(si) = max(0, si−K)
(for the sampled asset values {si} in Eq. 7), and since quantum amplitude estimation (either with or, in our
case, without phase estimation) requires that the rotation angles be restricted such that the mapping from
the states |i⟩(n) to the angles be one-to-one [16], we must shift and scale the payoffs f(i) accordingly. First,
define

f̃(i) = 2
f(i)−mini(f(i))

maxi(f(i))−mini(f(i))
− 1 = 2

max(0, si −K)

sdn−1 −K
− 1 ∈ [−1, 1]. (12)

Next, the thing that is measured in practice for the traditional qubit, as well as the current qudit,
option pricing scheme (when amplitude estimation without phase estimation [19] is employed), is the state
of the payoff ancilla qubit. Per Born’s rule [50], the probability of measuring either of the two possible
computational basis states is contained in the probability amplitudes of this payoff qubit. Since we’re
encoding the payoff f by performing rotations on its state, the amplitude of measuring the |1⟩ state will
be sin2(θ) (c.f. footnote 8), or, more accurately - since our qudit register is in a superposition of states - a

convex combination of the sine-squared function,
∑dn−1

i=0 pi sin
2(θi), for some θi’s. This function, sin2(θ), is

one-to-one and onto on the domain [0, π
2 ] and codomain [0, 1]. Therefore, we shift and scale f̃(i) further, to

cf̃(i) + s, where s ≡ π
4 is the domain midpoint and 0 < c ≤ π

4 is a small constant such that cf̃(i) + s ∈ [0, 1]

for all f̃(i) (more detailed reasons for these choices, as well as an optimal scheme for choosing c, can be

found in [49]). As such, cf̃(i) + s equals either π
4 − c if i < k, or 2c(si−K)

sdn−1−K + π
4 − c if i ≥ k.

We are now in a position to outline the second part of the European call payoff loading subroutine:

2.2 Construct an operator L̂f , using controlled-Y rotations with the qudit register and comparator qubit
as the controls, to encode f in the amplitude of the payoff qubit as

|i⟩(n) |x⟩c |0⟩p
L̂f−−→

|i⟩(n) |0⟩c
(
cos

(
π
4 − c

)
|0⟩p + sin

(
π
4 − c

)
|1⟩p

)
if x = 0,

|i⟩(n) |1⟩c
(
cos

(
2c(si−K)
sdn−1−K + π

4 − c
)
|0⟩p + sin

(
2c(si−K)
sdn−1−K + π

4 − c
)
|1⟩p

)
if x = 1.

(13)

The circuit implementation of L̂f is explained in detail in Appendix 6.2. Finally, recall that we cannot

perfectly encode f in the amplitude of the payoff ancilla. Indeed, L̂f does not encode f in the amplitude,

but rather sin2(cf̃(i)+s). However, for small enough θ, note that sin2(θ+ π
4 ) = θ+ 1

2 +O(θ3): θ+ 1
2 provides

an adequate approximation9. As such, combining Eqs. 11 and 13 and defining Â ≡ L̂f ĈkP̂ , we get

|0⟩(n) |0⟩c |0⟩p
Â−→

∑
i<k

√
pi |i⟩(n) |0⟩c

(
cos

(π
4
− c

)
|0⟩p + sin

(π
4
− c

)
|1⟩p

)
+
∑
i≥k

√
pi |i⟩(n) |1⟩c

(
cos

(
2c(si −K)

sdn−1 −K
+

π

4
− c

)
|0⟩p + sin

(
2c(si −K)

sdn−1 −K
+

π

4
− c

)
|1⟩p

)
= |Ψ0⟩ |0⟩p + |Ψ1⟩ |1⟩p ≡ |Ψ⟩ , (14)

(see Fig. 4). Finally, after having prepared the composite state |Ψ⟩, the probability of measuring the payoff
qubit in the |1⟩p state is

8A simple, ‘uncontrolled’ rotation of a qubit |0⟩ about the Y axis of its Bloch sphere gives |0⟩ → cos(θ) |0⟩+sin(θ) |1⟩, where
θ is a fixed angle. However, for a controlled rotation, with the qudit register in the current context acting as the control, θ is
not fixed but is generally a function of the register’s state. See [18] for further details.

