
NuHepMC: A standardized event record format for neutrino
event generators

S. Gardinera, J. Isaacsona, L. Pickeringb

aFermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510, USA
bSTFC, Rutherford Appleton Laboratory, Harwell Oxford, United Kingdom

Abstract

Simulations of neutrino interactions are playing an increasingly important role in the
pursuit of high-priority measurements for the field of particle physics. A significant
technical barrier for efficient development of these simulations is the lack of a standard
data format for representing individual neutrino scattering events. We propose and
define such a universal format, named NuHepMC, as a common standard for the output
of neutrino event generators. The NuHepMC format uses data structures and concepts
from the HepMC3 event record library adopted by other subfields of high-energy physics.
These are supplemented with an original set of conventions for generically representing
neutrino interaction physics within the HepMC3 infrastructure.

1. Introduction

Worldwide experimental efforts in high-energy physics (HEP) are placing increasing
emphasis on precision measurements of neutrinos. The pursuit of these measurements
creates strong demands on the quality of neutrino event generators—the software tools
used to simulate neutrino scattering in the context of experimental analyses [1, 2].
Recent discussions about the future of neutrino research, both at workshops focused

on simulations of neutrino interactions [3] and as part of the HEP-wide Snowmass 2021
community planning process [4], have emphasized the need for greater flexibility in the
use of neutrino event generators and related software. A particularly problematic tech-
nical barrier is the current lack of a common data format for representing the output
events : lists of simulated particles involved in a neutrino interaction together with in-
formation describing their properties and relationships. At present, each neutrino event
generator group maintains a unique output format, substantially complicating the use of
multiple generators in large-scale experimental simulation workflows [5, 6]. The adoption
of standard formats in the collider community has streamlined many components of the
analysis pipeline. This has enabled straightforward analysis preservation in tools like
Rivet [7, 8], allowed theorists to reinterpret experimental limits on one exotic physics

Email addresses: gardiner@fnal.gov (S. Gardiner), isaacson@fnal.gov (J. Isaacson),
luke.pickering@stfc.ac.uk (L. Pickering)

Preprint submitted to Computer Physics Communications October 23, 2023

ar
X

iv
:2

31
0.

13
21

1v
1

 [h
ep

-p
h]

 2
0

O
ct

 2
02

3
FERMILAB-PUB-23-603-CSAID-T

scenario in light of others [9, 10], simplified comparisons between generators (see, e.g.,
Ref. [11]), and supported interoperability between simulation tools [12, 13, 14].

The only major software product that currently provides an official interface to the
event formats produced by all four of the most widely-used neutrino event generators
(GENIE [15, 16], GiBUU [17], NEUT [18, 19], and NuWro [20]) is NUISANCE [21],
a framework for comparing simulation predictions to each other and to experimental
data. Although this feature of NUISANCE has proven valuable for the field, its generic
internal representation of the input events (the FitEvent C++ class) is too simplified
for all applications, its event format conversion tools require linking to generator-specific
shared libraries, and the need to support multiple evolving proprietary event formats
represents a significant maintenance burden.
To facilitate further development of software products that interface with neutrino

event generators, as well as to support the use of a wider variety of simulation-based
neutrino interaction models in experimental analyses, we present a new event format,
NuHepMC, as a universal standard to be adopted by consensus of the neutrino event
generator community. The data structures, file formats, and basic concepts in NuHepMC
are identical to the versatile and mature HepMC3 library [22] adopted by other subfields
of HEP. Using HepMC3 as a foundation, we define in NuHepMC an extensible and ex-
tendable set of conventions for representing neutrino interaction physics in a tool-agnostic
way. This approach provides a generic event format that can be used in all future simula-
tion development for neutrino experiments. Because we avoid placing any limitations on
the information that individual event generators may output, the NuHepMC standard
enables lossless, bidirectional conversion between HepMC3 and the existing proprietary
neutrino event formats.
In Sec. 2, we present the specification of the NuHepMC format. The flux-averaged

total cross section, a particularly important quantity for analyzing neutrino scattering
simulations, is discussed in Sec. 3. Finally, Sec. 4 uses NuHepMC as an output format
for GENIE, NuWro, NEUT, ACHILLES [23], and MARLEY [24] as well as an input
format in NUISANCE to demonstrate a first NuHepMC-based analysis of neutrino event
generator predictions.

2. Specification

The details of the NuHepMC specification are broken down into three categories that
describe four components from HepMC3. Each element of the specification is labeled
as a Requirement, a Convention, or a Suggestion. The requirements dictate a minimum
level of information to be included when writing out events. The conventions are optional
details that an event generator group can choose to include or omit while still conforming
to the NuHepMC standard. Finally, the suggestions are optional recommendations that
are less strongly encouraged than the conventions.
The four HepMC3 components considered in this standard are the generator run meta-

data, event metadata, vertex information, and particle information. Specifications for
each of these components can be found in Secs. 2.3, 2.4, 2.5, and 2.6 respectively.

2.1. Labeling scheme

The elements of the specification are enumerated below in the form
<Component>.<Category>.<Index>, where the component of interest is given

2

as G for generator run metadata, E for event metadata, V for vertex information, and
P for particle information. The category is denoted by R for a requirement, C for
a convention, and S for a suggestion. For example, the second convention for event
metadata would be labeled as E.C.2.

If conventions or suggestions prove useful, become widely adopted, and are considered
stable, they may become requirements in future versions of this specification. G.C.1
defines a convention for event generator authors to signal whether or not specific optional
elements of this specification have been followed.

2.2. HepMC3 C++ classes

Throughout this standard, references are made to various HepMC3 C++ classes, e.g.,
HepMC3::GenRunInfo. However, these are used as a convenient handle for data objects.
This specification should not be considered specific to the HepMC3 C++ reference im-
plementation.

2.3. Generator Run Metadata

The generator run metadata describes the overall setup of the event generator, i.e.,
information that is not unique to a specific event. The NuHepMC specifications for this
metadata are as follows:

G.R.1 Valid GenRunInfo:
All NuHepMC Vectors must contain a HepMC3::GenRunInfo instance.

G.R.2 NuHepMC Version:
A NuHepMC HepMC3::GenRunInfo instance must contain the following at-
tributes that specify the version of NuHepMC that is implemented:

• type: HepMC3::IntAttribute,
name: "NuHepMC.Version.Major"

• type: HepMC3::IntAttribute,
name: "NuHepMC.Version.Minor"

• type: HepMC3::IntAttribute,
name: "NuHepMC.Version.Patch"

This document describes version 0.9.0 of NuHepMC.

G.R.3 Generator Identification:
A NuHepMC HepMC3::GenRunInfo instance must contain a
HepMC3::GenRunInfo::ToolInfo for each ‘tool’ involved in the produc-
tion of the Vector thus far. The ToolInfo instance must contain non-empty
name and version fields.

G.R.4 Process Metadata:
A NuHepMC HepMC3::GenRunInfo instance must contain a
HepMC3::VectorIntAttribute named "NuHepMC.ProcessIDs" listing
all physics process IDs as integers. For each valid process ID, the
HepMC3::GenRunInfo instance must also contain two other attributes giv-
ing a name and description of each:

3

• type: HepMC3::StringAttribute,
name: "NuHepMC.ProcessInfo[<ID>].Name"

• type: HepMC3::StringAttribute,
name: "NuHepMC.ProcessInfo[<ID>].Description"

where <ID> enumerates all process IDs present in "NuHepMC.ProcessIDs". (See
also E.C.1).

