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ABSTRACT

The 15-year pulsar timing data set collected by the North American Nanohertz Observatory for Grav-
itational Waves (NANOGrav) shows positive evidence for the presence of a low-frequency gravitational-
wave (GW) background. In this paper, we investigate potential cosmological interpretations of this
signal, specifically cosmic inflation, scalar-induced GWs, first-order phase transitions, cosmic strings,
and domain walls. We find that, with the exception of stable cosmic strings of field theory origin,
all these models can reproduce the observed signal. When compared to the standard interpretation
in terms of inspiraling supermassive black hole binaries (SMBHBs), many cosmological models seem
to provide a better fit resulting in Bayes factors in the range from 10 to 100. However, these results
strongly depend on modeling assumptions about the cosmic SMBHB population and, at this stage,
should not be regarded as evidence for new physics. Furthermore, we identify excluded parameter re-
gions where the predicted GW signal from cosmological sources significantly exceeds the NANOGrav
signal. These parameter constraints are independent of the origin of the NANOGrav signal and illus-
trate how pulsar timing data provide a new way to constrain the parameter space of these models.
Finally, we search for deterministic signals produced by models of ultralight dark matter (ULDM)
and dark matter substructures in the Milky Way. We find no evidence for either of these signals and

thus report updated constraints on these models. In the case of ULDM, these constraints outperform
torsion balance and atomic clock constraints for ULDM coupled to electrons, muons, or gluons.

Keywords: Gravitational waves – Cosmology: early universe – Methods: data analysis
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1. INTRODUCTION

The Standard Model (SM) of particle physics cur-
rently provides our best description of the laws govern-
ing the universe at subatomic scales. However, it fails to
explain several observed properties of our universe, such
as the origin of the matter–antimatter asymmetry, the
nature of dark matter (DM) and dark energy, and the
origin of neutrino masses. These shortcomings have mo-
tivated the development of several theories for physics

beyond the SM, or BSM theories for short, accompa-
nied by a rich experimental program trying to test them.
The generation of gravitational waves (GWs) is a ubiq-
uitous feature of many BSM theories (Maggiore 2000;
Caprini & Figueroa 2018; Christensen 2019). These
GWs form a stochastic background and propagate es-
sentially unimpeded over cosmic distances to be detected

today, whereas electromagnetic radiation does not start

free streaming until after recombination. Thus, detect-
ing a stochastic GW background (GWB) of cosmological
origin would offer a unique and direct glimpse into the
very early universe and herald a new era for using GWs
to study fundamental physics.
Cosmological GWBs can be produced by a number of

particle physics models of the early universe. Notably,
cosmic inflation generically produces GWs (Guzzetti
et al. 2016), which may be observable at nanohertz fre-
quencies if their energy density spectrum is sufficiently
blue-tilted. Similarly, an enhanced spectrum of short-
wavelength scalar perturbations produced during infla-
tion can source so-called scalar-induced GWs (SIGWs;
Domènech 2021; Yuan & Huang 2021a). Another po-
tential source of GWs are cosmological first-order phase
transitions (Caprini et al. 2016, 2020; Hindmarsh et al.
2021), which proceed through bubble nucleation; bub-
ble collisions and bubble interactions with the primor-
dial plasma giving rise to sound waves contribute to GW
production. Finally, topological defects left behind by

cosmological phase transitions, such as cosmic strings
and domain walls (Vilenkin 1985; Hindmarsh & Kibble
1995; Saikawa 2017), can radiate GWs and hence con-

tribute to the GWB.
The North American Nanohertz Observatory for

Gravitational Waves (NANOGrav; McLaughlin 2013)
has recently found the first convincing evidence for a

stochastic GWB signal, as detailed in Agazie et al.
(2023b, hereafter NG15gwb). Analyzing 15-year of pul-
sar timing observations, NANOGrav has detected a red-

noise process whose spectral properties are common
among all pulsars and that is spatially correlated among
pulsar pairs in a manner consistent with an isotropic

GWB. In the following, we will refer to this observation
as “the NANOGrav signal,” “the GWB signal,” or sim-
ply “the signal,” keeping in mind the level of statistical
significance at which the GW nature of the signal has

been demonstrated in NG15gwb. While the GWB is pri-
marily expected to arise from a population of inspiraling
supermassive black hole binaries (SMBHBs; Rajagopal
& Romani 1995; Jaffe & Backer 2003; Wyithe & Loeb
2003; Sesana et al. 2004; Burke-Spolaor et al. 2019), cos-
mological sources may also contribute to it.
The SMBHB interpretation of the signal is consid-

ered in Agazie et al. (2023c, hereafter NG15smbh). In
this paper, we analyze the NANOGrav 15-year data
set (Agazie et al. 2023a, hereafter NG15) to investi-
gate the possibility that the observed signal is cos-
mological in nature or that it arises from a combina-
tion of SMBHBs and a cosmological source. In par-
ticular, we consider phenomenological models of cosmic
inflation, SIGWs, first-order phase transitions, cosmic
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strings (stable, metastable, and superstrings), and do-
main walls. We find that all of these models, except for
stable cosmic strings of field theory origin, are consistent
with the observed GWB signal. Many models provide in
fact a better fit of the NANOGrav data than the baseline
SMBHB model, which is reflected in the outcome of a
comprehensive Bayesian model comparison analysis that
we perform: several new-physics models result in Bayes
factors between 10 and 100. We also consider compos-
ite models where the GWB spectrum receives contribu-
tions from new physics and SMBHBs. Comparing these
composite models to the SMBHB reference model leads
to comparable results, again with many Bayes factors
falling into the range from 10 to 100. Cosmic super-
strings, as predicted by string theory, are among the
models that provide a good fit of the data, while stable
cosmic strings of field theory origin only result in Bayes
factors in the range from 0.1 to 1.
The reason that some of the Bayes factors reach large

values is that the SMBHB signal expected from the the-
oretical model used in this analysis agrees somewhat
poorly (only at the level of 95% regions) with the ob-
served data, leaving room for improvement by adding

additional sources or better noise modeling. It is per-
haps an intriguing idea that this disagreement may point
to the presence of a cosmological source, but the present

evidence is quite weak. We stress that Bayes factors
for additional models beyond the SMBHB interpreta-
tion are highly dependent on the range of priors with

which these models are introduced. Thus, one should
not assign too much meaning to the exact numerical
values of the Bayes factors reported in this work.
In many models, there are ranges of parameter values

that would produce signals in conflict with the NG15
data. In those cases, we show the excluded regions and
give numerical upper limits for individual parameters.

We do so in terms of a new statistical test, introducing
what we call the K ratio. These parameter constraints
are independent of the origin of the signal in the NG15
data and a testament to the constraining power of PTA
data in the search for new physics. In our parameter
plots, we label the K-ratio constraints by NG15, and
where applicable, we compare them to other existing
bounds. In many cases, the NG15 bounds are comple-
mentary to existing bounds, highlighting the fact that
new-physics searches at the PTA frontier venture into

previously unexplored regions of parameter space.
Aside from cosmological GWBs, signals of new physics

can appear in GW detectors in a deterministic man-
ner. Although pulsar timing arrays (PTAs) are primar-
ily used to search for a GWB, we can also leverage their
remarkable sensitivity to search for these deterministic

signals. Specifically, DM substructures within the Milky
Way can produce a Doppler effect by accelerating the
Earth or a pulsar (Seto & Cooray 2007), or a Shapiro
delay of the photons’ arrival times by perturbing the
metric along the photon geodesic (Siegel et al. 2007).
PTAs can also probe models of ultralight DM (ULDM),
which can cause shifts in the observed pulse timing via
metric fluctuations (Khmelnitsky & Rubakov 2014; Po-
rayko & Postnov 2014) or via couplings between ULDM
and SM particles (Graham et al. 2016; Kaplan et al.
2022). We search for both of these deterministic sig-
nals, and after finding no evidence for either of them,
we derive new bounds on both these models.
This paper is organized as follows. We describe the

NG15 data set in Section 2 and our general analysis
methods in Section 3. In Section 4, we discuss the GWB
expected from SMBHBs. We present the analysis and

results for new-physics models that generate a cosmo-
logical GWB in Section 5 and for models that produce
deterministic signals in Section 6. We conclude in Sec-

tion 7. Additionally, we include a list of parameters
for each model, the prior ranges we use in our analysis,
and the corresponding recovered posterior ranges in Ap-
pendix A. We present median GW spectra for all cosmo-

logical models based on our recovered posterior distri-
butions in Appendix B, and we provide supplementary
material for specific models in Appendix C .

2. PTA DATA

The NANOGrav 15-year (NG15) data set consists of
observations of 68 millisecond pulsars made between
2004 July and 2020 August. This updated data set

adds 21 pulsars and 3 yr of observations to the pre-
vious 12.5 yr data set (Alam et al. 2021). One pulsar,
J0614–3329, was observed for less than 3 yr, which is

why it is not included in our analysis. The remaining
67 pulsars were all observed for more than 3 yr with
an approximate cadence of 1 month (with the excep-
tion of six pulsars that were observed weekly as part
of a high-cadence campaign, which started in 2013 at
the Green Bank Telescope and in 2015 at the Arecibo
Observatory).

The pulse times of arrival (TOAs) were generated from
the raw data following the procedure discussed in Ar-
zoumanian et al. (2015, 2018b) and Alam et al. (2021).
The resulting cleaned TOAs were fit to a timing model
that accounts for the pulsar’s period and spin period
derivative, sky location, proper motion, and parallax.
For pulsars in a binary system, we included in the tim-
ing model five Keplerian binary parameters and an ad-
ditional non-Keplerian parameter if they improved the
fit as determined by an F -test. Pulse dispersion was
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modeled as a piecewise constant with the inclusion of
DMX parameters (Arzoumanian et al. 2015; Jones et al.
2017). The timing model fits were performed using the
TT(BIPM2019) timescale and the JPL Solar System
Ephemeris model DE440 (Park et al. 2021). Additional
detail about the data set and the processing of the TOAs
can be found in NG15 and Agazie et al. (2023d, hereafter
NG15detchar).

3. DATA ANALYSIS METHODS

The statistical tools needed to describe noise sources,
GWBs, and deterministic signals in pulsar timing data
have already been extensively discussed in the litera-
ture (see, e.g., Arzoumanian et al. 2016, 2018a). In the
following brief overview, we focus on the implementation
of new-physics signals within this framework.

3.1. Likelihood

Our search for a new-physics signal utilizes the pul-

sars’ timing residuals, δt. These timing residuals mea-
sure the discrepancy between the observed TOAs and
the ones predicted by the pulsar timing model described

in NG15 and briefly summarized in Section 2. There
are three main contributions to these timing residu-
als: white noise, time-correlated stochastic processes
(also known as red noise), and small errors in the fit to

the timing-ephemeris parameters (Vallisneri et al. 2020).
Specifically, we can model the timing residuals as

δt = n+ F a+M ϵ . (1)

In the remainder of this section, we will define and dis-
cuss each of these three terms and define the PTA like-

lihood.
The first term on the right-hand side of Eq. (1), n,

describes the white noise that is assumed to be left in

each of the NTOA timing residuals after subtracting all
known systematics. White noise is assumed to be a zero
mean normal random variable, fully characterized by its
covariance. For the receiver/back-end combination I,
the white-noise covariance matrix reads

⟨ninj⟩ = F2
I

[
σ2
i S/N +Q2

I

]
δij + J 2

I Uij , (2)

where i and j index the TOAs, σi S/N is the TOA un-
certainty for the ith observation, FI is the Extra FAC-
tor (EFAC) parameter, QI is the Extra QUADrature
(EQUAD) parameter, and JI is the ECORR parame-
ter. ECORR is modeled using a block diagonal matrix,
U , with values of 1 for TOAs from the same observ-
ing epoch and zeros for all other entries. Following the
approach of previous works (Arzoumanian et al. 2016,
2018a), we fix all white-noise parameters to their values

at the maxima in the posterior probability distributions
recovered from single pulsar noise studies in order to
increase computational efficiency (NG15detchar).
Time-correlated stochastic processes, like pulsar-

intrinsic red noise and GWB signals, are modeled using
a Fourier basis of frequencies i/Tobs, where i indexes the
harmonics of the basis and Tobs is the timing baseline,
extending from the first to the last recorded TOA in
the full PTA data set. Since we are generally interested
in processes that exhibit long-timescale correlations, the
expansion is truncated after Nf frequency bins. In this
paper, we use Nf = 30 for pulsar-intrinsic red noise
and Nf = 14 for GWBs. The latter choice stems from
the observation that most of the evidence for a GWB
comes from the first 14 frequency bins. More specifi-
cally, fitting a common-spectrum uncorrelated red-noise
process with a broken power-law spectral shape to the
NG15 data, the posterior distribution for the break fre-
quency reaches it maximum around the 14th frequency
bin (NG15gwb). This set of 2Nf sine–cosine pairs eval-

uated at the different observation times is contained in
the Fourier design matrix, F . The Fourier coefficients
of this expansion, a, are assumed to be normally dis-

tributed random variables with zero mean and covari-
ance matrix, ⟨aaT⟩ = ϕ, given by

[ϕ](ak)(bj) = δij (ΓabΦi + δabφa,i) (3)

where a and b index the pulsars, i and j index the fre-
quency harmonics, and Γab is the GWB overlap reduc-
tion function, which describes average correlations be-

tween pulsars a and b as a function of their angular
separation in the sky. For an isotropic and unpolarized
GWB, Γab is given by the Hellings & Downs correla-
tion (Hellings & Downs 1983), also known as “quadrupo-

lar” or “HD” correlation.
The first term on the right-hand side of Eq. (3) param-

eterizes the contribution to the timing residuals induced
by a GWB in terms of the model-dependent coefficients
Φi. In this work, we consider two kinds of GWB sources:
one of astrophysical origin, namely a population of in-
spiraling SMBHBs (discussed in section 4), and one of
cosmological origin, induced by one of the exotic new-
physics models under consideration (discussed in section
5). The last term in Eq. (3) models pulsar-intrinsic red-

noise in terms of the coefficients φa,i, where

φa(f) =
A2

a

12π2

1

Tobs

(
f

1 yr−1

)−γa

yr3 (4)

and φa,i = φa(i/Tobs) for all Nf frequencies. The priors
for the red noise parameters are reported in Table 2.
Finally, deviations from the initial best-fit values of

them timing-ephemeris parameters are accounted for by
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the term Mϵ. The design matrix, M , is an NTOA ×m
matrix containing the partial derivatives of the TOAs
with respect to each timing-ephemeris parameter (eval-
uated at the initial best-fit value), and ϵ is a vector con-
taining the linear offset from these best-fit parameters.
Since in this analysis we are not interested in the spe-

cific realization of the noise but only in its statistical
properties, we can analytically marginalize over all the
possible noise realizations (i.e., integrate over all the pos-
sible values of a and ϵ). This leaves us with a marginal-
ized likelihood that depends only on the (unknown) pa-
rameters describing the red-noise covariance matrix (i.e.,
Aa, γa, plus any other parameters describing Φi; van
Haasteren & Levin 2012; Lentati et al. 2013):

p(δt|ϕ) = exp
(
− 1

2δt
TC−1δt

)√
det(2πC)

, (5)

where C = N + TBT T . Here N is the covariance ma-
trix of white noise, T = [M ,F ], and B = diag(∞,ϕ),

where ∞ is a diagonal matrix of infinities, which effec-
tively means that we assume flat priors for the parame-
ters in ϵ. Since in our calculations we always deal with
the inverse of B, all these infinities reduce to zeros.

Eq. (5) can be easily generalized to take into account
deterministic signals (like the ones that will be discussed
in Sections 6.1 and 6.2). In the presence of a determin-

istic signal, h(θ), which depends on a set of parameters
θ, we just need to shift the residuals, δt → δt− h(θ).
Finally, we relate our characterization of the GWB

given in Eq. (3) in terms of Φi to the commonly adopted
spectral representation in terms of the GWB energy den-
sity per logarithmic frequency interval, dρGW/d ln f , as
a fraction of the closure density, i.e., the total energy

density of our universe, ρc (Allen & Romano 1999)

ΩGW(f) ≡ 1

ρc

dρGW(f)

d ln f
=

8π4f5

H2
0

Φ(f)

∆f
. (6)

Here H0 is the present-day value of the Hubble rate,
∆f = 1/Tobs is the separation between the Nf frequency

bins, and Φ(f) determines the coefficients Φi in Eq. (3),
i.e., Φi = Φ(i/Tobs). Note that Φ(f) is identical to the
timing residual power spectral density (PSD), S(f) =
Φ(f)/∆f , up to the constant factor of 1/∆f . In the
remainder of this paper, we will often work with h2ΩGW

instead of ΩGW, where h is the dimensionless Hubble
constant, H0 = h × 100 kms−1Mpc−1, such that the
explicit value of H0 cancels in the product h2ΩGW.