9We could better encode cf̃(i) + s in the amplitude of the payoff qubit by modifying L̂f to include higher-order terms.
However, this would involve a deeper circuit with far more gates.
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P1 = ⟨Ψ1| p⟨1|Ψ⟩ = ⟨Ψ1| p⟨1|Ψ1⟩ |1⟩p =
∑
i<k

pi sin
2
(π
4
− c

)
+

∑
i≥k

pi sin
2

(
2c(si −K)

sdn−1 −K
+

π

4
− c

)

≈
∑
i<k

pi

(
1

2
− c

)
+
∑
i≥k

pi

(
2c(si −K)

sdn−1 −K
+

1

2
− c

)
=

1

2
− c+

2c

sdn−1 −K
EP [f(ST )] , (15)

up to third-order terms. Once we have outlined an efficient way of measuring P1, Eq. 15 gives us a way of
recovering the expected payoff EP[f(ST )].

n|0⟩(n) P̂
Ĉk

L̂f|0⟩c
|0⟩p

≡ |0⟩ Â

Figure 4: Probability loading P̂ , comparator Ĉk and payoff encoding L̂f subroutines.

However, how do we measure P1? Näıvely repeatedly preparing |Ψ⟩ and then measuring the state of the
payoff qubit in an effort to create an estimator of P1 provides no quantum advantage: indeed, while doing this
would eventually give the correct answer, many measurement samples would be needed as this approach is
essentially classical Monte Carlo integration which, as mentioned previously, converges as O(M−1/2) (where
M is the number of measurement samples taken).

The real advantage offered by quantum computers in pricing complex derivatives stems ultimately from
the amplitude amplification inherent to QAE. In a quantum setting, the notion that is equivalent to the
number of classical measurement samples taken, is the number of times the operator, or oracle, Â, is called
(we also call this number M). As we shall see in the next section, the error in P1 converges as O(M−1), a
quadratic speed-up over the equivalent classical algorithm.

2.3 Step 3: Estimate the probability amplitude

While a detailed explanation of QAE is given in [16], we here outline only the salient points for brevity.
From Eq. 14, note that Â, acting on |0⟩ ≡ |0⟩(n) |0⟩c |0⟩p, creates a state which can be partitioned

into a ‘good’ part, |Ψ1⟩ |1⟩ (where we have dropped the p subscript on the payoff ancilla), whose amplitude
P1 = ⟨Ψ1| ⟨1|Ψ1⟩ |1⟩ we want, and a ‘bad’ mutually orthogonal part, |Ψ0⟩ |0⟩. The first step in QAE is
to use Â (see Fig. 4) to construct the so-called Grover rotation operator, which is usually denoted by Q̂.
This operator is a ‘rotation’ in the sense that repeated applications of Q̂ to |Ψ⟩ simply rotate the state in
the subspace spanned by the vectors |Ψ0⟩ |0⟩ and |Ψ1⟩ |1⟩. In other words, Q̂ simply changes the relative
amplitudes of |Ψ0⟩ |0⟩ and |Ψ1⟩ |1⟩ depending on how many times it is applied.

First, note that Ŝ0 := Idn+2 − 2 |0⟩⟨0| is an operator which flips the sign of only the ground state and
does nothing otherwise10. Given this, define

ŜΨ := ÂŜ0Â
† = Idn+2 − 2 |Ψ⟩⟨Ψ| , and ŜΨ1

:= Idn+2 − 2(Idn+1 ⊗ |1⟩⟨1|). (16)

Here, ŜΨ represents a reflection about the state |Ψ⟩, whereas ŜΨ1 has the action of flipping the sign of
states in which the payoff ancilla is in the |1⟩ basis state, and does nothing otherwise11. These operators are
used to define Q̂

10In reality, any ancilla qubits/qudits, from the comparator subroutines outlined in the Appendix, are also included in the
system’s composite Hilbert space. These ancillas are just not shown since they are uncomputed in the end.

11As already noted, creating these operators, and hence Q̂, in practice will likely require either decomposing them into
whatever fundamental gate set will be available on any potential qudit hardware, or will necessitate feeding these desired
operators as input into quantum optimal control algorithms [51, 52]. While we have given a scheme to decompose Â into

fundamental matrices (and, as it turns out, ŜΨ1
can simply be written as a single qubit gate), it isn’t clear how to decompose

Ŝ0. The purpose of this manuscript is not to discuss either general gate compilation nor optimal control in detail but rather
simply serves to both outline the steps needed to calculate the theoretical matrices that represent these operators in a qudit
context as well as give a tutorial of quantum option pricing.
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Q̂ := −ŜΨŜΨ1 . (17)

