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ABSTRACT
Beyond-two-point statistics contain additional information on cosmological as well as astrophysical and observational (sys-
tematics) parameters. In this methodology paper we provide an end-to-end simulation-based analysis of a set of Gaussian and
non-Gaussian weak lensing statistics using detailed mock catalogues of the Dark Energy Survey. We implement: 1) second and
third moments; 2) wavelet phase harmonics (WPH); 3) the scattering transform (ST). Our analysis is fully based on simulations,
it spans a space of seven 𝜈𝑤CDM cosmological parameters, and it forward models the most relevant sources of systematics of the
data (masks, noise variations, clustering of the sources, intrinsic alignments, and shear and redshift calibration). We implement a
neural network compression of the summary statistics, and we estimate the parameter posteriors using a likelihood-free-inference
approach. We validate the pipeline extensively, and we find that WPH exhibits the strongest performance when combined with
second moments, followed by ST. and then by third moments. The combination of all the different statistics further enhances
constraints with respect to second moments, up to 25 per cent, 15 per cent, and 90 per cent for 𝑆8, Ωm, and the Figure-Of-Merit
FoMS8 ,Ωm , respectively. We further find that non-Gaussian statistics improve constraints on 𝑤 and on the amplitude of intrinsic
alignment with respect to second moments constraints. The methodological advances presented here are suitable for application
to Stage IV surveys from Euclid, Rubin-LSST, and Roman with additional validation on mock catalogues for each survey. In a
companion paper we present an application to DES Year 3 data.
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1 INTRODUCTION

Weak gravitational lensing is a powerful tool for studying the large-
scale structure (LSS) of the mass distribution in the Universe. Pho-
tons emitted by distant galaxies are deflected when passing through
regions of spacetime affected by the mass distribution between the
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sources and the observer (Einstein 1936). By measuring the shapes
of numerous galaxies, statistical methods enable us to deduce the
projected spatial distribution of the mass responsible for these weak
deflections and thereby create weak lensing mass maps (Van Waer-
beke et al. 2013; Vikram et al. 2015; Chang et al. 2015; Liu et al. 2015;
Chang et al. 2018; Oguri et al. 2018; Jeffrey & Gatti et al. 2021b).
At the time of writing, ongoing and upcoming surveys, including the
Dark Energy Survey (DES, Collaboration 2016), the Kilo-Degree
Survey (KIDS, Kuĳken et al. 2015), the Hyper Suprime-Cam (HSC,
Aihara et al. 2018), the Vera C. Rubin Observatory’s Legacy Survey
(LSST Science Collaboration et al. 2009), and the Euclid mission
(Laureĳs et al. 2011), are measuring (or being readied to measure)
galaxy shapes on a massive scale, encompassing thousands of square
degrees across the sky. Notably, the DES project recently measured
the shapes of more than 100 million galaxies in an area of approx-
imately 5000 square degrees in the southern hemisphere (Gatti &
Sheldon et al. 2021), which led to the production of the most exten-
sive weak lensing mass map from a galaxy survey to date (Jeffrey &
Gatti et al. 2021b). In parallel, measurements of the lensing of the
cosmic microwave background (CMB) have led to maps of the mass
distribution projected all the way to the redshift of the last scattering
surface (e.g. Madhavacheril et al. 2023).

If a mean-zero random field is Gaussian, then a two-point statistic
captures all its statistical information. Two-point statistics of the shear
field can be measured in harmonic, configuration, or other spaces: e.g.
power spectra (harmonic space), shear two-point correlation function
(configuration space), or COSEBI (Complete Orthogonal Sets of
𝐸/𝐵-Integrals) have to date been measured and used for cosmological
parameter estimation (e.g. Asgari et al. 2021; Amon et al. 2022; Secco
& Samuroff et al. 2022; Doux et al. 2022; Dalal et al. 2023; Li et al.
2023). However, a significant amount of the information contained
in weak lensing mass maps lies in their non-Gaussian features, and
these features are not fully captured by two-point statistics. Many
recent studies, using a wide range of tools and statistics, have tried to
extract the non-Gaussian information; examples include higher-order
moments (Van Waerbeke et al. 2013; Petri et al. 2015; Vicinanza et al.
2016; Chang et al. 2018; Vicinanza et al. 2018; Peel et al. 2018; Gatti
et al. 2020, 2022b; Porth & Smith 2021), peak counts (Dietrich &
Hartlap 2010; Kratochvil et al. 2010; Liu et al. 2015; Kacprzak et al.
2016; Martinet et al. 2018; Peel et al. 2018; Shan et al. 2018; Ajani
et al. 2020; Zürcher et al. 2021; Harnois-Déraps et al. 2022; Zürcher
et al. 2023), one-point probability distributions (Barthelemy et al.
2020; Boyle et al. 2021; Thiele et al. 2020), Minkowski functionals
(Kratochvil et al. 2012; Petri et al. 2015; Vicinanza et al. 2019;
Parroni et al. 2020; Grewal et al. 2022), Betti numbers (Feldbrugge
et al. 2019; Parroni et al. 2021), persistent homology (Heydenreich
et al. 2021, 2022), scattering transform coefficients (Cheng et al.
2020; Valogiannis & Dvorkin 2022b,a), wavelet phase harmonic
moments (Allys et al. 2020), kNN and CDFs (Anbajagane et al.
2023; Banerjee & Abel 2023), map-level inference (Porqueres et al.
2022; Boruah et al. 2022), and machine-learning methods (Ribli
et al. 2019; Fluri et al. 2018, 2019; Jeffrey et al. 2021a; Lu et al.
2023). Many of these studies, however, are limited to being proofs
of concept, restricted to idealized simulated scenarios (due to the
challenges associated with applying these techniques to real-world
data). Nevertheless, the field is rapidly progressing, with a number of
recent applications to observational data (Liu et al. 2015; Kacprzak
et al. 2016; Martinet et al. 2018; Fluri et al. 2019; Jeffrey et al. 2021a;
Gatti et al. 2022b; Zürcher et al. 2023; Heydenreich et al. 2022; Fluri
et al. 2022; Lu et al. 2023).

One of the major challenges in exploiting non-Gaussian statis-
tics is the need for accurate modelling of measurements. Analytic

models are available only for a small set of non-Gaussian summary
statistics (e.g. moments), and often these models are reliable only at
large scales. Consequently, many studies resort to using simulations
to forward model the observables. This procedure introduces its own
challenges. Most importantly, computational resources are a signifi-
cant concern, as it is necessary to run numerous 𝑁-body simulations
to cover the parameter space explored in the analysis. Additionally,
it is a formidable task to incorporate all the relevant observational
and systematic effects into these simulations. Finally, it is critical to
estimate efficiently the parameter posteriors; this requires techniques
able to recover accurately the posterior from a limited number of
simulation samples (specifically, those available at the locations in
parameter space of the 𝑁-body simulations).

In this study, we use a set of non-Gaussian summary statistics of
weak lensing mass maps to constrain cosmology with the first three
years (Y3) of data from DES. This work validates the methodology
using simulations; a companion paper applying this framework to the
DES Y3 data will follow. Our analysis makes use of the following
Gaussian and non-Gaussian statistics: second and third-order mo-
ments, wavelet phase harmonic (WPH) moments, and the scattering
transform (ST) coefficients. Moments have previously been used in
analysing DES data using analytical models instead of simulations
(Gatti et al. 2022b); in contrast, this paper fully relies on a simula-
tion based inference. Furthermore, WPH moments and the ST have
not been applied to data before. The WPH moments are second mo-
ments of smoothed weak lensing mass maps that have undergone a
non-linear transformation, allowing for the exploration of the non-
Gaussian features of the field. The ST coefficients are built through a
series of smoothing and modulus operations applied to the input field,
followed by an average. WPH and ST have two advantages relative to
traditional higher-order correlations: better constraining power and
(as they do not go to higher than second order in the field) lower
sensitivity to noise fluctuations (Allys et al. 2020). WPH and ST are
frequently compared to convolutional neural networks (CNNs) be-
cause their definition bears similarities to the architecture of CNNs
(Mallat 2016); however, their definition depends only on a handful of
parameters (parameters that have clear physical interpretation), and,
in contrast to CNNs, they require no training.

For this work we produced a set of 𝑁-body simulations (Jeffrey et
al., in prep.) that explores a seven-dimensional parameter space. The
simulations incorporate key observational and astrophysical system-
atic effects impacting weak lensing analyses, including photometric
redshift uncertainties, shear calibration errors, intrinsic alignments,
and source clustering (as described in Gatti et al. (2023), this latter
effect has a greater influence on non-Gaussian statistics than on Gaus-
sian statistics). To obtain posterior estimates of the parameters, we
employ an optimal data compression technique called neural com-
pression, which significantly reduces the dimensionality of our sum-
mary statistics. Subsequently, we employ a likelihood-free inference
(LFI, e.g. Jeffrey et al. 2021a) approach, enabling us to estimate pos-
teriors without imposing restrictive assumptions about the likelihood
or data model. This powerful approach circumvents various techni-
cal challenges associated with conventional analysis methods, such
as covariance matrix estimation and sampling from high-dimensional
Bayesian hierarchical models. We also examine the combination of
the three non-Gaussian summary statistics considered in this work;
to date, the combination of distinct non-Gaussian summary statistics
has only been explored in idealized simulations (Zürcher et al. 2023;
Euclid Collaboration et al. 2023), and its application to real data
remains unexplored. We test the methodology extensively with sim-
ulated data to ensure that the results from survey data are unbiased.

This paper is organised as follows. Section 2 summarizes the sur-
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Figure 1. Ratio of the convergence power spectrum (𝐶ℓ ) as measured in
the Gower St simulations and that from theoretical predictions. The power
spectrum has been measured on full-sky, noiseless convergence maps. The
ratio has been averaged over all the simulations available. The two horizontal
lines are provided for reference and show that the typical deviation is at the 2
percent level.

vey data as well as the simulations used for our model predictions
and for validation. Section 3 describes the various summary statis-
tics, their covariances, and the compressed statistics obtained from
them. We describe and validate in Section 4 the LFI methodology
for parameter inference and in Section 5 the choice of scale cuts.
Section 6 validates the full pipeline with an end-to-end simulated
cosmological analysis, and we summarise our results in Section 7.

2 DATA AND SIMULATIONS

2.1 DES Y3 weak lensing catalogue

We use the DES Y3 weak lensing catalogue (Gatti & Sheldon
et al. 2021); this contains 100,204,026 galaxies, with a weighted
𝑛eff = 5.59 galaxies arcmin−2, over an effective area of 4139 deg2.
It was created using the METACALIBRATION algorithm (Huff &
Mandelbaum 2017; Sheldon & Huff 2017), which provides self-
calibrated shear estimates starting from (multi-band) noisy images
of the detected objects. A residual small calibration (in the form
of a multiplicative shear bias) is provided; it is based on sophisti-
cated image simulations (MacCrann et al. 2022) and it accounts for
blending-related detection effects. An inverse variance weight is fur-
ther assigned to each galaxy in the catalogue to enhance the overall
signal-to-noise. The sample is divided into four tomographic bins of
roughly equal number density (Myles & Alarcon et al. 2021) and
redshift distributions are provided by the SOMPZ method (Myles
& Alarcon et al. 2021) in combination with clustering redshift con-
straints (Gatti & Giannini et al. 2022a) and corrections due to the
redshift-dependent effects of blending (MacCrann et al. 2022).

Table 1. Distribution of the parameters spanned by the Gower St mock
catalogues (second column), and the prior used in the cosmological analysis
(third column). The prior used in the analysis can differ from the distribution
of the samples as long as these parameters have been explicitly used during
the training of the Neural Density Estimators (NDEs) when learning the
likelihood surface; more details are given in §4. For the third column, we
report the analysis prior only if it is different from the mocks parameters
distribution.

