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Abstract

Integrating neural networks for data compression directly in the Read-Out In-

tegrated Circuits (ROICs), i.e. the pixelated front-end, would result in a signif-

icant reduction in off-chip data transfer, overcoming the I/O bottleneck. Our

ROIC test chip (AI-In-Pixel-65) is designed in a 65nm Low Power CMOS process

for the readout of pixelated X-ray detectors. Each pixel consists of an analog

front-end for signal processing and a 10b analog-to-digital converter operating

at 100KSPS. We compare two non-reconfigurable techniques, Principal Com-

ponent Analysis (PCA) and an AutoEncoder (AE) as lossy data compression

engines implemented within the pixelated area. The PCA algorithm achieves

50× compression, adds one clock cycle latency, and results in a 21% increase in

the pixel area. The AE achieves 70× compression, adds 30 clock cycle latency,

and results in a similar area increase.

1. Introduction

Ptychography is an imaging method that delivers a spatial resolution limited

not by any optics used, but by the scattering strength of the object under study.

This is especially important in X-ray microscopy, where the numerical aperture

of the best optics is quite low compared to that obtained with visible light.
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Ptychography works by collecting far-field diffraction patterns as a limited-area

coherent beam is moved to different locations on an extended object, with object

reconstruction obtained using iterative phase retrieval or nonlinear optimization

methods. Obtaining faster frame-rate detectors is essential for improving the

throughput of X-ray ptychography [1], especially as diffraction-limited storage

rings are providing hundredfold gains in coherent flux [2].

Typical pixelated readout ICs for X-ray detectors have 200× 200 pixels per

chip, utilize 10-12b ADCs for digitizing data, and need to operate continuously

without deadtime at high frame rates up to 1 Mfps, thus generating approxi-

mately ≥ 0.5 Tbps of data. The main bottleneck at this stage is the off-chip

data transfer. If this data could be reduced by a factor between 50× and 100×,

then 1Mfps readout can be achieved with 2-4 multi-gigabit links.

Alternative techniques, such as data sparsification using zero suppression, re-

quire significant overhead associated with pixel address (approximately 18-20b

per 12b data for a full reticle chip). Moreover, although simulated data could

contain ∼ 97% zeros, the noisy experimental data is closer to ∼ 60% zeros, indi-

cating a much higher occupancy. A breakeven analysis of full-frame imaging vs.

zero-suppressed readout for large pixel Read-Out Integrated Circuits (ROICs)

shows that zero suppression is no longer useful for occupancies ≥ 40% [3].

Although front-end ROICs have adopted early digitization, such as in-pixel

ADCs [4] and TDCs, they still rely on data transfer from pixel to the periphery,

on-edge data serialization, and high-speed off-chip data transfer [5]. In pixel

detector chips, considerations of geometry and power both contribute to a bot-

tleneck in extracting data from the chip. A pixel detector with millions of pixels

generating 10-bit data words at a rate of tens to hundreds of kilohertz can pro-

duce 1012 bits per second. In particular, the state of the art in electronic links

for high energy physics is represented by the lpGBT ASIC developed by CERN,

which can read out 10 Gb/s with power dissipation of over 0.5 Watts [6, 7].

Such a pixel detector would require hundreds of lpGBT channels operating in

parallel to read it out, which is clearly infeasible from a system perspective.

The development of novel integrated photonic links can ease this bottleneck by
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providing data transmission at < 0.5 pJ/b (compared to 10pJ/b for state-of-the-

art electronic solution) and by using wavelength-division multiplexing (WDM)

to replaced dozens of electrical channels with a single optical fiber, increasing

feasible readout bandwidth by two orders of magnitude or more [8]. However,

significant challenges still remain in the integration and co-packaging of sili-

con photonics with CMOS readout. On-ASIC data compression provides an

alternative solution for addressing the readout bottleneck. In most scientific

applications, the rate of features of interest in a data stream is a tiny fraction

of the raw data rate, and discarding data which is not “interesting” before it is

moved off-chip can dramatically reduce both power and bandwidth consump-

tion. The advancement of both CMOS technology nodes and machine learning

algorithms has made on-chip discrimination realistic with only a modest power

and area overhead, making data compression useful to both bridge the gap until

more efficient link strategies are mature, as well as complement them when they

arrive.