Since Q̂ is unitary, its two eigenvalues are pure phases (and are functions of P1). See [16] for further
details of this and the following result but, suffice it to say, this fact can be used to easily compute the action
of Q̂j on |Ψ⟩, for any non-negative integer j

Q̂j |Ψ⟩ = Q̂jÂ |0⟩

=
1√
P1

sin (θP1(2j + 1)) |Ψ1⟩ |1⟩+
1√

1− P1

cos (θP1(2j + 1)) |Ψ0⟩ |0⟩ , (18)

where sin2(θP1) = P1 (with 0 ≤ θP1 ≤ π
2 ). Finding θP1 hence immediately gives P1. Also, note that 2j + 1

is the number of queries to the oracle Â (once from preparing state |Ψ⟩, and two from each Q̂); recall that
the number of calls to this oracle is what is used to gauge the efficiency or convergence of an algorithm.
And finally, Eq. 18 roughly gives some intuition behind the quadratic scaling arising from the amplification
process: sin2 (θP1(2j + 1)) /P1 ∼ (2j+1)2 is approximately the probability of measuring the ‘good’ state for
small θP1

.
Grover’s original search paper [53] used Q̂, in a far simpler context with only one qubit, to enhance

the amplitude of the ‘good’ state. This meant that the good state was more likely to be measured in
an experiment. The full quantum amplitude amplification and estimation algorithm [16] goes further by
employing quantum phase estimation. This process, in general as well as in the current context, involves
applying many controlled versions of Grover’s operator Q̂ to create various powers of the eigenvalues of Q̂
(which, recall, encode P1). These phase eigenvalues combine together, via phase kickback, in the complex
amplitudes of a second qubit register. This register, which acts as the aforementioned control, would simply
be a register of qudits in a full qudit implementation of QAE [54]. Finally, applying an inverse quantum
Fourier transform [55, 18] and measuring the state of the control register gives an integer whose value maps
to a very good estimator of θP1 with a high probability. See [18] for a full explanation of these concepts.

However, phase estimation and the Fourier transform subroutines are themselves the prohibitively compu-
tationally expensive bottlenecks in full amplitude estimation algorithms carried out on current, noisy qubit
or qudit NISQ-era hardware. As such, various approaches which maintain the quadratic speed-up while
forgoing both the phase estimation and Fourier transform subroutines have been proposed [19, 56, 57]).
Arguably the simplest method among these is that outlined in [19], where maximum likelihood estimation
is carried out on measurement data collected after various numbers of ordinary, un-controlled Q̂ operations
are applied to the quantum system. This is the technique we’ll detail and simulate below.

We can now state the final step in the option pricing scheme

3 Using Â, create the Grover operator Q̂ as per Eq. 17. Then, apply it j times to the prepared state
|Ψ⟩ = Â |0⟩ and measure the state of the payoff qubit (see Fig. 5). Repeat this single shot measurement
a number of times and for various j’s, according to the scheme to be outlined shortly. Finally, use the
measurement data to construct a maximum likelihood (ML) function from which the ML estimate of
θP1 can be gleaned.

. . .

. . .

. . .

n|0⟩(n)

Â Q̂ Q̂ Q̂|0⟩c
|0⟩p

Figure 5: Maximum-likelihood amplitude estimation algorithm using Grover’s operator Q̂.

Maximum likelihood estimation (MLE) is an important technique in modern statistics. Here we give a
brief summary of MLE and tailor the ideas to the current option pricing context (see [58] for an illuminating
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tutorial on MLE). In general, suppose that one has a statistical model for a random variable and that the
model’s distribution itself depends on one or more unknown parameters. Furthermore, assume that one
can draw samples from the distribution as needed. In this case, MLE provides a technique to deduce the
unknown parameters for which, under the chosen mathematical model, the observed sample data is ‘most
likely’ to have been observed. This setup can be easily applied to the current context: Eq. 18 represents
the probability model for measurements of the random variable (namely the payoff qubit’s state) and the
unknown parameter we are attempting to deduce is θP1 .

Following the optimal scheme outlined in [19], define m0 = 0 and mℓ = 2ℓ−1, for ℓ = 1, · · · , T for some
cutoff T 12. The mℓ’s will correspond to the number of times Q̂ is applied to the state Â |0⟩, i.e. Q̂mℓÂ |0⟩, in
different experimental runs. Furthermore, take N to be the fixed number of single-shot measurements that
will be taken of the payoff qubit’s state for each run mℓ.