Parameter Mocks parameters Analysis prior
distribution

Ωm mixed active-learning U(0.15, 0.52)
in U(0.15, 0.52)

𝑆8 mixed active-learning U(0.5, 1.0)
in U(0.5, 1.0)

𝑤 N(−1, 1
3 ) for −1 < 𝑤 < − 1

3 U(−1, 1
3 )

0 else

𝑛𝑠 N(0.9649, 0.0063)

ℎ N(0.7022, 0.0245)

Ωbℎ
2 𝑁 (0.02237, 0.00015)

log(𝑚𝜈 ) U[log(0.06) , log(0.14) ]

𝐴𝐼𝐴 U[−3, 3]

𝜂𝐼𝐴 U[−5, 5]

𝑚1 N(−0.0063, 0.0091)

𝑚2 N(−0.0198, 0.0078)

𝑚3 N(−0.0241, 0.0076)

𝑚4 N(−0.0369, 0.0076)

𝑛̄𝑖 (𝑧) 𝑝HyperRank (𝑛̄𝑖 (𝑧) |𝑥phot )

2.2 Simulations

2.2.1 Gower St simulations

We use the Gower St simulation suite (Jeffrey et al., in prep.) to
build our pipeline. The suite consists of 791 gravity-only full-sky 𝑁-
body simulations, produced using the PKDGRAV3 code (Potter et al.
2017). The simulations span a seven-dimensional parameter space
in 𝜈𝑤CDM (Ωm, 𝜎8, 𝑛𝑠 , ℎ100, Ωb, 𝑤, 𝑚𝜈). The parameter space is
not spanned uniformly (Fig. 2 shows the simulation distribution in
the parameter space). Ωm and 𝜎8 have been sampled with a mixed
active-learning strategy; in particular they were at first distributed
according to the existing DES analysis constraints, and then, after an
initial simple blind power spectrum analysis, new simulations were
run with 𝜎8 and Ωm values (known only to the computer) in regions
of parameter space with poor accuracy of the likelihood estimates
(see Jeffrey et al., in prep.). The other parameters were chosen to be
distributed as follows:

• 𝑛𝑠 ∼ N(0.9649, 0.0063); from Planck (Aghanim et al. 2020)
but with the standard deviation boosted by a factor of 1.5.

• ℎ ∼ N(0.7022, 0.0245); consistent with both SH0ES (Riess
et al. 2022) and Planck (Aghanim et al. 2020).

• Ωbℎ
2 ∼ 𝑁 (0.02237, 0.00015); from Planck (Aghanim et al.

2020).
• 𝑤 ∼ N(−1, 1/3), but with values less than −1 or greater than

−1/3 then discarded. For a few (64) simulations, part of the ‘science

MNRAS 000, 1–25 (0000)
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Figure 2. Distribution of Gower St simulations for the seven parameters spanned in this analysis (grey). The two-dimensional marginalised contours in these
figures show the 68 per cent and 95 per cent percentile of the simulations. For comparison purposes, we also show (cyan) the posterior from the DES Y3 3x2
𝜈𝑤CDM analysis (Abbott et al. 2022).

verification’ runs, this discarding was not done. We kept these simu-
lations during the training of our NDEs, but we used a hard prior at
𝑤 > −1 for the analysis.
• 𝑚𝜈 : fixed at 0.06 for 192 simulations and with log(𝑚𝜈) ∼

U[log(0.06), log(0.14)] thereafter.

In the above, N(𝜇, 𝜎) denotes a normal distribution with the indi-
cated mean and standard deviation and U[𝑎, 𝑏] denotes a uniform
distribution with the indicated limits. We note that the sampling strat-
egy does not necessarily affect our posteriors; more details are given
in § 4.

The simulations used up to ten replicated boxes in each direction
so as to span the redshift interval from 𝑧 = 0 to 𝑧 = 49, although

note that the bulk of our redshift distributions (𝑧 < 1.5) can be
covered by only three replications. Each individual box contains
10803 particles and has a side-length of 1250 ℎ−1 Mpc. For each
simulation, lens planes 𝛿shell (n̂, 𝜒) are provided at ∼ 100 redshifts
from 𝑧 = 49 to 𝑧 = 0.0, equally spaced in proper time. For this work,
we downsample the original resolution of NSIDE = 2048 to NSIDE
= 512 (with pixel size ≈ 6.9 arcmin). The lens planes are provided
as HEALPix (Górski et al. 2005) maps and are obtained from the
raw number particle counts.1 The lens planes are converted into

1 𝛿shell (n̂, 𝜒) = 𝑛p (n̂, 𝜒)/⟨𝑛p (n̂, 𝜒) ⟩ − 1, where ⟨⟩ indicates the spatial
average and 𝑛p is the number of particles in a given pixel 𝑝.

MNRAS 000, 1–25 (0000)
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convergence planes 𝜅shell (n̂, 𝜒) under the Born approximation (e.g.
Eq. 2 from Fosalba et al. 2015). Lastly, shear planes 𝛾shell (n̂, 𝜒) are
obtained from the convergence maps using a full-sky generalisation
of the Kaiser & Squires (1993) algorithm (Jeffrey & Gatti et al.
2021b).

We validate the Gower St simulations by comparing the power
spectra measured on the full-sky convergence maps, weighted by
the DES redshift distributions, against theory predictions obtained
using halofit (Takahashi et al. 2012). Note that we did not use the
more recent (and more accurate) EuclidEmu (Euclid Collaboration
et al. 2021) for this comparison, as EuclidEmu covers only a very
limited portion of our parameter space. We generally do not expect
an agreement better than 2 per cent, as this is the typical relative error
between different non-linear power spectrum prescriptions or other
modelling implementations (e.g. neutrinos). At the largest scales,
on the other hand, box-size effects and/or cosmic variance in the
simulations might impact the comparison. To perform the test, we
build the redshift weighted convergence maps as

𝜅(𝑝) =
∑

𝑠 𝑛̄(𝑠)𝜅(𝑝, 𝑠)∑
𝑠 𝑛̄(𝑠)

, (1)

where 𝑝 is a map pixel, 𝑠 is the redshift shell, 𝜅(𝑝, 𝑠) is the noiseless
convergence field from the simulation, and 𝑛̄(𝑠) is the DES galaxy
count across the whole footprint (Myles & Alarcon et al. 2021).
For each of the four DES tomographic bins, we computed the ratio
between the power spectrum of the simulated convergence field 𝜅(𝑝)
and the theory predictions from halofit. We show the average of
the ratio over all the Gower St simulations in Fig. 1; the agreement
is good, within 2 percent over the range of multipoles considered in
this work (up to ℓ = 1024; see §3).

2.2.2 CosmoGridV1 simulations

We use a subset of the simulations from the CosmoGridV1 suite
(Kacprzak et al. 2023) for additional testing and to determine the
scale cuts that need to be removed because of baryonic contamina-
tion. The CosmoGridV1 simulations have been produced using the
PKDGRAV3 code (Potter et al. 2017). From the available Cosmo-

GridV1 simulations we chose a set of one hundred full-sky simu-
lations at the fiducial cosmology 𝜎8 = 0.84, Ωm = 0.26, 𝑤 = −1,
𝐻0 = 67.36, Ωb = 0.0493, 𝑛s = 0.9649. Each individual simulation
has also been post-processed with a baryonification algorithm that
mimics the impact of baryons at small scales. The algorithm used
is the baryonic correction model (Schneider & Teyssier 2015; Aricò
et al. 2020), which adjusts the particle positions in gravity-only sim-
ulations to mimic the impact of various baryonic processes on the
density distribution. The cosmology has been chosen to be centred
well within our priors for 𝜎8, Ωm and 𝑤. The baryonic correction
model depends on several parameters (up to seven); these impact both
the shape and the amplitude of the power spectrum. The parameter
that has the largest impact is 𝑀𝑐 , the mass scale at which haloes have
lost half of their gas. A value of 𝑀𝑐 = 1013.82𝑀⊙ has been adopted,
following Fluri et al. (2022); Schneider et al. (2019), based on ob-
served X-ray gas fractions. The values of the other parameters have
been estimated by comparing against current X-ray observation; see
Schneider et al. (2019) model B-avrg for a list of the values. More
details are given in §5, where we evaluate the impact of baryons on
our constraints.

The simulations were obtained using multiple replicated boxes in
each direction so as to span the redshift interval from z = 0 to z
= 3.5. Each individual box contains 8323 particles and has a side-
length of 900 ℎ−1 Mpc. For each simulation, lens planes 𝛿shell (n̂, 𝜒)

are provided at ∼ 69 redshifts from 𝑧 = 3.5 to 𝑧 = 0.0, equally
spaced in proper time. We downsample the original resolution of
NSIDE = 2048 to NSIDE = 512 (with pixel size ≈ 6.9 arcmin). Last,
convergence and shear planes are obtained using the same procedure
as adopted for the Gower St simulations.

2.2.3 DES Y3 maps-making procedure

We use the simulated full-sky convergence maps to generate DES
Y3-like weak lensing convergence maps following the procedure out-
lined in Gatti et al. (2023). The procedure is similar to others used
in past DES analyses (e.g. Gatti et al. 2022b; Zürcher et al. 2022),
but improves upon them by introducing for the first time an effi-
cient recipe to forward model source clustering effects. We further
extend that procedure to incorporate extra observational systematic
effects. Let 𝑝 be a pixel, 𝑠 a thin redshift shell, 𝛾(𝑝, 𝑠) the noiseless
shear from the shear simulation, and 𝑛̄(𝑠) the galaxy count across
the whole footprint (Myles & Alarcon et al. 2021). Additionally, let
𝑚 be the multiplicative shear bias that models shear measurement
uncertainties (MacCrann et al. 2022), and let 𝛾IA (𝑝, 𝑠) be the intrin-
sic alignment contribution to each pixel. Let 𝛿(𝑝, 𝑠) be the matter
overdensity in the shear simulation, and let 𝑏𝑔 be the galaxy-matter
bias of the weak lensing sample. Each galaxy has a shear weight 𝑤𝑔

and ellipticity 𝑒𝑔. We randomly rotate the DES galaxy ellipticities to
erase the cosmological signal of the catalogue.

The mock shear signal in pixel 𝑝 is set to

𝛾(𝑝) =
∑

𝑠 𝑛̄(𝑠) [1 + 𝑏𝑔𝛿(𝑝, 𝑠)] (1 + 𝑚) [𝛾(𝑝, 𝑠) + 𝛾IA (𝑝, 𝑠)]∑
𝑠 𝑛̄(𝑠) [1 + 𝑏𝑔𝛿(𝑝, 𝑠)]

+( ∑
𝑠 𝑛̄(𝑠)∑

𝑠 𝑛̄(𝑠)
[
1 + 𝑏𝑔𝛿(𝑝, 𝑠)

] )1/2

𝐹 (𝑝)
∑

𝑔 𝑤𝑔𝑒𝑔∑
𝑔 𝑤𝑔

. (2)

The signal term is a weighted average over shells; here the weights
have been amended to include a shear-correlated source galaxy count
(Gatti et al. 2023). The term 𝐹 (𝑝) in Eq. 2 is a near-unity scale factor
introduced to avoid double-counting source clustering effects, ad-
justing the even moments of the noise of the maps, as the DES Y3
catalogue used to model the shape noise of the pixels is already af-
fected by source clustering. We follow Gatti et al. (2023) and assume

𝐹 (𝑝) = 𝐴

√︃
1 − 𝐵𝜎2

𝑒 (𝑝), (3)

where 𝜎2
𝑒 (𝑝) is the variance of the pixel noise and 𝐴 =

[0.97, 0.985, 0.990, 0.995] and 𝐵 = [0.1, 0.05, 0.035, 0.035] are
constants (one for each tomographic bin). A further validation of
the noise properties of our simulations is provided in Appendix A.
The intrinsic alignment term 𝛾IA (𝑝, 𝑠) is

𝛾IA (𝑝, 𝑠) = 𝐴IA

(
1 + 𝑧

1 + 𝑧0

) 𝜂IA 𝑐1𝜌critΩ𝑚

𝐷 (𝑧) 𝑆(𝑝, 𝑠), (4)

with 𝑧0 = 0.62, 𝑐1 = 5 × 10−14𝑀⊙ℎ−2Mpc2 (Bridle & King 2007),
𝜌crit the critical density, 𝐷 (𝑧) the linear growth factor, and 𝑆(𝑝, 𝑠)
the shear tidal field. We obtain 𝑆(𝑝, 𝑠) directly from the density
field 𝛿(𝑝, 𝑠) by applying the (inverse) Kaiser-Squires algorithm. The
two intrinsic alignment parameters 𝐴IA and 𝜂IA in Eq. 4 control
respectively the amplitude and the redshift evolution of the intrinsic
alignment signal. In writing Eq. 4 we have followed the non-linear
alignment model (NLA, Bridle & King 2007); however, since we are
including source clustering in our simulations (the (1 + 𝑏𝑔)𝛿(𝑝, 𝑠)
term in Eq. 2), the final intrinsic alignment model includes extra clus-
tering terms beyond the original NLA implementation. These terms
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Figure 3. Redshift distributions as estimated in data for the four DES Y3
tomographic bins (Myles & Alarcon et al. 2021). The solid coloured lines
are the average 𝑛(𝑧) for each bin; the grey lines are a few (∼ 50) samples
encompassing the redshift calibration uncertainties and that we use to create
the mocks.

are similar to the clustering term included in the tidal-torque align-
ment (TATT) model (Blazek et al. 2019); that paper, however, esti-
mates those contributions only for catalogue-based Gaussian statis-
tics using tree-level perturbation theory, whereas our implementation
directly uses the clustering of the simulation and generalises to all
the summary statistics considered in this work. With the simulations
at hand, we were not able to include a more sophisticated IA model
(e.g, including all the terms of the TATT model, as was done for
the fiducial DES Y3 weak lensing analysis of Amon et al. 2022,
Secco & Samuroff et al. 2022). However, we note that the DES Y3
cosmological analyses on data (Amon et al. 2022, Secco & Samuroff
et al. (2022), Abbott et al. (2022)) have not yielded any substantial
indications favouring the adoption of a more complex model (such
as TATT) over NLA; moreover, these results are consistent with a
zero intrinsic alignment amplitude. For these reasons, we consider
the IA model implemented here to be adequate for our analysis.