In this work, we aim to demonstrate that lossy data compression techniques

such as Principal Component Analysis (PCA) and AI/ML-based AutoEncoders

(AE) could enable 50× to 80× on-chip data compression as a pathway to over-

coming the I/O bottleneck while maintaining the accuracy required for image

reconstruction and further scientific analysis. Traditionally, edge AI has con-

stituted the implementation of neural networks (NNs) on FPGAs or digital

data concentrator ASICs, which collect and process data from several front-end

ROICs. However, integrating NNs directly in the pixelated front-end ROICs

would result in a significant reduction in off-chip data transfer.

Our AI-In-Pixel-65 test chip architecture for X-ray detectors includes two

32 × 32 arrays of pixels with independent readouts after data compression, as

shown in Fig. 1. Figure 2 shows the layout of the readout chip with the PCA

and AE algorithms integrated into the pixelated areas. The following sections

describe the pixel front-end architecture, the algorithm development, some im-

plementation issues, and our co-design solutions.
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Figure 1: Functional block diagram of AI-In-Pixel-65 test chip with either PCA or AE per-
forming data compression for 1024 pixels

Figure 2: Our ROIC test chip (AI-In-Pixel-65) with the PCA and AE algorithms integrated
in the pixelated area. On the right, an highlight of the compression algorithm in digital logic
surrounding the analog pixels.

2. Front-end architecture

The AI-In-Pixel-65 analog front-end consists of three stages: a charge-sensitive

integrator, correlated double-sampling circuit, and compact 100 KSPS serial

SAR ADC [9].

A charge-sensitive integrator is directly connected to the photodiode, con-

verting pulses of charge to voltage. Its feedback capacitor is a 3 fF plate capac-

itor with the top-metal bump bond forming one plate. The integrator’s output

is sampled by a correlated double-sampling (CDS) circuit, which suppresses
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low-frequency noise and reset noise [10].

The sampled voltage is digitized by a ten-bit serial successive approximation

register (SAR) ADC. The ADC generates approximation voltages using a charge

redistribution DAC based on two capacitors CR and CL. Six binary weighted

trim capacitors are used to tune CL = CR. When not selected, these trim

capacitors are bootstrapped by the comparator’s input buffer.

The DAC generates each successive bit of the approximation voltage by

charging CR either to Vref or to 0V, then shorting the positive terminals of CR

and CL together [11]. The final voltage developed at the positive terminal of

CL (the negative input to the comparator) after N phases is given by:

N∑
n=1

Vrefhn

2N−n+1

Where hn is one if CR is charged to Vref at stage n and zero if it is dis-

charged. The ADC compares each approximation to the sampled voltage at its

positive input to decide the next hn. CL is then discharged. Thus, one 10-bit

ADC acquisition requires 55 clock cyles:
∑10

n=1 n = 45 cycles to compute 10 ap-

proximations, plus 10 discharge/clear cycles. However, the data from one ADC

acquisition can be read out while the next sample is being acquired, so no dead

time is introduced if total readout time is less than one acquisition period [5].

3. Lossy data compression

Very fast and simple schemes have been proposed [12] for about 2x on-

detector-chip data compression with little or no impact on reconstructed image

quality [13], and these schemes are similar to those used for compressed storage

of ptychographic data in GPUs during image reconstruction [14]. At the same

time, more complicated compression methods such as principal component anal-

ysis (PCA) have been shown to provide significantly higher compression values

for storing ptychographic data for subsequent analysis. Alternatively, it has

been shown that one can train neural networks from the association of real-

space object features and their far-field diffraction patterns, and subsequently
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Figure 3: Simulated example diffraction patterns measured by a 10-bit ADC in a 32×32 pixel
array.

use these networks to rapidly obtain approximate object reconstructions from

diffraction data [15, 16]. Therefore it is worthwhile to consider different options

for more-sophisticated on-chip data compression of ptychographic data, both

to save on subsequent data storage space but also to reduce the complications

and compromises that the circuitry for high-speed per-pixel data transmission

involve [17, 18].

Two schemes for lossy data compression are implemented on separate halves

of the chip, each compressing the digitized charge values from their own 32×32

pixel arrays. One half of the chip compresses data through a PCA algorithm,

while the other compresses via an AI/ML-based AutoEncoder (AE). Figure 3

shows two example patterns from simulations of X-ray scattering as measured

by such a pixel array.