G.R.5 Vertex Status Metadata:
The NuHepMC HepMC3::GenRunInfo instance must contain a
HepMC3::VectorIntAttribute named "NuHepMC.VertexStatusIDs" declaring
any generator-specific status codes used. Including the standard HepMC3
codes in this list is optional, but they must not be reused to mean something
different than in the HepMC3 specification. For each declared vertex status, the
HepMC3::GenRunInfo instance must also contain two other attributes giving a
name and description of each:

• type: HepMC3::StringAttribute,
name: "NuHepMC.VertexStatusInfo[<ID>].Name"

• type: HepMC3::StringAttribute,
name: "NuHepMC.VertexStatusInfo[<ID>].Description"

where <ID> enumerates all status codes present in
"NuHepMC.VertexStatusIDs" (See also V.R.1).

G.R.6 Particle Status Metadata:
The NuHepMC HepMC3::GenRunInfo instance must contain a
HepMC3::VectorIntAttribute named "NuHepMC.ParticleStatusIDs" declar-
ing any generator-specific status codes used. Including the standard HepMC3
codes in this list is optional, but they must not be reused to mean something
different than in the HepMC3 specification. For each valid particle status, the
HepMC3::GenRunInfo instance must also contain two other attributes giving a
name and description of each:

• type: HepMC3::StringAttribute,
name: "NuHepMC.ParticleStatusInfo[<ID>].Name"

• type: HepMC3::StringAttribute,
name: "NuHepMC.ParticleStatusInfo[<ID>].Description"

where <ID> enumerates all status codes present in
"NuHepMC.ParticleStatusIDs" (see P.R.1 for more details).

G.R.7 Event Weights:
For weights that will be calculated for every event, HepMC3 provides an interface
for storing the weight names only once in the HepMC3::GenRunInfo instance. At
least one event weight named "CV" must be declared in the HepMC3::GenRunInfo
instance and filled for every event.

This weight may be 1 or constant for every event in a generator run (in the
case of an unweighted event vector). This weight must always be included by a

4

user when producing correctly-normalized predictions from a NuHepMC Vector
and must not be assumed to be always 1. The exact form of this weight and
whether it is the only information required to properly normalize a prediction
are considered implementation details.

G.R.8 Non-standard Particle Numbers (PDG Codes):
Essentially all event generators in HEP use a standard set of integer codes to iden-
tify particle species. This numbering scheme is maintained by the Particle Data
Group (PDG) and is regularly updated in their Review of Particle Physics [25,
Sec. 45, p. 733].

We expect that neutrino event generators may need to use codes for non-standard
particle species (i.e., those without an existing PDG code) for a variety of applica-
tions. This could include simulating exotic physics processes involving new par-
ticles as well as implementing bookkeeping methods involving generator-specific
quasiparticles.

The NuHepMC HepMC3::GenRunInfo instance must
contain a HepMC3::VectorIntAttribute named
"NuHepMC.AdditionalParticleNumbers" declaring any particle codes used
that are not defined in the current PDG numbering scheme. Including any of
the standard codes in this list is permitted but not required. The standard
particle codes must not be reused to mean something different than in the PDG
specification.

For each additional particle code, the HepMC3::GenRunInfo instance must also
contain an attribute giving a unique name to the represented particle species:

• type: HepMC3::StringAttribute,
name: "NuHepMC.AdditionalParticleInfo[<PDG>].Name"

where <PDG> enumerates all particle numbers present in
"NuHepMC.AdditionalParticleNumbers".

See alsoG.C.8 for a suggested way of storing descriptions of these special particle
species.

G.C.1 Signaling Followed Conventions:
To signal to a user that an implementation follows a named convention from
this specification, a HepMC3::VectorStringAttribute should be added to the
HepMC3::GenRunInfo instance named "NuHepMC.Conventions" containing the
names of the conventions adhered to.

G.C.2 Vector Exposure (Standalone):
Each Vector should contain a description of the exposure of the generator run.
When running a standalone event simulation this will often correspond to the
number of events requested, which may differ from the number of events output
in cases where events that are not written out must contribute to the total cross
section calculation.

• type: HepMC3::LongAttribute,
name: "NuHepMC.Exposure.NEvents"

5

Implementations should not adhere to both G.C.2 and G.C.3 simultaneously.

G.C.3 Vector Exposure (Experimental):
Each Vector should contain a description of the exposure of the generator run.
When simulating with some experimental exposure, often represented for accel-
erator neutrino experiments in units of “protons on target” (POT), the exposure
should be described. Two attributes are reserved for signaling the exposure used
to users. One or both can be provided.

• type: HepMC3::DoubleAttribute, name: "NuHepMC.Exposure.POT"

• type: HepMC3::DoubleAttribute, name: "NuHepMC.Exposure.Livetime"

Implementations should not adhere to both G.C.2 and G.C.3 simultaneously.

G.C.4 Cross Section Units and Target Scaling:
There are a variety of units typically used to report both measured and pre-
dicted cross sections in HEP. For neutrino cross sections specifically, 10−38 cm2

per nucleon is common, but not ubiquitous. We want to provide a sensible recom-
mended default while preserving the flexibility for an implementation to signal a
different choice. One or both of the following HepMC3::StringAttributes may
be included on the HepMC3::GenRunInfo to indicate the cross section units used
within a vector.

• "NuHepMC.Units.CrossSection.Unit". Possible values of the attribute
are not restricted, but we reserve the meanings of the following:

– "pb": Picobarns or 10−36 cm2. This is our recommended default.

– "cm2": Using bare cm2 in this option, without any power-of-ten scaling,
is not recommended due to numerical precision concerns. The natural
scale of neutrino–nucleon cross sections is approximately 10−38, which
is very close to the minimum representable IEEE 754 single-precision
floating point number [26].

– "1e-38 cm2": The choice of 10−38 cm2 in this option is the most fre-
quent in the neutrino literature.

• "NuHepMC.Units.CrossSection.TargetScale". Possible values of the at-
tribute are not restricted, but we reserve the meanings of the following for
ease of compatibility with existing conventions:

– "PerTargetAtom": Our recommendation. Choosing “atom” rather
than “nucleus” in this context removes ambiguity when considering
neutrino interactions with atomic electrons.

– "PerTargetMolecule": Sometimes used for hydrocarbon- and water-
target measurements.

– "PerTargetNucleon": A common choice in the literature.

– "PerTargetMolecularNucleon": Another common choice in the liter-
ature and in existing neutrino event generators. We recommend against
implementations using this scheme.

6

If this convention is signalled, the chosen units should be assumed to apply to
cross section information stored according to G.C.5, E.C.4, E.C.2, and E.C.3.
For further discussion of the schemes detailed above and the motivation for rec-
ommending against "PerTargetMolecularNucleon", see Appendix A.

It is ultimately up to the user to parse these attributes and decide whether any
additional scaling is needed for their purposes. If these attributes are not present,
then the cross section should be assumed to be in picobarns per target atom. We
strongly recommend that implementations use this default.

G.C.5 Flux-averaged Total Cross Section:
The flux-averaged total cross section,

〈
σ
〉
, is a scaling factor that is needed to

convert a distribution of simulated events into a prediction of the flux-averaged
cross-section—an experimentally-accessible quantity. Details on the definition of
this quantity are given in Sec. 3.1.