Any single measurement of the payoff qubit’s state is a Bernoulli trial with sin2 (θP1(2mℓ + 1)) being the
probability of measuring the ‘good’ state |1⟩ and cos2 (θP1(2mℓ + 1)) the probability of measuring the ‘bad’
state |0⟩. After performing this single measurement, set sℓ = 1 if we measure the good state and sℓ = 0 if
we measure the bad one. In this case, the likelihood function is

Lℓ(θP1
|sℓ) =

[
sin2 (θP1(2mℓ + 1))

]sℓ [
cos2 (θP1(2mℓ + 1))

]1−sℓ
. (19)

If we repeat this measurement N times for a fixed mℓ (so that the events are independent and identically
distributed) and let sℓ ∈ {0, · · · , N} denote the number of times the ‘good’ state is measured, this experiment
is described by a binomial distribution with the likelihood function

Lℓ(θP1
|sℓ) =

(
N

sℓ

)[
sin2 (θP1

(2mℓ + 1))
]sℓ [

cos2 (θP1
(2mℓ + 1))

]N−sℓ
. (20)

Next, even though each sℓ is not identically distributed for different ℓ’s, the samples are generated
independently from the same joint distribution. As such, after repeating the single shot measurement N
times for each mℓ and recording each sℓ, we can arrive at a single likelihood function for the unknown
parameter θP1 by simply multiplying the individual Lℓ’s together

L(θP1
|{sℓ}) =

T∏
ℓ=0

Lℓ(θP1
|sℓ). (21)

In a rough sense, L represents the probability of observing the set of random variables {sℓ}, as a function
of θP1

. The last step of MLE entails ‘maximising’ this probability by finding the value of the parameter

which maximises L. This estimate of θP1 , which we denote θ̂P1 , is hence

θ̂P1
= arg0≤θP1

≤π
2
maxL (θP1 |{sℓ}) . (22)

θ̂P1 is the value for which the data samples {sℓ} are ‘most likely’ to have been observed and is generally
found in practice using numerical solvers.

We finally have all of the ingredients that are needed to price a European call option on a quantum
computer with a qudit register, since the estimate θ̂P1

is mapped to an estimate for P1, which in turn can
be easily classically mapped to the expected payoff via Eq. 15. Note that the total number of oracle queries
(i.e. the number of times Â is applied), namely M , in this experiment is M =

∑T
ℓ=0 N(2mℓ + 1). Although

proving so is beyond the scope of the current text, it can be shown that for the amplitude estimation without

phase estimation scheme in both a qubit and qudit context, the estimation error ϵ̂P1 =

√
E[(θP1 − θ̂P1)

2]

asymptotically scales as O(M−1) (see [19, 56] for details). As such, the full quantum algorithm here presents
a theoretical quadratic speedup compared with typical derivative pricing calculations employing classical
Monte Carlo techniques. However, as mentioned before, path-independent options, such as the European
call option presented here, are simple enough to unlikely benefit much from quantum derivative pricing. On
the other hand, path-dependent financial options, such as the barrier options briefly mentioned at the end
of section 1 as well as the real-world financial options discussed in [11], are likely to benefit the most from

12Note that one could choose a different equation for the mℓ’s. However, this optimal exponential sequence asymptotically
maintains the quadratic speed-up [19].
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advances in quantum computing [11]. While we close off this manuscript by simulating the entire stack for
a relatively simple path-independent option, its purpose wasn’t to delve deeply into more complex financial
derivatives but rather to both discuss the basics of derivative pricing for those unfamiliar with the subject
as well as to outline the quantum computing algorithm behind a simple use case, in enough mathematical
detail, so as to easily allow the interested reader to disassemble and then ‘stitch together’ the constituent
subroutines of the algorithm when applying quantum computing to more complex derivatives.

3 European call simulations

We finally simulate the entire European call option pricing scheme using a custom Python package, from
sampling the asset’s theoretical distribution and constructing the appropriate circuit subroutines, to per-
forming a maximum likelihood estimation on the simulated measurement results. The scheme presented in
section 2 above is similar to what a future implementation of financial derivative pricing on a qudit-based
quantum computer could potentially entail.