3.1. Principal Component Analysis

The aim of PCA is to represent the diffraction pattern images as a linear

combination of the features that make up the pattern. The diffraction pattern

measured by the array of j pixels, Dj , can be described by the product of a

matrix of eigenimages, Rn×j , representing a basis of the diffraction pattern, and

the corresponding vector of eigenvalues, Pn:

Dj = Pn ×Rn×j
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Figure 4: First 6 eigenimages forming the basis of diffraction patterns derived from simulation
of a 32 × 32 pixel array. Images show a zoomed in view of the central 10 × 10 pixels of the
arrays.

Given the matrix of eigenimages Rn×j , the pixel outputs can be described

by the n eigenvalues. The eigenimages can be thought of as encoding different

features within the diffraction pattern, with the leading eigenimages represent-

ing the most prominent features, and progressing to finer and finer details. An

example of the first 6 eigenimages for simulated diffraction patterns is shown in

Fig. 4. In this basis, the first eigenimage characterizes the amplitude of the cen-

tral peak in the diffraction pattern, followed by eigenimages which characterize

the rotation, spread, and further details of the diffration patterns.

The diffraction patterns are reconstructed through a linear combination of

the eigenimages, each weighted by its corresponding eigenvalue. The level of de-

tail and resolution obtained depends on the number of eigenimages/eigenvalues

used. Fig. 5 shows an example diffraction pattern from simulation reconstructed

using varying number of eigenimages. While reducing the number of eigenval-

ues transmitted off-chip will result in a lossy reconstruction of the diffraction

pattern, ptychography data normally contains a high amount of redundancy.

Diffraction patterns are collected from illuminating overlapping locations on a

sample, so some levels of loss in the diffraction image can be acceptable while
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still maintaining good quality in the reconstructed image of the sample [13].

Since n ≪ j typically, this can result in a significant reduction in the data

volume if Pn is calculated on-chip (Pn = Dj×R−1
j×n) and transmitted in place of

Dj . The weights used for the inverse of the eigenimage matrix (R−1
j×n) were de-

termined from simulated diffraction patterns. The nature of the x-ray diffraction

patterns in ptychography is such that the types of patterns obtained through

imaging of different objects are quite similar, and the diffraction patterns ob-

tained from one object can be represented using the basis of eigenimages derived

from another object. This means that the elements of the R−1
j×n matrix can be

re-used, and thus hard-coded in the chip.

The number of eigenvalues used and the precision of the weights of the R−1

matrix and eigenvalues were optimized for the performance of the reconstruc-

tion of the patterns and the amount of resulting data compression. With more

eigenvalues transmitted off-detector (and thus, a larger the R−1 matrix), finer

granularity details of the diffraction patterns are encoded. The trade-off be-

tween the amount of compression and the the loss of detail in the diffraction

patterns is evaluated by compressing and decompressing the diffraction patterns

from simulated X-ray ptychography measurements while varying the number of

eigenvalues. These diffraction patterns are then used to perform a ptychographic

image reconstruction of the initial object from the simulation. The level of detail

in the reconstruction is quantified by computing the Fourier ring correlations

(FRC) [19] between the reconstructed image and the initial image used to sim-

ulate the diffraction patterns. The FRC quantifies the similarity of two images

across varying spatial resolutions. In this application, it was found that the

spatial resolution of the reconstruction was impacted when fewer than 30 eigen-

values were used, but reconstructing with more than 30 eigenvalues resulted in

only small improvements in resolution, so a value of n = 30 was chosen. An

example of the FRC curves for performing ptychographic image reconstruction

with the data compressed using a PCA algorithm with varying number of eigen-

values is shown in Fig. 6. The precision of the eigenvalues was also varied, and

it was found that with 30 eigenvalues at seven-bit precision provide good image
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Figure 5: Reconstructed diffraction patterns from PCA algorithm with different number of
eigenimages/eigenvalues. The top left panel shows the original diffraction pattern from simu-
lation.
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Figure 6: FRC curves for reconstruction of images where diffraction patterns have been com-
pressed with PCA algorithms using different numbers of eigenvalues, denoted by S′. Below
30 eigenvalues, the performance of the reconstruction begins to degrade. The figure has been
reproduced from [20].

reconstruction integrity while providing a 50× compression of the data volume.

3.2. AutoEncoder

The AE neural network compresses data into a smaller latent space. The

design of the AE network was chosen to closely resemble that of the PCA algo-

rithm, with a single fully connected dense layer being used to encode the data

into a 30-value latent space representation which can be transmitted off-chip,

with a second dense layer decoding to the latent space back into a representation

of the original image. The two dense layers are functionally just matrix multi-

plications, such that the encoder and decoder layers perform the same functions

as the R−1 and R matrices of the PCA algorithm.