The value of
〈
σ
〉
is not always known at the beginning of a generator run.

As described in Appendix B, a running estimate of the flux-averaged total
cross section may be computed as events are generated. Element E.C.4 of
this specification provides a means of storing the value of this running esti-
mate in each event. If known at the start of a run, the value of

〈
σ
〉
should

be stored as a HepMC3::DoubleAttribute in the HepMC3::GenRunInfo named
"NuHepMC.FluxAveragedTotalCrossSection".

G.C.6 Citation Metadata:
Modelling components implemented based on published work should al-
ways be fully cited. The HepMC3::GenRunInfo should contain at least
one HepMC3::VectorStringAttribute for each relevant modelling compo-
nent, named according to the pattern "NuHepMC.Citations.<Comp>.<Type>".
Valid substitutions for the <Comp> and <Type> fields are not restricted by this
standard beyond the requirement that they are pure mixed-case alpha-numeric.
We suggest using <Comp>=Generator for specifying the main citation for the in-
teraction generator and <Comp>=Process[<ID>] for individual processes. For
common reference formats in the HEP field, we suggest some common values for
the <Type> field:

• "InspireHEP" might contain one or more unique InspireHep identifiers
(texkeys).

• "arXiv" might contain one or more unique arXiv identifiers (eprint num-
bers).

• "DOI" might contain one or more unique Digital Object Identifiers.

We hope that automatic bibliography generation tools using this metadata will
be built.

G.C.7 Beam Energy Distribution Description:
Each vector should contain a description of the beam particle flux used to sim-
ulate the output event vector. For many truth studies and experimental simu-
lations where the detector is not physically close to the source, a simple beam

7

energy distribution is enough to describe the particle beam. The two types of
energy distribution covered by this convention are mono-energetic beams and
those with distributions described by a simple histogram. The type should be
signalled via a HepMC3::StringAttribute named "NuHepMC.Beam.Type" with
value "MonoEnergetic" or "Histogram" stored on the HepMC3::GenRunInfo.
For both types, relevant units can be signalled via two attributes:

• "NuHepMC.Beam.EnergyUnit". Possible values of the attribute are not re-
stricted, but we reserve the meanings of "MEV" and "GEV". This attribute
should always exist and be not empty.

• "NuHepMC.Beam.RateUnit". Possible values of the attribute are not re-
stricted, but we reserve the meaning of "Arbitrary" to signal that the
normalization of the distribution was not known or used by the simula-
tion. If this attribute is not used then the normalization will be assumed
arbitrary.

For the case of a "MonoEnergetic"-type distribution, all beam par-
ticles in the vector must have identical energy. The attribute
"NuHepMC.Beam[<PDG>].MonoEnergetic.Energy" can be used to signal
the beam energy in the lab frame, but the usage of this attribute is optional as
the energy can be determined from the first (or any) event in the vector.

For the case of a "Histogram"-type distribution, the histogram should be en-
coded into two HepMC3::VectorDoubleAttribute per beam species on the
HepMC3::GenRunInfo:

• "NuHepMC.Beam[<PDG>].Histogram.BinEdges"

• "NuHepMC.Beam[<PDG>].Histogram.BinContent"

where <PDG> enumerates the PDG particle numbers of all beam particles present
in the event vector. N.B. the number of entries in the "BinEdges" vector should
always be one more than the number of entries in the "BinContent" vector.

The HepMC3::BoolAttribute,

• "NuHepMC.Beam[<PDG>].Histogram.ContentIsPerWidth",

should be used to signal that the number of neutrinos in a given histogram is
found by multiplying the bin content by the bin width, rather than from the con-
tent alone. While this might be determined by parsing the RateUnit attribute,
existing neutrino generators make different assumptions when sampling input
neutrino beam energy distributions, so we specify an explicit attribute. If this
attribute is not provided, then it is expected that the number of neutrinos in a
given bin is specified by the bin content alone and is independent of the width
of the bin.

For a suggestion on how to encode useful information about more realistic neu-
trino beam descriptions, see E.S.1.

G.C.8 Non-standard Particle Number Descriptions:
For each additional particle number <PDG> declared in the

8

"NuHepMC.AdditionalParticleNumbers" attribute, according to G.R.8,
the HepMC3::GenRunInfo instance may contain an attribute giving a description
of the particle:

• type: HepMC3::StringAttribute,
name: "NuHepMC.AdditionalParticleInfo[<PDG>].Description"

For non-standard particles that should be further simulated by particle
propagation simulations, such as GEANT4 [27], additional information
encoded here may be enough to enable automatic propagation. In this
version of NuHepMC, we do not attempt to prescribe a format for such
information but highlight that HepMC3::GenRunInfo attributes of the form,
"NuHepMC.AdditionalParticleNumber[<PDG>].<SimName>.<AttrName>",
might be a useful for communicating such additional information. These
additional attributes should include, at a minimum, the particle’s mass, width,
spin, and electric charge.

G.S.1 Run Configuration:
It is suggested that a NuHepMC HepMC3::GenRunInfo instance should contain
all information required to reproduce the events in the vector. This may be
stored in attributes with names beginning with "NuHepMC.Provenance". The
information required will necessarily be generator-specific, but we suggest two
attributes that would be helpful to downstream users:

• type: HepMC3::LongAttribute,
name: "NuHepMC.Provenance.NEvents

• type: Implementation defined,
name: "NuHepMC.Provenance.RNGState"

– This might be a single number used as the seed to initialize the ran-
dom number generator (RNG). It could also be a more complicated
description of the RNG state.

G.S.2 Complete Status Metadata:
While G.R.5 and G.R.6 explicitly do not require implementations to emit meta-
data for standard status codes defined in the HepMC3 standard, it is suggested
that the complete list of status codes used by an implementation are included
in the "NuHepMC.VertexStatusInfo" and "NuHepMC.ParticleStatusInfo" at-
tributes.

2.4. Event Data

The event is used to store information about the event as a whole. An event is described
by arbitrary metadata and a graph of particles (edges) and vertices (nodes), each with
their own arbitrary metadata. The NuHepMC specifications for events are as follows:

E.R.1 HepMC3 Compatibility:
The HepMC3 standard places some constraints on valid event graphs, these con-
straints must be respected by valid NuHepMC events as we require full compati-
bility with HepMC3. More details of these constraints can be found in Ref. [22].

9

Existing neutrino event generators often rely on effective descriptions of the nu-
clear environment in a neutrino–nucleus hard scattering process. This means
that four-momentum is often not explicitly conserved for the neutrino–nucleus
system. Energy and momenta can be exchanged with a nuclear remnant, which
is not directly involved in a neutrino–nucleon hard scatter, through initial and fi-
nal state interactions. Implementations are free to conserve four momentum and
emit all physical initial and final state particles, including the fully-simulated
nuclear remnant, but for those implementations where such a requirement is not
feasible or would delay the adoption of this standard, P.C.2 reserves a non-
standard particle number that can be used to represent a nuclear remnant that
is not precisely simulated.

E.R.2 Event Number:
Each HepMC3::GenEvent must have a non-negative event number that is unique
within a given vector.

E.R.3 Process ID:
The process ID for the primary physics process that is represented in the
HepMC3::GenEvent must be recorded in a HepMC3::IntAttribute named
"signal process id". The metadata defining this process ID must be stored
according to G.R.4.

E.R.4 Units:
Energy and position units must be explicitly set in the HepMC3::GenEvent.