This procedure is repeated for each of the four tomographic bins of
the DES Y3 source catalogue. As we can cut four independent DES
Y3 footprints from each full-sky map, we produce a total of 3164
independent DES Y3 shear mock maps from the Gower St simula-
tions. Additionally, we produced another ∼9492 pseudo-independent
DES Y3 shear mock maps by shifting the four independent DES Y3
footprints by 45, 90, and 135 degrees, so as to cover slightly different
parts of the full-sky maps we generated, for a total of 12656 mocks.
We used these mocks to train the neural network compression of the
summary statistics. Then we repeated this whole procedure to gen-
erate another 12656 mocks, with different shape noise, that we used
to train the neural density estimators used for the likelihood-free in-
ference. In total, therefore, we produced 25312 pseudo-independent
mocks.

The process of creating mock datasets involves a number of un-
constrained parameters, including four multiplicative shear biases,
four redshift distributions, and the intrinsic alignment parameters.

When generating each of the 25312 pseudo-independent mocks, we
select one of these parameters randomly from their respective priors
(as detailed in Table 1). For the redshift distributions, for each mock
we pick at random one of the multiple realisations provided by the
hyperrank methodology (Cordero et al. 2022) using photometric
redshift data 𝑥phot; we then use it as a 𝑛̄(𝑠). These realisations en-
compass the redshift calibration uncertainties. In Fig. 3, we present
for each tomographic bin a few of the realisations used in this study.
Finally, we used the 100 independent CosmoGridV1 full-sky real-
isations to generate two sets (with and without baryonic feedback
effects) of 400 independent DES Y3 shear mock maps.

3 SUMMARY STATISTICS

We use different Gaussian and non-Gaussian weak lensing summary
statistics in this work. All the summary statistics are applied to weak
lensing mass maps; as a first step, therefore, we create the weak
lensing mass maps starting from the shear maps. This is achieved
by using a full-sky generalisation of the Kaiser & Squires (1993)
algorithm (Jeffrey & Gatti et al. 2021b). This produces noisy weak
lensing mass maps in the form of HEALPix maps with a resolution of
NSIDE = 512 (corresponding to a pixel size of≈ 6.9 arcminutes). This
procedure is repeated for all four tomographic bins of our catalogue.
During the creation of the mass maps, we further applied a cut at
ℓmax = 1024. The maps at NSIDE = 512 formally have non-zero
support up to ℓ = 1535; most of their power, however, is suppressed
above ℓ ∼ 1000 because of the pixel window function. We chose to
incorporate this particular cut when we were constructing the pipeline
as we were assuming then that we would need to remove these scales
due to potential baryonic contamination; we did not revisit this choice
after the scale cut test presented in §5, as it would have required us
to redo the creation of the mocks and measurements.

The summary statistics considered in this work are: 1) second
and third moments; 2) wavelet phase harmonics; 3) the scattering
transform. The statistics are applied to smoothed versions of the
weak lensing maps, with the type of smoothing depending on the
statistic: moments use top hat filters, while wavelet phase harmonics
and the scattering transform use wavelet filters (Cohen & Ryan 1995;
Mallat 1999; Van Den Berg 1999). In all cases we smooth the maps
using filters with different sizes. More details and relevant equations
are presented below.

3.1 Second and Third moments

The first statistics considered are second and third moments of the
weak lensing mass maps (Van Waerbeke et al. 2013; Petri et al.
2015; Vicinanza et al. 2016; Chang et al. 2018; Vicinanza et al.
2018; Peel et al. 2018; Gatti et al. 2020, 2022b). While second
moments are a Gaussian statistic, third moments probe additional
non-Gaussian information of the field. Second and third moments
of the DES Y3 weak lensing mass maps have been recently used in
Gatti et al. (2022b) to infer cosmology; here we adopt that paper’s
implementation of the moments estimator.

We first smooth the maps using a top-hat filter with different
smoothing scales. In practice, this is achieved by multiplying the
coefficients of the harmonic decompositions of the weak lensing
mass maps by

𝑊ℓ (𝜃0) =
𝑃ℓ−1 (cos(𝜃0)) − 𝑃ℓ+1 (cos(𝜃0))

(2ℓ + 1) (1 − cos(𝜃0))
, (5)

where 𝑃ℓ is the Legendre polynomial of order ℓ, 𝜃0 is the smoothing
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scale, and ℓ is the multipole. We consider eight smoothing scales
equally (logarithmically) spaced from 8.2 to 221 arcmin, and we
denote the smoothed lensing mass map of tomographic bin 𝑖 by
𝜅𝑖
𝜃0 , 𝑝

. We estimate the second and third moments as follows:

⟨𝜅2
𝜃0
⟩(𝑖, 𝑗) = Avg𝑝

(
𝜅𝑖𝜃0 , 𝑝

𝜅
𝑗

𝜃0 , 𝑝

)
(6)

⟨𝜅3
𝜃0
⟩(𝑖, 𝑗 , 𝑘) = Avg𝑝

(
𝜅𝑖𝜃0 , 𝑝

𝜅
𝑗

𝜃0 , 𝑝
𝜅𝑘𝜃0 , 𝑝

)
. (7)

Here 𝑖, 𝑗 , 𝑘 refer to different tomographic bins; all combinations of
tomographic bins are considered (ten independent combinations for
second moments and 20 for third moments). The average is over
all pixels 𝑝 on the full sky (i.e. 1 ≤ 𝑝 ≤ 𝑁tot), including regions
outside the footprint, since the Kaiser-Squires conversion, and the
subsequent smoothing, transfers some of the signal from inside to
outside the DES footprint.

We can only estimate noisy realisations of the weak lensing mass
maps: 𝜅obs = 𝜅 + 𝜅N. Any statistic measured with data will include
noise contributions (Van Waerbeke et al. 2013). When comparing
measurements to analytical predictions, noise-only terms are nor-
mally subtracted to ease the comparison. If the noise-only terms are
estimated from the data (via, for example, random rotation of the
ellipticity measurements), subtracting the noise terms can increase
the measurement uncertainties, because the noise terms estimates are
affected by shot noise. While it would be possible to have multiple
estimates of the noise terms for every map to reduce the shot noise
contribution, we simply chose to not subtract these terms, except in
a few particular cases.

As for moments, we decided only to subtract the following specific
noise terms from our third moments estimator:

⟨𝜅3
𝜃0
⟩ = ⟨𝜅3

𝜃0 ,obs⟩ − ⟨𝜅𝜃0 ,obs𝜅
2
𝜃0 ,N⟩; (8)

For third moments, we subtracted noise-signal third moments of
the form ⟨𝜅𝜃0 ,obs𝜅

2
𝜃0 ,N⟩. These terms are strictly non-zero because

of spurious noise-signal correlations arising from source clustering;
(Gatti et al. 2023) found that subtracting these terms reduces the
impact of source clustering (and hence potential biases in the analysis
if the source clustering is mismodelled in simulations). Other terms
(⟨𝜅2

𝜃0 ,obs𝜅𝜃0 ,N⟩ and ⟨𝜅3
𝜃0 ,N

⟩) were not subtracted as they average to
zero even in presence of source clustering (Gatti et al. 2023).

3.2 Wavelet Phase Harmonics

Wavelet phase harmonics (Mallat 2016; Allys et al. 2020) are the
second moments of smoothed weak lensing mass maps that have
undergone a non-linear transformation. The fields are first smoothed
using a directional, multi-scale wavelet transform (Cohen & Ryan
1995; Mallat 1999; Van Den Berg 1999); the wavelets have the ad-
vantage of being localised both in Fourier and real space, contrary to
the top-hat filters used in this work for the second and third moments,
which are local only in real space. Moreover, we adopt ‘directional’
wavelets, instead of using an isotropic filter.

We use the package PYWPH 2 to smooth our maps. The pack-
age works on a two-dimensional projection rather than on a sphere.
Therefore, we first cut multiple square patches of roughly 14.6 de-
grees of side covering the full DES footprint. For this we use a
gnomonic projection (as implemented in the HEALPix gnomview

2 https://github.com/bregaldo/pywph

function), converting our patches to a 128x128 pixelated grid with
a pixel scale of 6.8 arcminutes. Due to projection effects, the same
portion of a map might appear in multiple projected patches; we
mask pixels accordingly to avoid double-counting. Note that both
simulated and real data maps undergo the same projection process.

We then smooth the projected patches using ‘bump steerable
wavelets’. Begin in Fourier space, where we define the wavelet

𝜓̂( ®𝑘) =


0.7309 exp

(
−( | ®𝑘 |−𝜉0 )2

𝜉 2
0 −( | ®𝑘 |−𝜉0 )2

)
cos2 (arg( ®𝑘))

if 0 < | ®𝑘 | < 2𝜉0 and 𝑘𝑥 ≥ 0,

0 otherwise.

(9)

Here ®𝑘 = (𝑘𝑥 , 𝑘𝑦) is the two-dimensional Fourier wavenumber,
while 𝜉0 denotes the central frequency of the wavelet (the full vector
is ®𝜉0 = (𝜉0, 0)) and is set to 𝜉0 = 0.85𝜋 following Mallat et al. (2020);
the prefactor and the power of the cosine function corresponds to
𝐿 = 3 in their notation. Note that 𝜓̂ has finite width (i.e. ‘compact
support’) in Fourier space. The real space Fourier transform 𝜓 of
this is then our ‘mother’ wavelet, from which other wavelets can be
obtained by dilating and rotating:

𝜓𝑛,ℓ

(
®𝜃
)
= 2−2𝑛𝜓

(
2−𝑛 Rot−ℓ ®𝜃

)
. (10)

Here Rotℓ denotes rotation by an angle 𝜋ℓ/𝐿; we consider 𝐿 = 3
(so that ℓ can be 0,1,2), corresponding to three possible orientations
of the steerable wavelet. 3 The number 𝑛 specifies an oscillation of
the order of 2𝑛+1 pixels; as we are using patches of 128x128 pixels,
𝑛 runs from 0 to 5. This choice of spacing between different filter
sizes follows the standard implementation of Allys et al. (2020); for
simplicity, and in order to keep our data vector size reasonably small,
we chose to not explore a thinner spacing. Note that the wavelet is
real in Fourier space and is complex in real space.

The wavelet transform of a field is the convolution of the field
with 𝜓𝑛,ℓ (for arbitrary 𝑛 and ℓ). For the wavelet transform of the
convergence map in tomographic bin 𝑖 we write:

𝜅𝑖
𝑛,ℓ

( ®𝜃) ≡
(
𝜅𝑖 ∗ 𝜓𝑛,ℓ

)
( ®𝜃). (11)

Its Fourier transform for each (𝑛, ℓ) has central frequency ®𝜉 =

2−𝑛 Rotℓ ®𝜉0 and has finite width, and thus each convolution is a
local filtering in Fourier space. As shown in Fig. 2 of Allys et al.
(2020), it can identify both peaks and anisotropic filaments of dif-
ferent orientations. The full wavelet transform spans all of Fourier
space. In addition, it has the desirable feature of being well localised
in both real and Fourier space.

Following Allys et al. (2020), we apply a non-linear operation to
the smoothed fields. The non-linear operation used is called ‘phase
acceleration’; this operation modifies the Fourier spectrum of the
smoothed field, without modifying the spatial localisation of its fea-
tures. As it is a non-linear operation, it allows us to access the non-
Gaussian features of the field using second moments. Modifying the
spectrum of the field, on the other hand, allows us to capture inter-
actions between fields smoothed with different filters (and therefore
different scales) that would otherwise have minimum overlapping
support in Fourier space.

3 Note that this ℓ does not indicate the multipole of the spherical harmonic
decomposition, as it is done in other sections of this paper, but rather the
rotation index. We kept this notation in this section (and in the next one) to
be consistent with the WPH literature.
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The smoothed and accelerated field will be called the wavelet
phase harmonic. The ‘phase harmonic of order 𝑞’ is defined to be

PH(𝑟𝑒i 𝜃 , 𝑞) ≡ 𝑟𝑒i𝑞𝜃 , (12)

where 𝑟 is the modulus of the field and 𝜃 its phase. This function
leaves its input unaltered for 𝑞 = 1, and takes its modulus for 𝑞 = 0.
The absolute value of the field has been shown to be a useful non-
linear operation, with the desirable property that it does not amplify
noise. We consider only 𝑞 = 0 or 𝑞 = 1; although 𝑞 can reasonably
assume other values (Allys et al. 2020), we found these other statistics
did not significantly improve the constraints.