3.2. Bayesian analysis

The goal of this work is to investigate a series of

cosmological interpretations of the GWB signal in our

data. Specifically, we would like to answer two ques-
tions. First, what is the region in the parameter space
of the new-physics models that could produce the ob-
served GWB? And second, is there any preference be-
tween the astrophysical and cosmological interpretations
of the signal?
To answer these questions, we make use of Bayesian

inference. Bayesian inference is a statistical method in
which Bayes’ rule of conditional probabilities is used to
update one’s knowledge as observations are acquired.
Given a model H, a set of parameters Θ, and data D,
we can use Bayes’ rule to write

P (Θ|D,H) =
P (D|Θ,H)P (Θ|H)

P (D|H)
, (7)

where P (Θ|D,H) is the posterior probability distribu-

tion for the model parameters, P (D|Θ,H) is the likeli-
hood, P (Θ|H) is the prior probability distribution, and

Z ≡ P (D|H) =

∫
dΘ P (D|Θ,H)P (Θ|H) (8)

is the marginalized likelihood, or evidence. In the con-
text of this work, H is the timing residual model given
in Eq. (1), Θ contains the parameter describing the co-

variance matrix ϕ, and the data are the timing residuals
δt. The likelihood function for our analysis is given by
Eq. (5) and implemented using the ENTERPRISE (Ellis

et al. 2019) and ENTEPRISE EXTENSIONS (Taylor et al.
2021) packages. Our prior choices are summarized in
Tables 2 and 3.

The posterior distribution on the left-hand side of
Eq. (7) is the central result of the Bayesian analysis
and contains all the information needed to answer our
two original questions. Indeed, integrating over all the

model parameters except one (two) allows us to derive
marginalized distributions that can be used to obtain
1D (2D) credible intervals. At the same time, given two
models H0 and H1, we can perform model selection by
calculating the Bayes factor defined as

B10(D) =
Z1

Z0
=

P (D|H1)

P (D|H0)
. (9)

The numerical value of the Bayes factor for a given
model comparison can then be interpreted as evidence
against or in favor of model hypothesis H1 according
to the Jeffreys scale (Jeffreys 1961): B10 < 1 means
that H1 is disfavored, while B10 values in the ranges
[100.0, 100.5], [100.5, 101.0], [101.0, 101.5], [101.5, 102.0],
[102.0,∞) are interpreted as negligibly small, substan-
tial, strong, very strong, and decisive evidence in favor
of H1, respectively.
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Given the large number of parameters, the integra-
tion required to derive marginalized distributions and
Bayes factors needs to be performed through Monte
Carlo sampling. Specifically, we use the Markov
Chain Monte Carlo (MCMC) tools implemented in the
PTMCMCSampler package (Ellis & van Haasteren 2017) to
sample from the posterior distributions. The marginal-
ized posterior densities shown in our plots are then de-
rived by applying kernel density estimates to the MCMC
samples via the methods implemented in the GetDist

package (Lewis 2019).
In order to compute the Bayes factor between two

models, we use product space methods (Carlin & Chib
1995; Godsill 2001; Hee et al. 2015), instead of calcu-
lating the evidence Z for each model separately. This
procedure recasts model selection as a parameter esti-
mation problem, introducing a model indexing variable
that is sampled along with the parameters of the com-
peting models and controls which model likelihood is

active at each MCMC iteration. The ratio of samples
spent in each bin of the model indexing variable re-
turns the posterior odds ratio between models, which
coincides with the Bayes factor for equal model pri-

ors, P (H1) = P (H0). The Monte Carlo sampling un-
certainties associated with this derivation of the Bayes
factors can be estimated through statistical bootstrap-

ping (Efron & Tibshirani 1986). Bootstrapping creates
new sets of Monte Carlo draws by resampling (with
replacement) the original set of draws. These sets of

draws act as independent realizations of the sampling
procedure and allow us to obtain a distribution for the
Bayes factors from which we derive point values and un-
certainties on our Bayes factors corresponding to mean

and standard deviation. Specifically, the central values
and corresponding errors quoted in the following for the
Bayes factors were derived by creating 5 × 104 realiza-

tions of our Monte Carlo draws.
From Eq. (8), it is evident that models’ evidence and,

therefore, Bayes factors depend on the prior choice. In
our analysis, we will often restrict priors to the region of
parameter space for which cosmological models produce
an observable signal in the PTA frequency band. How-
ever, a more appropriate prior choice would cover the
entire allowed region of parameter space. Nonetheless,
when working with flat priors, it is easy to rescale the
Bayes factors to account for wider prior ranges. Specifi-

cally, if the priors are extended to a region of parameter
space for which the likelihood P (D|Θ,H) is approxi-
mately zero, the Bayes factors decrease by a factor pro-
portional to the increase in prior volume.
For each model H considered in our analysis, we use

the reconstructed posterior distribution, P (Θ|D,H), to

2 3 4 5 6
γ

−18
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−16

−15

−14

−13

lo
g

1
0
A

holodeck

NG15

Figure 1. Comparison of the 68% and 95% probability re-
gions for the amplitude and slope of a power-law fit to the ob-
served GWB signal (green contours) and predicted for purely
GW-driven SMBHB populations with circular orbits (blue
contours; NG15smbh). The black dashed lines represent a
2D Gaussian fit of the blue contours. The vertical red line
indicates γ = 13/3, the naive expectation for a GWB pro-
duced by a GW-driven SMBHB population (Phinney 2001).

identify relevant parameter ranges and set upper lim-

its. Specifically, we identify 68% (95%) Bayesian cred-
ible intervals (Bernardo & Smith 2000) by integrating
the posterior over the regions of highest density until
the integral covers 68% (95%) of the posterior proba-

bility. Moreover, we give upper limits above which the
additional model is “strongly disfavored” according to
the Jeffreys scale (Jeffreys 1961). For instance, to place

a bound on a single parameter θ, we first marginalize
over all other model parameters and then determine the
parameter value at which the likelihood ratio

K(θ) =
P (D|θ,H)

P (D|θ0,H)
, (10)

has dropped toK = 1/10. Here θ0 refers to the parameter
limit in which the new-physics contribution to the total
signal becomes negligible and P (D|θ,H) no longer de-
pends on the exact value of θ. Graphing P (D|θ,H) as a
function of θ, this parameter region appears as a plateau,
with P (D|θ0,H) denoting the height of this plateau. As-
suming a flat prior on θ, the ratio in Eq. (10) is identi-

cal to the corresponding ratio of marginalized posteriors.
Furthermore, multiplying and dividing by the prior on θ,

K(θ) =
P (θ|H)

P (θ0|D,H)

P (θ|D,H)

P (θ|H)
. (11)
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Figure 2. Bayes factors for the model comparisons between the new-physics interpretations of the signal considered in this
work and the interpretation in terms of SMBHBs alone. Blue points are for the new physics alone, and red points are for the
new physics in combination with the SMBHB signal. We also plot the error bars of all Bayes factors, which we obtain following
the bootstrapping method outlined in Section 3.2. In most cases, however, these error bars are small and not visible.

The first factor is the Savage–Dickey density ratio
and can hence be identified as the Bayes factor B =
P (D|H)/P (D|H0), where H0 is the model that results

from model H when omitting the signal contribution
controlled by the parameter θ. The K ratio can thus be
written as the product of the global Bayes factor and

the local posterior-to-prior ratio for the parameter θ,

K(θ) = B P (θ|D,H)

P (θ|H)
. (12)

Once B is known, it is straightforward to evaluate
Eq. (12) and determine theK-ratio bound on θ. Eq. (12)

is useful for numerically evaluating K, as it automati-
cally encodes the height of the plateau in the marginal-
ized posterior, P (θ0|D,H) = P (θ|H)/B, which we would
otherwise have to obtain from a fit to our MCMC data.
However, we stress that K is defined as a likelihood
ratio, which renders it immune to prior effects (prior
choice, range, etc.; Azzalini 1996). For more than one
parameter dimension, we proceed analogously and de-
rive bounds based on the criterion K(Θ) > 1/10.
All Bayesian inference analyses discussed in this work

were implemented into ENTERPRISE via a newly devel-
oped wrapper that we call PTArcade (Mitridate et al.
2023a,b). This wrapper is intended to allow easy im-

plementation of new-physics searches in PTA data. We
make this wrapper publicly available at https://doi.org/
10.5281/zenodo.7876429. Similarly, all MCMC chains
analyzed in this work can be downloaded at https:
//zenodo.org/record/8010909.

4. GWB SIGNAL FROM SMBHBs

Most galaxies are expected to host a supermassive
black hole (SMBH) at their center (Kormendy & Ho

2013; Akiyama et al. 2019). During the hierarchical
merging of galaxies taking place in the course of struc-
ture formation (White & Rees 1978), these black holes
are expected to sink to the center of the merger rem-

nants, eventually forming binary systems (Begelman
et al. 1980). The gravitational radiation emitted by this
population of inspiraling SMBHBs forms a GWB in the

PTA band (Rajagopal & Romani 1995; Jaffe & Backer
2003; Wyithe & Loeb 2003) and is a natural candidate
for the source of the signal observed in our data.

The shape and normalization of this GWB depend
on the properties of the SMBHB population and on its
dynamical evolution (Enoki & Nagashima 2007; Sesana
et al. 2008; Kocsis & Sesana 2011; Kelley et al. 2017).
As discussed in NG15smbh, the normalization is pri-
marily controlled by the typical masses and abundance
of SMBHBs, while the shape of the spectrum is de-
termined by subparsec-scale binary evolution, which is
currently unconstrained by observations. For a popula-
tion of binaries whose orbital evolution is driven purely
by GW emission, the resulting timing residual PSD is
a power law with a spectral index (defined below in
Eq. (13)) of −γBHB = −13/3 (Phinney 2001), produced
by the increasing rate of inspiral and decreasing num-

ber of binaries emitting over each frequency interval.
However, as GW emission alone is typically insufficient

https://doi.org/10.5281/zenodo.7876429
https://doi.org/10.5281/zenodo.7876429
https://zenodo.org/record/8010909
https://zenodo.org/record/8010909
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Figure 3. Median GWB spectra produced by a subset of the new-physics models, which we construct by mapping our model
parameter posterior distributions to h2ΩGW distributions at every frequency f (see Appendix B for more details and Figs. 19
and 20 for the models not included here). We also show the periodogram for an HD-correlated free spectral process (gray violins)
and the GWB spectrum produced by an astrophysical population of inspiraling SMBHBs with the parameters ABHB and γBHB

fixed at the central values µBHB of the 2D Gaussian prior distribution specified in Eq. (A1) (black dashed line).

to merge SMBHBs within a Hubble time, the number

of binaries emitting in the PTA band depends on in-
teractions between binaries and their local galactic en-
vironment to extract orbital energy and drive systems
toward merger (Begelman et al. 1980). If these environ-

mental effects extend into the PTA band, or if binary
orbits are substantially eccentric, then the GWB spec-
trum can flatten at low frequencies (typically expected
at f ≪ 1 yr−1; Kocsis & Sesana 2011). At high frequen-
cies, once the expected number of binaries dominating
the GWB approaches unity, the spectrum steepens be-
low 13/3 (typically expected at f ≫ 1 yr−1; Sesana et al.
2008).
Unfortunately, current observations and numerical

simulations provide only weak constraints on the spec-
tral amplitude or the specific locations and strengths of
power-law deviations. Despite these uncertainties, the
sensitivity range of PTAs is sufficiently narrowband that

it is reasonable, to first approximation, to model the sig-

nal by a power law in this frequency range:

ΦBHB(f) =
A2

BHB

12π2

1

Tobs

(
f

yr−1

)−γBHB

yr3 , (13)

where ΦBHB/∆f is the timing residual PSD (see Eq. (6)).
Following Middleton et al. (2021), we can gain some

insight into the allowed range of values for the ampli-
tude, ABHB, and slope, γBHB, of this power law by sim-
ulating a large number of SMBHB populations cover-
ing the entire range of allowed astrophysical parame-
ters. Specifically, we consider the SMBHB populations
contained in the GWOnly-Ext library generated as part
of the NG15smbh analysis (and discussed in additional
detail there). This library was constructed with the
holodeck package (Kelley et al. 2023) using semian-

alytic models of SMBHB mergers. These models use
simple, parameterized forms of galaxy stellar mass func-
tions, pair fractions, merger rates, and SMBH-mass ver-
sus galaxy-mass relations to produce binary popula-
tions and derived GWB spectra. While some param-
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Figure 4. Same as Fig. 3 but for a different selection of models and showing a larger frequency range. The solid lines represent
median GWB spectra for a subset of new-physics models (see Appendix B for more details); the gray violins correspond to
the posteriors of an HD-correlated free spectral reconstruction of the NANOGrav signal; and the shaded regions indicate the
power-law-integrated sensitivity (Thrane & Romano 2013) of various existing and planned GW interferometer experiments:
LISA (Amaro-Seoane et al. 2017), DECIGO (Kawamura et al. 2011), BBO (Crowder & Cornish 2005), Einstein Telescope (ET;
Punturo et al. 2010), Cosmic Explorer (CE; Reitze et al. 2019), the HLVK detector network (consisting of aLIGO in Hanford
and Livingston (Aasi et al. 2015), aVirgo (Acernese et al. 2015), and KAGRA (Akutsu et al. 2019)) at design sensitivity, and
the HLV detector network during the third observing run (O3). All sensitivity curves are normalized to a signal-to-noise ratio
of unity and, for planned experiments, an observing time of one year. For the HLV detector network, we use the O3 observing
time. Different signal-to-noise thresholds ρthr and observing times tobs can be easily implemented by rescaling the sensitivity
curves by a factor of ρthr/

√
tobs. More details on the construction of the sensitivity curves can be found in Schmitz (2021).

We emphasize that models whose median GWB spectrum exceeds the sensitivity of existing experiments are not automatically
ruled out. This applies, e.g., to cosmic superstrings (super) and the O3 sensitivity of the HLV detector network. Typically, no
single GWB spectrum in a given model will coincide with the median GWB spectrum, which is constructed from distributions
of h2ΩGW values at any given frequency. Therefore, if the median GWB spectrum is in conflict with existing bounds, typically
only some regions in the model parameter space will be ruled out, while others remain viable (see, e.g., Fig. 11 for the super
model). Finally, note that any primordial GWB signal is subject to the upper limit on the amount of dark radiation in Eq. (23),
which requires the total integrated GW energy density to remain smaller than O(10−(5···6)) (see Section 5.1).

eters in these models are fairly well known (e.g., con-
cerning the galaxy stellar mass function), others are
almost entirely unconstrained—particularly those gov-
erning the dynamical evolution of SMBHBs on subpar-
sec scales (Begelman et al. 1980). The GWOnly-Ext li-
brary assumes purely GW-driven binary evolution and

uses relatively narrow distributions of model parame-
ters based on literature constraints from galaxy-merger

observations (e.g., Tomczak et al. 2014) in addition to
more detailed numerical studies of SMBHB evolution

(e.g., Sesana 2013).
For each population contained in the GWOnly-Ext li-

brary, we perform a power-law fit of the correspond-
ing GWB spectrum across the first 14 frequency bins
that we use in our analysis. The distribution for ABHB

and γBHB obtained in this way is reported in Fig. 1
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(blue contours) and compared to the results of a sim-
ple power-law fit to the GWB signal in the NG15 data
set (green contours). The 95% regions of the two distri-
butions barely overlap, signaling a mild tension between
the astrophysical prediction and the reconstructed spec-
tral shape of the GWB. In view of this observation, we
stress again that while these simulated populations are
consistent with systematic investigations of the GWB
spectrum (e.g., Sesana 2013), they assume circular or-
bits and GW-only driven evolution. Adopting models
that include either significant coupling between bina-
ries and their local environments or very high eccen-
tricities could serve to flatten the spectral shape and
lead to SMBHB signals that better align with the ob-
served data (see NG15smbh for an extended discussion).
Neither of these effects, however, is expected to signif-
icantly impact the amplitudes of the predicted spectra
that, for expected values of astrophysical parameters, re-
main in mild tension with observed data. As discussed

in NG15smbh, in order to reproduce the observed ampli-
tude, SMBHB models require one or more of the astro-
physical parameters describing the binaries’ population
to differ from expected values. For the present analysis,

the spectra derived from the GWOnly-Ext library thus
represent a convenient benchmark that is simple, well
defined, and easy to use. By using theory-motivated pri-

ors, our reference model constitutes an important step
toward a more realistic modeling of the GWB spectrum
from inspiraling SMBHBs that goes beyond a power-

law parameterization with spectral index γBHB = 13/3,
which has been the standard reference model in much of
the PTA literature over the past decades.
The black dashed contours in Fig. 1 show the results

of a 2D Gaussian fit to the distribution of ABHB and γBHB

values derived from the simulated SMBHB populations
(see Eq. (A1) in Appendix A for the parameters of this

Gaussian distribution). This fitted distribution is what
we adopt as a prior distribution for ABHB and γBHB in
all parts of the analysis described in this paper.

5. GWB SIGNALS FROM NEW PHYSICS

In this section, we discuss the GWB produced by
various new-physics models and investigate each model
alone and in combination with the SMBHB signal as a
possible explanation of the observed GWB signal. For
each model, we give a brief review of the mechanism be-
hind the GWB production and discuss the parametriza-
tion of its signal prediction. We report the recon-
structed posterior distributions of the model parame-
ters and compute the Bayes factors against the baseline
SMBHB interpretation. In Fig. 2, we show a summary of

these Bayes factors; in Fig. 3, we present median recon-

structed GWB spectra in the PTA band for a number of
select new-physics models; and in Fig. 4, we show sim-
ilar median reconstructed GWB spectra in the broader
landscape of present and future GW experiments.
As discussed in Section 4 and in more detail

in NG15smbh, there is a mild tension between the NG15
data and the predictions of SMBHB models. The mod-
els generally prefer a weaker and less blue-tilted h2ΩGW

spectrum than the data. This discrepancy presents an
opportunity for new-physics models to fit the data better
than the conventional SMBHB signal. Eventually, this
tension may grow to the point of giving strong evidence
for new physics, or it may be resolved with better mod-
eling and more data. Specifically, models of SMBHB
evolution with a significant coupling between binaries
and their local environment could lead to a signal that
better aligns with the data and reduce the evidence for

new physics. For all these reasons, we caution against
over-interpreting the observed evidence in favor of some
of the new-physics models discussed in the following sec-

tions.