The primary difference between the algorithms is in the way the weights of

the matrices are determined. While in PCA, the weights are calculated from

the eigenvalues of the diffraction images, the autoencoder uses machine learning

to determine the weights. The AE was trained using QKeras [21], which allows
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Figure 7: Preprocessing of digitized data before AE network. The 10-bit ADC values are
reduced to 5-bits through a remapping that approximates a square root function.

for quantization-aware training of the neural network, optimizing the weights

aware of the constraints on the precision of the weights and outputs. Similar to

the PCA algorithm, the weights of the AE can be re-used to encode diffraction

patterns from different objects, and thus can be hard-coded in the chip. A

second difference between the two algorithms comes from a preprocessing of

the digitized data before the matrix multiplication in the AE, where the 10-bit

ADC values are reduced to five-bit precision through a simplified remapping

that approximates a square root function, as shown in Fig. 7.

Similar to the optimization of the PCA algorithm, the precision of the

weights and outputs of the AE algorithm were studied. For algorithms trained

with different weight and output precision, simulated diffraction patterns were

encoded and decoded, and used to perform a ptychographic image reconstruc-

tion. The FRC of the different precision options was compared, and it as found

that an AE algorithm trained to transmit 30 values at five-bit precision each

was able to achieve a 70× compression of the original data, while achieving

comparable image reconstruction resolution to the PCA algorithm. An exam-
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Figure 8: Reconstructed diffraction patterns from autoencoder algorithm. The diffraction
patterns on the top row show the original simulated diffraction patterns, and the bottom row
show the reconstruction of the same patterns after compressing and decompressing with the
autoencoder.

ple of the diffraction pattern outputs obtained before and after compression and

decompression with the autoencoder is shown on Fig. 8.

3.3. Comparison

The two algorithms for lossy data compression were designed to have very

similar implementations on the chip, with both being simply matrix multiplica-

tions to reduce outputs to 30 values from 1024, with the differences between the

algorithms being in the precision and specific values that go into the weights. In

the PCA algorithm, the leading eigenimages of the R matrix will have similar

sparsity as the diffraction patterns themselves, so the weights used on the chip

for the R−1 matrix will tend to have a large number of zeros, which can be

removed during the synthesis steps. By contrast, very few of the weights of the
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Figure 9: Distribution of the weights for the PCA (left) and AE (right) algorithms. Due to
the nature of the training of these algorithms, the PCA tends to have a larger fraction of
zero-valued weights compared to the AE.

machine learning-trained AE tend to be zeros. Figure 9 shows the distribution

of the weights in the two algorithms. Our analysis of these weights, from the

aforementioned approaches of eigenvalue calculation for the PCA model and

quantization-aware training for the AE model, showed that the weight sparsity

(i.e., quantity of zero-valued weights) was nearly 77.98% for the former and just

8.69% for the latter. Additionally, the scale of the inputs going into the two

algorithms differs, with the PCA algorithm receiving the full 10-bit ADC from

each pixel and the ADC value used in the AE first being scaled from 10-bits to

5-bit precision. The quantization aware training of the AE algorithm allowed for

making better use of bits, and performing the operations on the lower precision

inputs, providing saving in the number of computations required.

4. Design methodology

Our design methodology leverages high-level synthesis (HLS) and hls4ml to

provide a shorter design cycle and similar quality of result compared to register-

transfer level (RTL) flows [22, 23]. hls4ml is an open-source framework for the

codesign of optimized neural networks and deployment on custom hardware

(ASIC) and field-programmable gate arrays (FPGAs) [24]. At its core, hls4ml
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translates machine-learning models from common open-source software frame-

works such as Tensorflow into a RTL implementation using HLS tools.

In hls4ml, a designer can trade off the performance (i.e., latency and through-

put) and resource utilization for a model by varying the parallelization of the

algorithm via several configuration parameters. For example, the reuse factor

(RF) parameter controls how many times each multiplier resource is used in

the final hardware implementation: a designer with the goal of low latency will

choose the lowest RF value.