E.R.5 Lab Position:
The position of the event in the lab frame must be added as a
HepMC3::VectorDoubleAttribute, named "LabPos", with the same units as
used when implementing E.R.4. See E.C.5 for how to optionally store time in
this attribute. If the simulation did not involve a macroscopic geometry, then
this variable may be set to [0, 0, 0].

E.R.6 Vertices:
An event must contain at least one HepMC3::GenVertex, and must have one and
only one with a primary interaction vertex status code. No HepMC3::GenVertex

may have a not defined status code. (See V.R.1 for additional details).

E.R.7 Beam and Target Particles:
An event must contain exactly one particle with the incoming beam particle
status code and one particle with the target particle status code (see P.R.1). We
recommend that, in cases where the colliding initial-state particles are distinct,
the more massive of the two should be considered the target. For neutrino
scattering, the target will thus often be a complex nucleus or a free nucleon. In
the case of equally massive particles, the choice to label one of them as the target
is arbitrary.

P.C.1 provides a convention for marking a constituent bound nucleon struck by
the incoming beam particle in the event graph.

10

E.R.8 Event Completeness:
All simulated incoming and outgoing physical particles must be written to the
event. The storage of intermediate particles is considered an implementation
detail.

E.C.1 Process IDs:
It is not appropriate to mandate a specific set of interaction processes and as-
sign them IDs in this standard. Different models make different choices, and it
is impossible to foresee modeling developments that would require new process
IDs to be defined in the future. Instead, the ranges of IDs given below are rec-
ommended for high-level categorization of processes. Even if an implementation
uses the convention in Table 1, it must still adhere to G.R.4.

Identifier Process
100-199 Low-Energy Nuclear Scattering
200-299 Quasielastic
300-399 Meson Exchange Current
400-499 Resonance production
500-599 Shallow inelastic scattering
600-699 Deep inelastic scattering
700- Other process types

Table 1: Process ID ranges for various process categories.

Charged-current (CC) processes should have identifiers in the X00-X49 block,
and neutral-current (NC) processes should have them in the X50-X99 block.
Negative process IDs may be reserved for electromagnetic interactions in neutrino
event generators that include them.

E.C.2 Total Cross Section:
The total cross-section for the incoming beam particle, with its specific energy, to
interact with the target particle should be stored in a HepMC3::DoubleAttribute
on the HepMC3::GenEvent, named "TotXS". See G.C.4 for conventions on sig-
nalling cross section units.

E.C.3 Process Cross Section:
The total cross-section for the selected process ID for the incoming beam particle,
with its specific energy, to interact with the target particle should be stored in
a HepMC3::DoubleAttribute on the HepMC3::GenEvent, named "ProcXS". See
G.C.4 for conventions on signalling cross section units.

E.C.4 Estimated Flux-Averaged Total Cross Section:
Some simulations build up an estimate of the flux-averaged total cross section〈
σ
〉
as they run. This makes implementing G.C.5 impractical in many cases. As

an alternative, the built-in attribute HepMC3::GenCrossSection, accessed via
GenEvent::cross section should be used to store the current estimate of

〈
σ
〉
.

A user can then use the best estimate provided with the last generated event to
correctly scale an event rate to a cross-section prediction.

11

For event generators that do not currently provide the value of
〈
σ
〉
in the output,

Appendix B provides suggestions for algorithms for computing a running esti-
mate and associated Monte Carlo statistical uncertainty as events are produced.

When implementing this convention, ensure that the cross sections and
cross section errors data members are the same length as the number of
weights defined in the header. These should be filled with the current estimate
of the total cross section for each variation based on all events generated so
far, including the current event. Additionally, the HepMC3::GenCrossSection

data members accepted events and attempted events should be filled with
appropriate values.

E.C.5 Lab Time:
If the "LabPos" attribute vector contains three entries then it is assumed to only
contain the spatial position of the event. If it contains four entries, then the
fourth entry is interpreted as the time of the event in seconds.

E.S.1 Beam Description (Beam Simulation)
For more complex beam simulations that can not adequately be described by a
single energy or energy histogram (see G.C.7), it is suggested that the full parent
decay history is included in the HepMC3::GenEvent. A full set of conventions for
the description of beam particle production and parent particle decay chains (for
the case of neutrino beams) is currently outside the scope of this specification,
but generator implementations can signal that they adhere to this suggestion
to notify users that some or all of the beam particle production information is
included in the event.

2.5. Vertex Information

The vertices in a HepMC3 event are used to connect groups of incoming and outgoing
particles. For the vertex information, there is only one requirement in the present version
of the NuHepMC standard.

V.R.1 Vertex Status Codes:
We extend the HepMC3 definition of HepMC3::GenVertex::status to include
the concept of a primary vertex, corresponding to the primary process (i.e., the
one labelled according to E.C.1), and a final state interaction (FSI) summary
vertex. The full set of defined status codes can be found in Table 2. Implemen-
tations are free to define specific vertex status codes to refer to individual FSI
(or ISI) processes and output as much information as they require. However, a
single summary vertex may be useful for some purposes if the full FSI history is
very detailed or not often needed by users.

Any secondary vertex included within a NuHepMC event may have a status
between 21 and 999. Note that G.R.5 requires that all generator-specific status
codes must be fully described by attributes stored in the HepMC3::GenRunInfo.

V.C.1 Bound Nucleon Separation Vertex
When an interaction with a nucleon bound within a nucleus with definite kine-
matics is simulated, a HepMC3::GenVertex corresponding to the separation of

12

Status Code Meaning Usage
0 Not defined Do not use
1 Primary interaction vertex Recommended for all cases
2 FSI Summary vertex Recommended for all cases

3-20 Reserved for future NuHepMC standards Do not use
21-999 Generator-dependent For generator usage

Table 2: Set of vertex status codes

the struck nucleon and the nuclear remnant may be included and assigned status
code 21. If this convention is signalled via the mechanism described in G.C.1,
then status code 21 need not be included in the implementation of G.R.5.

2.6. Particle Information

In the current version of the NuHepMC standard, there is only a single requirement
and two conventions for the particle information.

P.R.1 Particle Status Codes:
We extend the HepMC3 definition of HepMC3::GenParticle::status slightly to
include the concept of a target particle. For neutrino scattering, this will usually
be a target nucleus. The status codes are defined in Table 3.

Status Code Description Usage
0 Not defined Do not use
1 Undecayed physical particle Recommended for all cases
2 Decayed physical particle Recommended for all cases
3 Documentation line Used for in/out particles

in the primary process
4 Incoming beam particle Recommended for all cases

5-10 Reserved for future HepMC3 standards Do not use
11-19 Reserved for future NuHepMC standards Do not use
20 Target particle Recommended for all cases

21-200 Generator-dependent For generator usage
201- Simulation-dependent For simulation software usage

Table 3: Particle status codes

Note especially that any incoming real particle must have a status code of 4 or
20, and any outgoing real particle must have a status code of 1. This allows users
to know at a glance which simulated particles must be considered “observable”
and which are “internal” details of the calculation. Special care must be taken
when including the effects of initial-state and final-state interactions.

Any internal particle included within a NuHepMC event may have a status in the
range than 21-200. Note that G.R.6 requires that all generator-specific status
codes must be fully described by attributes stored in the HepMC3::GenRunInfo.