5.1. Cosmic inflation

MODEL DESCRIPTION

Cosmic inflation denotes a stage of exponential expan-

sion in the early universe that provides an explanation
for the initial conditions of Big Bang cosmology (Lid-
dle & Lyth 2009). At the level of the background ex-

pansion, inflation accounts for the size, homogeneity,
isotropy, and flatness of the observable universe on cos-
mological scales; at the level of perturbations, it provides
the seeds for structure formation in the form of primor-

dial density fluctuations. In the standard scenario of
inflation, these primordial perturbations are sourced by
scalar quantum vacuum fluctuations of the spacetime
metric and inflaton field, which are first stretched to su-
perhorizon scales during inflation and then reenter the
horizon in the form of classical density perturbations

after inflation. In addition to scalar perturbations, in-
flation also leads to the amplification of tensor pertur-
bations of the metric, which reenter the horizon in the
form of stochastic GWs after inflation. These primordial
or inflationary gravitational waves (IGWs) (Grishchuk
1974; Starobinsky 1979; Rubakov et al. 1982; Fabbri &
Pollock 1983; Abbott & Wise 1984) represent a prime
GW signal from the early universe. For earlier work on
the IGW interpretation of the signal in recent PTA data
sets, see Vagnozzi (2021), Kuroyanagi et al. (2021), and
Benetti et al. (2022).

IGWs leave an imprint in the temperature and polar-
ization anisotropies of the cosmic microwave background
(CMB) whose relative strength compared to the contri-
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butions from scalar perturbations is quantified in terms
of the tensor-to-scalar ratio, r. For the simplest type
of inflation—standard single-field slow-roll inflation—
the h2ΩGW spectrum is red-tilted at CMB scales, with
the tensor spectral index nt being given by the so-called
consistency relation, nt = −r/8 < 0. Meanwhile, r
is bounded from above by current CMB observations,
r ≤ 0.036 at 95%C.L. (Ade et al. 2021). A van-
ishing tensor spectral index, nt ≈ 0, would imply an
upper bound on the GW energy density spectrum of
ΩGWh2 ∼ 10−16 at PTA frequencies, rendering any de-
tection of an IGW signal in PTA observations hopeless.
This conclusion, however, only applies to the standard
case of single-field slow-roll inflation. Nonminimal sce-
narios may have significantly better detection prospects.
We remain agnostic about the microphysics of in-

flation and restrict ourselves to a model-independent
analysis, in which we parameterize the IGW signal in
terms of four parameters: the tensor-to-scalar ratio r

and tensor spectral index nt at the CMB pivot scale,
fCMB = 0.05Mpc−1/(2πa0) ≃ 7.73 × 10−17 Hz, which
quantify the efficiency and scale dependence of GW

production during inflation, and the reheating temper-
ature Trh and the number of e-folds during reheating
Nrh, which describe the reheating process after inflation.
Here the factor a0 in the expression for fCMB denotes the

present value of the cosmological scale factor a(t) in the
Robertson–Walker metric; in our convention, a0 = 1.
We do not impose the standard consistency relation

between r and nt; instead, we allow both parame-
ters to vary independently across large prior ranges,
log10 r ∈ [−40, 0] and nt ∈ [0, 6]. We note that blue val-
ues of the tensor spectral index can be generated, e.g.,

from axion–vector dynamics during inflation (Anber &
Sorbo 2012; Cook & Sorbo 2012; Namba et al. 2016; Di-
mastrogiovanni et al. 2017; Caldwell & Devulder 2018)

or in other non-minimal inflation models (see Piao &
Zhang (2004); Satoh & Soda (2008); Kobayashi et al.
(2010); Endlich et al. (2013); Fujita et al. (2019) for an
incomplete list).
Similarly, we allow for more flexibility for Trh and Nrh

than in the standard treatment of single-field slow-roll
inflation. To illustrate this point, note that the number
of e-folds during reheating, Nrh, can be written as (Lid-
dle & Lyth 2009)

Nrh =
1

3 (1 + wrh)
ln

(
3H2

endM
2
Pl

π2/30 grh∗ T 4
rh

)
, (14)

where Hend is the Hubble rate at the end of inflation,
wrh is the equation-of-state parameter during reheat-

ing, MPl ≃ 2.44× 1018 GeV is the reduced Planck mass,
and grh∗ is defined below. We assume for definiteness

that reheating is dominated by the coherent oscillations
of the inflaton field, such that the equation of state is
equivalent to the one of pressureless dust (i.e., matter),
wrh = 0. In typical models of single-field slow-roll in-
flation, one can often approximate Hend by the Hubble
rate at the time of CMB horizon exit during inflation,
such that

Nnaive
rh ≈ 1

3
ln

(
3H2

naiveM
2
Pl

π2/30 grh∗ T 4
rh

)
, (15)

where Hnaive is fixed by the tensor-to-scalar ratio r and
the amplitude of the primordial scalar power spectrum,
As ≃ 2.10× 10−9 (Aghanim et al. 2020),

Hend ≈ Hnaive =

(
π2

2
rAs

)1/2

MPl . (16)

However, we already assume nonminimal dynamics in

order to motivate a strongly blue-tilted h2ΩGW spec-
trum, so there is no reason why we should make use
of this approximation. In our analysis, we therefore

treat Hend and correspondingly Nrh as independent pa-
rameters and do not fix them in terms of r and Trh

as in Eqs. (15) and (16). This flexibility provides us
with more parametric freedom that we can use in or-

der to ensure that the IGW signal does not violate con-
straints on the amplitude of the stochastic GWB set
by the LIGO–Virgo–KAGRA (LVK) Collaboration (Ab-

bott et al. 2021b) and on the amount of dark radi-
ation, i.e., the effective number of neutrino species,
Neff , inferred from Big Bang nucleosynthesis (BBN)

and the CMB (Pisanti et al. 2021; Yeh et al. 2021).
As for the latter constraint, we specifically work with
∆Neff = ρDR/ρν , where ρDR is the energy density of
dark radiation (i.e., the integrated GW energy density

in the context of the igw model) and ρν denotes the
energy density of a single neutrino species. ∆Neff char-
acterizes the excess energy in radiation beyond the SM
expectation (i.e., dark radiation) after neutrino decou-
pling and e+e− annihilation, Neff = NSM

eff +∆Neff , where
NSM

eff ≃ 3.0440 (Bennett et al. 2021).
Under the assumptions outlined above, we are able to

model the IGW spectrum at PTA frequencies as

Ωinf
GW (f) =

Ωr

24

(
g∗ (f)
g0∗

)(
g0∗,s

g∗,s (f)

)4/3

Pt (f) T (f) .

(17)
Here Ωr/g

0
∗ ≃ 2.72×10−5 is the current radiation energy

density per relativistic degree of freedom, in units of the
critical (closure) density, g0∗,s ≃ 3.93 counts the effective
number of relativistic degrees of freedom contributing
to the radiation entropy today, and g∗(f) and g∗,s(f)
denote the effective numbers of relativistic degrees of
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freedom in the early universe when GWs with comoving
wavenumber k = 2πa0f reentered the Hubble horizon
after inflation. In order to evaluate g∗(f) and g∗,s(f),
we use the numbers of relativistic degrees of freedom as
functions of temperature tabulated in Saikawa & Shirai
(2020), g∗(T ) and g∗,s(T ), in combination with the stan-
dard temperature–frequency relation in ΛCDM (i.e., the
cosmological Lambda cold dark matter standard model)
that follows from the condition k = a(T )H(T ) at the
time of horizon reentry. In the remainder of this paper,
whenever we need g∗ or g∗,s in a different part of our
analysis, we will use the same functions g∗(f), g∗,s(f),
g∗(T ), and g∗,s(T ).
The inflationary dynamics give rise to the primordial

tensor power spectrum Pt, while the transfer function
T accounts for the redshifting behavior of GWs after
horizon reentry. In our analysis, we assume a constant
tensor spectral tilt (i.e., zero running of nt) from CMB
to PTA frequencies, such that

Pt (f) = r As

(
f

fCMB

)nt

. (18)

Meanwhile, the only relevant contribution to T in the
PTA band corresponds to the transfer function that con-
nects the radiation-dominated era to reheating,

T (f) ≈ Θ(fend − f)

1− 0.22 (f/frh)
1.5

+ 0.65 (f/frh)
2 . (19)

Here the fit function in the denominator of this expres-
sion is taken from Kuroyanagi et al. (2015, 2021) and

describes the spectral turnover, fnt → fnt−2, at fre-
quencies around f ∼ frh, which marks the end of the
reheating period,

frh =
1

2π

(
g0∗,s
grh∗,s

)1/3(
π2grh∗
90

)1/2
TrhT0

MPl

, (20)

with grh∗ = g∗(Trh) and grh∗,s = g∗,s(Trh) and the present-
day CMB temperature T0 ≃ 2.73K (Fixsen 2009). The
Heaviside theta function in Eq. (19) denotes the end-
point of the IGW spectrum at f = fend, which marks
the end of inflation and hence the onset of reheating,

fend =
1

2π

(
g0∗,s
grh∗,s

)1/3(
π2grh∗
90

)1/3
T

1/3
rh H

1/3
end T0

M
2/3
Pl

. (21)

For fixed Trh, the frequency fend is solely controlled
by Hend, which follows from our choice of Nrh accord-
ing to Eq. (14) (recall that we set wrh = 0). In our
MCMC analysis, we do not sample over fend, since its
precise value does not affect the shape of the IGW spec-
trum in the PTA band and hence the quality of our

fit. Instead, we constrain its maximally allowed value
(i.e., Nrh) after identifying the viable region in the r –
nt –Trh parameter space, in order to make sure that
the IGW spectrum does not violate the Neff and LVK
bounds. The frequency frh, on the other hand, can eas-
ily fall into the PTA band: from Eq. (20), we have
frh ∼ 30 nHz (Trh/1GeV). Therefore, we sample the
reheating temperature in a symmetric interval around
Trh = 1GeV extending down to temperatures relevant
for BBN, TBBN ∼ 1MeV. That is, we work with the
log-uniform prior log10 (Trh/1GeV) ∈ [−3,+3].

RESULTS AND DISCUSSION

We now discuss the outcome of our Bayesian fit anal-
ysis. First, we note that the igw model fits the NG15
data slightly better than the baseline smbhb model.
This is evident from the Bayes factor that we find for
the igw versus smbhb model comparison, B = 8.8± 0.3
(mean value and one standard deviation), and simply

follows from the larger parametric freedom of the igw
model. Both the igw and smbhb models basically cor-
respond to a power-law approximation of the GW spec-

trum. However, in the case of the igw model, the pa-
rameters controlling this power law are drawn from prior
distributions that allow for a larger amplitude and a
steeper slope of the spectrum, which improves the qual-

ity of the fit. Meanwhile, the combined GW spectrum
from inflation with an additional SMBHB signal on top
compared to the smbhb model alone results in a Bayes

factor of B = 7.9 ± 0.3. We thus observe a slight de-
crease in the Bayes factor, which accounts for the fact
that adding the SMBHB signal on top of the IGW signal

does not improve the quality of fit but merely increases
the prior volume compared to the igw model.
The reconstructed posterior distributions for the pa-

rameters of the igw model and its igw+smbhb exten-
sion are shown in Figs. 5.1 For both models, we find a
strong covariance between the spectral index nt and the
tensor-to-scalar ratio r, which is approximately fit by

nt = −0.14 log10 r + 0.58 , (22)

and which can be explained as follows: the igw
interpretation of the PTA signal requires the pri-
mordial tensor power spectrum Pt to take values
of O

(
10−4

)
at nHz frequencies. This requirement

fixes the parameter combination r (fPTA/fCMB)
nt in

1 The noise in the 95% credible interval for the nt-log10 r posterior
distribution of the igw+smbhb model is due to the presence of
an extended plateau region in the posterior distribution, which
renders the kernel density reconstruction sensitive to Poisson fluc-
tuations in the binned MCMC data.
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Eq. (18) and thus allows us to estimate the coeffi-
cients in Eq. (22) as 1/ log10 (fPTA/fCMB) ≈ 0.14 and
log10 (Pt/As) / log10 (fPTA/fCMB) ≈ 0.58, respectively,
where we used fPTA = 1nHz and Pt = 0.3× 10−4.
In addition to the strong covariance between nt and

r, we note that the posterior probabilities of both pa-
rameters exhibit a bimodal distribution for both igw
and igw+smbhb. In the 2D distributions of the pa-
rameter pairs (Trh, nt) and (Trh, r), this bimodality
is accompanied by an approximate reflection symme-
try with respect to the points (log10 Trh/GeV, nt) ∼
(−0.5, 2.75) and (log10 Trh/GeV, log10 r) ∼ (−0.5,−15),
respectively. These features of the corner plot in Fig. 5
indicate that the igw model can operate in two regimes:
for Trh ≫ 1GeV, the reference frequency frh is larger
than the frequencies in the PTA band, and the GW
spectrum seen by NANOGrav is composed of tensor
modes that re-entered the horizon during the radiation-
dominated era. For Trh ≪ 1GeV, on the other hand,

frh can be pushed below PTA frequencies, and the GW
spectrum in the PTA band is composed of tensor modes
that re-entered the horizon during reheating after infla-

tion. In the first case, the tilt of the spectrum is directly
given by nt; in the second case, it corresponds to nt−2.
Clearly, the mirror symmetry in the 2D distributions of
(Trh, nt) and (Trh, r) is not exact. At the level of the

GW spectrum, it is explicitly broken by the frequency
dependence of g∗ and g∗,s as well as by the nontrivial
shape of the transfer function in Eq. (19).

At small or large values of the reheating temperature,
the posterior distributions develop approximately flat
directions along the Trh axis at (nt, log10 r) ∼ (2,−10) in
the large-Trh regime and at (nt, log10 r) ∼ (4,−20) in the

small-Trh regime. This behavior is broadly consistent
with the linear fit in Eq. (22), the reflection symmetry
discussed above, and the fact that, past a certain point,

raising or lowering Trh no longer influences the shape
of the GW signal in the PTA band. A tensor index of
nt = 2 at large Trh, moreover, corresponds to an index
γ = 3 in the timing-residual PSD, which is among the
best-fitting values—see the 2D posterior for A and γ in
Fig. 1. The same conclusion holds at low Trh, where
γ = 3 is mapped onto nt − 2 = 2.
Finally, we derive the Neff and LVK bounds on the

igw parameter space. For the Neff bound, the GW
spectrum, integrated from BBN scales to the cutoff fre-

quency fend, must not exceed a certain upper limit that
is set by the allowed amount of extra relativistic degrees
of freedom at the time of BBN and recombination,

∫ fend

fBBN

df

f
h2Ωinf

GW (f) ≲ 5.6× 10−6 ∆Nmax
eff . (23)
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Figure 5. Reconstructed posterior distributions for the
parameters of the igw (blue) and igw+smbhb (red) mod-
els. On the diagonal of the corner plot, we report the 1D
marginalized distributions together with the 68% Bayesian
credible intervals (vertical lines), while the off-diagonal pan-
els show the 68% (darker) and 95% (lighter) Bayesian cred-
ible regions in the 2D posterior distributions. We construct
all credible intervals and regions by integrating over the re-
gions of highest posterior density. The gray-shaded regions
are strongly disfavored by the NG15 data as they result in
a K ratio of less than 1/10 [see Eq. (10)]. The black-shaded
region results in a violation of the Neff bound in Eq. (23)
(see Appendix C.1 and Fig. 22), assuming Nrh = 0 (solid
line), Nrh = 5 (dashed line), Nrh = 10 (dotted line). Fig. 21
in Appendix C.1 shows an extended version of this plot that
includes the SMBHB parameters ABHB and γBHB.