Once the fields have been transformed, we can build statistics that
are second order in the input field, of the form:

Avg𝑝 Avgℓ
(
PH(𝜅𝑖

𝑛1 ,ℓ+Δℓ , 𝑞1) PH(𝜅 𝑗
𝑛2 ,ℓ

, 𝑞2)
)
. (13)

As before, we average over all pixels. We also average over all values
of the rotation index ℓ (i.e. 0 ≤ ℓ < 𝐿); note that this makes sense
even when Δℓ ≠ 0 as the rotation indices can simply ‘wrap around’.
These statistics are therefore functions of scales (𝑛1, 𝑛2), rotation
index offset (Δℓ), phase harmonic orders (𝑞1, 𝑞2), and tomographic
bins (𝑖, 𝑗). The statistics used in this work are:

𝑆00(𝑖, 𝑗 , 𝑛) = Avg𝑝 Avgℓ
(
|𝜅𝑖
𝑛,ℓ

| |𝜅 𝑗
𝑛,ℓ

|
)

(14)

𝑆11(𝑖, 𝑗 , 𝑛) ≡ WPHG(𝑖, 𝑗 , 𝑛) = Avg𝑝 Avgℓ
(
𝜅𝑖
𝑛,ℓ

𝜅
𝑗

𝑛,ℓ

)
(15)

𝑆01(𝑖, 𝑗 , 𝑛) = Avg𝑝 Avgℓ
(
|𝜅𝑖
𝑛,ℓ

| 𝜅 𝑗
𝑛,ℓ

)
(16)

𝐶01𝛿ℓ0(𝑖, 𝑗 , 𝑛1, 𝑛2) = Avg𝑝 Avgℓ
(
|𝜅𝑖
𝑛1 ,ℓ

| 𝜅 𝑗
𝑛2 ,ℓ

)
for 𝑛1 < 𝑛2 (17)

𝐶01𝛿ℓ1(𝑖, 𝑗 , 𝑛1, 𝑛2) = Avg𝑝 Avgℓ
(
|𝜅𝑖
𝑛1 ,ℓ+1 | 𝜅

𝑗

𝑛2 ,ℓ

)
for 𝑛1 < 𝑛2.

(18)

Here 𝑖, 𝑗 vary over the four tomographic bins, whereas 𝑛 (or 𝑛1 and
𝑛2) varies over the possible wavelets under consideration. Following
Allys et al. (2020) we use ‘𝑆’ for the statistics with 𝑛1 = 𝑛2 = 𝑛 (𝑆00,
𝑆11, and 𝑆01) and ‘𝐶’ for the statistics with 𝑛1 < 𝑛2 (𝐶01𝛿ℓ0 and
𝐶01𝛿ℓ1) that capture correlations at different wavelet scales.

The statistics probe non-Gaussian features of the field (with the
exception of 𝑆11, which is Gaussian in that it is equivalent to the
power spectrum of 𝜅; for this reason we refer to it as ‘WPHG’). One
advantage of the WPHs over conventional moments is that they are
always ‘second-order’ in the input field, which makes them more
robust against additive noise (Allys et al. 2020). Additional statistics
using more combinations of WPHs could have been considered,
as in Allys et al. (2020); however, for computational reasons we
restrict ourselves to the summary statistics listed (having checked
that they capture nearly all the information given the noise levels in
our data). In total, we have 60 components for 𝑆11 (ten independent
tomographic bin pairs and six scales), 96 components for 𝑆00 and 𝑆01
each (16 tomographic bin pairs and six scales), and 240 components
for 𝐶01𝛿ℓ0 and 𝐶01𝛿ℓ1 each (16 tomographic bin pairs and 15 scale
pairs).

As in the case of moments, we subtract some specific WPH mo-
ments of noise-only maps from our estimators. In particular, for WPH
𝑆01, 𝐶01𝛿ℓ0, and 𝐶01𝛿ℓ1 we subtract a term involving one noise-
only map and the observed noisy convergence map. We empirically

found these statistics to be the ones mostly affected by source clus-
tering, and this subtraction to be the best way to minimise source
clustering effects.

3.3 Scattering Transform

The scattering transform (Mallat 2011; Bruna & Mallat 2013; Cheng
et al. 2020; Valogiannis & Dvorkin 2022b,a) is in concept simi-
lar to the WPHs introduced above. The idea is to smooth the field
using the directional, multi-scale wavelet transform, followed by a
modulus operation on the field. This pair of operations can then be
reapplied several times; we finish with an overall average over the
sky. This yields a hierarchy of scattering transform coefficients ST𝑚,
where 𝑚 is the number of smoothing and modulus operations ap-
plied. This work uses scattering coefficients of order 𝑚 = 1, 2. Given
a directional multi-scale wavelet 𝜓𝑛,ℓ and the convergence map 𝜅𝑖

of tomographic bin 𝑖, we obtain:

ST1 (𝑖, 𝑛) = Avg𝑝 Avgℓ
(
|𝜅𝑖 ∗ 𝜓𝑛,ℓ |

)
(19)

ST2 (𝑖, 𝑛1, 𝑛2, ℓ
′) = Avg𝑝 Avgℓ

(
| |𝜅𝑖 ∗ 𝜓𝑛1 ,ℓ | ∗ 𝜓𝑛2 ,ℓ′−ℓ |

)
for 𝑛1 ≤ 𝑛2. (20)

The average over ℓ in ST2 makes this summary statistic invariant to
rotation, while preserving morphological information. The ST1 co-
efficients are qualitatively similar to the power spectrum amplitudes,
weighted by a window function, but while the power spectrum uses
the 𝐿2 norm of the convolved field, the scattering transform uses the
𝐿1 norm. The ST2 coefficients probe more non-Gaussian informa-
tion stored in the field, providing the co-occurrence information at
the scales 𝑛1 and 𝑛2 and capturing interferences of the field between
features selected with two successive wavelets.

The scattering transform coefficients are ‘first-order’ in the input
field. To enable the computation of scattering transform coefficients
including pairs of maps of different tomographic bins, we follow
Zürcher et al. (2022) and introduce the ‘cross-maps’ 𝜅𝑖 𝑗 (𝜃, 𝜙)

𝜅𝑖 𝑗 (𝜃, 𝜙) =
ℓmax∑︁
ℓ=0

ℓ∑︁
𝑚=−ℓ

𝜅𝑖
ℓ𝑚

𝜅
𝑗

ℓ𝑚
𝑌
ℓ𝑚

(𝜃, 𝜙), (21)

where 𝑖 and 𝑗 (with 𝑖 > 𝑗) denote two different tomographic bins. We
then compute the scattering coefficients ST1 and ST2 of the cross-
maps. In total, we consider 60 coefficients for ST1 (six scales, ten
independent tomographic bins), and 630 for ST2 (21 scale combina-
tions, ten tomographic bins, and three different orientations).

The ST is similar to the WPHs, but with a few differences. First, the
scattering transform stays ‘first-order’ in the observed field, whereas
the WPHs are always ‘second-order’. This means that the ST is less
susceptible to noise than the WPHs. Second, in the WPHs there is
a natural definition of cross-correlation between different fields; this
is not the case for the ST (it is for this reason that we introduced the
cross-maps so as to account for cross-correlations between different
tomographic bins). As we will see in §6, this has an impact on the
constraints, as the ST deals with cross-correlations less efficiently.
This also applies to cross-correlations between different scales for
the non-Gaussian features: the WPHs use the cross correlations in
combination with the phase acceleration as a non-linear operation to
couple scales (e.g. the WPH C01 coefficients); an analogous statistic
cannot be defined for the ST.

ST and WPH are often compared to machine learning methods
as they were designed to emulate information capture in the man-
ner of a convolutional neural network (CNN), without the need for
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training data. This is quite evident especially for the ST coefficients:
the smoothing of the field is equivalent to the CNN kernel convo-
lution, the modulus operation is equivalent to the CNN ReLU layer,
the average is equivalent to the CNN ‘pooling’, and the hierarchy of
coefficients is equivalent to the CNN’s multiple layers. The analogy,
however, stops here: for the ST and WPH, since there is no training,
we have full control over the kernels (i.e. the wavelets), or on all the
details of the summary statistics (i.e. the order of the phase accelera-
tion for the WPH, or how different tomographic bins are combined).
This is different to CNNs, which are commonly referred to as ‘black
boxes’ because of the difficulties associated with comprehending the
features they learn and the significance of the numerous parameters
acquired during training.

3.4 Multipole support, covariance, and signal-to-noise of the
summary statistics

The statistics considered here implement different filters to smooth
the convergence field, so it is instructive first to look at the support
in multipole space covered by the smoothed maps. This is shown in
Fig. 4, which plots (for the first and last tomographic bin convergence
maps) the power spectra of the smoothed maps, where this smoothing
is done using top-hat and directional wavelet filters of different sizes.
To compare roughly the two types of filter, the top hat filter radii 𝜃
have been chosen to be half the FWHM of the wavelet filters. Fig. 4
shows that the maps smoothed by the two sets of filters peak roughly
at the same point in multipole space, but that the top hat filters are
much less localised. This is expected as wavelets are designed to
better isolate scales, both in real and in multipole space.

The statistics considered here are also in part covarying, i.e. they
probe similar information. Therefore it is instructive to construct the
correlation matrix of the data vector; this can be done starting from
the 400 mock measurement of the CosmoGridV1 simulations and by
computing the covariance matrix:

𝐶̂ =
1

Ns

Ns∑︁
𝑖=1

(𝑑𝑖 − 𝑑) (𝑑𝑖 − 𝑑)𝑇 , (22)

where Ns is the number of simulations, 𝑑𝑖 the data vector measured
in the 𝑖-th simulation, and 𝑑 the sample mean. The elements of the
correlation matrix Ĉorr can be obtained as

Ĉorr𝑖, 𝑗 =
Ĉ𝑖, 𝑗√︃

Ĉ𝑖,𝑖Ĉ 𝑗 , 𝑗

. (23)

This is illustrated in Fig. 5, which shows the correlation matrix of the
different statistics as a function of scales. For the sake of simplicity,
we considered only the part of the data vector including the fourth
tomographic bin. We make three remarks:

• Second and third moments blocks are much more correlated
than those of the scattering transform and the WPH. This is a con-
sequence of the smoothing filter adopted: wavelet filters are signifi-
cantly better at isolating scales, and this makes the correlation matrix
more diagonal.

• Gaussian statistics (second moments and WPHG) are highly
correlated, as expected. They are also highly correlated with WPH
S00 and the scattering coefficients ST1 and ST2. The latter are prob-
ing both Gaussian and non-Gaussian features of the field, although
this figure suggests they weigh Gaussian features more.

• Third moments and WPH 𝑆01 are not very correlated with their
Gaussian counterparts (a fact also exacerbated by shape noise), but
they are mildly correlated with each other. This suggests WPH 𝑆01

is in part probing the bispectrum of the field. Although not shown in
the figure, we report that WPH𝐶01𝛿ℓ0 and𝐶01𝛿ℓ1 behave similarly
to WPH 𝑆01.

We report the signal-to-noise ratio (SN) of the different statistics
in Table 2. We note that this SN is computed for the part of the
measurements that only uses one tomographic bin. The Gaussian
statistics considered in this work have significantly higher signal-
to-noise compared to third moments or WPH 𝑆01. On the other
hand, WPH 𝑆00, ST1 and ST2 have significance similar to Gaussian
statistics, as they are also probing Gaussian information of the field.
Among the purely non-Gaussian statistics, we note that WPH 𝑆01
has a higher signal-to-noise ratio than that of the third moment. This
is due to the former statistic being only ‘second-order’ in the input
field, which makes it less affected by noise.

Last, we show in Fig. 6 some of the statistics as measured in
CosmoGridV1 simulations at the fiducial cosmology.