Fig. 6a gives the distribution of the random price of a single asset arising from the Black-Scholes-Merton
model, with the chosen parameters in the caption. Since this distribution has relatively flat tails, truncating
and discretising the distribution doesn’t introduce significant errors. This may not be the case for more
volatile or some realistic, market-implied distributions. However, as quantum computers improve over time,
such cases could be studied by increasing either the logical qubit/qudit count or increasing the effective
Hilbert space dimension of existing qudits. This would allow one to produce a more fine-grained discrete
approximation of the true distribution. The latter, namely exploiting the theoretically larger state space of
qudit-based hardware, isn’t possible when working strictly with qubits and hence presents one possible boon
of qudits, all else being equal. However, a trade-off between the experimental time and effort required to
increase the dimension of a qudit and the logarithmic scaling of the information that is able to be stored in
a qudit, would need to be considered.

(a) BSM model asset price distribution and sampled
points, assuming an 8-dimensional asset price regis-
ter.

(b) Corresponding expected payoff of European call
option vs. total Hilbert space dimension.

Figure 6: Simulation of the expected payoff of a European call option. (a) The encoded distribution, namely
Eq .4, with S0 = 2.0, t = 365/365, α = 0.07 and σ = 0.3. (b) The analytic expected payoff (dashed line -
assuming a strike price K of 1.7), the expected payoff given a classical register of size d (blue circles), and the
corresponding quantum simulation for a single asset qudit register (n = 1) with a Hilbert space dimension
of d (red triangles). N = 100 shots are taken for each mℓ, and T = 7 (giving M = 26200).

Fig. 6b gives the corresponding expected payoff as a function of the size of the asset price’s qudit register,
or equivalently, the number of samples of the underlying probability distribution taken. The discrepancy
between both the classical and quantum simulation data points with the analytic payoff is an inevitable result
of truncating the domain of the distribution, a process which discards the large but relatively unlikely asset
values. For a fixed number of qubits/qudits, increasing the size of the truncated region would capture more
extreme prices but with the drawback of producing a more coarse-grained discretisation. However, more
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important is the fact that the qudit algorithm’s expected payoff data points (the red triangles) are close to
the payoff calculated on a finite-resource classical computer (blue circles): the former even approaches the
latter as the size of the Hilbert space d increases. The classical and quantum payoffs are close to one another
after a relatively small increase in Hilbert space size, suggesting that a qudit register of modest size may
be sufficient to match the payoff possible on a finite-resource classical device, within error. The remaining
small discrepancy between the quantum and classical simulation data points is due to a combination of the
constant error arising from encoding the linear payoff function using trigonometric rotations [49] as well
as the O(M−1) error arising from QAE itself. This discrepancy could be decreased further by including
higher-order terms in the payoff loading subroutine L̂f (which would result in a deeper circuit), by perhaps
increasing the number of shots N for each unique circuit ℓ, as well as increasing the number of unique circuits
ℓ that are measured too. It should be noted, however, that these aforementioned discrepancies arise from
the theoretical derivative pricing algorithm itself, to say nothing about the physics- and device-level errors of
current NISQ-era hardware. For example, a future quantum compiler (a good explanation of the technical
details of which, in the case of IBM’s widely-used qubit compiler, can be found in [59]) that would compile
the required unitary operations (Â and Q̂ in our case) into hardware-native operations, will be subject
to computational and coherent errors. Furthermore, both physical qubit and qudit systems have inherent
sources of noise on a fundamental physics level, the study of which is an active area of research [60].

(a) BSM model, with a higher volatility, and a 10-
dimensional asset price register’s sample points.

(b) Corresponding expected payoff of option vs. total
Hilbert space dimension.

Figure 7: Simulation of a European call option with a more volatile underlying asset. (a) The same analytic
distribution and parameters as Fig. 6, except now with S0 = 3.0 and σ = 0.5. (b) The corresponding
simulated payoff data (with a strike price now of 2.2), with the dashed line indicating the analytic value of
the expected payoff.

Fig. 7 gives simulated results, also for a European call option, but one based on a more volatile underlying
asset. The larger volatility increases the statistical spread of the distribution which in turn increases the
probability mass of extreme asset prices. The simulation in Fig. 7b, as was the case in Fig. 6b, truncates
the asset price to within three standard deviations of the mean. The larger spread of this distribution means
that extreme asset prices are not as well accounted for in the probability loading subroutine P̂ . As a result,
there is a larger discrepancy in Fig. 7b between the analytic payoff and both the classical finite-resource
and quantum payoffs, as expected. However, as before, the classical finite-resource and quantum payoff
simulations again match, up to the expected theoretical error.