Here, fBBN ∼ 10−12 Hz refers to tensor modes that re-
entered the Hubble horizon around the onset of BBN
at T ∼ 10−4 GeV (Caprini & Figueroa 2018), and
∆Nmax

eff ∼ few × 0.1 denotes the upper limit on the
amount of dark radiation. For definiteness, we set
fBBN = 10−12 Hz and ∆Nmax

eff = 0.5 in our analysis;
the precise ∆Nmax

eff value at 95% confidence level varies
across different combinations of data sets (Pisanti et al.
2021; Yeh et al. 2021). For given values of the parame-

ters Trh, r, and nt, we can then ask if there is a cutoff
frequency fmax

end that leads to the saturation of the in-
equality in Eq. (23). If this is the case, fmax

end yields an

upper bound on the allowed number of e-folds during
reheating, Nmax

rh , according to Eqs. (14) and (21). A
second constraint on Nrh follows from the LVK bound
on the amplitude of the GWB (Abbott et al. 2021b),

ΩGW ≤ 1.7× 10−8 at flvk = 25Hz , (24)
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assuming a flat GW spectrum. For a power-law spec-
trum, ΩGW = ΩGW,α (f/flvk)

α
with α = nt − 2 at

f ≫ frh, this bound can be generalized following Kuroy-
anagi et al. (2015, 2021),

ΩGW ≤ 1.7× 10−8

(
5− 2α

5

)1/2(
20Hz

flvk

)−α

. (25)

which approximately holds if α ≪ 5/2. For given values
of Trh, r, and nt, we can then evaluate Ωinf

GW at flvk
and check whether it exceeds the LVK bound. If so, we
place an upper bound on Nrh by demanding that fmax

end =
20Hz (the lower end of the LVK frequency band).
The outcome of our analysis is shown in Fig. 22 in Ap-

pendix C.1. In both plots of this figure, the dependence
on the tensor-to-scalar ratio r is eliminated by means
of the linear relation in Eq. (22). In the left panel of
Fig. 22, we present contour lines of Nmax

rh derived from

the Neff bound and the LVK bound, respectively. In
a realization of the igw model with a given duration
of reheating, these contour lines can be thought of as

bounds on the Trh –nt parameter plane—for fixed Nrh,
the regions with Nmax

rh < Nrh are excluded. We find
that the Neff bound rules out most values of the spec-
tral index nt in the large-Trh regime. At the same time,

large regions of parameter space remain viable as long as
Nrh < Nmax

rh . In fact, away from the region where Nmax
rh

turns negative, our upper bound is typically rather large,

Nmax
rh ∼ O (10 · · · 100), and hence easy to satisfy in re-

alistic models of reheating, where Nrh ∼ O (1 · · · 10). In
the right panel of Fig. 22, we compare our result to the

naive expectation Nnaive
rh in single-field slow-roll inflation

with a nearly constant Hubble rate [see Eq. (15)]. Across
large parts of parameter space, we find that Nnaive

rh as-
sumes unrealistically large values, Nnaive

rh ≫ 10.

In Fig. 5, we highlight the constraints on Trh and nt

(as well as Trh and r) that we deduce from the Neff

bound assuming Nrh values of Nrh = 0, 5, and 10. Here,
the constraints for Nrh = 0 correspond to the assump-
tion of instantaneous reheating after inflation and hence
represent the most conservative bound on the Trh –nt

parameter plane. A longer duration of reheating results
in tighter constraints on Trh and nt, as illustrated by the
contours for Nrh = 5 and 10. For an even larger number
of e-folds during reheating, see Fig. 22 in Appendix C.1.
In view of Figs. 5 and 22, we conclude that the igw

model is indeed capable of fitting the NANOGrav sig-
nal across large regions in parameter space. An in-
teresting viable scenario consists, e.g., of a large ten-
sor spectral index, nt ∼ 3 · · · 4, a tiny tensor-to-scalar
ratio, r ∼ 10−(23···16), a low reheating temperature,
Trh ∼ 10−(3···0) GeV, and a moderate number of e-folds
during reheating, Nrh ≲ 20. It remains to be seen

whether it is possible to identify explicit microscopic
models that realize inflation in this parametric regime.

5.2. Scalar-induced gravitational waves

MODEL DESCRIPTION

The amplitude of the primordial scalar power spec-
trum is well measured by CMB observations, As ≃
2.10 × 10−9 at the CMB pivot scale kCMB =
0.05Mpc−1 (Aghanim et al. 2020). If we naively ex-
trapolate this value down to smaller scales, assuming a
fixed and slightly red-tilted h2ΩGW spectrum with in-
dex ns ∼ 0.96, we are led to conclude that there must
be increasingly less power in scalar perturbations on
shorter scales. This conclusion can, however, be eas-
ily avoided in models that deviate from the standard
picture of single-field slow-roll inflation giving rise to a
nearly scale-invariant spectrum of scalar perturbations.
A prominent example, among many other mechanisms,

consists in a stage of inflation close to an inflection point
in the scalar potential, which readily amplifies the scalar
perturbations leaving the horizon (see, e.g., Garcia-

Bellido & Ruiz Morales (2017); Ezquiaga et al. (2018);
Ballesteros & Taoso (2018)). An enhanced scalar power
spectrum at small scales is, therefore, a viable possi-

bility. Moreover, it promises a rich phenomenology with
regard to the production of GWs and potentially the ori-
gin of primordial black holes (PBHs) (Carr et al. 2016;
Garcia-Bellido et al. 2016; Inomata et al. 2017a; Ino-

mata & Nakama 2019; Wang et al. 2019; Escrivà et al.
2022b). The possibility of having PBH formation in
models of single-field inflation is the subject of ongo-

ing debate (Kristiano & Yokoyama 2022; Riotto 2023a;
Choudhury et al. 2023a,b; Kristiano & Yokoyama 2023;
Riotto 2023b; Choudhury et al. 2023c; Firouzjahi & Ri-

otto 2023). Below, we comment on the implications of
this debate for our PBH-related parameter bounds.
In cosmological perturbation theory, scalar and ten-

sor perturbations evolve independently at linear order.
Starting at second order, however, they are coupled,
which means that large first-order scalar perturbations
can act as a source of second-order tensor perturbations.

We refer to these tensor perturbations, which are pro-
duced as soon as the enhanced scalar perturbations reen-
ter the Hubble horizon after inflation, as scalar-induced
gravitational waves (SIGWs) (Matarrese et al. 1993,
1994, 1998; Mollerach et al. 2004; Ananda et al. 2007;
Baumann et al. 2007) (see Domènech (2021) for a review
and more details on the history of SIGWs). At the same
time, large overdensities in the tail of the distribution of
scalar perturbations can collapse into PBHs upon hori-
zon reentry. This PBH production mechanism thus re-
sults in a PBH population whose properties are strongly
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correlated with the spectral shape of the SIGW signal, as
both phenomena are controlled by the scalar spectrum
generated during inflation (Yuan & Huang 2021a). For
earlier works on the PBH/SIGW interpretation of the
signal in recent PTA data sets, see Vaskonen & Veermäe
(2021); De Luca et al. (2021); Kohri & Terada (2021).
For earlier Bayesian searches for an SIGW signal in PTA
data sets, see Chen et al. (2020); Bian et al. (2021); Zhao
& Wang (2022); Yi & Fei (2023); Dandoy et al. (2023),
and for a search in LVK data, see Romero-Rodriguez
et al. (2022).
In our analysis, we consider SIGWs in the PTA band

and model the associated GW spectrum as follows:

Ωind
GW (f) = Ωr

(
g∗ (f)
g0∗

)(
g0∗,s

g∗,s (f)

)4/3

Ω̄ind
GW (f) , (26)

where the first three factors account for the cosmological
redshift as in Eq. (17), and where the last factor denotes
the GW spectrum at the time of production, which we
assume to be during the radiation-dominated era,

Ω̄ind
GW (f) =

∫ ∞

0

dv

∫ 1+v

|1−v|
duK (u, v)PR (uk)PR (vk) .

(27)
The present-day GW frequency is related to the comov-
ing wavenumber by f = k/ (2πa0), PR denotes the pri-
mordial spectrum of the comoving curvature perturba-
tion R, and the integration kernel K is given by (Es-
pinosa et al. 2018; Kohri & Terada 2018; Pi & Sasaki
2020; Gong 2022)

K (u, v) =
3
(
4v2 − (1 + v2 − u2)2

)2 (
u2 + v2 − 3

)4
1024u8v8

[(
ln

∣∣∣∣3− (u+ v)2

3− (u− v)2

∣∣∣∣− 4uv

u2 + v2 − 3

)2

+ π2Θ(u+ v −
√
3)

]
. (28)

The expression in Eq. (27) illustrates the dependence of

the SIGW signal on the scalar input spectrum; in partic-
ular, it shows that Ωind

GW scales as Ωind
GW ∝ P2

R. We stress
that the expression in Eq. (27) assumes Gaussian pertur-
bations, whose statistics are fully described by the power

spectrum PR. We do not consider any non-Gaussian
contributions to the primordial scalar power spectrum
in our analysis. The impact of non-Gaussianities on the

SIGW signal was studied in Nakama et al. (2017); Cai
et al. (2019); Unal (2019); Atal et al. (2019); Yuan &
Huang (2021b); Atal & Domènech (2021); Adshead et al.
(2021); Ferrante et al. (2023).

To remain as model-independent as possible, we re-
frain from choosing a particular inflation model capable
of generating an enhanced spectrum PR. Instead, we

ignore the microphysics of inflation and work with three
characteristic templates for PR that reflect the range
of possibilities that one may expect in realistic models.
Specifically, we consider the following templates:

sigw-delta: Sharp spectral feature in PR modeled by
a Dirac delta function in logarithmic k space,

PR (k) = Aδ (ln k − ln k∗) . (29)

sigw-gauss: Broad spectral feature in PR modeled by
a Gaussian peak in logarithmic k space,

PR (k) =
A√
2π∆

exp

[
−1

2

(
ln k − ln k∗

∆

)2
]
. (30)

sigw-box: Flat and continuous spectral feature in PR

modeled by a box function in logarithmic k space,

PR (k) = AΘ(ln kmax − ln k)Θ (ln k − ln kmin) . (31)

Note that the Gaussian power spectrum in logarithmic
k space that we assume in the sigw-gauss model corre-
sponds to a lognormal power spectrum in linear k space.
As evident from the above expressions, sigw-delta

represents a two-parameter model, while sigw-gauss
and sigw-box are three-parameter models. Our prior
choices for the respective parameters are listed in Ta-

ble 3 in Appendix A, where we use again f = k/ (2πa0)
to convert from wavenumber to frequency. For a given
set of parameter values, we are then able to use the
scalar power spectrum in Eq. (29), Eq. (30), or Eq. (31)
to evaluate the integrals in Eq. (27) and compute the
GW spectrum. For sigw-gauss and sigw-box, the in-
tegration needs to be carried out numerically; for sigw-
delta, we can resort to the exact analytical expression
provided in Wang et al. (2019); Yuan & Huang (2021a).

RESULTS AND DISCUSSION

We now turn to the outcome of our Bayesian fit anal-
ysis. Compared to the igw model discussed in Sec-
tion 5.1, we obtain even larger Bayes factors, indicat-

ing that SIGWs tend to provide an even better fit of
the NG15 data than IGWs. Specifically, we obtain B =
44±2, B = 57±3, and B = 21±1 for sigw-delta, sigw-
gauss, and sigw-box, respectively, and B = 38 ± 2,
B = 59 ± 3, and B = 23 ± 1 for sigw-delta+smbhb,
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sigw-gauss+smbhb, and sigw-box+smbhb, respec-
tively (see Fig. 2). This improvement in the quality of
the fit reflects the fact that the SIGW spectra deviate
from a pure power law and thus manage to provide a
better fit across the whole frequency range probed by
NANOGrav (see Fig. 3). For sigw-delta, we observe
again that adding the SMBHB signal does not improve
the quality of the fit. The larger prior volume of sigw-
delta+smbhb compared to sigw-delta therefore re-
sults in a slight decrease of the Bayes factor. For the
other two SIGW models, the Bayes factors remain more
or less the same, within the statistical uncertaintity of
our bootstrapping analysis.
The reconstructed posterior distributions for all

SIGW models under consideration are shown in Figs. 6
and 7. Our first conclusion in view of these results is
that a successful explanation of the NANOGrav sig-
nal in terms of SIGWs requires the primordial scalar
power spectrum to have a large amplitude A. We can

quantify this statement in terms of the lower limits of
the 95% Bayesian credible intervals for A that we ob-
tain from integrating the corresponding 1D marginal-
ized posteriors over the regions of highest posterior den-

sity: for sigw-delta, sigw-gauss, and sigw-box, we
respectively find log10 A ≳ −1.55, log10 A ≳ −1.43, and
log10 A ≳ −1.90. At the same time, the enhanced power

in scalar perturbations must be localized at the right
scales, so that the resulting SIGW signal falls into the
PTA band. This requirement leads to bounds on the
frequencies fmin, fmax, and f∗ that can be read off from

Figs. 6 and 7 and that are summarized in Table 4.
A notable feature in this context is that the poste-

rior distributions for fmin, fmax, and f∗ all extend to

large frequencies, much beyond the upper limit of the
NANOGrav band. The reason for this is that the NG15
data are best fit by the low-frequency tail of the SIGW

spectrum (see Fig. 19). Beyond the NANOGrav band,
the SIGW spectrum keeps increasing until it reaches its
maximal value at f ≫ 1 nHz. This observation also ex-
plains the flat directions in the 2D posterior distribution
for A and fmin in Fig. 6 and the 2D posterior distribu-
tions for A and f∗ in Fig. 7. A simultaneous increase in
A and fmin or f∗ along these flat directions moves the
peak in the GW spectrum to higher frequencies, but it
preserves the shape of the low-frequency tail in the PTA
band and hence does not affect the quality of the fit.
We also observe that the 2D posterior distributions for

A and f∗ for sigw-delta and sigw-gauss are roughly
similar to each other, with the distribution for the sigw-
gauss model being slightly broader. This result is con-
sistent with the fact that sigw-delta and sigw-gauss
are nested models; sigw-delta can be obtained from
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Figure 6. Same as in Fig. 5 but for the sigw-box model.
The regions above the teal contour lines labeled fPBH = 1
lead to the overproduction of PBHs, according to our anal-
ysis in Appendix C.2; however, see text for more discussion.
Fig. 23 in Appendix C.2 shows an extended version of this
plot that includes the SMBHB parameters ABHB and γBHB.

sigw-gauss in the limit ∆ → 0. The slightly broader

posterior distribution for A and f∗ in the right panel of
Fig. 7 thus reflects the extra dimension in the parame-
ter space of the sigw-gauss model and the additional

parametric freedom that comes with it.
Finally, we comment on the bounds on the parameter

space of the three SIGW models. As in the case of the

igw model, we identify regions of the parameter space
where the K ratio in Eq. (10) falls below 1/10. In these
regions, which are shaded in gray in Fig. 7 and labeled
NG15, adding the SIGW contribution to the GW signal

leads to much worse agreement with the data than in
the case of no SIGW contribution at all. In fact, pa-
rameter points in these regions lead to an SIGW signal
that exceeds the observed signal—in other words, the
gray shaded regions are ruled out because they result
in too strong of a SIGW signal. For sigw-box, we are
not able to place a K-ratio bound on the 2D parameter
space spanned by A and fmin, because we additionally
marginalize over fmax. That is, for any pair of values of
A and fmin, the SIGW signal can be made arbitrarily

small if we choose fmax close enough to fmin.
These bounds are an important result of our analy-

sis that is independent of the origin of the NANOGrav
signal. They provide valid constraints on the parameter
space for both the sigw-delta and sigw-gauss mod-
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Appendix C.2 shows extended versions of the two plots that include the SMBHB parameters ABHB and γBHB.

els, regardless of whether these models contribute to the

explanation of the observed GWB. In addition, they are
complementary to other existing bounds, in particular,
the requirement that the mass density of PBHs produced

alongside SIGWs must not exceed the energy density of
DM,

fPBH ≤ 1 , (32)

where fPBH = ΩPBH/ΩDM denotes the PBH DM frac-
tion integrated over the entire PBH mass spectrum. We
provide more details on how we compute fPBH in Ap-
pendix C.2; here we simply report our final results in

terms of the teal contour lines labeled fPBH = 1 in Figs. 6
and 7. For sigw-box, the PBH bound in the A – fmax

plane is computed for fmin = 10−11 Hz (the lower end
of our prior range), and the PBH bound in the A – fmin

plane is computed for fmax = 10−5 Hz (the upper end
of our prior range). For sigw-gauss, we show the PBH
bound in the A – f∗ plane for ∆ = 1 (solid contour line)
and ∆ = 2 (dashed contour line).
In all three cases, we find that the PBH bound is very

restrictive, ruling out most of the parameter space fa-

vored by the NG15 data. If taken at face value, the
PBH bound therefore renders the SIGW interpretation
of the NANOGrav signal less likely. However, we stress
that the computation of fPBH is very sensitive to var-
ious assumptions and numerical steps in the analysis.
Slight changes in the computational strategy may result

in very different results for fPBH, which is why the re-
sults reported in Figs. 6 and 7 need to be treated with

caution. In view of the large conceptional uncertainty

in the computation of fPBH, one needs to be careful not
to draw any premature conclusions. At the same time,
the PBH bounds in Figs. 6 and 7 illustrate that small

regions of parameter space do remain viable. In fact,
for sigw-delta and sigw-gauss, it is even possible to
realize fPBH = 1 inside the 68% credible regions. That

is, along the fPBH = 1 contour lines and inside the 68%
credible regions, we find scenarios where SIGWs man-
age to provide a good fit to the NG15 data and PBHs
account for the entire DM in our universe.

In closing, we remark that the above conclusions
are endangered by the recent claim of a no-go theo-
rem for PBH formation from single-field inflation (Kris-

tiano & Yokoyama 2022, 2023). Kristiano & Yokoyama
(2022, 2023) argue that enhanced scalar perturbations
at small scales lead to unacceptably large one-loop cor-
rections to the scalar power spectrum at large scales.
In terms of the model parameters discussed in this sec-
tion, this means that the amplitude A must be small,
log10 A ≪ −2; otherwise, the loop corrections to the

scalar power spectrum will exceed the measured ampli-
tude at CMB scales, As ≃ 2.10× 10−9. At present, this
claim is subject to an ongoing debate; it is notably chal-
lenged by Riotto (2023a,b); Firouzjahi & Riotto (2023).
However, if it should prove to be valid, the requirement
of log10 A ≪ −2 would clash with the lower bounds on A
listed above. In this case, one would then have to either
give up on the SIGW interpretation of the NANOGrav
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signal or seek to construct inflation models that evade
the arguments of Kristiano & Yokoyama (2022, 2023)
and still lead to a large SIGW signal.