3.5 Data Compression

Data compression is paramount in the likelihood-free inference
framework, as for a fixed number of simulated mocks the density
estimation is more efficient when the dimensionality of the data vec-
tor is low (Jeffrey et al. 2021a). Different compression methods exist
(e.g. PCA-based compression, Zürcher et al. 2021; MOPED, Heavens
et al. 2000; neural compression, Jeffrey et al. 2021a). Notably, a poor
compression scheme could result in less informative summaries, but
it would not produce biased results. For this work we follow Jeffrey
et al. 2021a and use a neural compression scheme to compress the
summary statistics to the same dimension as the parameters 𝜃 in
which we are interested (but see Appendix B for a comparison with
the MOPED compression). In particular, given a summary statistic d,
we compress it using t = 𝐹𝜙 (d), and we approximate 𝐹𝜙 by a neural
network. We determine the neural network parameter 𝜙 by minimis-
ing a Mean Squared Error (MSE) loss function using the first half
(12656) of our pseudo-independent mocks. The architecture used for
the network and the number of parameters are summarised in Ta-
ble 3. Since in this work we consider multiple summary statistics and
their combinations, we chose to compress summary statistics indi-
vidually and to combine their compressed versions (i.e. stack the data
vectors) later on during the likelihood-free inference process. In par-
ticular, we individually compress second moments, third moments,
WPHG, WPH 𝑆00, ST1, and ST2. The only exception is for WPH
𝑆01 and WPH 𝐶01, which are compressed together. We compress
the data vectors using all the parameters, one at a time. Examples
of compression are shown in Fig. 7 for second moments and WPH
S01+C01, against the parameters Ωm and 𝑆8. Generally, the tighter
the scatter, the better the given statistic is at constraining that pa-
rameter. For second moments, the compressed statistics trace fairly
well the parameter against which they have been compressed; on the
other hand, the WPH S01+C01 case shows a poor sensitivity to Ωm.
The compression is not expected to be ‘unbiased’: as it can be seen
from Fig. 7, the compressed statistics do not recover the true value
of the simulations (the red line in the plot), even in the best case (𝑆8
for second moments). This is not a problem for the inference; as we
consistently compress both the data vectors measured in simulations
and the data, the final posterior will be unbiased.

4 LIKELIHOOD-FREE INFERENCE

In likelihood-free inference (also known as simulation-based infer-
ence), the likelihood 𝑝(𝑑 |𝜃) is not assumed to have a closed form;
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Table 2. Salient properties of the summary statistics. The second column denotes whether it carries Gaussian (G) or non-Gaussian (NG) information. The third
column refers to the order of the field 𝜅 . The fourth column is the number of components of the datavector across scales and tomographic bins. The further
columns show the signal-to-noise ratio (SN) of the measurements in the CosmoGridV1 simulations for each tomographic bin. We note that this is not the total
SN of the full measurement, but only the SN of the measurement for one tomographic bin.

G/NG Order Length of Datavector Bin 1 SN Bin 2 SN Bin 3 SN Bin 4 SN

2nd moments G 2 160 3.4 7.8 16.1 15.2
3rd moments NG 3 512 0.8 0.9 1.7 1.3

WPH S11 (WPHG) G 2 120 3.1 7.4 15.6 14.4
WPH S00 NG 2 96 2.8 6.9 14.9 13.6
WPH S01 NG 2 480 0.7 1.5 2.9 2.4

ST1 NG 1 60 3.3 7.8 15.3 15.3
ST2 NG 1 630 3.1 7.3 15.3 15.3
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Figure 5. Correlation matrix for some of the statistics considered in this work,
computed from the CosmoGridV1 simulations at the fiducial cosmology. We
consider only the fourth tomographic bin.

rather, it is reconstructed from simulated mock data as part of the in-
ference pipeline. Here is a summary of the procedure used to infer the
posterior distribution of the parameters; a more detailed description
is provided in Jeffrey et al. (2021a).

In our implementation, the parameter inference task is posed as

Table 3. Neural Network Layers and number of parameters used for the
compression of the summary statistics.

Layer (type) Output Shape Number of Parameters

Dense 900 900*(length DV+1)
LeakyReLU 900 0

Dense 800 720800
LeakyReLU 800 0

Dense 100 80100
ReLU 100 0
Dense 100 10100
ReLU 100 0
Dense 1 101

a density estimation problem. Let us assume we have a set of mock
noisy data vectors 𝑑 and simulation parameters 𝜃 forming a cloud
of points in {𝑑, 𝜃} space. We then estimate the conditional distribu-
tion 𝑝(𝑑 |𝜃) with an ensemble of neural density estimators (NDEs):
specifically, we use both Gaussian Mixture Density Networks (MDN;
Bishop (1994)) and Masked Autoregressive Flows (MAF; Papa-
makarios et al. (2017)). We used two MDNs with two and three
Gaussian components respectively, each with two dense hidden lay-
ers with 30 neurons per layer, and we used two MAFs with two
and three MADE (Masked Autoencoders for Distribution Estima-
tion, Germain et al. (2015)) layers respectively, each with two dense
hidden layers with 50 neurons per layer. For each of our neural den-
sity estimation methods, MDN and MAF, the network was trained
to give an estimate 𝑞(𝑑 |𝜃; 𝜙) of the target distribution 𝑝(𝑑 |𝜃) (i.e.
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Figure 6. Some of the Gaussian and non-Gaussian statistics considered in
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sizes 𝑗1, 𝑗2, we considered 𝑗1 = 𝑗2.

𝑝(𝑑 |𝜃) ≈ 𝑞(𝑑 |𝜃; 𝜙)); here 𝜙 are the parameters of the network, deter-
mined by minimising a loss function𝑈 (𝜙) = −∑𝑁

𝑛=1 log𝑞(𝑑𝑛 |𝜃𝑛; 𝜙)
over the N forward-modelled mock data 𝑑𝑛. This loss corresponds to
minimizing the Kullback-Leibler divergence, a measure of difference
or change going from the estimate 𝑞 to the target 𝑝(𝑑 |𝜃). To perform
the density estimation and the training we used the publicly available
package pyDELFI (Alsing et al. 2018).

The final density estimation is a stack of the ensemble estimates,
weighted by the loss evaluated during training. Once the target dis-
tribution 𝑝(𝑑 |𝜃) has been estimated, we evaluate it at the observed
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Figure 7. Example of compressed statistics using second moments (top)
and PWH S01+C01 (bottom) as summary statistics, and Ωm and 𝑆8 for
target parameters for the loss function. The y-axis is the compressed statistic,
while the x-axis is the true value of the parameter. Each point represents
one input measurement. The red line serves to guide the eye and indicates
an unbiased compression. Generally, the tighter the scatter, the better the
given statistic is at constraining that parameter; on the contrary, a broader and
biased compression indicates poor sensitivity to that parameter (e.g. WPH
S01+C0 for Ω). A biased compression does not imply a biased inference, as
we compress the simulated measurements and the data in the same way.

data 𝑑 = 𝑑obs to obtain the likelihood. For completeness, we show
in Appendix C the posteriors obtained by each NDE and how they
differ from the stacked posterior.

Using NDEs to infer the likelihood surface rather than the posterior
has one main advantage: as long as the parameters varied in the
simulations are taken into account during the training process, the
fact that the parameter space is not sampled uniformly does not
translate into an effective prior on our final constraints, i.e. it does
not produce tighter posteriors (Alsing et al. 2018). This means that
after we trained the NDEs and learned the likelihood surface, we
can use a different prior during the inference when estimating our
posteriors (see Table 1 for the priors used in the analysis). Of course,
in the regions of the parameter space where we only have a few
simulations, the estimation of the likelihood surface will be noisier
and the likelihood less accurate; this is why the Gower St simulations
have been run in active-learning mode for Ω and 𝑆8, to increase the
accuracy of the likelihood estimation in the region covered by the
data posterior.

For practical reasons, due to our limited number of mocks, it is not
possible to reliably estimate the likelihood surface taking into account
all the parameters varied in the simulations. As we are mostly inter-
ested in the constraints on Ωm, 𝑆8, 𝑤, and 𝐴IA, the main density es-
timation was carried out using the parameters 𝜃 = [Ωm, 𝑆8, 𝑤, 𝐴IA]
and the associated compressed data vectors. This means that the
other parameters are effectively marginalised over; this time, how-
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ever, since we are not explicitly taking into account their dependence
during the training of the NDEs, the parameter distribution does
matter. This is explained via marginal posterior density estimation
in Jeffrey & Wandelt (2020); we can therefore assume their marginal-
isation follows the prior distribution used to sample these parameters
when generating the mocks as reported in Table 1.

To train the NDEs we used the compressed data vectors and mocks
that were not used to train the compression algorithm (i.e. the last
12656 pseudo-independent mocks). Whenever we combine different
summary statistics, we stack the individual compressed data vectors
together. We restrict the density estimation procedure to our eventual
prior range (Table 1). The final posteriors are then obtained through
Markov chain Monte Carlo (MCMC) sampling of the likelihood,
assuming the priors listed in Table 1. The MCMC sampling is per-
formed using the public software package EMCEE (Foreman-Mackey
et al. 2013), an affine-invariant ensemble sampler for MCMC.

To test that the confidence levels obtained through the likelihood-
free-inference are not misestimated, we perform an empirical cov-
erage test. We first select a subset (125) of the full-sky Gower St
simulations uniformly spanning theΩm−𝑆8−𝑤 space. We do this by
uniformly dividing each dimension into 5 parts, so as to partition the
three-dimensional space into 5x5x5 cuboids, and by selecting only
one simulation per cuboid. For this test, we excluded the outermost
regions of our parameter space close to the edge of the priors, where
we know we only have a few simulations and the likelihood estimation
might be uncertain: in particular, we only selected simulations in the
rangeΩm ∈ [0.2, 0.4], §8 ∈ [0.6, 0.9], and 𝑤 ∈ [−1,−0.5]. For each
of the full-sky simulations, we choose four non-overlapping DES Y3
mocks (picked at random from the different noise realisations), for
a total of 500 mocks. We re-train our compression algorithm and
NDEs excluding these mocks; then, we obtain posteriors for each
of them and check the confidence regions that cover the true values
of Ωm and 𝑆8. Finally, we report in Fig. 8 the fraction of posteriors
encompassing the true value at a given confidence level. A perfectly
calibrated posterior would have an expected coverage probability
equal to the credibility level. Overconfident posteriors (i.e. tighter
than they should be) would lie in the bottom right part of the plots;
on the other hand, conservative posteriors (i.e. larger than they should
be) would lie in the upper left part of the plot. The number of poste-
riors we ran limits the accuracy of this test; with 500 posteriors per
summary statistics, we can determine if the posterior size is accurate
at the ∼ 5 percent level. The statistics considered are consistent with
a perfect calibrated posterior within the accuracy of the test. When
all the posteriors are considered (lower panel of Fig. 8), the scatter
reduces significantly, indicating no bias in the size of the posterior at
the level of a few percent.

In Appendix D we provide further tests concerning the NDE like-
lihood estimates using CosmoGridV1 simulations.

4.1 Comparison between approaches with theory-based models
and Gaussian likelihood

We perform in this section a comparison between a) the cosmological
constraints obtained using the LFI pipeline and b) a more standard
approach in which we rely on a theoretical model for the observables
and we assume the likelihood to be Gaussian. To this end, we use as
a summary statistic the (pseudo) power spectrum, as implemented
in Doux et al. (2022). Most of the summary statistics explored in
this work do not have a theoretical model, except for the second and
third moments (Gatti et al. 2020, 2022b); the code available to us
to model moments, however, does not allow us to marginalise over
the neutrino mass or over 𝑤. Moreover, we do not have a theoretical
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Figure 8. Expected coverage probability of the posteriors obtained using the
LFI pipeline and different summary statistics with respect to the credibility
level. The two red dashed/dotted lines indicate what the expected coverage
probability would be if the posteriors were misestimated by 5 per cent. The
grey shaded regions indicate the accuracy of the test given the limited number
of posteriors (500) used here. The top panel shows the test for each of the
summary statistics considered in this work and their combination; the bottom
panel uses all the posteriors (500x8=4000) to test the size of the posteriors
with a higher accuracy.

model for the covariance, which is, on the contrary, available for the
pseudo power spectrum analysis. For these reasons we decided to use
the power spectrum as a summary statistic for this comparison.

To perform the comparison, we analysed a theory data vector at a
fiducial cosmology. As a minor caveat, we created (specifically for
this test) mocks without source clustering (i.e. we assumed 𝑏𝑔 = 0
and 𝐹 (𝑝) = 1 in Eq. 2), as this effect is not included in the theory
model for the power spectrum; moreover, with source clustering the
noise is slightly cosmology dependent, and this effect is not captured
by the theory covariance implemented in Doux et al. (2022). Without
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Figure 9. Posteriors for 𝑆8 and Ωm obtained by analysing the power spectrum
of one of the Gower St simulations with two pipelines: the LFI pipeline
described in this work and a different one that uses the theory model described
in Doux et al. (2022) and that assumes a Gaussian likelihood.

source clustering, we note that the IA model reduces to a pure NLA
model.