P.C.1 Particle Status Codes:
When an interaction with a bound nucleon with definite kinematics is simulated,

13

the internal HepMC3::GenParticle corresponding to the bound nucleon should
have status code 21. If this convention is signalled via the mechanism described
in G.C.1, then status code 21 need not be included in the implementation of
G.R.6.

P.C.2 Nuclear Remnant Particle Code:
HepMC3 places restrictions on all external particles in the event graph to facili-
tate automatic checking of four momentum conservation at the event graph level.
As a result, we define the new particle number 2009900000 to correspond to a nu-
clear remnant pseudo-particle. This particle corresponds to an implementation
detail that should be used to abide by HepMC3 constraints to not have external
vertices, but should not be considered for physics analyses or onward simulation.
The number is chosen, according to the PDG scheme [25, Sec. 45, p. 733], to
be outside the range reserved for nuclear and quark-content particles and signals
that it is a non-standard code by having the 6th and 7th least significant digits
set to 9.

If this convention is signalled via the mechanism described in G.C.1, then particle
number 2009900000 need not be included in the implementation of G.R.8.

If the nuclear particle number of the remnant is known, it can be
added as a HepMC3::IntAttribute on the HepMC3::GenParticle named
"remnant particle number".

3. Flux-averaged total cross section

Comparisons of event generator predictions to external model calculations and exper-
imental data typically involve the conversion of simulated event distributions to total
or differential cross sections. This conversion is usually made using a scaling factor

〈
σ
〉

called the flux-averaged total cross section. This factor is simple to use but often difficult
to calculate analytically. Given the importance of

〈
σ
〉
for analyses of simulated neutrino

scattering events, we provide mathematical details about its definition and calculation.
Section 3.1 derives an expression for

〈
σ
〉
that is generally applicable to most simula-

tions of interest for neutrino experiments, including those with a time-dependent neutrino
source and a full treatment of the detector geometry. Example methods for obtaining
Monte Carlo estimators of

〈
σ
〉
suitable for storage via E.C.4 are described in Appendix

B. Section 3.2 describes some simple cases in which
〈
σ
〉
may be calculated directly, mak-

ing them good candidates for situations in which event generators may implement G.C.5.

3.1. Derivation

Let ϕ(f,Eν , ϑν , φν ,x, t) be the differential flux of (anti)neutrinos of species f with
energy Eν , momentum direction (expressed in terms of the Cartesian unit vectors)

p̂ν = sinϑν cosφν x̂+ sinϑν sinφν ŷ + cosϑν ẑ , (1)

and instantaneous three-position x at time t. This quantity is defined so that

Φ(x) =
∑
f

∫
dEν d cosϑν dφν dt ϕ (2)

14

has units of integrated flux (e.g., cm−2).
Assuming that the relevant neutrino interaction cross sections are sufficiently small

that beam attenuation and multiple scattering effects can be neglected, then the total
number of interactions N expected in a volume of interest

V =

∫
d3x (3)

is given by

N =
∑
f

∑
j

∫
dEν d cosϑν dφν d

3x dt ϕ ρ σ (4)

where ρ = ρ(j,x) is the number density of the j-th kind of target at position x. The
symbol σ = σ(f, j, Eν) denotes the total cross section for (anti)neutrinos of species f and
energy Eν to interact with the j-th kind of target (typically a particular nuclide).
One may rewrite the expression for N in the simple form

N =
〈
Φ
〉
·
〈
T
〉
·
〈
σ
〉

(5)

where 〈
Φ
〉
=

1

V

∑
f

∫
dEν d cosϑν dφν d

3x dt ϕ (6)

is the average flux in the volume V ,〈
T
〉
=

1〈
Φ
〉∑

f

∑
j

∫
dEν d cosϑν dφν d

3x dt ϕ ρ (7)

is the flux-averaged number of targets illuminated by the (anti)neutrinos, and

〈
σ
〉
=

N〈
Φ
〉
·
〈
T
〉 (8)

is the flux-averaged total cross section. For a discussion on how these might be calculated
using Monte-Carlo methods see Appendix B.

3.2. Analytic calculation under simplifying assumptions

In certain simple cases, the flux-averaged total cross section
〈
σ
〉
is known at the start of

the run and can be computed analytically to implement G.C.5. A common example is the
case of a point target of type b that is exposed to uni-directional beam of (anti)neutrinos
of species a with a fixed emission time. In this case, we may write the differential flux
and target density as

ϕ = A(Eν) δ(cosϑν − cos θ0) δ(φν − ϕ0) δ(t− t0) δfa (9)

ρ = B δ3(x− x0) δjb . (10)

Here δxy is the Kronecker delta and the constants θ0, ϕ0, t0, x0, a, and b are arbitrary
values of the relevant variables. The function A(Eν) gives the incident (anti)neutrino
energy spectrum (with unimportant normalization) and has units of flux divided by

15

energy (e.g., GeV−1 cm−2). The constant B is dimensionless. From Eqs. 6, 7, and 8, it
follows that 〈

Φ
〉
=

∫
dEν A(Eν) (11)

〈
T
〉
= B (12)

〈
σ
〉
=

∫
dEν A(Eν)σ(a, b, Eν)∫

dEν A(Eν)
. (13)

If the function A(Eν) and the total cross section σ(a, b, Eν) are accessible during genera-
tor initialization, then the integrals in Eq. 13 are easily computable by standard numerical
methods.
In the even simpler case where the neutrino source is also monoenergetic, then A(Eν)

contains a Dirac delta function, and the flux-averaged total cross section is just the total
cross section evaluated at the fixed energy of the beam.

4. NuHepMC Generator Predictions

Using preliminary tools for converting proprietary neutrino event formats to the
NuHepMC standard defined above, we demonstrate the utility of the common format
with some cross-section predictions.
A comparison to a recent neutrino-argon cross-section measurement from the

MicroBooNE collaboration [28] is shown on the left-hand side of Fig. 1. This com-
parison was made with the NUISANCE framework, which before this implementation
of NuHepMC would have to have been built against GENIE, NEUT, and NuWro bina-
ries of compatible versions to be able to generate the predictions shown in the figure.
In the present workflow, results can be obtained using only generator-agnostic tools
for interpreting events stored in the NuHepMC format. This relatively small reduc-
tion of technical requirements will dramatically lower the barrier to making high-quality
prediction-data comparisons for many experts and non-experts in the neutrino commu-
nity.
It is particularly worth noting that the different generator predictions in this com-

parison provide critical cross-section scaling information in different ways. Thanks to
the provisions in this standard, NUISANCE is able to use G.C.1 to determine what
scaling methods are available and then automatically scale the selected event rate to a
cross-section measurement prediction without any user input or generator-specific code
or knowledge. For reference, the NEUT and NuWro selected event projections are scaled
via G.C.5, while GENIE and Achilles are scaled via E.C.4.