5.3. Cosmological phase transitions

MODEL DESCRIPTION

In the cosmological context, first-order phase transi-
tions take place when a potential barrier separates the
true and false minima of scalar field potential.2 The
phase transition is triggered by quantum or thermal fluc-
tuations that cause the scalar field to tunnel through or
fluctuate over the barrier, which results in the nucleation
of bubbles within which the scalar field is in the true
vacuum configuration. If sufficiently large, these bub-
bles expand in the surrounding plasma where the scalar
field still resides in the false vacuum. The expansion
and collision of these bubbles (Kosowsky et al. 1992a,b;

Kosowsky & Turner 1993; Kamionkowski et al. 1994;
Caprini et al. 2008; Huber & Konstandin 2008), together
with sound waves generated in the plasma (Hindmarsh
et al. 2014; Giblin & Mertens 2013, 2014; Hindmarsh

et al. 2015), can source a primordial GWB (see Witten
(1984); Hogan (1986) for seminal work).3 For earlier
Bayesian searches for a phase transition signal in PTA

data, see Arzoumanian et al. (2021); Xue et al. (2021).
Generally, the GWB produced during the phase tran-

sition is a superposition of the bubble and sound-wave
contributions. However, if the bubble walls interact with

the surrounding plasma, most of the energy released
in the phase transition is expected to be converted to
plasma motion, causing the sound-wave contribution to

dominate the resulting GWB. An exception to this sce-
nario is provided by models in which there are no (or
only very feeble) interactions between the bubble walls

and the plasma, or by models where the energy released
in the phase transition is large enough that the friction
exerted by the plasma is not enough to stop the walls
from accelerating (runaway scenario). However, deter-
mining whether or not the runaway regime is reached
is either model dependent or affected by large theoret-
ical uncertainties (see, e.g., Li et al. (2023); Ai et al.
(2023); Krajewski et al. (2023) for recent work on this
topic). Therefore, in this work, we perform two sepa-
rate analyses: a sound-wave-only analysis (pt-sound),
where we assume that the runaway regime is not reached

2 The scalar field can either be an elementary field of a weakly cou-
pled theory or correspond to the vacuum condensate of a strongly
coupled theory. Scenarios with several scalars are also possible.

3 Turbulent motion of the plasma can also source GWs; however,
its contribution is usually subleading compared to the two other
contributions (see the discussion in Caprini et al. (2020)). There-
fore, we ignore GWs sourced by turbulence in our analysis.

and sound waves dominate the GW spectrum, and a
bubble-collisions-only analysis (pt-bubble), where we
assume that the runaway regime is reached and bubble
collisions dominate the GW spectrum.
We parameterize the GWB produced by both sound

waves and bubble collisions in a model-independent way
in terms of the following phase transition parameters:

• T∗, the percolation temperature, i.e., the temperature
of the universe when ∼ 34% of its volume has been con-
verted to the true vacuum (Ellis et al. 2019a). For weak
transitions, this temperature coincides with the temper-
ature at the time of bubble nucleation, Tn ∼ T∗. Con-
versely, for supercooled transitions, we typically have
Tn ≪ T∗. Barring the case of extremely strong transi-
tions, α∗ ≫ 1 (see below), which we do not consider in
this work, T∗ also determines the reheating temperature
after percolation, Trh ∼ T∗ (Ellis et al. 2019a).

• α∗, the strength of the transition, i.e., the ratio of
the change in the trace of the energy–momentum tensor

across the transition and the radiation energy density at
percolation (Caprini et al. 2020; Ellis et al. 2019b).

• H∗R∗ = R∗/H−1
∗ , the average bubble separation in

units of the Hubble radius at percolation, H−1
∗ . For

relativistic bubble velocities, which is what we consider

in the following, R∗ is related to the bubble nucleation
rate, β, by the relation H∗R∗ = (8π)1/3H∗/β.

In addition to the parameters T∗, α∗, and H∗R∗, the
GWB produced by a phase transition also depends on
the velocity of the expanding bubble walls, vw. However,
deriving the precise value of this quantity is an open

theoretical problem, which depends on model-dependent
quantities, such as the strength of the interactions be-
tween the bubble walls and the SM plasma. Therefore,
in our analysis, we fix the bubble velocity to unity (i.e.,
the speed of light in natural units). This assumption
is well justified for strong phase transitions (Bodeker &
Moore 2017), which, realistically, are the only ones that

could lead to a detectable signal in our current data.
In particular, we fix vw = 1 for both phase transition
scenarios that we are interested in, pt-sound and pt-
bubble. In the latter case, vw → 1 is automatically
implied by the runaway behavior of the phase transi-
tion; in the former case, one actually expects a sublu-
minal terminal velocity, vw < 1. In this sense, our de-
cision to fix vw = 1 amounts to the optimistic assump-
tion that this terminal velocity is numerically close to
vw = 1. A similar approach is followed by the authors

of the LISA review paper Caprini et al. (2020) who work
with vw = 0.95 throughout most of their analysis in the
absence of more detailed microphysical calculations. Fi-
nally, we point out that the parametrization of the GWB
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signal in terms of H∗R∗ = (8π)1/3 vw H∗/β already ab-
sorbs a large part of the dependence on the bubble wall
velocity. The remaining vw dependence is mostly con-
tained in the efficiency factor κs (see below). However,
in the regime of large α∗ values, α∗ ∼ 0.3 · · · 10, which
turn out to be preferred by the NG15 data (see Fig. 8),
this dependence is rather weak (see Fig. 13 in Espinosa
et al. (2010)), which justifies again to keeping vw fixed.
The GWB spectrum sourced by bubbles and sound

waves can be written in terms of these parameters as

Ωb(f) = D Ω̃b

(
α∗

1 + α∗

)2

(H∗R∗)
2 S(f/fb) (33)

Ωs(f) = D Ω̃sΥ(τsw)

(
κs α∗
1 + α∗

)2

(H∗R∗)S(f/fs) .
(34)

Here Ω̃b = 0.0049 (Jinno & Takimoto 2017) and Ω̃s =

0.036 (Hindmarsh et al. 2017); the efficiency factor κs =
α∗/(0.73 + 0.083

√
α∗ + α∗) (Espinosa et al. 2010) gives

the fraction of the released energy that is transferred

to plasma motion in the form of sound waves, and D
accounts for the redshift of the GW energy density,

D =
π2

90

T 4
0

M2
PlH

2
0

g∗

(
geq∗,s
g∗,s

)4/3

≃ 1.67× 10−5 . (35)

We recall that T0 and H0 denote the photon tempera-
ture and Hubble rate today. The degrees of freedom g∗
and g∗,s in Eq. (35) are evaluated at T = T∗, and geq∗,s is

the number of degrees of freedom contributing to the ra-
diation entropy at the time of matter–radiation equality.
The production of GWs from sound waves stops after a
period τsw, when the plasma motion turns turbulent (El-

lis et al. 2019a,b, 2020; Guo et al. 2021). In Eq. (34),
this effect is taken into account by the suppression factor

Υ(τsw) = 1− (1 + 2τswH∗)
−1/2, (36)

where the shock formation time scale, τsw, can be writ-
ten in terms of the phase transition parameters as τsw ≈
R∗/Ūf , with Ū2

f ≈ 3κsα∗/[4(1 + α∗)] (Weir 2018).
The functions Sb,s describe the spectral shape of the

GWB and are expected to peak at the frequencies

fb,s ≃ 48.5 nHz g
1/2
∗

(
geq∗,s
g∗,s

)1/3(
T∗

1GeV

)
f∗
b,sR∗
H∗R∗

, (37)

where the values of the peak frequencies at the time
of GW emission are given by f∗

b = 0.58/R∗ (Jinno &
Takimoto 2017) and f∗

s = 1.58/R∗ (Hindmarsh et al.
2017). In passing, we mention that the numerical fac-

tors in these estimates may still change in the future,
as our understanding of cosmological phase transitions

improves. However, at the level of our Bayesian fit anal-
ysis, changes in these prefactors can be absorbed in the
temperature scale T∗, which in its role as an indepen-
dent fit parameter only controls the peak frequencies in
Eq. (37). A similar argument applies to the numerical
factors in Eqs. (33) and (34): changes in these prefac-
tors can always be absorbed in a rescaled version of the
fit parameter α∗, which only appears in the expressions
for the peak amplitudes of the GWB signal.
The shape of the spectral functions can be usually

approximated with a broken power law of the form

S(x) = 1

N
(a+ b)c

(bx−a/c + axb/c)c
. (38)

Here a and b are two real and positive numbers that give
the slope of the spectrum at low and high frequencies,
respectively; c parametrizes the width of the peak. The
normalization constant, N , ensures that the logarithmic

integral of S is normalized to unity and is given by

N =

(
b

a

)a/n(
nc

b

)c
Γ (a/n) Γ (b/n)

nΓ(c)
, (39)

where n = (a+ b)/c and Γ denotes the gamma function.
While the values of the coefficients a, b, and c can in
principle be estimated from numerical simulations, we

allow them to float within the prior ranges given in Ta-
ble 3. These prior ranges were chosen to roughly reflect
the typical uncertainties of numerical simulations and

any possible model dependency of these coefficients (see,
e.g., Hindmarsh et al. (2017, 2021); Lewicki & Vaskonen
(2020, 2021); Cutting et al. (2018, 2021)).4

RESULTS AND DISCUSSION

The reconstructed posterior distributions for the pa-
rameters α∗, T∗ and H∗R∗ of the pt-sound and pt-
bubble models are reported in Fig. 8, both for the
case where the phase transition is assumed to be the
only source of GWs (blue contours) and for the sce-
nario where we consider the superposition of the phase
transition and SMBHB signals (red contours).5 Corner

4 Causality fixes the spectral index of the phase transition GWB
signal to a = 3 in the low-frequency limit. However, given
the simple power-law parametrization adopted in this work,
double-peak features observed in the results of numerical sim-
ulations (Hindmarsh et al. 2017; Hindmarsh & Hijazi 2019) can
appear as a deviation from this behavior near the peak frequency.
Nonetheless, in Appendix C.3, we also report the results of an
analysis in which the low-frequency slope is fixed to a = 3.

5 The noise in the 95% credible regions of the posterior distribu-
tions of the pt-sound+smbhb model is due to the presence of
an extended plateau region in the posterior distribution, which
renders the kernel density reconstruction sensitive to Poisson fluc-
tuations in the binned MCMC data.
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Figure 8. Same as in Fig. 5 but for the pt-bubble (left panel) and pt-sound model (right panel). Fig. 25 in Appendix C.3
shows the same plots but with the parameter a fixed by causality, a = 3. Figs. 26 and 27 in Appendix C.3 show extended
versions of the two plots that include the spectral shape parameters a, b, c and the SMBHB parameters ABHB and γBHB.

plots including the posterior distributions for the spec-
tral shape parameters a, b, c and SMBHB parameters
ABHB and γBHB are reported in Figs. 26 and 27 in Ap-

pendix C.3.
In all analyses, the data prefer a relatively strong and

slow phase transition. Specifically, for pt-bubble, we
find α∗ > 1.1 (0.29) and H∗R∗ > 0.28 (0.14) at the 68%

(95%) credible level. When the SMBHB signal is added
on top of the GWB predicted by pt-bubble, we find
α∗ > 1.0 (0.23) and H∗R∗ > 0.26 (0.11) at the 68%

(95%) credible level. For the pt-sound model, we find
α∗ > 0.42 (0.37) and H∗R∗ ∈ [0.053, 0.27] ([0.046, 0.89])
at the 68% (95%) credible level. Including the SMBHB
signal on top of the one predicted by pt-sound, we

find α∗ ∈ [0.46, 5.4] (> 0.16) and H∗R∗ ∈ [0.054, 0.35]
(> 0.0015) at the 68% (95%) credible level.
As can be seen in Fig. 3, for both phase transition

models, the reconstructed GWB spectrum tends to peak
around the higher frequency bins and fit the signal in
the lower frequency bins with the left tail of the spec-
trum. Specifically, for the pt-bubble model we find
T∗ ∈ [0.047, 0.41] ([0.023, 1.75]) GeV at the 68% (95%)
credible level, whereas for the pt-sound model we get
T∗ ∈ [4.7, 33] ([2.7, 93]) MeV at the 68% (95%) credible

level. The shift between these T∗ intervals is partially
explained by the different numerical factors in the fre-
quencies f∗

s and f∗
b (see Eq. (37)). As explained below

Eq. (37), any change in these numerical factors can be
reabsorbed in a redefinition of the fit parameter T∗.

The inclusion of the SMBHB signal, by adding power
to the lowest frequency bins, allows the T∗ posterior for
the pt-sound model to extend to higher values. In this
case, we find that T∗ ∈ [4.9, 50] ([0.8, 2×106]) MeV at the

68% (95%) credible level. Here the increase in the 68%
upper limit is reflected in the slight shift between the
red and blue dashed vertical lines in the 1D marginal-

ized posterior distribution for T∗ in the right panel of
Fig. 8. The drastic increase in the 95% upper limit, on
the other hand, is related to the fact that adding the
SMBHB signal to the GWB results in a flat plateau re-

gion in the posterior distribution of the pt-soundmodel
parameters where the NANOGrav signal is mostly ex-
plained by the SMBHB contribution to the GWB. The
95% credible regions for the pt-sound+smbhb model
cover much of this plateau, which explains their large ex-
tent and noisy appearance in Fig. 8. For the pt-bubble
model, the inclusion of the SMBHB signal is less signif-
icant, and we find T∗ ∈ [0.046, 0.46] ([0.017, 3.27]) GeV
at the 68% (95%) credible level.
The larger phase transition temperatures observed for

the pt-bubble model are a consequence of the smaller
value of the peak frequency at the time of emission, f∗

b ,
but also of the lower prior range for the low-frequency

spectral index adopted for the pt-bubble model. In-
deed, a shallower low-frequency tail allows spectra with
a higher peak frequency to still produce a sizable signal
in the lowest frequency bins. In Appendix C.3, we report
the results of the analysis in which the low-frequency
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slope is set to the value predicted by causality (a = 3).
In this case, as expected, the reconstructed phase tran-
sition temperatures for the two phase transition models
are closer to each other.
The corner plots in Fig. 8 also illustrate that, as ex-

pected from the expression for the peak frequency in
Eq. (37), there is an approximately linear correlation
between log10 T∗ and log10 H∗R∗. For α∗ ≲ 1, we in-
stead find α∗ ∼ 1/(H∗R∗) for the pt-bubble model
and α2

∗ ∼ 1/(H∗R∗) for the pt-sound model as ex-
pected from the factors in Eq. (33) and Eq. (34).
We also notice that, for both models, the posterior

distribution for T∗ is peaked at significantly larger val-
ues compared to what was derived in the 12.5 yr anal-
ysis (Arzoumanian et al. 2021). This shift results from
the reconstructed h2ΩGW spectrum being bluer than the
one derived for the common process observed in the 12.5
yr data set. As a result, the lowest frequency bins, which
were fit by the high-frequency tail of the phase transition

spectrum in the 12.5 yr analysis, are now fit by the low-
frequency tail of the spectrum. This then translates into
a higher peak frequency and therefore a higher transi-
tion temperature. Incidentally, the larger reconstructed

value for the transition temperature allows the phase
transition signal to safely evade bounds from BBN and
CMB observations (Bai & Korwar 2022; Deng & Bian

2023) for both the pt-bubble and pt-sound models,
which constrain the phase transition parameter space at
temperatures around T∗ ∼ 1MeV.

Instead, we conclude that the reconstructed posterior
distribution of T∗ is compatible with phase transition
scenarios that have been discussed in the literature as a
possible source of GWs in the PTA band: (i) BSM mod-

els in which the chiral-symmetry-breaking phase tran-
sition in quantum chromodynamics (QCD) is a strong
first-order phase transition (see, e.g., Neronov et al.

(2021); Li et al. (2021)) and (ii) strong first-order phase
transitions in a dark sector composed of new BSM de-
grees of freedom (see, e.g., Nakai et al. (2021); Ratzinger
& Schwaller (2021)). In view of the NG15 data, both
of these options for the particle physics origin of the
phase transition signal remain viable. A third option
may consist in a strongly supercooled first-order elec-

troweak phase transition (Kobakhidze et al. 2017).
Finally, we report that that, like the models stud-

ied in Sections 5.1 and 5.2, the phase transition mod-
els provide a better fit of the NG15 data than the
base smbhb model. The Bayes factors for pt-bubble
and pt-sound versus smbhb are B = 18.1 ± 0.6 and
B = 3.7 ± 0.1, respectively, while the Bayes factors
for pt-bubble+smbhb and pt-sound+smbhb versus
smbhb are B = 12.6 ± 0.5 and B = 6.5 ± 0.3, respec-

tively. An interesting observation in view of these re-
sults is that adding the SMBHB contribution to the
GWB signal does not help to improve the quality of
the fit for pt-bubble—in this case, we find again a de-
crease in the Bayes factor going from pt-bubble to pt-
bubble+smbhb because of the larger prior volume—
but it does lead to a better fit for pt-sound. This
model benefits from the additional SMBHB contribu-
tion because it can add power to the low frequency bins
in the GW spectrum that the pt-sound model alone
struggles to fit well on its own (see Fig. 3). The rea-
son for this, in turn, is the prior range for the spectral
index at low frequencies, a, which can as be as low as
a = 1 for pt-bubble, but which we require to be at
least a = 3 for pt-sound (see Table 3). Another con-
sequence of this interplay between the phase transition
and SMBHB signals is that the NANOGrav signal may

in fact be dominated by SMBHBs. This possibility is
realized when the pt-sound model parameters fall into
the plateau region in Fig. 8 (i.e., the red 95% credible

regions in the right panel) and the SMBHB parameters
are close to log10 ABHB ∼ −(15 · · · 14) and γBHB ∼ 3 · · · 4
(see Fig. 27).