We then analysed the same noisy data vector using the theory
model of Doux et al. (2022), which is based on halofit (Takahashi
et al. 2012). We sampled the posteriors of our parameters using
Polychord (Handley et al. 2015a,b); this is a nested sampler that
uses slice sampling within the nested iso-likelihood contours. For the
cosmological parameters, we varied the same parameters spanned by
our mocks (see Table 1), and, where possible, we assumed the same
priors. For Ωb, ℎ100, 𝑛s, and neutrinos, we assumed flat priors, but
we later importance-sampled the posterior to reflect the Gower St
effective priors.

The posteriors for 𝑆8 and Ωm from the two pipelines are shown in
Fig. 9, showing an excellent agreement. This agreement is not trivial:
it relies on the validity of the Gaussian likelihood assumption for the
power spectrum analysis, on the forward modelling of our simulations
to be equivalent to the modelling used by the theory pipeline of
Doux et al. (2022), and on the dependence of the covariance on
cosmological and nuisance parameters to be negligible. In other
words, a lack of agreement would not have invalidated our pipeline;
rather, it would have challenged some of the main assumptions behind
standard Gaussian likelihood analyses of Gaussian statistics such as
found in Doux et al. (2022); Amon et al. (2022); Secco & Samuroff
et al. (2022). The primary validation tests for assessing the accuracy
of our posterior estimates include the empirical coverage test outlined
in the preceding section, as well as the scale-cut tests and the end-
to-end pipeline test discussed in the subsequent sections (§5 and
§6).

5 SCALE CUTS

We determine in this section if we need to remove scales from our
analysis because of a lack of modelling and/or potential system-
atic contamination. We test three main effects: 1) baryonic feedback

Table 4. Bias of the parameter posteriors assessed by comparing the outcomes
of an analysis performed on a simulation with baryonic feedback to that of a
simulation without baryonic feedback. Biases for different summary statistics
are reported in terms of the distance between the peaks of the posteriors in
the 𝑆8 − Ωm plane. All the biases are smaller than 0.3𝜎 (the maximum level
of bias accepted by our analysis).

Summary Statistic(s) Contamination
𝑆8 − Ωm

2nd moments 0.01𝜎
WPHG 0.05𝜎

3rd moments 0.09𝜎
WPH S00 0.01𝜎

WPH S01+C01 0.04𝜎
WPH S00+S01+C01 0.11𝜎

ST1 0.03𝜎
ST2 0.03𝜎

ST1+ST2 0.06𝜎
2nd+3rd moments 0.03𝜎

2nd moments+ WPH S00+S01+C01 0.03𝜎
2nd moments+ ST1+ST2+WPH S00+S01+C01 0.05𝜎

2nd+3rd moments+ ST1+ST2+WPH S00+S01+C01 0.05𝜎

processes; 2) additive biases due to PSF errors; 3) residual source
clustering contamination. To anticipate the results of this section, we
state here that we found all these effects to be negligible; therefore,
our main analysis retains all the scales considered so far.

5.1 Impact of lack of modelling Baryonic feedback

The main limitation of our analysis is the lack of a proper model for
baryonic feedback processes at small scales. The modelling of our
observables relies on our ability to produce realistic mock catalogues;
at small scales, this requires an ability to contaminate the mock
catalogues with a variety of baryonic feedback models. Tools to create
such contaminated catalogues exist; for example, baryonic correction
models (Schneider & Teyssier 2015; Aricò et al. 2020) can adjust the
particle positions in gravity-only simulations to mimic the impact of
various baryonic processes on the density distribution. These models
have been shown to be flexible enough to accurately replicate the 2-
point and 3-point statistics of various hydrodynamical simulations.
Unfortunately, the simulations we use for this project have not been
post-processed with the baryonic correction model, forcing us to
remove scales that can be potentially affected by baryons. This is
also in line with the main DES Y3 strategy for weak lensing analyses
(e.g. Amon et al. 2022;Secco & Samuroff et al. 2022; Gatti et al.
2022b; Zürcher et al. 2021), which did not attempt to model baryonic
processes but rather removed scales potentially affected by them.

To determine which scales to remove, we use another set of pub-
lic gravity-only simulations (CosmoGridV1) that have been post-
processed with the baryonic correction model. For each full-sky
simulation (with and without the baryonic correction model), we
cut out four DES Y3 footprints and produce ten different noise re-
alisations using our pipeline, totalling to two sets of 400 DES Y3
mock catalogues. The impact of the baryonic feedback model on the
statistics used in this work is shown in Fig. 10.

The main effect of the baryonic model adopted is to suppress the
values of the measured statistics, at all scales, with more dramatic
effects in the first tomographic bin (first and second rows of Fig. 10).
Statistics based on wavelets seem to be affected more by baryonic
feedback than moments, as the latter rely on top-hat smoothing. This
is, however, not a real problem, as it is due to the top hat filters
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Figure 10. Impact of baryonic feedback effects on the summary statistics considered in this work. Each column shows the impact on the part of the summary
statistics obtained using maps from a specific tomographic bin. The top two rows show the ratio between the data vector as computed in simulations with and
without baryonic feedback; the bottom row shows the difference between the data vectors normalised by the square root of the diagonal of the covariance matrix.
For the second moment, we also show the result for the OWLS-AGN simulations (dotted line as indicated in the legend). We note that in the first bin, the ratio
between the WPH S01 data vector with and without baryonic contamination changes sign at small scales; this is because at those scales the amplitude of the
data vector changes sign and it is close to zero.

being broader and skewed towards smaller multipoles / larger scales,
not affected by baryons; this dilutes the baryonic contamination. For
practical purposes it is actually better to have filters with a more
compact support, as this makes it easier to remove the part of the
measurements affected by systematics.

The impact of baryons on non-Gaussian statistics can be quali-
tatively different from their Gaussian counterparts (Foreman et al.
2020; Aricò et al. 2020). In a first approximation a suppression of
the underlying density field should translate into a suppression of
N-point statistics that will be larger as the order of the statistics
increases. Fig. 10 indeed shows a larger impact of baryons on the
amplitude of the data vector for third moments compared to second
moments. For the other non-Gaussian statistics included in this work,
however, it is more difficult to apply this qualitative argument: ST and
WPH are either linear or second order in the input field, and many
of them are highly correlated with the Gaussian statistics. The im-
pact of baryons on the amplitude of WPH S01 is significantly larger
compared to WPHG, but for all the other non-Gaussian statistics, the
suppression is basically the same as that of WPHG.

To determine which scales to remove from our analysis, we
check that the posterior on the cosmological parameters obtained
by analysing a data vector from the simulations with baryonic feed-
back is not substantially biased with respect to the posterior obtained
from a data vector measured in simulations without baryons. We
adopted the same criterion used by the main DES cosmological

analysis (Amon et al. 2022; Secco & Samuroff et al. 2022; Abbott
et al. 2022). The criterion requires the peak of the marginalised two
dimensional posterior of Ωm and 𝑆8 ≡ 𝜎8 (Ωm/0.3)0.5 obtained by
analysing the contaminated data vector to be within 0.3𝜎 of the
values obtained with the uncontaminated one. We note that the bary-
onic model adopted by the main DES analyses to determine the
scale cut follows the predictions from the OWLS ‘AGN’ simulations
(Schaye et al. 2010; van Daalen et al. 2011). The baryonic feedback
of the CosmoGridV1 simulations, however, is slightly milder then the
OWLS model. This difference is illustrated in Fig. 10, where we also
show the impact of the OWLS AGN feedback on second moments,
computed following the method in Gatti et al. 2022b.

The level of contamination obtained using all the scales at our
disposal is reported in Table 4, for a subset of individual summary
statistics and for (some) of their combinations. Fortunately, none of
the summary statistics exceed our predefined criteria for contamina-
tion, which confirms the robustness of our analysis against potential
baryonic feedback processes. While it is true that the baryonic model
of the CosmoGridV1 simulations is milder than the OWLS model,
these numbers are safely smaller than 0.3𝜎. For second moments
only, where we can compute the impact of the OWLS AGN feedback
analytically, we also analysed a theory data vector ‘contaminated’
with the OWLS AGN feedback, finding only a 0.1𝜎 shift with re-
spect to dark-matter-only data vector. In hindsight, we realize that
we could have generated maps with higher resolution, even beyond
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NSIDE = 512 (∼ 7 arcmin). Such higher resolution would have al-
lowed us to explore smaller scales, but it would have come with
a considerable increase in computational cost, which we choose to
defer to future research.

5.2 Impact of potential mismodelling of source clustering effects

Source clustering refers to the angular distribution of source galaxies
being not uniform, but rather being modulated by clustering due to
galaxies tracing the underlying density field (Schneider et al. 2002;
Schmidt et al. 2009; Valageas 2014; Krause et al. 2021; Gatti et al.
2023). This effect causes the galaxy number density to be correlated
with the target lensing signal: since we expect a larger lensing signal
along overdense lines-of-sight, we preferentially sample the shear
field where its value is larger.

For estimators based on pixelized shear maps, this has two effects
(Gatti et al. 2023):

• the average noise-free lensing signal is modulated by a different
effective redshift distribution;

• the shape noise in every pixel is correlated with the lensing
signal.

The first effect is generally small. The second effect can be large
for non-Gaussian statistics whenever the estimators used involve cor-
relation between the lensing signal and even moments of the noise
(e.g. in the case of third moments). Both effects impact mostly small
scales. In this work, source clustering in our simulations was forward
modelled following the prescription presented in Gatti et al. (2023)
(see Eq. 2). This implementation assumes a linear galaxy-matter bias
for our sample. Furthermore, for simplicity, we also chose not to
marginalise over such a bias, instead fixing its value to unity. We
took some precautions to minimise the effect of source clustering in
case our source clustering model does not faithfully reproduce the ef-
fects on data (which might happen, for instance, if the galaxy-matter
bias of the source was different from unity). In Gatti et al. (2023), the
authors pointed out that for third moments the largest effect due to
source clustering is related to the spurious signal-noise correlations,
and that this can be removed completely by subtracting from the third
moments estimators specific moments involving combinations of the
observed noisy maps and noise-only maps (see §3.1). For the other
statistics used in this work, we tested that source clustering effects
are most noticeable for WPH 𝑆01 and WPH 𝐶01, and negligible
for the other statistics. For WPH 𝑆01 and WPH 𝐶01, therefore, we
adopted a noise-subtraction procedure similar to the one applied to
third moments (see §3.2, 3.3), which we empirically found to reduce
the impact of source clustering on the measurements.

In order to test the impact of any potential mismodelling of source
clustering effects on our results, we analysed two sets of maps gen-
erated assuming a galaxy-matter bias 𝑏 = 0.5 or 𝑏 = 1.5 instead
of unity. We verified that in none of our combination of summary
statistics did the bias in the 𝑆8-Ωm plane exceed 0.10𝜎. This means
that the impact on cosmological parameters is safely negligible and
that our modelling of source clustering is sufficiently accurate that
small scales need not be removed from our analysis.

5.3 Impact of additive biases due to PSF errors

We assess here the degree of contamination in our data vector result-
ing from the inclusion of additive biases associated with the mises-
timation of the Point Spread Function (PSF). The misestimation of
the PSF can introduce additional biases in the measured shapes of

galaxies, leading to deviations from their true values:

𝜸est = 𝜸 + 𝛿𝒆
sys
PSF + 𝛿𝒆noise. (24)

To quantify these unwanted contributions, we can employ a model
that accounts for the errors in PSF modelling and use a catalogue of
‘reserved’ stars. These reserved stars are not used in training the PSF
model and serve as a reference to characterize the spurious effects
accurately. We follow Jarvis et al. (2016) and Gatti & Sheldon et al.
(2021) by assuming that

𝛿𝒆
sys
PSF = 𝛼𝒆model + 𝛽 (𝒆∗ − 𝒆model) + 𝜂

(
𝒆∗

𝑇* − 𝑇model
𝑇∗

)
, (25)

where 𝛼, 𝛽, and 𝜂 are coefficients estimated from data, 𝒆∗ is the
PSF ellipticity measured directly using the reserved stars catalogue,
𝑇model is the modelled PSF size, and 𝑇∗ is the PSF size measured
from the reserved stars catalogue. The coefficients 𝛼, 𝛽, and 𝜂 for the
DES Y3 shape catalogue for the four tomographic bins are provided
in Amon et al. (2022).

We use an empirical method to estimate the contribution of PSF
additive biases to the summary statistics used in this work. We first
created maps of 𝒆model, 𝒆∗, and 𝒆∗

𝑇*−𝑇model
𝑇∗

from the reserved stars
catalogue. Using the estimated values for 𝛼, 𝛽, and 𝜂, we then created
maps of 𝛿𝒆

sys
model, one for each tomographic bin. We added these

systematic maps to a set of simulated maps at the fiducial cosmology,
and proceeded to compute the summary statistics and to analyse the
measurement with our LFI pipeline. We repeated the same procedure
on maps with no PSF additive biases, and compared the two analyses
at the level of the constraints in the 𝑆8-Ωm plane. We verified that in
none of our combinations of summary statistics did the bias in the
𝑆8-Ωm plane exceed 0.10𝜎, indicating that PSF modelling errors are
negligible for the range of scales used in this work.