We want to emphasise that the comparison to data is solely a demonstration of the
prediction pipeline and not meant as a physics statement or the best / most recent
predictions from each of the generators for the given data set.
The right-hand side of Fig. 1 presents MARLEY predictions of flux-averaged differ-

ential cross sections for νe produced from µ+ decay at rest scattering on 40Ar. The
blue histogram shows the inclusive charged-current prediction, and the other histograms
show contributions arising from several distinct final states. The cross-section predic-
tions obtained using NuHepMC without any MARLEY-specific code are very similar to

16

Figure 1: (left) Comparison of NEUT, GENIE, NuWro, and ACHILLES to the δpT data from the
MicroBooNE collaboration [28]. The comparison is a demonstration of the event generation to NUI-
SANCE pipeline and not a physics statement about the quality of any generator. (right) Low-energy
differential cross section predictions produced using MARLEY events in the NuHepMC format.

those shown in a previous MARLEY publication [29]. An experimental measurement of
this interaction channel at the relevant tens-of-MeV νe energy scale is not yet available,
but adding future data points to the plot would be easily achieved with the present
NuHepMC-based workflow.
Comparisons similar to those above can be easily produced for an arbitrary interaction

channel using information available in the NuHepMC event record. A Monte Carlo
estimator for the flux-averaged differential cross section in a bin of an arbitrary kinematic
variable x ∈ [xk, xk+1) is given by〈

dσ

dx

〉
k

≈
〈
σ
〉 ∑n

e=1 δ
k
e we

∆xk

∑n
e=1 we

(14)

where
〈
σ
〉
is the flux-averaged total cross section (see Sec. 3), we is the statistical weight

of the e-th event, n is the number of generated events, and ∆xk = xk+1−xk is the width
of the k-th bin. The symbol δke evaluates to unity when the value of x from the e-th event
falls within the k-th bin and zero otherwise. In the case of unit weight events, the value
of we = 1 for all events, and

∑n
e=1 we = n. One thus recovers the traditional definition

of these estimators for unweighted events.
The Monte Carlo statistical uncertainty (standard deviation) on the estimator of the

differential cross section is approximately given by

StdDev

(〈
dσ

dx

〉
k

)
≈

〈
σ
〉

∆xk

∑n
e=1 we

√√√√ n∑
e=1

δke w
2
e (15)

where we have assumed that
〈
σ
〉
is exactly known. For cases where it is estimated

17

using Monte Carlo techniques rather than directly calculated, the statistical uncertainty
discussed in Appendix B also applies.

5. Acknowledgments

The authors would like to thank A. Papadopoulou for sharing a NUISANCE imple-
mentation for the example comparison in Sec. 4. This manuscript has been authored by
Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S.
Department of Energy, Office of Science, Office of High Energy Physics. The work in
this manuscript is supported by the Royal Society, grant number URF\R1\211661.

Appendix A. Target Scaling Conventions

It is useful to illustrate the relationship between the different cross-section target scal-
ing conventions discussed in G.C.4 with an example. Let σC and σH respectively denote
the total cross section for a given process to occur with a 12C and 1H atom. Then the
cross section for an interaction with the carbon part and the hydrogen part of a CH2

molecule under the different target scaling conventions are given below:

• "PerTargetAtom":

– Carbon interaction: σ = σC

– Hydrogen interaction: σ = σH

• "PerTargetMolecule":

– Carbon interaction: σ = σC + 2σH

– Hydrogen interaction: σ = σC + 2σH

• "PerTargetNucleon":

– Carbon interaction: σ = 1
12σ

C

– Hydrogen interaction: σ = σH

• "PerTargetMolecularNucleon":

– Carbon interaction: σ = 1
14 (σ

C + 2σH)

– Hydrogen interaction: σ = 1
14 (σ

C + 2σH)

It should be clear from this example why we recommend against implementations using
"PerTargetMolecularNucleon", important information about the relative cross section
for the nuclear constituents is lost when averaging over the molecule—the cross-section
information reported for an interaction with the hydrogen part of a hydrocarbon will
implicitly contain carbon nuclear effects. However, the scheme is discussed here because
where cross-section information is written out at the event level in existing neutrino
event generators, it is often used. It is usually possible to reconstruct the cross-section
for constituents by brute force from a sample of events.

18

Appendix B. Estimation via Monte Carlo sampling

In this section we provide two example methods of estimating the flux-averaged total
cross-section when it is not known a priori. The first method is suitable for GENIE-like
codes that calculate energy-dependent total cross sections prior to event generation itself.
The second is suitable for ACHILLES and similar codes that do not use precalculated
cross sections in this way.

Appendix B.1. GENIE-like approach

The (anti)neutrino interactions that occur in the volume V are drawn from the prob-
ability distribution

P (f, j, Eν , ϑν , φν ,x, t) =
1

N
ϕρσ . (B.1)

It follows from these definitions that

〈
σ
〉
=

[∑
f

∑
j

∫
P (f, j, Eν , ϑν , φν ,x, t)

1

σ
dEν d cosϑν dφν d

3x dt

]−1

. (B.2)

One may therefore obtain a Monte Carlo estimator σ̂ for the flux-averaged total cross-
section

〈
σ
〉
via the expression

σ̂ =

[∑n
e=1

we

σe(f,j,Eν)∑n
e=1 we

]−1

(B.3)

where we is the statistical weight for the e-th event, n is the total number of generated
events, and σe is the total cross section evaluated for the (anti)neutrino species (f),
target (j), and incident energy (Eν) sampled in the e-th event. An estimator for the
Monte Carlo statistical standard deviation of σ̂ is given by

StdDev(σ̂) =
√

Var(σ̂) = σ̂2 ·

√
Var

(
1

σ̂

)
= σ̂2 ·

√√√√√n ·
∑n

e=1 w
2
e

(
1
σe

− 1
σ̂

)2
(
∑n

e=1 we)
2 · (n− 1)

. (B.4)

Note that there is no universally accepted expression for the standard error on a
weighted arithmetic mean such as the one computed in Eq. B.3 (before taking the recip-
rocal of the expression). The choice used in Eq. B.4 is based on the third expression for
“SEMw” recommended in Ref. [30] based on bootstrapping studies (see also references
therein). The quantity proposed as an estimator for the square of the standard error on
a weighted mean

x̄w =

∑n
e=1 we xe∑n
e=1 we

(B.5)

of n values xe is

Var(x̄w) =
n

(n− 1) (nw̄)
2

[
n∑

e=1

(wexe − w̄x̄w)
2 − 2x̄w(we − w̄)(wexe − w̄x̄w) + x̄2

w(we − w̄)2

]
(B.6)

19

where

w̄ =
1

n

n∑
e=1

we . (B.7)

The expression in Eq. B.6 may be simplified to read

Var(x̄w) =
n

(n− 1) (
∑n

e=1 we)
2

n∑
e=1

w2
e (xe − x̄w)

2 . (B.8)

The result in Eq. B.4 is obtained immediately with the substitutions xe → 1/σe and
x̄w → 1/σ̂.
While the expressions in Eqs. B.3 and B.4 may be useful for estimating

〈
σ
〉
from

a sample of generated events, they require access to the entire sample and are thus
unsuitable for implementing the running estimate described in E.C.4. However, an
adaptation of West’s algorithm [31] provides a solution for this application. Let

n0 = S0 = µ0 = T0 = 0 . (B.9)

Then, for the e-th event, let the values of these quantities be defined recursively via

ne = ne−1 + 1 = e (B.10)

Se = Se−1 + we (B.11)

µe = µe−1 +
we

Se

(
1

σe
− µe−1

)
(B.12)

Te = Te−1 + w2
e

(
1

σe
− µe−1

)(
1

σe
− µe

)
, (B.13)

where σe and we are assigned the same meanings as above.
The running Monte Carlo estimator σ̂e of

〈
σ
〉
for the e-th event (e > 0) may then be

written as

σ̂e =
1

µe
. (B.14)

Its estimated statistical uncertainty is given by

StdDev(σ̂e) =
1

µ2
e

√
ne Te

(ne − 1)S2
e

. (B.15)