5.4. Cosmic strings

MODEL DESCRIPTION

Cosmic strings are effectively 1D topological defects
that can form in the early universe as a consequence

of a cosmological phase transition (Kibble 1976). Rig-
orously speaking, the criterion for the formation of a
cosmic-string network is that the underlying phase tran-
sition must entail the spontaneous breaking of a local or

global symmetry and end on a vacuum manifold with a
nontrivial first homotopy group. In practice, the most
relevant scenario satisfying this criterion is the cosmo-

logical breaking of a U(1) symmetry. The breaking
of global U(1) symmetries results in the formation of
global-string networks, which happens, e.g., in axion
models. The GW signal in this case is suppressed be-
cause global strings lose most of their energy by emitting
light pseudo-Nambu–Goldstone bosons (i.e., “axions”).
In the following, we therefore focus on local strings from
the spontaneous breaking of a local U(1) symmetry as
occurs in many particle physics models of the early uni-
verse, such as grand unified theories (GUTs), where in-
termediate symmetry breaking stages can be realized in
the form of string-producing phase transitions. Cosmic
strings are thus well motivated by ideas about parti-
cle physics at very high energies, which prompts us to

consider them as yet another possible source of exotic
GWs (Vilenkin 1981a; Hogan & Rees 1984; Vachaspati
& Vilenkin 1985; Accetta & Krauss 1989; Bennett &
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Bouchet 1991; Caldwell & Allen 1992). For earlier work
on the cosmic strings interpretation of the signal in re-
cent PTA data sets, see, e.g., Blasi et al. (2021), Ellis &
Lewicki (2021), and Blanco-Pillado et al. (2021).
In our analysis, we study ordinary stable cosmic

strings as well as metastable strings, which are unstable
against the nucleation of GUT monopoles. In passing,
we also comment on cosmic superstrings, which do not
have a particle-physics origin but are present in some
string-theoretic models of the early universe. Our start-
ing point for describing all these scenarios is the Nambu–
Goto action, which treats cosmic strings as featureless
1D objects that can be characterized by a single param-
eter: their tension, i.e., energy per unit length, µ. In
the case of metastable strings, there is a second param-
eter, κ, which controls the lifetime of the network. For
superstrings, the relevant parameters are µ and the in-
tercommutation probability P (see below). Before we
move on, we note that, as an alternative approach to

the Nambu–Goto approximation, it is possible to de-
scribe cosmic strings in a field-theoretical language, e.g.,
in terms of the Abelian-Higgs model. The comparison of
these two approaches, i.e., the relation between Nambu–

Goto strings and Abelian–Higgs strings, is the subject
of ongoing research (Blanco-Pillado et al. 2023), and we
refer the reader to Section 3.4 of Auclair et al. (2020) for

an extended discussion. Furthermore, we only consider
the GWB produced by cosmic-string loops in our anal-
ysis and disregard the subdominant contribution from

long (infinite) strings (see a discussion of this point in
Section 4.4 of Auclair et al. (2020)).
Shortly after their formation, cosmic strings enter a

scaling regime where the total energy stored in the net-

work, ρcs, remains a constant fraction of the critical en-
ergy density, Ωcs = ρcs/ρc ≈ const (Hindmarsh & Kib-
ble 1995). This behavior is possible because long strings,

stretching over superhorizon distances, frequently inter-
commute with each other, thereby producing an abun-
dance of closed string loops on subhorizon scales that
radiate energy in the form of GWs. These GWs are
sourced by the oscillations of the loops under their own
tension, as well as by localized features (“cusps” and
“kinks”) propagating along the loops. The superposi-
tion of the GWs emitted by the individual loops in the
network thus results in a stochastic GWB,

Ωcs
GW (f) =

8π

3H2
0

(Gµ)
2
kmax∑
k=1

Pk Ik (f) . (40)

Here the dimensionless factor Gµ denotes the cosmic-
string tension in units of Newton’s constant, for which
we choose a log-uniform prior in our numerical analysis,
log10 Gµ ∈ [−14,−6] for stable strings and superstrings

and log10 Gµ ∈ [−14,−1.5] for metastable strings. The
sum in Eq. (40) runs over the harmonic excitations of
the closed string loops that, given a loop of length ℓ,
correspond to oscillations at frequency f = 2k/ℓ. We
evaluate the sum starting at the fundamental oscillation
mode, k = 1, and including terms up to kmax = 105,
which ensures good convergence of the GW spectrum.
The dimensionless factor Pk inside the sum describes

the GW power, in units of Gµ2, that is emitted by a
loop in its kth excitation. For large kmax, we can write

Pk =
Γ

ζ (q)

1

kq
, (41)

where the prefactor Γ/ζ (q) ensures that the total power
emitted in GWs amounts to

∑
k Pk = Γ and where the

power-law index q depends on the predominant source
of GWs on the loops. In our analysis, we set Γ = 50,

as suggested by numerical simulations (Blanco-Pillado &
Olum 2017), and discuss different possibilities for q. The
actual average GW spectrum from non-self-intersecting
loops is still uncertain. We therefore choose several dif-

ferent models that give an idea of the range of possibil-
ities. Specifically, we consider four different models of
stable cosmic strings:

stable-c: Stable strings emitting GWs only in the form

of GW bursts from cusps on closed loops, q = 4/3
(Vachaspati & Vilenkin 1985).

stable-k: Stable strings emitting GWs only in the form
of GW bursts from kinks on closed loops, q = 5/3
(Damour & Vilenkin 2001).

stable-m: Stable strings emitting monochromatic GWs
at the fundamental frequency f = 2/ℓ of closed loops.

stable-n: Stable strings described by numerical sim-
ulations including GWs from cusps and kinks (Blanco-
Pillado et al. 2011, 2015).

For stable-n, Pk is dominated by cusp emission at large

k, i.e., q ≈ 4/3 for k ≳ 100, while at smaller k it devi-
ates from the pure cusp spectrum, reaching q values of
up to q ∼ 1.5 around k ∼ 10. Meanwhile, Eq. (41) is
irrelevant for stable-m; for this model, we simply set
Pk = Γ if k = 1 and Pk = 0 otherwise. More details on
our four stable-string models can be found in Blanco-
Pillado et al. (2021).

Finally, the frequency-dependent factor Ik in Eq. (40)
represents an integral of the number density of closed
string loops, nl(ℓ, t), over all possible GW emission
times,

Ik (f) =
2k

f

∫ t0

tini

dt

(
a (t)

a(t0)

)5

nl

(
2k

f

a (t)

a(t0)
, t

)
. (42)

Here t0 is the present time and tini is the time when
the network reaches the scaling attractor solution. The
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precise value of tini only affects the high-frequency part
of the GW spectrum and plays no role in our analysis.
The loop number density nl can be estimated based on
the velocity-dependent one-scale (VOS) model,

nl (ℓ, t) = F C∗ Θ(t− t∗)Θ (t∗ − tini)

α∗ (α∗ + ΓGµ+ α̇∗t∗) t4∗

(
a∗
a (t)

)3

, (43)

where F = 0.1 is an efficiency factor (Blanco-Pillado
et al. 2014; Auclair et al. 2020) and an asterisk indicates
that the corresponding quantity needs to be evaluated
at the time of loop formation, which follows from solving
the following relation for t∗:

t∗ =
ℓ+ ΓGµ t

α∗ + ΓGµ
, α∗ = α (t∗) . (44)

The time-dependent functions C and α characterize
the efficiency of loop formation from the network and the
typical loop size at the time of production, respectively,

C (t) =
c̃√
2

v̄ (t)

ξ3 (t)
, α (t) = αL ξ (t) . (45)

Here c̃ is the loop-chopping parameter and αL controls
the loop length at the time of production in units of the

correlation length of the long-string network, L = ξ t.
We set c̃ ≃ 0.23 and αL ≃ 0.37, in agreement with nu-
merical simulations (Martins & Shellard 2002; Blanco-
Pillado et al. 2011, 2014). With c̃ fixed, we are able to

solve the VOS equations for the dimensionless correla-
tion length ξ and the root-mean-square velocity of the
long strings, v̄, and hence determine the time depen-

dence of C and α. In doing so, we account for the exact
evolution of the scale factor, a, in ΛCDM, including the
temperature-dependent variation in the number of rela-

tivistic degrees of freedom. At very high temperatures,
this analysis returns ξr ≃ 0.27 and v̄r ≃ 0.66, such that
α ≃ 0.10 deep in the radiation-dominated era. The loop
number density nl obtained in this way agrees very well
with the result of numerical simulations (Blanco-Pillado
et al. 2014) in the limit of constant g∗ and g∗,s.
In the case of metastable strings, the loop number

density in Eq. (43) receives two correction factors,

nmeta
l (ℓ, t) = Θ (ts − t∗)E (ℓ, t)nl (ℓ, t) . (46)

The Heaviside function accounts for the fact that we ex-

pect loop formation to cease when monopole nucleation
becomes efficient and the network transitions from the
scaling regime to the decay regime at times around

ts =
1

Γ
1/2
d

, (47)

with the decay rate, Γd, counting the number of
monopole nucleation events per time and per unit string

length,

Γd =
µ

2π
e−πκ . (48)

Here κ is a measure for the ratio of the GUT and
U(1) symmetry breaking scales in the underlying GUT
model. Specifically,

√
κ describes the ratio of the GUT

monopole mass and the square root of the U(1) string
tension,

√
κ =

mGUT

µ1/2
∼ ΛGUT

ΛU(1)

. (49)

Meanwhile, the second new factor in Eq. (46) represents
an exponential suppression term, reflecting the depletion
of the loop number density in the decaying network,

E (ℓ, t) = e−Γd[ℓ(t−t∗)+1/2ΓGµ(t−t∗)
2] . (50)

As evident from Eqs. (48) and (50), the loop number

density of a metastable network is exponentially sen-
sitive to the decay parameter κ. For

√
κ ≫ 10, the

lifetime of the network exceeds the age of the universe,

such that the resulting GW signal is indistinguishable
from the signal of a stable-string network. For

√
κ ∼ 1,

on the other hand, the network decays very fast in the

early universe, such that no GW signal at PTA frequen-
cies is generated. For these reasons, we choose a uniform
prior on

√
κ in a rather narrow range,

√
κ ∈ [7.0, 9.5],

which is enough to capture the nontrivial aspects of the

metastable scenario.
Monopole nucleation in a metastable network results

in string segments, dumbbell-like shaped pieces of string

with monopoles attached on either end. In many GUT
models, these monopoles still carry unconfined flux, such
that we actually need to distinguish between monopoles

and antimonopoles. Monopoles and antimonopoles with
unconfined flux occur, e.g., in GUT models involving,
schematically, the symmetry breaking pattern

SU(2)1 × U(1)2 → U(1)1 × U(1)2 → U(1) . (51)

In this case, we expect the string segments to dissipate
most of their energy via the emission of massless vec-
tor bosons soon after their formation. Alternatively,
monopoles may carry no unconfined flux, in which case
they are able to lose energy only via the emission of
GWs. In our analysis, we cover both possibilities:

meta-l: Metastable strings; monopoles carry uncon-

fined flux; GW emission from loops only.

meta-ls: Metastable strings; monopoles carry no un-
confined flux; GW emission from loops and segments.

For meta-ls, we also require the number density of
segments that result from the decaying network; the
relevant expressions are summarized in Appendix C.4.
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Moreover, we need to specify the power spectrum of
GWs emitted by string segments. Following Buchmuller
et al. (2021), we use again Eq. (41) and set q = 1, which
can be analytically derived in the straight-string approx-
imation (Martin & Vilenkin 1997). At the same time,
we assume a pure cusp spectrum (q = 4/3) for the GW
emission from loops in both meta-l and meta-ls.
Finally, we also consider cosmic superstrings:

super: Cosmic superstrings ; suppressed intercommuta-
tion probability P ; GWs from cusps on loops, q = 4/3.

Cosmic superstrings are characterized by a reduced in-
tercommutation probability P as a consequence of their
quantum-mechanical nature. In superstring networks,
intercommutation events are, therefore, less frequent,
which demands longer numerical simulations (poten-
tially up to a factor 103 longer). Such simulations have

not yet been carried out, which makes the prediction of
the GW signal from cosmic superstrings rather uncer-
tain at present. In the absence of a more sophisticated
treatment, we follow the standard practice in the litera-

ture and simply estimate the GW spectrum from cosmic
superstrings by rescaling the spectrum in Eq. (40),

Ωcs
GW (f) → 1

P
Ωcs

GW (f) , (52)

where we allow for P values drawn from a log-uniform
prior, log10 P ∈ [−3, 0], which covers the theoretically
expected range for cosmic F - and D-superstrings (Jack-

son et al. 2005).

RESULTS AND DISCUSSION

We now turn to the outcome of our Bayesian fit anal-
ysis, discussing first our results for stable strings. As
evident from Figs. 2 and 3, we find that stable strings

are not able to provide a better fit of the PTA data than
the benchmark smbhb model. In fact, among all ex-
otic GWB sources considered in this work, stable cosmic
strings represent the only case that consistently yields
a Bayes factor in favor of the smbhb interpretation.
Comparing the stable-c, stable-k, stable-m, and
stable-n models to the smbhb model, we obtain B =
0.277±0.006, B = 0.364±0.008, B = 0.379±0.008, and
B = 0.307± 0.006, respectively; comparing the stable-
c+smbhb, stable-k+smbhb, stable-m+smbhb, and
stable-n+smbhb models to the smbhb model, we ob-
tain B = 0.76±0.01, B = 0.89±0.02, B = 0.84±0.02, and
B = 0.83 ± 0.01, respectively. These Bayes factors are

close to unity, which means that adding a cosmic-string
contribution to the GWB signal on top of the SMBHB
signal does not improve the fit. Meanwhile, the larger
prior volume pushes the Bayes factors to values slightly
smaller than unity.

The reason for the poor performance of the stable-
string models is straightforward. In order to explain the
relatively large amplitude of the signal, a comparatively
large value of the cosmic-string tension Gµ is necessary.
Large Gµ values, however, tend to result in a rather flat
GW spectrum in the PTA band as seen in Fig. 20 (see
also, e.g., Fig. 1 in Blanco-Pillado et al. (2011) or Fig. 1
in Blasi et al. (2021)), which clashes with the fact that
the data seem to prefer a blue-tilted h2ΩGW spectrum. If
we approximate the GW signal from stable strings by a
simple power law, this observation can be reformulated
in the language of the γ –A plot in Fig. 1. In terms of
γ and A, we then conclude that stable strings allow one
to obtain γ ≲ 4 only for log10 A ≲ −15.0, while larger
values in the range log10 A ∼ − (14.5 · · · 14.0) can only
be achieved for γ ∼ 5. The GW spectrum from stable
strings is therefore always either too weak or too flat.
In Fig. 9, we present the reconstructed posterior distri-

butions for the cosmic-string tension in our four stable-
string models. The left panel of Fig. 9 shows our results

in the absence of an additional SMBHB contribution
to the signal, while the right panel displays the poste-
rior distributions in the combined strings-plus-SMBHBs

models. In the former case, we find peaked distribu-
tions centered around values of the order of log10 Gµ ∼
− (10.5 · · · 10.0). Values of the cosmic-string tension in

this range represent a compromise between the two ex-
tremes discussed above: at smaller log10 Gµ the GW
signal becomes too weak, while at larger log10 Gµ it
becomes too flat. Moreover, we note that the order

of the peaks in the posterior distributions—stable-
m, stable-k, stable-n, stable-c from left to right—
agrees with the ordering found in Blanco-Pillado et al.