6 END-TO-END TESTS ON SIMULATIONS

Having verified that all the scales used in our analysis are safe against
a number of systematics, we next verify that we are able to recover
the true cosmology of a set of simulations that have not been used
to build our pipeline. To this end, we use 400 independent DES
Y3 mock catalogues produced with the CosmoGridV1 simulations.
Each mock has the same cosmology; we further assume no intrinsic
alignment, while for the other nuisance parameters (shear calibration
and redshift uncertainties) we assume values at the centre of the
priors. We measure all the summary statistics in the mocks, and then
we average them, to reduce the impact of noise.

Our LFI analysis marginalises over seven cosmological param-
eters, assuming a 𝜈𝑤CDM model; moreover, it marginalises over
multiplicative shear bias (four parameters), intrinsic alignment (two
parameters), and redshift distributions, as summarised in Table 1. In
addition to these parameters, we will also quote results in terms of
the 𝑆8 parameter, defined as

𝑆8 ≡ 𝜎8 (Ωm/0.3)𝛼 . (26)

The value of𝛼 can be chosen so that 𝑆8 best constrains the degeneracy
between Ωm and 𝜎8. However, the summary statistics considered in
this work have different directions and so there is no value of 𝛼

that simultaneously optimises all. For sake of simplicity we adopt
𝛼 = 0.5. We also quote a Figure-of-Merit (FoM), defined for 𝑆8, Ωm,
and their covariance:

FoMS8 ,Ωm =
(
det(𝐶𝑆8 ,Ωm )

)−0.5 (27)

Fig. 11 shows the posteriors for 𝑆8, Ωm, and 𝜎8 for a combination
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Table 5. Constraints on various parameters for different summary statistics and their combinations. All the other parameters are marginalised over (see Table 1
for a list of parameters and their priors). For each parameter we report the 68 per cent confidence interval; numbers in parentheses refer to the percentage gain
(or loss) with respect to the constraints from the second moments. Note that the improvement on the FOM in the last column is the most meaningful metric of a
method’s statistical power. **On the last line, we also report the expected constraints from a cosmic shear analysis of the same data. Despite trying to match the
analyses choices, some differences remain (see text for more details).

Summary Statistic(s) 𝜎 (𝑆8 ) 𝜎 (𝜎8 ) 𝜎 (Ωm ) 𝜎 (𝑤) 𝜎 (𝐴IA ) FoM(S8,Ωm )
[x100] [x100] [x100] [x10] [x10] -

2nd moments 2.7 5.3 3.4 1.3 4.4 904
2nd moments + 3rd moments 2.6(+ 3%) 5.0(+ 6%) 3.4(-0%) 1.3(-3%) 4.2(+ 5%) 1035(+15%)
2nd moments + ST1 + ST2 2.7(+ 2%) 4.3(+19%) 3.0(+12%) 1.2(+11%) 4.4(+ 0%) 1245(+38%)

2nd moments + WPH S00+S01+C01 2.4(+11%) 4.4(+18%) 2.9(+15%) 1.1(+15%) 3.9(+10%) 1385(+53%)
2nd moments + ST1 + ST2 + WPH S00+S01+C01 2.0(+25%) 4.4(+18%) 2.9(+15%) 1.2(+ 9%) 3.6(+17%) 1684(+86%)

2nd moments + 3rd moments + ST1 + ST2 + WPH S00+S01+C01 2.0(+25%) 3.9(+26%) 2.9(+14%) 1.2(+12%) 3.6(+17%) 1733(+92%)

DES Y3 cosmic shear ** 2.6(+ 3%) 7.0(-32%) 4.4(-31%) 1.7(-33%) 2.9(+34%) 829(-8%)

of different summary statistics; posteriors for other summary statis-
tics are shown in Fig. 12 for 𝑆8 and Ωm. In Fig. 11, ‘All’ means
that all the summary statistics are combined, except for WPHG, as
we found it does not add additional information compared to second
moments alone. For this reason we also chose to always use second
moments as a default Gaussian statistic when combining with other
non-Gaussian probes. Individual parameter constraints, together with
the FoMS8 ,Ωm , are reported in Table 5.

From Figs. 11 and 12 it can be noted that non-Gaussian statistics
such as third moments and WPH S01 and C01 are characterised
by a slightly different degeneracy tilt in the 𝜎8-Ωm plane compared
to second moments. This distinction also becomes apparent in the
𝑆8-Ωm plane, as the posteriors deviate from alignment with the 𝑆8
axis. For other non-Gaussian statistics, such as ST1, ST2, or WPH
S00, this is less evident, and is probably due to their being highly
correlated with the second moments.

When all the summary statistics are combined, the gain in terms
of constraining power over the standard Gaussian statistics (either
second moments or WPHG) is substantial: the constraints on 𝑆8
improve by ∼ 25 per cent, whereas the gain in terms of FoMS8 ,Ωm
is ∼ 90 per cent, i.e. almost double. This level of improvement
is expected, and is due to the additional non-Gaussian information
probed by the non-Gaussian WPH moments, ST, and third moments,
and the degeneracy breaking.

When looking at the individual probes, we find that the WPHG are
slightly less constraining than second moments alone (∼ 10 per cent
less constraining on the FoM). As they both probe the power spectrum
of the maps, this indicates that the spacing between the wavelet filters
used for the WPHG (where each filter scale is double the size of the
one preceding it) is inferior to the spacing of the top hat filters used for
the second moments filters (where we considered more intermediate
scales). A similar results was also found by Zürcher et al. (2023) using
simulations. This problem could be mitigated by also introducing
additional scales for the wavelet filters; we leave this exploration to
future works. We also find that ST1 and ST2, either individually or
combined, are not as constraining as second moments (∼ 10 per cent
less constraining on the FoM when combined), despite appearing to
be highly correlated (Fig. 5), and despite being characterised by a high
signal-to-noise (Table 2). We found that this is due to a non-optimal
information extraction from cross-bins (Eq. 21); including the cross-
maps in the data vector for ST improves the constraints only a small
amount, whereas second moments or WPHG significantly improve
their constraints when cross-bins are included in the data vector. This
would suggest a need to explore alternative ways of incorporating

cross-correlation information among diverse fields within the ST
framework. Alternatively, this lends support to the idea of employing
WPH, which naturally facilitates the correlation of distinct fields.

Next, of the three categories of non-Gaussian statistics examined
in this study, the strongest performance – in terms of constrain-
ing power when combined with second moments – is exhibited by
WPH, with ST following, and third moments trailing. Nevertheless,
the combination of all the different statistics continues to enhance
the constraints, underscoring that each statistic delves into slightly
distinct information.

We next look into the constraints for the other parameters varied
in this analysis.

Fig. 13 shows the constraints on 𝑆8 and 𝐴IA (the amplitude of
IA) for some of the summary statistics (and their combinations) con-
sidered here (see also Table 5). The amplitude of IA is one of the
other main parameters constrained by weak lensing probes (Dacunha
et al. 2022). The posteriors recover the correct value (𝐴IA = 0); in-
terestingly, whenever second moments are combined with any of the
non-Gaussian statistic considered here, constraints on 𝐴IA are im-
proved, up to almost 20 per cent. The parameter 𝜂IA (which controls
the redshift evolution of the IA amplitude) is not very well con-
strained as, for 𝐴IA = 0, any value of 𝜂IA would provide an equally
good fit. Recall that we used a slightly simpler IA model than the
fiducial DES Y3 analysis: ours does not include tidal-torque terms
(because our current pipeline lacks the capability to compute these
terms). It is possible that the enhancement in constraining power re-
sulting from the incorporation of the non-Gaussian statistics of these
extra IA terms might be different the ones obtained for 𝐴IA and 𝜂IA;
we defer this investigation to future work.

Fig. 14 shows the constraints on 𝑆8 and 𝑤 (see also Table 5).
The CosmoGridV1 simulations used here have been produced as-
suming a ΛCDM cosmology (𝑤 = −1): correctly, Fig. 14 shows the
posteriors skewed towards the edge of the prior. Despite these pos-
teriors being partially prior-dominated, the combination of different
non-Gaussian statistics improves the constraints on 𝑤 with respect
to second moments by roughly 10 per cent. We also analysed the
posterior distributions of the four parameters describing the shear
multiplicative biases (𝑚𝑖), and four parameters (Δ𝑧𝑖) describing the
shift in the mean redshift of the 𝑛(𝑧). The Δ𝑧𝑖 have been estimated
for each of the multiple 𝑛(𝑧) realisations that have been used to
produce our simulated maps with respect to the fiducial DES Y3
𝑛(𝑧) given by the mean of all these realisations. As for the priors
on Δ𝑧𝑖 , we assumed them be Gaussian with zero mean and standard
deviations equal to the spread of the shifts. These parameters are usu-
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Figure 11. Posterior distributions of the cosmological parameters Ωm, 𝑆8, and 𝜎8, for different summary statistics and their combinations, as measured in
CosmoGridV1 simulations. The dotted black lines indicate the values of the cosmological parameters in the simulations. The two-dimensional marginalised
contours in these figures show the 68 per cent and 95 per cent confidence levels.

ally dominated by their priors, and, typically, conventional Gaussian
statistics struggle to improve over these prior constraints. Some re-
cent studies have pointed out the potential of non-Gaussian statistics
for self-calibration, as evidenced by their ability to enhance precision
beyond prior limitations in such parameters (Pyne & Joachimi 2021).
Indeed, we already saw this effect for 𝐴IA. The posteriors for Δ𝑧𝑖
and 𝑚𝑖 , however, were basically the same as their priors; we noted
only a small improvement for the Δ𝑧𝑖 corresponding to the second,
third, and fourth bins by 5-10 per cent for the combination of all the
summary statistics.

Last, we report in Table 5 the constraining power of a cosmic
shear analysis of the same dataset. To this end, we analysed a theory
data vector produced at the CosmoGridV1 cosmology using the same
pipeline implemented in Amon et al. (2022) and Secco & Samuroff

et al. (2022), but matching the priors adopted in this analysis. We
assumed flat priors for Ωb, ℎ100, 𝑛s, and neutrino mass, but we
later importance-sampled the posterior to reflect the Gower St effec-
tive priors. Moreover, contrary to Amon et al. (2022) and Secco &
Samuroff et al. (2022), we did not include in the cosmic shear anal-
ysis the ‘shear-ratio’ likelihood (Sánchez & Prat et al. 2022), which
improves constraints on 𝑆8, redshift and intrinsic alignment param-
eters, as we do not have that implemented for our simulations-based
analysis. We note there remain some differences between the analysis
presented in this work and the cosmic shear analysis; for example,
despite both analyses being robust against baryonic contamination,
our analysis is limited to ℓ < 1024, whereas such a cut is not formally
applied to the cosmic shear analysis. The cosmic shear constraints
are similar to second moments ones in terms of 𝑆8 and FoM, but they
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Figure 12. Posterior distributions of the cosmological parametersΩm and 𝑆8,
for different summary statistics and their combinations, as measured in Cos-

moGridV1 simulations. The dotted black lines indicate the values of the cos-
mological parameters in the simulations. The two-dimensional marginalised
contours in these figures show the 68 per cent and 95 per cent confidence
levels.
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Figure 13. Posterior distributions of the cosmological parameters 𝑆8 and 𝐴IA,
for different summary statistics and their combinations, as measured in Cos-

moGridV1 simulations. The dotted black lines indicate the values of the cos-
mological parameters in the simulations. The two-dimensional marginalised
contours in these figures show the 68 percent and 95 percent confidence levels.
Note that there is significant improvement from using non-Gaussian statistics
in the 95 percent confidence levels but less so in the 68 percent levels.
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Figure 14. Posterior distributions of the cosmological parameters 𝑆8 and 𝑤,
for different summary statistics and their combinations, as measured in Cos-

moGridV1 simulations. The dotted black lines indicate the values of the cos-
mological parameters in the simulations. The two-dimensional marginalised
contours in these figures show the 68 per cent and 95 per cent confidence
levels.
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slightly differ for the other parameters. When compared to our com-
bined probes, cosmic shear constraints are therefore broader (with
the exception of the intrinsic alignment amplitude).

7 CONCLUSIONS

In this methodology paper, we have presented an end-to-end
simulation-based cosmological analysis of a set of Gaussian and non-
Gaussian weak lensing statistics using detailed mock catalogues of
the first three years of data of the Dark Energy Survey. Our main goals
are to show the constraining power of wavelet based non-Gaussian
statistics and to validate a simulation based inference framework for
a broad class of statistics for lensing surveys.