In this work, we used hls4ml. Additionally, we combined quantization-aware

training in QKeras [21] with model- and hardware-centric optimizations to find

models that simultaneously accomplish the goals of high accuracy, low latency,

and low area. hls4ml coupled with the industry standard Siemens Catapult HLS

(ver. 2022.1) tool allowed us to explore the cost and performance trade-offs of

various architectural hardware implementations for our ML models.

We decided on a reduced-latency and highly-parallel implementation for our

accelerators, where 1024 multiplications get performed per clock cycle. We used

a fixed-point representation (Siemens ac fixed [25]) for the input, intermediate,

and output parameters of our ML model designed with hls4ml. This choice

provided us with a high degree of flexibility for exploring the area and accuracy

trade-off of the ML-model hardware implementations obtained with Catapult

HLS. Fig. 11 shows the interface and bit-precision for both the PCA and AE

accelerators, while Sec. 6 describes additional HLS-driven architectural choices.

5. Implementation issues

As stated earlier, the AE algorithm was built using a fully-dense architecture,

among other factors, so that the final implementations of this algorithm and the

PCA algorithm would resemble each other the most. The high accuracy in image

reconstruction that we obtained for the training datasets for the final versions

of both these algorithms is a clear indicator of the suitability of the fully-dense

architectures chosen for this problem.
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However, from a place and route point of view, dense connections pose an

extra challenge when analog signal processing and digital data processing is in-

terleaved creating a distributed network of placement and routing blockages.

The interconnectivity of inputs and weights in the algorithm specification is

expected to be converted into connections and components at the hardware

level. Thus, as the number of pixels grows, the number of connections be-

tween them grows exponentially, and so does the average distance between two

connected pixels. This, in turn, leads to congestion issues during routing as

the requirement for more multiply and accumulates (MACs) that perform the

matrix multiplication between evermore far-away pixels also grows.

Figure 10 shows an example of the amount of congestion these designs can

display after routing (in this case, the AE algorithm). This congestion com-

monly translates into unwaivable DRC violations at the end of the digital rout-

ing stage, and thus require active manual intervention in order to be fixed.

The most common and straightforward methodology applied in such cases is to

increase the total size of the design, in case area is not a strict constraint. Nev-

ertheless, this solution might not be enough in some cases. Figure 10 shows the

congestion our design displayed after routing, even after increasing the pitch be-

tween pixels, and thus the area by a factor of 125%. The initial logic occupancy

is only 43%, and thus the congestion is entirely due to routing signals across

the matrix. Thus, in order to solve the issues with congestion we performed the

co-design solution introduced in the Section 6.

6. Co-design solutions for integrated signal and data processing

We used two complementary approaches to tackle the congestion issues.

First, we increased the pitch size, as described in Sec. 5. This section instead

describes our co-design solutions with Catapult HLS to produce implementa-

tions that are easier to place and route in a pixelated area. Fig. 11 highlights the

main architectural choices for the two HLS designs. For the AE implementation,

we had initially designed the weights of the dense layer as a two-dimensional

array where the channel dimension was last, as shown for the buffer at line 7
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Figure 10: Example of routing congestion issues faced during PnR for the AE algorithm, when
using a floorplan with an increase in area by 125% full compared to a baseline implementation
without compression logic. We report the entire chip and a closeup view. Here, colors represent
different levels of congestion (e.g., the bottom-most entry of the legend, in dark blue, represents
a density of wires that is 104% above the limit for any given specific space, thus causing
congestion). It is very noticeable how the congestion spreads across the entire chip, while only
the pixels at the edges show no issues. This leads to the aforementioned congestion and the
inability of the tool to route the design without causing a large amount of unwaivable DRC
violations.

and for-loops at lines 17 − 21 of Listing 1. A channel-last layout of the data is

a default in machine-learning frameworks such as TensorFlow that we used to

train the model.

We explored moving the channel dimension first to reduce the amount of

control logic as shown at line 9 of Listing 2. Restructuring the weight buffers

allowed us to perform 1,024 multiplication in parallel and efficiently pipeline

them across each of the 30 channels (lines 13−24 in Listing 2). We also increased

the modularity of the HLS-generated RTL code by partitioning the fully-parallel

1,024-input multiplier accumulator (MAC) into 256 four-input MACs and an

additional adder tree in the top-level module (lines 17 − 22). For each of those

smaller MACs, we wired four neighboring pixels and constrained the place and

route tool to position the associated logic in their proximity, as shown in Fig. 12.