Appendix B.2. ACHILLES-like approach

When calculating Eq. (4), the equation can be expanded to include the integrals over
the differential cross section giving

N =
∑
f

∑
j

∫
dEν d cosϑν dφν d

3x dtdΩϕf ρj
dσfj

dΩ
, (B.16)

where Ω is the final state phase space and the cross section is broken up into individual
processes as σfj . The equation can then be estimated using traditional Monte-Carlo
methods giving

N ≈ V

n

∑
f

∑
j

∑
i

ϕf (xi) ρj(xi)
dσfj

dΩ
(xi) , (B.17)

20

where xi are the selection of the variables of integration for the ith point and V is
the volume of the space being integrated. The uncertainty on the integral estimate is
thus given by the traditional calculation of the standard deviation. The variance of
the integral estimate can be improved through the use of importance sampling, such as
VEGAS [32, 33]. The integral over the neutrino fluxes and over the density of the nuclear
targets can be obtained in a similar method, or by using other numerical integration
techniques like quadrature. The flux-averaged cross section can thus be calculated with
Monte-Carlo techniques using Eq. 8.

The results of the above Monte-Carlo calculation would produce a set of weighted
events that can be used as is, or can be unweighted through the following procedure.
First, the maximum values for each neutrino species and nuclei can be estimated using
Monte-Carlo methods (wmax

fj). Second, a neutrino species and nuclei is selected according
to the probability

Pfj =
wmax

fj

wmax
, (B.18)

where wmax is given by the sum of the maximum weight over all neutrino types and
nuclei. Once a neutrino type and nucleus is selected, a set of initial and final state
momenta are generated and the integrand for that particular neutrino type and nucleus
is calculated. The event can then be unweighted by performing an accept-reject step
using the ratio of weight of the event to the maximum weight calculated for the given
neutrino type and nucleus. In other words, the weight of an event would be given by

w̃i = wmax
∑
fj

Θ

wmax
fj

wmax
−
∑
f ′<f,
j′<j

wmax
f ′j′

wmax
−R1

Θ

(
wi

wmax
fj

−R2

)
, (B.19)

with R1, R2 ∈ [0, 1] a uniformly distributed random number. This would result in a
collection of events with either weights wmax or zero, and the average of these events
would give an estimate of the total flux-averaged cross section, and only the events
with non-zero weight are required to be written out as long as the number of attempted
events (i.e. the total including the zero weight events) is also tracked. There are technical
issues with directly using the true maximum sampled, since the maximum depends on
the number of samples taken. There are many ways to mitigate this numerical issue, one
approach is discussed in Section 4A of Ref. [34].

Appendix C. Example Event Graphs

Figs. C.2, C.3, and C.4 show some example event graphs for neutrino event generators
that natively implement, or are convertible-to, the NuHepMC format. Although the
details of each generator’s implementation of this standard differ, the constraints that
are imposed enable consistent usage for the most common tasks without any knowledge
of each generator’s implementation details.

References

[1] L. Alvarez-Ruso, et al., NuSTEC white paper: Status and challenges of neutrino–nucleus scattering,
Prog. Part. Nucl. Phys. 100 (2018) 1–68. arXiv:1706.03621, doi:10.1016/j.ppnp.2018.01.006.

21

http://arxiv.org/abs/1706.03621
https://doi.org/10.1016/j.ppnp.2018.01.006

Figure C.2: (left) A MARLEY event graph in the NuHepMC format. (right) An ACHILLES event graph
in the NuHepMC format.

Figure C.3: (left) A NEUT event graph in the NuHepMC format. (right) A GENIE event graph in the
NuHepMC format.

22

Figure C.4: A NuWro event graph in the NuHepMC format.

[2] U. Mosel, Neutrino event generators: foundation, status and future, J. Phys. G: Nucl. Part. Phys.
46 (11) (2019) 113001. arXiv:1904.11506, doi:10.1088/1361-6471/ab3830.

[3] J. Barrow, et al., Summary of workshop on common neutrino event generator tools, arXiv preprint
(2020). arXiv:2008.06566.

[4] J. M. Campbell, et al., Event generators for high-energy physics experiments, arXiv preprint (3
2022). arXiv:2203.11110.

[5] A. Aurisano, C. Backhouse, R. Hatcher, N. Mayer, J. Musser, R. Patterson, R. Schroeter, A. Sousa,
The NOvA simulation chain, J. Phys.: Conf. Ser. 664 (7) (2015) 072002. doi:10.1088/1742-6596/

664/7/072002.
[6] E. Snider, G. Petrillo, LArSoft: toolkit for simulation, reconstruction and analysis of liquid argon

TPC neutrino detectors, J. Phys.: Conf. Ser. 898 (4) (2017) 042057. doi:10.1088/1742-6596/898/

4/042057.
[7] A. Buckley, J. Butterworth, D. Grellscheid, H. Hoeth, L. Lonnblad, J. Monk, H. Schulz, F. Siegert,

Rivet user manual, Comput. Phys. Commun. 184 (2013) 2803–2819. arXiv:1003.0694, doi:10.

1016/j.cpc.2013.05.021.
[8] C. Bierlich, et al., Robust Independent Validation of Experiment and Theory: Rivet version 3,

SciPost Phys. 8 (2020) 026. arXiv:1912.05451, doi:10.21468/SciPostPhys.8.2.026.
[9] J. M. Butterworth, D. Grellscheid, M. Krämer, B. Sarrazin, D. Yallup, Constraining new physics

with collider measurements of Standard Model signatures, JHEP 03 (2017) 078. arXiv:1606.05296,
doi:10.1007/JHEP03(2017)078.

[10] A. Buckley, et al., Testing new physics models with global comparisons to collider measure-
ments: the Contur toolkit, SciPost Phys. Core 4 (2021) 013. arXiv:2102.04377, doi:10.21468/

SciPostPhysCore.4.2.013.
[11] Les Houches 2017: Physics at TeV Colliders Standard Model Working Group Report. arXiv:

1803.07977.
[12] J. Alwall, et al., A Standard format for Les Houches event files, Comput. Phys. Commun. 176

(2007) 300–304. arXiv:hep-ph/0609017, doi:10.1016/j.cpc.2006.11.010.
[13] E. Bothmann, et al., A standard convention for particle-level Monte Carlo event-variation weights,

SciPost Phys. Core 6 (2023) 007. arXiv:2203.08230, doi:10.21468/SciPostPhysCore.6.1.007.
[14] E. Bothmann, T. Childers, C. Gütschow, S. Höche, P. Hovland, J. Isaacson, M. Knobbe, R. Latham,

Efficient precision simulation of processes with many-jet final states at the LHC (9 2023). arXiv:

2309.13154.
[15] L. Alvarez-Ruso, et al., Recent highlights from GENIE v3, Eur. Phys. J. Spec. Top. (Dec 2021).

arXiv:2106.09381, doi:10.1140/epjs/s11734-021-00295-7.
[16] C. Andreopoulos, et al., The GENIE Neutrino Monte Carlo Generator, Nucl. Instrum. Methods

A614 (2010) 87–104. arXiv:0905.2517, doi:10.1016/j.nima.2009.12.009.
[17] O. Buss, T. Gaitanos, K. Gallmeister, et al., Transport-theoretical description of nuclear reactions,

Phys. Rep. 512 (1) (2012) 1–124. doi:10.1016/j.physrep.2011.12.001.
[18] Y. Hayato, L. Pickering, The NEUT neutrino interaction simulation program library, Eur. Phys. J.