4 Conclusion

We have presented a tutorial on the problem of European option pricing and the algorithm steps one might
go through when realistically pricing such an option on a future quantum computer with qudit information
carriers. While the primer on derivatives in section 1 is admittedly brief and doesn’t do the enormous field
of financial mathematics much justice, we have endeavoured to both provide the necessary basic details
for those unfamiliar with the theory behind financial options as well as outline the BSM model, which is
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the starting point both in the historical development of financial mathematics as well as a natural point
from which the interested reader may begin exploring the topic. It must again be emphasised that the
simple European options discussed in section 1 can be efficiently priced classically; more complex, realistic,
path-dependent financial options are those which stand to benefit the most from quantum computers (see
[11] for an excellent explanation of real-world derivatives as well as resource estimates for their pricing on
a qubit-based quantum computer). However, given that quantum computing hardware is still in its relative
infancy, comprised of relatively small numbers of noisy qubits or qudits, studying the simplest financial use
cases will remain the benchmark for some time.

Armed with this basic understanding, section 2 described the probability loading, payoff computation
and amplitude estimation routines in quantum derivative pricing. While loading a log-normal distribution
- of which the European call’s distribution is an example - into a register of qudits can be done efficiently,
detailed comments on the ease with which more general distributions could be encoded can only be made
in light of knowledge of the native operations a potential qudit-based quantum computer will have access
to. For example, for microwave cavities coupled to superconducting qubits ([40, 39]), gate sets comprised
of SNAP plus displacement operations [44, 42], or echo-conditional displacement gates plus single qubit
rotations [61], provide universal control over their system’s Hilbert space. However, these gates differ from
those of, say, traditional 2D superconducting qubit chip systems. Regardless, given a universal gate set, it
is theoretically possible to encode any arbitrary probability distribution as long as the system is coherent
enough to accommodate a deep enough circuit and/or has enough information carriers. All else being equal
however, a register of higher-dimensional logical qudits can encode an analytic or market-implied distribution
better than a register of logical qubits consisting of an equal number of information carriers. This is important
since, as discussed, better distribution encoding is essential in order to better capture outlying events, which
tend to have an outsized effect on market dynamics.

In section 2.2 and Appendix 6.1, we discussed a couple of natural qudit analogues of the ordinary qubit
comparator: one choice uses fewer gates but requires more ancillas, whereas the other uses only one ancilla
but requires a far deeper circuit. Experimental hardware considerations, such as device coherence times and
qudit/qubit connectivity, would best dictate which to use in practice. Furthermore, while the ancilla carry
qubits in the comparator subroutine as well as the comparator and payoff qubits themselves were indeed
qubits, they could very well have been qudits. Ancilla qudits, however, would not provide any advantage
over qubits in the option pricing scheme discussed here since these ancillas are merely required to carry one
bit of information. However, given that many proposed cavity QED schemes use traditional superconducting
qubits as non-linear elements, it is not unreasonable to suppose that a future qudit-based quantum computer
may in fact be hybrid in nature, employing both qubits and qudits.

Using this comparator, sections 2.2, and 2.3 detail how the European call payoff is both encoded in the
amplitude of a qubit and the expected payoff subsequently recovered using amplitude estimation without
phase estimation. The latter, which uses statistical maximum likelihood estimation to forgo phase estimation,
will be required in the current NISQ era of quantum computing as a full phase estimation subroutine [17, 18]
increases both the depth and width of the qudit circuit beyond near-term capabilities. The scheme that we’ve
discussed is constructed in such a manner so as to reduce practical resource requirements while maintaining
the speedup quantum option pricing offers over the usual method of classically pricing an option using Monte
Carlo integration.

The subroutines outlined in section 2 also provide many of the ingredients required to construct the
qudit algorithms needed to price other types of options. With the addition of further qudit registers to hold
multiple assets’ prices as well as subroutines which sum and average the integers encoded in these registers,
it is possible to use a qudit-based quantum computer to price, for example, the Asian options and barrier
options discussed in section 1. Both of these are path-dependent options and contain structures similar
to those appearing in other modern, exotic options [62]. Section 3 finally provides a couple of simulations
of the entire pricing scheme for the European call option, with different parameters. While the focus of
this manuscript has been far more on the journey towards understanding the detailed intersection between
quantum computing and derivative pricing and not this simulation ‘destination’, it is important to note that a
logical qudit register of only modest size is capable of pricing a European call option with comparable accuracy
to a finite-resource classical computer of similar register size. In the current NISQ era, the logarithmic
scaling potential of logical qudits still provide a worthwhile advantage over qubits. Furthermore, qudits with
correspondingly modest Hilbert space dimensions of the order of 1− 10 are currently being actively studied
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in existing systems .
Finally, it is worth mentioning that qudits and higher-dimensional Hilbert spaces in general offer other