(2021) at γ ≲ 4.6. The underlying reason is that, for
fixed Gµ, stable-m predicts the strongest GW signal
in the nanohertz frequency band, followed by stable-
k and stable-n, while stable-c predicts the weakest

signal.
If we extend the stable-string models by including an

SMBHB contribution to the GW signal, the posterior
distributions feature not only a peak toward the up-
per end of the log10 Gµ range but also an extended
plateau at small log10 Gµ values. This plateau corre-

sponds precisely to the plateau that we alluded to in
the definition of the K ratio in Eq. (10) and hence
allows us to derive the following upper limits on the
cosmic-string tension in the stable-c+smbhb, stable-
k+smbhb, stable-m+smbhb, and stable-n+smbhb
models, respectively: log10 Gµ < −9.67, −9.87, −10.10,
and −9.71. We recall that, for cosmic-string tensions ex-
ceeding these values, the likelihood of the strings-plus-
SMBHBs model drops below 1/10 of the likelihood of
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Figure 9. Reconstructed 1D marginalized posterior distributions for the dimensionless cosmic-string tension parameter Gµ in
the four stable-string models without SMBHBs (stable-c, stable-k, stable-m, and stable-n) in the left panel and including
SMBHBs (stable-c+smbhb, stable-k+smbhb, stable-m+smbhb, and stable-n+smbhb) in the right panel. The dashed
vertical lines show the 68% Bayesian credible intervals, which we construct as described in the text, and the solid vertical lines
mark the Gµ values where the K ratio in Eq. (10) reaches a value of 1/10. Fig. 28 in Appendix C.4 shows an extended version
of this plot that includes the SMBHB parameters ABHB and γBHB.

the smbhb benchmark model. In this region of parame-
ter space, adding GWs from stable strings to the signal
does more harm than good and is strongly disfavored

by the data. For comparison, we also quote the up-
per limits of the 95% Bayesian credible intervals for Gµ,
specifically of the 95% highest posterior density intervals

(HPDIs). For each model, the HPDI is the narrowest
possible range that includes 95% of the posterior proba-
bility. By construction, the boundaries of an HPDI are
at points with the same posterior probability density,

and each parameter value inside the HPDI has higher
posterior probability density than any parameter value
outside the HPDI.6 We find log10 Gµ < −9.88, −10.04,
−10.26, and −9.90 for stable-c+smbhb, stable-
k+smbhb, stable-m+smbhb, and stable-n+smbhb,
respectively. Next, we turn to metastable strings, which,
as can be read off from Fig. 2, provide a better fit to the
data. In the absence of an SMBHB contribution to the
GW signal, the Bayes factors for the meta-l and meta-

6 In the case of the four strings-plus-SMBHBs models, the prob-
ability density threshold for this procedure may coincide with
the height of the plateau at low frequencies. If this happens,
sampling fluctuations in the plateau region will lead to a set of
disjoint intervals. To avoid these fictitious intervals, we set the
upper limit where the posterior probability density falls to the
level of the plateau and adjust the lower limit within the plateau
so that the intervals contain 95% of the posterior probability.

ls models are B = 13.4 ± 0.4 and B = 21.3 ± 0.8, re-
spectively. Adding an SMBHB contribution to the GW
signal, the Bayes factors for the meta-l and meta-ls

models are instead B = 11.1 ± 0.3 and B = 18.9 ± 0.7,
respectively. Again, the fit does not become better, but
the larger prior volume results in a decrease of the Bayes
factors.

The reconstructed 1D and 2D posterior distributions
for the two metastable-string models are shown in the
corner plots in Fig. 10. From these plots, we read off that

the NG15 data prefer values of the decay parameter
√
κ

of around
√
κ ∼ 8 in combination with a large cosmic-

string tension, log10 Gµ ∼ − (7 · · · 4). Here
√
κ ∼ 8

causes a suppression of the GW signal in the nanohertz
band compared to stable strings because of the expo-
nential factor in Eq. (50). This suppression results in a
decreased signal strength and a larger spectral tilt. The
decrease in signal strength can, however, be compen-
sated by a large cosmic-string tension, such that the final
spectrum still has the right amplitude but is now more
blue-tilted than in the stable-string case. This interplay
of the different factors affecting the GW spectrum from
metastable strings effectively leads to a better fit.

Let us comment on a few characteristic features of
the posterior distributions shown in Fig. 10. First, we
find that the log10 Gµ posterior in the meta-ls model
extends to slightly larger values than in the meta-l
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Figure 10. Same as in Fig. 5 but for the metastable-string models meta-l (GW emissions from loops only) in the left panel
and meta-ls (GW emission from loops and segments) in the right panel. The gray shaded regions are strongly disfavored by
the NG15 data, as they result in a K ratio of less than 1/10 (see Eq. (10)); the teal shaded regions are ruled out by the CMB
bound on cosmic strings (Ade et al. 2016; Charnock et al. 2016; Lizarraga et al. 2016); and the regions to the right of the yellow
contour lines violate the LVK bound in Eq. (24). Fig. 29 in Appendix C.4 shows extended versions of the two plots that include
the SMBHB parameters ABHB and γBHB.

model, which demonstrates the effect of the additional
contribution to the GW signal from string segments. In
fact, in the region of highest posterior density, the seg-
ment contribution dominates over the loop contribution

in the meta-ls model. Second, we point out that the
1D marginalized posterior distributions for log10 Gµ ex-
hibit small local maxima at log10 Gµ ∼ − (11 · · · 10),
which correspond to the stable-string limit within the
metastable-string models. This limit is realized for large
values of the decay parameter,

√
κ ≳ 9, which pushes the

effect of the network decay to frequencies below the PTA
band. Next, we observe that for meta-l the log10 Gµ
posterior experiences a sharp drop-off at log10 Gµ ∼ −5,
whereas for meta-ls, there is a small dip in the log10 Gµ
posterior at log10 Gµ ∼ −5. Both features can be traced
back to the Heaviside theta function in Eq. (46), which
ensures that no more new loops are formed during the

decay regime of the network. Because of this Heaviside
theta function, the loop contribution to the GW spec-
trum moves to frequencies above the PTA band if we
raise log10 Gµ above log10 Gµ ∼ −5. In this sense, the
drop-off and the dip in the log10 Gµ posteriors should
be regarded as being due to our simplified theoretical
modeling of the GW spectrum. More work is necessary
to improve on the description in terms of a simple Heav-
iside theta function and obtain a better understanding
of the evolution of the decaying network. We expect

that a more accurate description of the transition from
the scaling to the decay regime would result in smoother
log10 Gµ posteriors. Finally, we note that some of the
fluctuations in the posteriors in Fig. 10 can be attributed

to the fact that, in the case of the metastable-string
models, we have to work with tabulated data for the GW
spectrum, based on the numerical evaluation of Eq. (40).

We also use the corner plots in Fig. 10 to highlight
the relevant bounds on the parameter space spanned by
log10 Gµ and

√
κ. The gray shaded areas notably in-

dicate the K-ratio bound, which marks the parameter
regions that are ruled out by the NANOGrav data. In
these regions, the GW signal from metastable strings
exceeds the observed signal and hence is unacceptably
large. We find that the NANOGrav bound is stronger
than the well-known CMB bound, which demands that
a cosmic-string network that has not yet decayed by the

time of recombination must not have a cosmic-string
tension larger than log10 Gµ ≃ −7 (Ade et al. 2016;
Charnock et al. 2016; Lizarraga et al. 2016). In or-
der to derive the CMB bound, we estimate that a de-
caying network completely disappears because of GW
emission at times around te ≃ (2/ (ΓGµ))

1/2
ts, which

is the time when the second term in the exponent
in Eq. (50) becomes large. The teal shaded areas in
Fig. 10 indicate where the conditions log10 Gµ > −7
and te > trec ≃ 370, 000 yr are satisfied simultaneously.
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Last but not least, the yellow solid lines represent the
LVK bound in Eq. (24), which translates to the upper
limit Gµ ≲ 2× 10−7.7

The LVK bound on the amplitude of the stochastic
GWB appears to be in tension with most of the param-
eter space preferred by the NANOGrav data. In par-
ticular, the 68% credible regions in the log10 Gµ –

√
κ

parameter plane are mostly ruled out by this bound.
However, we stress that the LVK bound in Fig. 10 re-
lies on an extrapolation of the GW signal across 10 or-
ders of magnitude in frequency, from PTA frequencies,
f ∼ few×10−9 nHz, to LVK frequencies, f ∼ few×10Hz.
In order to perform this extrapolation, we have to as-
sume a cosmological expansion history across 10 orders
of magnitude in temperature, even though not much is
known about the equation of state of the universe prior
to BBN. Any deviation from the expansion history of
standard Big Bang cosmology can therefore affect the
extrapolation of the GW spectrum to higher frequen-

cies and potentially render the LVK bound harmless.
A simple example is an early stage of matter domina-
tion (Allahverdi et al. 2020), which would suppress the
GW signal from metastable strings at high frequencies

and thus allow for the possibility of cosmic-string ten-
sions as large as those in Fig. 10. On the other hand,
if we trust the extrapolation to higher frequencies, we

conclude that some parts of the 95% credible regions in
Fig. 10 are in fact not ruled out. In this case, metastable
strings with

√
κ ∼ 8 and log10 Gµ ∼ −7 are still able to

provide a good fit of the data, which represents a par-
ticularly interesting scenario for two reasons: a value
of log10 Gµ ∼ −7 would point to a GUT origin of the

string network, and ground-based interferometers would
be poised to detect the stochastic GWB signal from such
a network in the near future.
Finally, we discuss our results for cosmic superstrings,

for which we obtain the largest Bayes factors among all
cosmic-string models considered in this work: B = 46±2
for GWs from superstrings alone and B = 37 ± 2 for

an SMBHB contribution added to the superstring GW
signal, both compared to the smbhb model.

7 In our analysis, we work with the upper limit on the amplitude
of a generic isotropic and stochastic GWB that was reported
by the LVK Collaboration in Abbott et al. (2021b). Combining
this limit with our own GW spectra, we find Gµ ≲ 2 × 10−7.
This bound needs to be compared to the results of Abbott et al.
(2021a), a dedicated search for GWs from stable cosmic strings
by the LVK Collaboration. The analysis in Abbott et al. (2021a)
models the GW spectrum from cosmic strings based on slightly
different assumptions. Model A in Abbott et al. (2021a) is, how-
ever, similar to our approach and leads the same bound on Gµ
in the limit of a large number of kinks, Nk ≫ 1 (see the panel for
model A in Fig. 3 of Abbott et al. (2021a) at Nk ∼ 100 · · · 200).
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Figure 11. Same as in Fig. 10, but for the super model.
Fig. 30 in Appendix C.4 shows an extended version of this
plot that includes the SMBHB parameters ABHB and γBHB.

Superstrings result in a good fit of the data because,
unlike ordinary stable strings, they permit a GW sig-

nal that is neither too weak nor too flat. To see this,
note that small cosmic-string tensions, log10 Gµ ≲ −11,
yield a blue-tilted h2ΩGW spectrum at nanohertz fre-
quencies (see our discussion above). In the case of or-

dinary strings, the amplitude of this spectrum would
be too weak; however, for superstrings the suppression
of the GW signal at log10 Gµ ≲ −11 can be compen-

sated by the 1/P enhancement factor in Eq. (52). By
choosing P appropriately, the amplitude of the GW sig-
nal can then be raised until a good fit of the data is

reached. This interplay between the two parameters of
the super model can also be observed in Fig. 11. The
2D posterior distribution for log10 Gµ and P in this cor-
ner plot displays a strong covariance in line with our
heuristic understanding.
The highest posterior density is achieved at small

intercommutation probabilities and cosmic-string ten-

sions, log10 P ∼ −3 and log10 Gµ ∼ −12, where
log10 P = −3 corresponds in fact to the edge of the prior
range for P . This parameter region is in tension with
the LVK bound in Eq. (24) (see the yellow solid line in
Fig. 11) but may be viable assuming a nonstandard ex-
pansion history at high temperatures. Similarly to what
is found in Fig. 10, we highlight the region ruled out by
the NG15 data because it leads to a K ratio of less than
1/10. As expected, this region is located to the lower
right of the 68% and 95% credible regions, where small
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log10 P values cause the amplitude of the GW spectrum
to exceed the measured strength of the signal. The ten-
sion of cosmic superstrings can also be constrained by
CMB observations (Charnock et al. 2016). Existing up-
per limits are, however, located at larger Gµ values and
thus not relevant for our results in Fig. 11.
In conclusion, we stress again that the GW spec-

trum from cosmic superstrings is not well understood at
present, and more work is needed to arrive at a reliable
prediction. Such an effort will be important to confirm
that GWs from cosmic superstrings do indeed represent
a realistic and viable interpretation of the PTA signal.

5.5. Domain walls

MODEL DESCRIPTION

Domain walls are 2D topological defects that form
when a cosmological phase transition results in the spon-
taneous breaking of a discrete symmetry, filling the uni-

verse with patches in different degenerate vacua (Kib-
ble 1976). In the absence of significant interactions with
relativistic particles, domain wall networks are expected

to reach a scaling regime in which each Hubble volume,
H−3, contains A ∼ O(1) domain walls (see, e.g., Press
et al. (1989); Hindmarsh (1996, 2003); Garagounis &

Hindmarsh (2003)). In this regime, the energy density
stored in domain walls is given by

ρDW ∼ AσH , (53)

where A is nearly constant and σ is the domain wall ten-
sion, which gives the domain walls their surface energy
density. During the scaling regime, the energy density

stored in domain walls dilutes more slowly than that of
relativistic radiation and nonrelativistic matter. Indeed,
the total energy density of the background always scales

like ρc ∝ H2, which means that ΩDW = ρDW/ρc grows
like the Hubble radius when the domain wall network
is in the scaling regime, ΩDW ∝ H−1. Therefore, do-

main walls eventually overclose the universe and alter
the cosmological evolution in a way that is incompatible
with CMB observations (Zeldovich et al. 1974). A pos-
sible solution to this problem is to have domain walls
decay at some temperature T∗ by assuming, e.g., that
the global symmetry responsible for domain wall forma-
tion is explicitly broken. Indeed, an explicit breaking
of the symmetry introduces a bias among the possible
low-energy vacua, thus lifting their degeneracy, which
eventually leads to the collapse of the domain wall net-
work (Vilenkin 1981b; Gelmini et al. 1989; Larsson et al.

1997).
During the scaling regime, domain walls continuously

change their configuration and shrink in order to main-
tain the scaling relation in Eq. (53). While these pro-

cesses take place, a fraction of the domain wall energy is
released in the form of GWs, which produce a GWB with
a present-day relic abundance given by (Vilenkin 1981b;
Preskill et al. 1991; Gleiser & Roberts 1998; Chang et al.
1999; Hiramatsu et al. 2010; Kawasaki & Saikawa 2011)

h2ΩGW(f) =
3

32π
D ϵ̃ α2

∗ S(f/fp) , (54)

where D is the dilution factor defined in Eq. (35), ϵ̃ = 0.7
is an efficiency coefficient derived from numerical simu-
lations (Hiramatsu et al. 2014), and α∗ is the fraction of
the total energy density stored in domain walls at T∗,

α∗ ≡ ΩDW (T∗) =
ρDW

3H2M2
Pl

∣∣∣∣
T=T∗

. (55)

The GWB is dominated by the emission taking place
just before the decay of the domain wall network. As
the GWs are predominantly sourced by horizon-scale

structures in the network, the typical frequency of the
GWs emitted around this time is H∗, i.e., the Hubble
scale at T∗. Therefore, after redshifting until today, the

GWB is expected to exhibit a peak frequency

fp = 1.14 nHz

(
10.75

g∗,s

)1/3(
g∗

10.75

)1/2(
T∗

10MeV

)
,

(56)
with both g∗ and g∗,s evaluated at T∗. For the spectral
shape, S(x), we use a parameterization similar to the

one used for the phase transition spectrum in Section
5.3:8

S(x) = (a+ b)c

(bx−a/c + axb/c)c
. (57)

Causality fixes a = 3, while numerical simulations (Hira-

matsu et al. 2014) suggest b ≃ c ≃ 1. In our analysis, we
therefore fix the low-frequency slope of the domain wall
signal to the value predicted by causality, and, follow-
ing Ferreira et al. (2022), we allow b and c to float within

the uniform prior ranges b ∈ [0.5, 1] and c ∈ [0.3, 3].
In our analysis we consider two possible decay chan-

nels for the domain wall network: dark radiation (dw-
dr) and SM particles (dw-sm). In the dw-dr model,
instead of using α∗, we parameterize the strength of
the domain wall signal in terms of the dark radiation
produced in the decay, ρDR. This quantity is usually
expressed in terms of the effective number of extra neu-
trino species, ∆Neff , which we defined in Section 5.1 and
which is bounded from above by BBN and CMB obser-

vations, ∆Nmax
eff ∼ few × 0.1 (Pisanti et al. 2021; Yeh

8 Since the efficiency coefficient ϵ̃ is derived by matching the value
of the domain wall spectrum at the peak frequency, Eq. (57) does
not contain the normalization coefficient N appearing in Eq. (38).
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Figure 12. Same as in Fig. 5, but for domain walls decaying to SM particles (left panel) and a dark sector (right panel).
Fig. 31 in Appendix C.5 shows extended versions of the two plots that include the spectral shape parameters b, c and the
SMBHB parameters ABHB and γBHB.

et al. 2021). In our MCMC analysis of the dw-drmodel,
we follow Ferreira et al. (2022) and use ∆Nmax

eff = 0.39 as
the upper bound on our prior for the parameter ∆Neff .

Assuming that all the domain wall energy is converted
to dark radiation at T∗, ∆Neff is related to α∗ by

∆Neff ≃ 0.62

(
10.75

g∗

)1/3(
g∗,s
g∗

)(
α∗
0.1

)
, (58)

where, as before, both g∗ and g∗,s are evaluated at T∗.
In the dw-smmodel, BBN restricts the possible values

of the decay temperature to T∗ ≳ 2.7MeV (Jedamzik
2006; Bai & Korwar 2022) for any detectable value of α∗.
Following Ferreira et al. (2022), we also impose α∗ < 0.3
to avoid any possible deviation from radiation domina-
tion and to evade bounds from ∆Neff .