23

http://arxiv.org/abs/1904.11506
https://doi.org/10.1088/1361-6471/ab3830
http://arxiv.org/abs/2008.06566
http://arxiv.org/abs/2203.11110
https://doi.org/10.1088/1742-6596/664/7/072002
https://doi.org/10.1088/1742-6596/664/7/072002
https://doi.org/10.1088/1742-6596/898/4/042057
https://doi.org/10.1088/1742-6596/898/4/042057
http://arxiv.org/abs/1003.0694
https://doi.org/10.1016/j.cpc.2013.05.021
https://doi.org/10.1016/j.cpc.2013.05.021
http://arxiv.org/abs/1912.05451
https://doi.org/10.21468/SciPostPhys.8.2.026
http://arxiv.org/abs/1606.05296
https://doi.org/10.1007/JHEP03(2017)078
http://arxiv.org/abs/2102.04377
https://doi.org/10.21468/SciPostPhysCore.4.2.013
https://doi.org/10.21468/SciPostPhysCore.4.2.013
http://arxiv.org/abs/1803.07977
http://arxiv.org/abs/1803.07977
http://arxiv.org/abs/hep-ph/0609017
https://doi.org/10.1016/j.cpc.2006.11.010
http://arxiv.org/abs/2203.08230
https://doi.org/10.21468/SciPostPhysCore.6.1.007
http://arxiv.org/abs/2309.13154
http://arxiv.org/abs/2309.13154
http://arxiv.org/abs/2106.09381
https://doi.org/10.1140/epjs/s11734-021-00295-7
http://arxiv.org/abs/0905.2517
https://doi.org/10.1016/j.nima.2009.12.009
https://doi.org/10.1016/j.physrep.2011.12.001

ST 230 (24) (2021) 4469–4481. arXiv:2106.15809, doi:10.1140/epjs/s11734-021-00287-7.
[19] Y. Hayato, A neutrino interaction simulation program library NEUT, Acta Phys. Pol. B 40 (9)

(2009) 2477–2489.
URL http://www.actaphys.uj.edu.pl/fulltext?series=Reg&vol=40&page=2477

[20] T. Golan, J. Sobczyk, J. Żmuda, NuWro: the Wroc law Monte Carlo generator of neutrino interac-
tions, Nucl. Phys. B - Proc. Supp. 229-232 (2012) 499. doi:10.1016/j.nuclphysbps.2012.09.136.

[21] P. Stowell, et al., NUISANCE: a neutrino cross-section generator tuning and comparison framework,
J. Instrum. 12 (01) (2017) P01016. arXiv:1612.07393, doi:10.1088/1748-0221/12/01/p01016.

[22] A. Buckley, P. Ilten, D. Konstantinov, L. Lönnblad, J. Monk, W. Pokorski, T. Przedzinski, A. Ver-
bytskyi, The HepMC3 event record library for Monte Carlo event generators, Comput. Phys. Com-
mun. 260 (2021) 107310. arXiv:1912.08005, doi:10.1016/j.cpc.2020.107310.

[23] J. Isaacson, W. I. Jay, A. Lovato, P. A. N. Machado, N. Rocco, Introducing a novel event generator
for electron-nucleus and neutrino-nucleus scattering, Phys. Rev. D 107 (2023) 033007. arXiv:

2205.06378, doi:10.1103/PhysRevD.107.033007.
[24] S. Gardiner, Simulating low-energy neutrino interactions with MARLEY, Comput. Phys. Commun.

269 (2021) 108123. arXiv:2101.11867, doi:https://doi.org/10.1016/j.cpc.2021.108123.
[25] R. L. Workman, et al., Review of particle physics, Prog. Theor. Exp. Phys. 2022 (8) (2022) 083C01.

doi:10.1093/ptep/ptac097.
[26] IEEE standard for floating-point arithmetic, IEEE Std 754-2019 (Revision of IEEE 754-2008) (2019)

1–84doi:10.1109/IEEESTD.2019.8766229.
[27] S. Agostinelli, et al., GEANT4–a simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250–303.

doi:10.1016/S0168-9002(03)01368-8.
[28] P. Abratenko, et al., Multidifferential cross section measurements of νµ-argon quasielasticlike re-

actions with the MicroBooNE detector, Phys. Rev. D 108 (2023) 053002. doi:10.1103/PhysRevD.

108.053002.
[29] S. Gardiner, Nuclear de-excitations in low-energy charged-current νe scattering on 40Ar, Phys. Rev.

C 103 (2021) 044604. arXiv:2010.02393, doi:10.1103/PhysRevC.103.044604.
[30] D. F. Gatz, L. Smith, The standard error of a weighted mean concentration–I. Bootstrapping vs

other methods, Atmospheric Environ. 29 (11) (1995) 1185–1193. doi:https://doi.org/10.1016/

1352-2310(94)00210-C.
[31] D. H. D. West, Updating mean and variance estimates: An improved method, Commun. ACM

22 (9) (1979) 532–535. doi:10.1145/359146.359153.
[32] G. P. Lepage, A New Algorithm for Adaptive Multidimensional Integration, J. Comput. Phys. 27

(1978) 192. doi:10.1016/0021-9991(78)90004-9.
[33] G. P. Lepage, VEGAS: an adaptive multidimensional integration program, Tech. Rep. CLNS-

80/447, Newman Laboratory of Nuclear Studies, Cornell University (1980).
[34] C. Gao, S. Höche, J. Isaacson, C. Krause, H. Schulz, Event Generation with Normalizing Flows,

Phys. Rev. D 101 (7) (2020) 076002. arXiv:2001.10028, doi:10.1103/PhysRevD.101.076002.

24

http://arxiv.org/abs/2106.15809
https://doi.org/10.1140/epjs/s11734-021-00287-7
http://www.actaphys.uj.edu.pl/fulltext?series=Reg&vol=40&page=2477
http://www.actaphys.uj.edu.pl/fulltext?series=Reg&vol=40&page=2477
https://doi.org/10.1016/j.nuclphysbps.2012.09.136
http://arxiv.org/abs/1612.07393
https://doi.org/10.1088/1748-0221/12/01/p01016
http://arxiv.org/abs/1912.08005
https://doi.org/10.1016/j.cpc.2020.107310
http://arxiv.org/abs/2205.06378
http://arxiv.org/abs/2205.06378
https://doi.org/10.1103/PhysRevD.107.033007
http://arxiv.org/abs/2101.11867
https://doi.org/https://doi.org/10.1016/j.cpc.2021.108123
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1103/PhysRevD.108.053002
https://doi.org/10.1103/PhysRevD.108.053002
http://arxiv.org/abs/2010.02393
https://doi.org/10.1103/PhysRevC.103.044604
https://doi.org/https://doi.org/10.1016/1352-2310(94)00210-C
https://doi.org/https://doi.org/10.1016/1352-2310(94)00210-C
https://doi.org/10.1145/359146.359153
https://doi.org/10.1016/0021-9991(78)90004-9
http://cds.cern.ch/record/123074/files/clns-447.pdf?version=1
http://cds.cern.ch/record/123074/files/clns-447.pdf?version=1
http://arxiv.org/abs/2001.10028
https://doi.org/10.1103/PhysRevD.101.076002