potential advantages. For example, it is possible to encode information in robust continuous-variable states,
such as cat states [63]. This is an example of bosonic encoding [64] whereby the full Hilbert space of elec-
tromagnetic signals (in microwave or SRF cavities [20], for example) are exploited in quantum information
encoding and processing, in contrast to constraining oneself to the first two states for each qubit in a su-
perconducting 2D chip. Bosonic encoding schemes allow for novel quantum error mitigation schemes and
correction protocols [65, 66], an important step on the road to creating a fault-tolerant quantum computer
beyond the NISQ era. And beyond quantum computing, into the broader quantum technology sphere, quan-
tum communication channels employing qudits possess larger information bandwidths as well as potentially
greater robustness against quantum state cloning attacks [67].
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6 Appendix

6.1 Comparator subroutine

Given two classical integers k and i, expressed as strings of n digits in base-d (e.g. k = kn−1kn−2 · · · k1k0),
the method of complements - used to compute the difference i− k using addition - is as follows:

• For each digit k[j] ≡ kj , compute the digit’s d−1 complement and write the result as a string, namely:
(d− 1− kn−1)(d− 1− kn−2) · · · (d− 1− k0)

• Add 1 to this, calling the result kc

• Add i and kc, digit by digit. The extra leftmost digit of this sum, at index n, is either 0 or 1: if it’s 0,
then i is less than k; if it is 1, then i is bigger than or equal to k
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For example, in base 5, with four digits (n = 4), suppose i = 38210 = 30125 and k = 32910 = 23045. In
this case, kc = 21415 and hence i+kc = 102035. Since the extra digit, at index position 4, is 1, this indicates
that i ≥ k (and the 4 least significant digits, namely 02035, gives the difference i− k = 5310 itself).

This is simple enough in a purely classical case, but we’re comparing the qudit quantum state |i⟩(n)
with the classical variable k. We hence use a qudit version of the quantum ripple-carry full adder circuit
for qubits [45], tailored to k, to perform this sum. In what follows, we assume that our quantum system,
which is comprised of qudits along with some qubits, is equipped with any arbitrary single qudit/qubit gate
along with two-qudit/qubit controlled gates. Any unitary matrix operation on the overall composite Hilbert
space of the system can then be decomposed into these fundamental operations [13]. In this manuscript, the
elementary gates used to construct circuits are chosen simply to draw clean analogies with existing gates
in the qubit literature as well as to be able to calculate numerical matrix representations of the required
unitary operations. As mentioned in section 2.1.1, in practice, the matrix operation for the current option
pricing algorithm would need to be decomposed into a fundamental gate set offered by the particular ‘qudit’
hardware platform that is available; this is, as yet, unknown.

There are at least two potential approaches to construct circuits for Ĉk, depending on how many ancilla
carry qubits we wish to include. One approach assumes that we have O(n) carry qubits available and results
in a circuit of depth O(n) (counted with respect to single-control or double-control qudit/qubit gates). This
approach is the qudit analogue of the comparator put to use in [35]. See Fig. 8 and its caption for the circuit
and detailed explanation thereof (note that any ancilla carry qubits are not shown in the states in the main
text of this manuscript).

A second approach to constructing Ĉk instead only requires O(1) ancilla carry qubits. Such a circuit
subroutine may be preferable for quantum hardware with limited resources yet long coherence times. Figs.
9a and 9b outline the n = 2 and n = 3 cases, respectively; the subroutine for general n can be found
recursively. However, having fewer ancilla qubits comes at the expense of requiring a much deeper circuit:
at least O(n2), counted with respect to the controlled-X gates with an arbitrary number of control qudits13.
Recall that it is indeed possible to employ qudits, rather than qubits, as the ‘carry’ ancillas.

6.2 Payoff encoding subroutine

To construct L̂f , first recall that the base-d digit representation of i, is

i = i0 + d1i1 + · · ·+ dn−2in−2 + dn−1in−1, (23)

so, using Eqs. 7 and 12, cf̃(i) + s can be written as

cf̃(i) + s =
2c

sdn−1 −K
×max

(
0, ωi0 + ωd1i1 + · · ·+ ωdn−1in−1 + Smin +

1

2
ω −K

)
− c+

π

4
.