We adopted a different solution for the HLS-based implementation of the

PCA design after observing the highly-sparse weight matrix. In this case, we

inlined all of the HLS-code functions and unrolled all the loops. This approach

allows Catapult HLS to perform constant propagation aggressively, remove all

of the logic that depends on a multiply-by-zero, and finally simplify most of the
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Figure 11: PCA and AE bit-precision and HLS architectural choices.
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1 #de f i n e H 32 // row count
2 #de f i n e W 32 // column count
3 #de f i n e C 30 // channel count ( each channel maps to a mu l t i p l i e r )
4

5 void ae top (
6 i npu t t inputs [H∗W] ,
7 we igh t s t weights [H∗W] [C] , // channel i s l a s t
8 b i a s e s t b i a s e s [C] ,
9 output s t outputs [C] ) {

10

11 accum t accum [C ] ;
12

13 f o r ( u32 j = 0 ; j < C; j++) {
14 accum [ j ] = b i a s e s [ j ] ;
15 }
16

17 f o r ( u32 i = 0 ; i < H∗W; i++) {
18 f o r ( u32 j = 0 ; j < C; j++) {
19 accum [ j ] += inputs [ i ] ∗ weights [ i ] [ j ] ;
20 }
21 }
22

23 f o r ( u32 j = 0 ; j < C; j++) {
24 outputs [ j ] = accum [ j ] ;
25 }
26 }

Listing 1: Initial AE specification for HLS.

1 #de f i n e H 32 // rows
2 #de f i n e W 32 // columns
3 #de f i n e C 30 // mu l t i p l i e r s
4

5 #de f i n e B 4 // adders
6

7 void ae top (
8 i npu t t inputs [H∗W] ,
9 we igh t s t weights [C ] [H∗W] , // Mu l t i p l i c a t i on i s f i r s t

10 b i a s e s t b i a s e s [C] ,
11 output s t outputs [C] ) {
12

13 f o r ( u32 j = 0 ; j < C; j++) { // P ip e l i n e
14 accum t accum = b i a s e s [ j ] ;
15 f o r ( u32 i = 0 ; i < (H∗W)/B; i++) { // Unro l l
16 accum t sub accum = 0 . 0 ;
17 f o r ( k = 0 ; k < B; k++) { // Submodule , un r o l l
18 sub accum += inputs [ i ∗B+k ] ∗
19 weights [ j ] [ i ∗B+k ] ;
20 }
21 accum += sub accum ;
22 }
23 outputs [ j ] = acc ;
24 }
25 }

Listing 2: Refactoring for AE specification to increase modularity in HLS.
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Figure 12: Four-input MAC (in red) are distributed in the pixelated area and placed in the
proximity of the associated neighboring pixels.

multiplier as adders thanks to the fixed-point arithmetic.

Table 1 reports the latency and area estimate for the AE and PCA designs

from Catapult HLS. The solutions highlighted have been integrated in the AI-

In-Pixel-65 chip. It is worth noting that the modular solution provides the

best area results for the AE design; in contrast, the PCA design has the best

results with a function-inlining approach because of the sparsity and inherent

logic simplification.

7. Area overhead in the digital implementation

In order to measure the overhead caused by the compression algorithms for

the digital implementation in the 65nm Low Power CMOS process, we use a

baseline implementation that lacks the compression logic. The area occupied by
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Table 1: Latency and area estimate for the AE and PCA HLS designs. Latency is in clock
cycles; area is in mm2.

AE PCA
HLS Solution Latency Area Latency Area

modular 30 0.549 30 1.516
inlined 1 1.700 1 0.652

the analog islands containing the pixels and by the digital logic for the baseline

chip is 2, 560, 000 µm2; while the total area for the chips with the AE and the

PCA algorithms is 3, 097, 600 µm2 in both instances. Thus, the compression

algorithm caused an overhead of 21% in the total area.

8. Conclusions

The AI-In-Pixel-65 design delivers a low-noise, low-power, compact solution

for the readout of pixelated photodiode arrays. Two algorithms were imple-

mented for lossy data compression, a PCA based compression algorithm and

a machine learning autoencoder, to reduce the data required to be transferred

off-chip. The algorithms were designed such that they can be implemented and

computed directly within the pixel area, without the need for first transferring

data to the periphery of the pixel array. The PCA and AE algorithms are

capable of achieving 50× and 70× compression of the data, while still main-

taining sufficient image quality for use in reconstruction of X-ray ptychography

measurements.
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