We considered the following summary statistics of weak lensing
mass maps: 1) second and third moments; 2) wavelet phase harmon-
ics (WPH); 3) the scattering transform (ST). Second moments are
Gaussian statistics, whereas third moments probe additional non-
Gaussian information of the fields. The WPH moments are second
moments of smoothed weak lensing mass maps that have undergone
a non-linear transformation, allowing for the exploration of the non-
Gaussian features of the field. The ST coefficients are built through
a series of smoothing and modulus operations applied to the input
field, followed by an average. The WPH and ST are often linked
to convolutional neural networks (CNNs) because the definition of
the statistics bears similarities to the architecture of CNNs (but note
the latter requires training data). They capture both Gaussian and
non-Gaussian features of the fields; however, being only first or sec-
ond order in the input data, they are generally more robust to noise
than higher order moments. Moreover, in our implementation of the
WPH and ST, we considered maps smoothed by directional wavelets,
whereas for moments we only considered isotropic top-hat filters.

Our analysis is fully based on simulations. We produced 791 full-
sky 𝑁-body simulations, spanning seven cosmological parameters
assuming a 𝜈𝑤CDM cosmology:Ωm, 𝜎8, 𝑛𝑠 , ℎ100,Ωb, 𝑤,𝑚𝜈 . Using
the 𝑁-body full-sky simulations, we generated almost 13000 pseudo-
independent DES Y3 weak lensing mock mass maps, which we used
for our inference pipeline. Our mock mass maps implement realistic
masks, noise variations, source clustering of the sources, and include
the following astrophysical observational systematic effects: intrinsic
alignments, shear calibration, and redshift calibration biases. Our
analysis is tomographic, i.e. we forward model the four tomographic
bins and maps into which the DES Y3 weak lensing sample is divided.

We implemented a neural network compression of the sum-
mary statistics, and we estimated the parameter posteriors using
a likelihood-free-inference (LFI) approach, with a combination of
Gaussian Mixture Density Networks and Masked Autoregressive
Flows to estimate the likelihood surface from our mocks. We exten-
sively validated our pipeline, testing the size of the posteriors with
a coverage probability test, and comparing the posterior obtained
from the LFI pipeline against a theory-based and Gaussian likeli-
hood approach for the special case of Gaussian statistics (i.e. the
power spectrum of the maps).

We tested that the scales used in this work were not affected
by systematics not properly modelled in our simulations: namely,
baryonic feedback effects, PSF modelling errors, and differences in
the prescriptions used to model source clustering. Finally, we tested
our pipeline on a set of independent simulations that have not been
used in our training process, demonstrating we could recover the true
values of the cosmological parameters of the simulation.

Of the three combinations of ‘non-Gaussian statistic plus second
moment’ examined, WPH exhibits the strongest constraining power,

followed by ST, and then third moments. The combination of all the
different statistics continues to enhance the constraints, underscoring
that each statistic delves into slightly distinct information. In partic-
ular, we found that when all the summary statistics are combined,
the constraints on 𝑆8, Ωm, and on the Figure-Of-Merit FoMS8 ,Ωm
are improved by roughly 25 per cent, 15 per cent, and 90 percent, re-
spectively, over the constraints from second moments. Similar gains
are found on 𝑤 (∼15 percent), and on the amplitude of intrinsic
alignment (∼20 percent).

This work highlights the importance of analysing probes of higher
order statistics to improve the cosmological constraints, and show-
cases the power of a full simulation-based framework to efficiently
model and combine different non-Gaussian probes. Here we targeted
the analysis at the third year (Y3) data from the Dark Energy Survey
(DES), but the methodological advances presented here are suitable
for application to Stage IV surveys from Euclid, Rubin-LSST, and
Roman, once any necessary additional validation is caried out on
mock catalogues for each survey. In a companion paper (Gatti et al.,
in prep.) we present an application to the DES Year 3 data.
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APPENDIX A: NOISE PROPERTIES OF THE
SIMULATIONS

In this Appendix, we conduct several sanity checks to evaluate the noise char-
acteristics of our simulations. Specifically, we ensure that the noise properties
of the simulations encompass those of the actual data. The noise properties
of the simulations should be mildly cosmology dependent, due to source
clustering effects (see § 2.2.3).

To perform this test, we consider the following statistics: moments (second,
third, and fourth order) and cumulative distribution functions (CDFs). The
CDFs (Anbajagane et al. 2023; Banerjee & Abel 2023) for a given field are
defined as the fraction of circles that have an enclosed value of the field larger

than a given threshold:

CDF (𝜃, 𝑘 = 𝑃 (𝜅𝜃 > 𝑘 ) ) , (A1)

where 𝑘 is the threshold. The CDFs can be formally shown to contain all
volume integrals of higher-order functions (Banerjee & Abel 2023). We
measure the CDFs across ten smoothing scales, spaced logarithmically be-
tween 3.2 and 200 arcmin; for each scale, we use five thresholds 𝑘 ∈
[−20, −6, −2, 0, 2] × 10−3.

In Fig. A1 we compare a) moments and CDFs from data to b) moments
and CDFs from simulations; there is a good match, indicating that the noise
properties of our simulations reproduce well the noise of the data.

APPENDIX B: NEURAL COMPRESSION VS. MOPED
COMPRESSION

In this work we opted for a neural compression scheme to compress our
summary statistics. Other compression methods exist; the most notable is
the MOPED algorithm (Heavens et al. 2000), which is lossless when the
likelihood is Gaussian and the covariance matrix of the observables has a
negligible dependence on the parameters. The neural network implemented
in this work is in principle more powerful and general than the MOPED
compression, as it does not make any assumption about the Gaussianity of
the likelihood, nor about any dependence on the model parameters. Even if
desired, we would not have been able to implement the MOPED compression
for most of the statistics, as doing so would have required an estimate of
the derivative of the model with respect to the parameters; such derivatives
are available in closed form for analytical models, or via finite difference for
observables where the model is estimated from simulations – the Gower St
simulations, however, do not allow us to estimate derivatives through finite
differences.

In this Appendix we compare the neural network compression with the
MOPED compression for the only summary statistic for which we have an
analytical model, i.e. the second moments. We also know that for second
moments the likelihood should be fairly Gaussian, and the covariance should
only weakly depend on parameters, so the MOPED compression should be
close to lossless. We therefore compute the derivatives needed for the MOPED
compression using the analytic model from Gatti et al. (2020); for the covari-
ance, we estimate it from the 400 measurements of the second moments in
the CosmoGridV1 simulations. Fig. B1 shows the posteriors obtained using
our pipeline, compressing second moments either with the neural network
or with the MOPED compression. Results are fairly similar, with the neural
network compression delivering only slightly tighter contours.

APPENDIX C: NDES AND PARAMETERS POSTERIOR

In this work we used four different neural density estimators (NDEs) to es-
timate the posteriors. In particular, we used two different Gaussian Mixture
Density Networks (MDNs) and two different Masked Autoencoders for Dis-
tribution Estimation (MADEs). Whenever we showed a posterior or reported
the constraints on some parameters in this work, we always obtained these by
stacking the four different NDEs. Assuming all the NDEs are flexible enough
to describe our likelihood surface, they should all agree in the limit in which
the number of simulations used for training becomes large. Fig. C1 shows
the posteriors obtained by each individual NDE for our most constraining
case (i.e. the combination of all summary statistics). We find that the 1 𝜎

constraints on 𝑆8 do not vary more than 5 per cent across different NDEs.
Although not shown here, we also repeated this test for all the other statistics
(and combinations) considered in this work, and found differences below 5
per cent in all cases.

APPENDIX D: ADDITIONAL LIKELIHOOD TESTS

In this Appendix we perform extra tests on our estimated likelihoods using
the CosmoGridV1 simulations. First, for the 400 compressed data vectors
at our disposal, we looked at the distribution of residuals for each entry of
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Figure A1. Moments and CDFs of noise-only maps (grey shaded regions) in the Gower St simulations compared to the same quantities in data (red lines). The
three different grey shaded regions encompass the 68, 95, and 99.5 percentiles spanned by the noise moments and CDFs in the simulations.
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Figure B1. Posterior distribution of the cosmological parameters Ωm and
𝑆8 as measured in CosmoGridV1 simulations. The two different posteriors
have been obtained by analysing the second moments data vector compressed
both with our fiducial neural network compression and with the alternative
MOPED compression.
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Figure C1. Posterior distributions of the cosmological parametersΩm and 𝜎8
for the combination of all the summary statistics considered in this work, as
measured in CosmoGridV1 simulations. We show the different posteriors as
estimated by the different NDEs used in this work; we also show their stacked
combination (the fiducial setup used in the other Figures of this paper).
The dotted black lines indicate the values of the cosmological parameters in
the simulations. The two-dimensional marginalised contours in these figures
show the 68 per cent and 95 per cent confidence levels.
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Figure D1. Residuals of individual data points in units of their expected
standard deviation for the compressed data vector of the CosmoGridV1 simu-
lations. We compare to a Gaussian with zero mean and unit standard deviation.

our data vector. This is shown in Fig. D1. The residuals are well described
by a Gaussian, with no clear sign of strong deviations from Gaussianity.
This is true also for the non-Gaussian statistics implemented in this work.
As was already noted by Gatti et al. (2020), this is partially thanks to the
data compression algorithm, which helps to give the compressed data a more
Gaussian distribution due to the central limit theorem (Heavens et al. 2017).

As a second test, we sample from the likelihood estimated using our
NDEs at the CosmoGridV1 cosmology, and compare with the distribution
of the compressed data vector measured in the CosmoGridV1 simulations.
In particular, we sample the likelihood at Ωm = 0.26, 𝑆8 = 0.26

√︁
0.84/0.3,

𝑤 = −1, and 𝐴IA = 0. For this test, we generated 400 new CosmoGridV1

maps and we also marginalised over redshift uncertainties and multiplicative
shear bias (in contrast to the CosmoGridV1 maps used in the rest of the paper,
where we fixed nuisance parameters to their mean values). Such a comparison
is shown in Fig. D2, for the case of second moments and PWH S01+C01.
Although not shown here, other summary statistics show a similar behaviour.
The samples obtained from the NDEs match fairly well the distribution of
compressed data vectors from the simulations, although for second moments
they are slightly larger. This is expected: the likelihood estimated by the NDEs
also marginalises over Ωb, 𝑛𝑠 , ℎ100, and neutrino mass, and we cannot fix
them, because when training the NDEs we only made explicit the dependence
on Ωm, 𝑆8, 𝑤, and 𝐴IA. The CosmoGridV1 samples do not marginalise over
these additional parameters, so their distribution might be slightly smaller
than the one predicted from the NDEs.

In Fig. D2 we also compare with the samples we would have obtained if we
had assumed a Gaussian likelihood, estimating the mean and the covariance
from the compressed CosmoGridV1 measurements. These samples match
very well the distribution of compressed measurements; this would not have
been guaranteed had the likelihood been strongly non-Gaussian. Together with
the residual tests (Fig. D1), this suggests that assuming a Gaussian likelihood
for our compressed summary statistics could have been a reasonable option,

MNRAS 000, 1–25 (0000)



24 M. Gatti, et al.

0.2 0.3

DV1( m)

0.3
0.4
0.5
0.6
0.7

D
V 4

(A
IA

)

0.2

0.3

0.4

0.5

D
V 3

(w
)

0.75

0.80

0.85

D
V 2

(S
8)

0.75 0.80 0.85

DV2(S8)
0.3 0.4 0.5

DV3(w)
0.4 0.6

DV4(AIA)

2nd moments

['samples Cosmogrid']
['Gaussian Likelihood']
['Likelihood LFI']

0.25 0.30 0.35

DV1( m)

0.2

0.4

0.6

D
V 4

(A
IA

)

0.35

0.40

0.45

0.50

D
V 3

(w
)

0.7

0.8

0.9

D
V 2

(S
8)

0.7 0.8

DV2(S8)
0.4 0.5

DV3(w)
0.2 0.4 0.6

DV4(AIA)

PWH S01+C01

['samples Cosmogrid']
['Gaussian Likelihood']
['Likelihood LFI']

Figure D2. Samples of compressed summary statistics from the Cosmo-

GridV1 simulations (grey), compared to samples drawn from the learned
likelihood at the CosmoGridV1 cosmology (red). We also compare to the
distribution we would have obtained had we assumed a Gaussian likelihood
(black). The top panel refers to second moments and the bottom panel refers
to PWH S01+C01.

at least at the CosmoGridV1 cosmology. Of course, we cannot assume this
generalises to other points in the parameter space, nor we could exclude
a priori any cosmological dependence of the covariance. We note that our
NDEs have learned that the likelihood is Gaussian at this point in parameter
space, as the NDEs did not have any prior knowledge concerning the form of
the likelihood.
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