The choice between the max function arguments is controlled by the comparator qubit. This relatively
straightforward circuit is set out in Fig. 10. Since the mapping from (R,+) (the group of all real numbers,
equipped with ordinary addition) to (RY, ·) (the group of all RY rotations, equipped with matrix multipli-
cation) is a group homomorphism [68], the contributions from each of the individual Y rotations combine
such that RY (cf̃(i) + s) is ultimately the rotation applied to the payoff qubit.

13Since it’s unclear how to efficiently decompose multi-controlled qudit operations - as in Fig. 9 - into single- or double-control
gates - as in Fig. 8 - a fair comparison between these two approaches’ scaling isn’t practicable yet.
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|i0⟩ {i0 + kc[0] ≥ d} {i0 + kc[0] < d}

|i1⟩ {i1 + kc[1] ≥ d− 1} {i1 + kc[1] ≥ d}

|a⟩ X X

|c⟩ X

(a) Two-qudit quantum comparator circuit
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|[phase, ]| |[phase, ]| |[phase, ]| |[phase, ]|
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|i0⟩ {i0 + kc[0] ≥ d} {i0 + kc[0] ≥ d} {i0 + kc[0] < d} {i0 + kc[0] < d}

|i1⟩ {i1 + kc[1] ≥ d− 1} {i1 + kc[1] < d− 1} {i1 + kc[1] ≥ d} {i1 + kc[1] < d}

|i2⟩ {i2 + kc[2] ≥ d− 1} {i2 + kc[2] ≥ d} {i2 + kc[2] ≥ d− 1} {i2 + kc[2] ≥ d}

|a⟩ X X X X

|c⟩ X

(b) Three-qudit quantum comparator circuit

Figure 9: Circuits for Ĉk comparator, given O(1) available ancilla carry qubits, for an (a) n = 2 and (b)
n = 3 qudit register. The diagrams follow the same notation as in Fig. 8. Note that while these choices
for Ĉk only require one ancilla carry qubit |a⟩ (which, as always, is initialised to |0⟩), the resulting circuit is
much deeper, with many gates containing multiple qudits acting as controls. Each of these gates encodes the
logic for a particular scenario in which sums of the individual digits in i and kc result in an overall output
carry bit. For example, for second gate in (b) above, the classical sum i0 + kc[0] is large enough to result
in an output carry bit, but i1 + kc[1], plus the input carry bit from index 0, is not big large enough to give
one. However, i2 + kc[2] is, even without the input carry bit (if any ‘control set’ in any gate is empty, the
gate falls away). As before, the bit value of the most significant qubit is encoded in the comparator qubit
|c⟩ with the final controlled-X gate, and all of the other gates are uncomputed after this controlled-X gate
(not shown above).

|[phase, ]|

|[phase, ]|

...
. . .

|[phase, ]|

|i0⟩ i0

|i1⟩ i1

|in−1⟩ in−1

|c⟩

|p⟩ RY

(
π
4 − c

)
RY

(
2c

sdn−1−K

(
Smin + 1

2ω −K
))

RY

(
2cωi0

sdn−1−K

)
RY

(
2cωdi1

sdn−1−K

)
RY

(
2cωdn−1in−1

sdn−1−K

)

Figure 10: L̂f subroutine. Circuit for L̂f , with |p⟩ the payoff qubit (initialised to |0⟩) from step 2.2 of section
2.2. The circuit follows a similar notation as in Figs. 8 and 9 (with any comparator subroutine ancillas |a⟩
not shown here). However, here the blank grey ‘control bubbles’ for each gate indicate which qudit is acting
as the control, with the relationship between the control qudit’s state and the RY rotation angle given by
the argument of the target rotation operation itself. For example, for qudit 0, if |i0⟩ = |0⟩, then RY (0) = I

is applied to |p⟩; if |i0⟩ = |1⟩, then RY

(
2cω

sdn−1−K

)
; if |i0⟩ = |2⟩, then RY

(
4cω

sdn−1−K

)
; etc., and so on for

all qudits. However, these gates (except the very first one) are only applied if the state of the comparator
qubit is |1⟩ (this corresponds to the ‘max’ function in the payoff f). Finally, note the different power of d
coefficients for each unique controlled rotation, which corresponds with the different digits in i, Eq. 23.

22


	Financial derivatives: a primer's primer
	Qudit option pricing algorithm
	Step 1: Load the distribution
	Resource comments for P (and general unitary gates)

	Step 2: Compute the payoff
	Step 3: Estimate the probability amplitude

	European call simulations
	Conclusion
	Acknowledgements
	Appendix
	Comparator subroutine
	Payoff encoding subroutine