RESULTS AND DISCUSSION

The reconstructed posterior distributions for the pa-

rameters T∗ and α∗ (T∗ and ∆Neff) of the dw-sm (dw-
dr) model are reported in Fig. 12, for both the case
where the domain walls are assumed to be the only
source of GWs (blue contours) and the scenario where
we consider the superposition of the domain wall and
SMBHB signals (red contours). Full corner plots includ-
ing the posterior distributions of the spectral shape pa-
rameters b and c are reported in Fig. 31 in Appendix C.5.
For both the dw-sm and dw-dr models, with and

without the inclusion of the SMBHB signal, we find that

the GWB produced by domain walls peaks around 10−8

Hz such that most of the low frequency bins are fit by the
low-frequency tail of the spectrum (see Figs. 3 and 19).
Specifically, for the dw-sm (dw-dr) model, we find that
T∗ ∈ [110, 275] ([79, 153]) MeV at the 68% credible level

and T∗ ∈ [76, 505] ([54, 198]) MeV at the 95% credible
level. When including the SMBHB contribution to the
GWB, we find T∗ ∈ [108, 309] ([54, 216]) MeV at the

68% credible level and T∗ ∈ [67, 843] (no bound on T∗)
MeV at the 95% credible level for the dw-sm (dw-dr)
model. We notice that, with and without the inclusion of

SMBHBs, the recovered transition temperature for the
dw-sm model is high enough to evade BBN constraints.
For the dw-dr model, the posterior distribution for

∆Neff is peaked near the upper prior boundary, signaling

that larger values fit the observed signal better. Specif-
ically, we find ∆Neff ≳ 0.32 at the 68% credible level
and ∆Neff ≳ 0.25 at the 95% credible level. Includ-
ing the contribution from SMBHBs allows the distribu-
tion for ∆Neff to extend to lower values, and we find
∆Neff ≳ 0.23 at the 68% credible level and no bound at
the 95% credible level. We thus conclude that the dw-

dr model prefers large ∆Neff values in the vicinity of
existing bounds. This means that the most promising
parameter regions, i.e., regions that are not yet ruled
by ∆Neff but still manage to fit the NANOGrav signal,
point to ∆Neff values within the reach of upcoming ex-
periments, including CMB-S4 (Abazajian et al. 2022),
which promises to be sensitive to ∆Neff values as small
as ∆Neff ≃ 0.06 at the 95% confidence level.
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For the dw-sm model, we find α∗ ∈ [0.080, 0.19] at
the 68% credible level and α∗ ∈ [0.053, 0.35] at the 95%
credible level. With the inclusion of the SMBHB contri-
bution, smaller values of α∗ become allowed, and we
find α∗ ∈ [0.079, 0.22] at the 68% credible level and
α∗ ∈ [0.047, 0.61] at the 95% credible level. We also
notice a partial degeneracy between T∗ and α∗, due to
low frequency bins (which are the ones contributing the
most to the evidence for a GWB) being fit by the low-
frequency tail of the domain wall spectrum. Therefore,
a shift to higher transition temperatures (and therefore
to higher peak frequencies) can be partially reabsorbed
with a shift to higher α∗ values.
For both dw models, we identify regions of the pa-

rameter space where the GW signal from domain walls
is too strong to be compatible with NG15 data. These
regions, shaded in gray in Fig. 12, illustrate for the first
time how PTA data can be used to constrain models of
domain walls.

Finally, we state the Bayes factors for the model
comparison between the domain wall models and the
smbhb reference model. The Bayes factors for dw-
sm and dw-dr versus smbhb are B = 14.8± 0.5 and

B = 1.62± 0.05, respectively, while the Bayes factors
for dw-sm+smbhb and dw-dr+smbhb versus smbhb
are B = 21.1± 0.9 and B = 2.53± 0.10, respectively. In

both cases, the extra SMBHB contribution helps to im-
prove the fit of the NG15 data. In the case of dw-dr,
we moreover observe the same effect as for pt-sound

in Section 5.3: adding the SMBHB contribution to the
GWB signal results in a plateau region in the posterior
distribution of the dw-dr model parameters that man-
ifests itself as part of the 95% credible region in Fig. 12.

6. DETERMINISTIC SIGNALS FROM NEW
PHYSICS

In addition to the GWB signals discussed previously,
there are several new-physics theories that can imprint
a deterministic signal, described by a time series h, in
pulsar timing data. In this section, we consider the
deterministic signals induced by ultralight dark matter
(ULDM) and DM substructures. After finding no statis-
tically significant evidence for such signals in our data,
we report upper limits on the allowed strength of these

signals.

6.1. Ultralight dark matter

MODEL DESCRIPTION

While DM constitutes roughly 27% (Zyla et al. 2020)
of the energy density of the universe, very little is known
about its fundamental properties. Consequently, a wide
range of DM models remain consistent with cosmolog-

ical and astrophysical observations. The lightest pos-
sible DM particles are classified as ultralight, or fuzzy,
DM. These particles must be bosonic; otherwise, they
could not be packed into galaxies owing to Fermi de-
generacy pressure (Tremaine & Gunn 1979; Di Paolo
et al. 2018; Savchenko & Rudakovskyi 2019; Alvey et al.
2020; Davoudiasl et al. 2021). These ULDM models also
generically suppress structure on small scales, allowing
them to be potential solutions to the small-scale struc-
ture problems of the standard ΛCDM paradigm (Bullock
& Boylan-Kolchin 2017). However, too much suppres-
sion on large scales would be in conflict with CMB mea-
surements (Hlozek et al. 2015; Hložek et al. 2017, 2018),
which sets a lower bound on the DM mass, 10−24 eV <
mϕ. PTAs can probe these miniscule masses, since, as
we describe below, the frequency of the ULDM signal, f ,
is generally proportional to the ULDM mass, 2πf ∼ mϕ.

Therefore, the sensitivity window of NANOGrav is ex-
pected to be 10−23 eV ≲ mϕ ≲ 10−20 eV.
Other astrophysical constraints, such as measure-

ments of the Lyman-α forest (Armengaud et al. 2017;
Iršič et al. 2017; Kobayashi et al. 2017; Rogers & Peiris
2021), galactic subhalo mass functions (Schutz 2020;

Banik et al. 2021; Nadler et al. 2021), and stellar kine-
matics (Dalal & Kravtsov 2022), can push this bound
further up, ranging from 10−21 eV to 10−19 eV, and
the nonobservation of superradiance at SMBHs (Arvan-

itaki et al. 2015; Stott 2020; Ünal et al. 2021) pushes
the bound up to 10−21 · · · 10−17 eV. PTA searches for
ULDM in the 10−23 eV ≲ mϕ ≲ 10−20 eV window can

then be viewed as complementary to these astrophysical
searches. Signals in PTAs do not depend on the same
astrophysical uncertainties, e.g., modeling the nonlinear
small-scale matter power spectrum with analytic or nu-

meric methods (Zhang et al. 2018, 2019) or the evolution
of specific density profiles. Moreover, the power of these
methods quickly degrades when considering subcompo-
nents of DM, or populations of DM that do not compose
the whole DM density. The searches discussed here have
a weaker dependence on the subcomponent fraction and

are therefore still useful in the hunt for DM.
While there is a large phenomenology of ULDM sig-

nals that can be produced in PTAs, the timing residuals
for the Ith pulsar, hI , are deterministic and can be writ-
ten in the form

hI(t) =
∑
i

Ai
E,I(xE) sin(ωt+ γi

E)

+Ai
P,I(xP,I) sin(ωt+ γi

P,I) , (59)
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Effect Ai
E(x) Ai

P,I(x) ω = 2πf Spin (Sϕ)

Metric fluctuations (2Sϕ + 1)
πGρϕ
2m3

ϕ

ϕ̂2(x) (2Sϕ + 1)
πGρϕ
2m3

ϕ

ϕ̂2(x) 2mϕ 0, 1

Doppler–U(1) forces gE
QE

ME

√
2ρϕ√
3m2

ϕ

(n̂I · ϵi) ϕ̂i(x) gP
QP

MP

√
2ρϕ√
3m2

ϕ

(n̂I · ϵi) ϕ̂i(x) mϕ 1

Pulsar spin fluctuations 0 yP dP

√
2ρϕ

m2
ϕΛ

ϕ̂(x) mϕ 0

Reference clock shift yEdE

√
2ρϕ

m2
ϕΛ

ϕ̂(x) 0 mϕ 0

Table 1. Summary of the different effects induced by ULDM that generate a deterministic signal of the form given in Eq. (59).
“E” and “P” subscripts denote Earth and pulsar term contributions, respectively. Ai is the signal amplitude for the ith DM
polarization, ω is the signal frequency, and the “Spin” column refers to whether the effect occurs for scalar (spin-0) or vector (spin-
1) ULDM candidates. ρϕ is the local DM density, taken to be 0.4GeV/cm3, mϕ is the ULDM mass, g are gauge couplings, Q is
the charge under the corresponding gauge group, y parameterizes the sensitivity to different fundamental constant fluctuations,
d are defined in Eq. (64), and Λ = MPl/

√
4π. ϕ̂(x) is a random variable representing the fluctuations in the ULDM field in

different correlation patches; the correlated limit corresponds to ϕ̂(x) → ϕ̂. nI is a vector pointing from the Earth to the Ith
pulsar, and ϵi are the ULDM polarization vectors.

where i indexes the DM field polarization,9 ω is the
signal frequency, and we have split the signal into two
terms: an “Earth term” with amplitude Ai

E,I(xE) and
time-independent phase γi

E and a “pulsar term” with
amplitude Ai

P,I(xP,I) and time-independent phase γi
P,I .

The phases can be written as

γi
E = αi(xE) , (60)

γi
P,I = ω|xE − xP,I |+ αi(xP,I) , (61)

where αi(x) is dependent on the underlying ULDM field
phase at point x, and the additional term in γi

P,I is
due to the light-travel time between the Earth and the

pulsar.
An important scale in understanding these signals is

given by the correlation length of the ULDM field, ℓc,

ℓc ≃
2π

mϕvϕ
∼ 0.4 kpc

(
10−22 eV

mϕ

)
, (62)

where vϕ ∼ 10−3 is the ULDM velocity. If the corre-
lation length is much larger than the distance between
Earth and the pulsar, ℓc ≫ |xE − xP,I |, both experi-
ence the same DM field. In this “correlated” limit of
the signals, the amplitudes and phases can be taken to

9 Here we focus on signals from scalar (spin-0) and vector (spin-1)
ULDM. We leave the search for the effects of spin-2 ULDM (Mar-
zola et al. 2018; Armaleo et al. 2020a,b; Xia et al. 2023) to future
work. For scalar DM, i is absent, since the field has only one
component. For vector DM, i ∈ {1, 2, 3} for each massive vector
polarization.

be position independent:

Ai
E,I(xE) → Ai

E , Ai
P (xP,I) → Ai

P,I , αi(x) → αi.
(63)

Generally, a correlated analysis can drastically reduce

the number of free amplitude parameters in the MCMC.
For example, if ULDM couples to all pulsars identically,
then there is only one amplitude, AP , instead of one for
each pulsar, to account for fluctuations in the ULDM

field. However, since mϕ|xE − xP,I | ≫ 1, γP,I and γE
must still be taken to be independent. In the uncorre-
lated limit, ℓc ≪ |xE − xP,I |, the DM field is no longer

correlated, and its amplitude fluctuations in different
patches need to be accounted for.
In Table 1, we summarize the ULDM signals searched

for in our analysis by providing the corresponding ex-
pression for the amplitudes and signal frequency appear-
ing in Eq. (59). In the following, we give a brief review of
each of these signals and refer the reader to the original
references for more details:

• Metric fluctuations (Khmelnitsky & Rubakov 2014;
Porayko & Postnov 2014; Porayko et al. 2018; Kato &
Soda 2020; Nomura et al. 2020; Unal et al. 2022; Wu
et al. 2022): Oscillations in the ULDM field generate

fluctuations in the local stress-energy tensor, Tµν , which
are independent of any direct couplings the ULDM may
have with SM fields. These fluctuations in Tµν generate
fluctuations in metric perturbations by Einstein’s equa-
tions. These metric perturbations then affect the pho-
ton geodesic on its path from the pulsar and generate a
timing residual with pulsar and Earth amplitudes given

in Table 1. While the amplitudes shown in Table 1 are
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specific to scalar (spin-0) ULDM, vector (spin-1) ULDM
also generates this purely gravitational signal. The vec-
tor DM scenario is more complicated (Nomura et al.
2020), as off-diagonal components of the metric fluctu-
ations can generate nontrivial angular correlations be-
tween signals seen in different pulsars. In our analysis,
we ignore these spatial correlations and set approximate
bounds by treating the vector as three scalar compo-
nents, such that the vector signal is three times larger
than the scalar one (Nomura et al. 2020).

• Doppler–U(1) forces (Graham et al. 2016; Xue et al.
2022): A background of ultralight vector DM can cre-
ate dark “electric” fields, which can accelerate pulsars,
or the Earth, and Doppler-shift light arrival times. For
example, if the DM is the gauge field of a local baryon
symmetry, U(1)B , then it couples to the Earth and pul-
sar baryon current density. This coupling generates a

force on both Earth and pulsars proportional to their
baryon number, QB = NB×qB , whereNB is the number
of baryons and qB is the gauge charge. This scenario is
straightforwardly generalized to other U(1) models, e.g.,

models where the difference between baryon and lepton
numbers, B−L, is a local symmetry. These forces cause
periodic displacements between the Earth and pulsars

and generate timing residuals with amplitudes given in
Table 1. These forces also exist for scalar DM coupling
to SM operators (e.g., ϕ n̄n, where ϕ is the DM and

n is the neutron field). However, in the scalar case,
these forces originate from the field gradient ∇ϕ (Gra-
ham et al. 2016), which causes them to be velocity sup-
pressed compared to the vector DM scenario.

The next two signals we discuss are specific to scalar

ULDM. All the linear couplings of a scalar ULDM field
to the SM can be summarized in a single Lagrangian,

L ⊃ ϕ

Λ

[
dγ
4e2

FµνF
µν +

dgβ3

2g3
GA

µνG
µν
A

−
∑

f=e,µ

dfmf f̄f −
∑
q=u,d

(dq + γqdg)mq q̄q

]
, (64)

where Fµν and Gµν are the photon and gluon field
strengths, respectively, Λ = MPl/

√
4π, β3 is the QCD

beta function, γq are the light quark anomalous dimen-
sions, mf are the fermion masses, and the d values are
dimensionless couplings. These couplings induce peri-

odic oscillations in the values of fundamental constants,
i.e., particle masses and couplings, which can affect tim-
ing residuals in two ways:

• Pulsar spin fluctuations (Kaplan et al. 2022): Particle
mass fluctuations change the moment of inertia of the

pulsar, which, by conservation of angular momentum,

leads to pulsar spin fluctuations. The amplitude of the
signal is given in Table 1. The y parameters are pulsar
specific and denote the pulsar sensitivity to a specific
coupling, e.g., ye parameterizes the pulsar sensitivity
to changes in the electron mass. ym̂ parameterizes the
pulsar sensitivity to the mass-weighted combination of
quark mass couplings, dm̂ = (mudu+mddd)/(mu+md).
To be explicit, following Kaplan et al. (2022), we employ
in our analysis

yg = −5 , ym̂ = −2.4× 10−1 ,

yµ = 2× 10−3 , ye = 1.7× 10−5 , (65)

for each pulsar, which assumes the simplest possible
model for the pulsars’ moment of inertia.

• Reference clock shifts (Graham et al. 2016; Kaplan
et al. 2022): PTA timing residuals are measured with re-
spect to a collection of mostly cesium (McCarthy 2009)
atomic clocks. Therefore, changes to these atomic clock

frequencies can appear in PTA data as apparent shifts
in timing residuals. These shifts are perfectly correlated
among pulsars and have the amplitude reported in Ta-
ble 1. Similar to the pulsar spin fluctuation signal, the

y parameters denote the atomic clock sensitivity to spe-
cific couplings. To be explicit, following Kaplan et al.
(2022), we take these parameters to be

yg = 1 ym̂ = 0.158

ye = 2 yγ = 4.83 , (66)

assuming cesium clocks to be used as a reference.

RESULTS AND DISCUSSION

We search for ULDM signals by performing a va-

riety of Bayesian fit analyses on the NG15 data set.
The priors for the ULDM model parameters are sum-
marized in Table 3, while the priors for the intrinsic
red-noise parameters are reported in Table 2. Since
in this analysis we want to remain agnostic about the
origin of the GWB, we model the GWB as a power
law and allow the values of the amplitude and spec-
tral index to float within the following prior ranges:
log10 AGWB ∈ [−18,−11] and γGWB ∈ [0, 7].
Over most of the ULDM mass range, 10−24 eV ≲

mϕ ≲ 10−20 eV, we find no significant evidence for any
of the ULDM signals described in the previous section
(with B ∼ 1 in favor of models including a ULDM signal
on top of the GWB). However, for ULDM models that

give rise to an “Earth term” signal, we find mild evidence
for a ULDM signal with frequency f ≃ 4 nHz. Specifi-
cally, restricting the prior range to f ∈ [3.05, 6.09] nHz,
we find a Bayes factor of B ∼ 2 (B ∼ 1.5) in favor of the
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Figure 13. Constraints on the local ULDM density for the
correlated (solid line) and uncorrelated (dashed line) signals
at the 95% credible level (see the discussion in the text). The
gray dashed line indicates the predicted DM abundance.

model including the ULDM signal in the correlated (un-
correlated) regime. This result is expected given the ex-

cess of monopolar-correlated power observed in the sec-
ond frequency bin of the common red-noise process (see
the discussion in NG15gwb for more details). Unfortu-

nately, an ULDM interpretation of this monopolar sig-
nal is difficult, since the corresponding ULDM masses,
mϕ ∼ 2× 10−23 eV, needed to explain this excess are in

tension with other astrophysical bounds: Lyman-α for-
est (Armengaud et al. 2017; Iršič et al. 2017; Kobayashi
et al. 2017; Rogers & Peiris 2021), galactic subhalo mass
functions (Schutz 2020; Banik et al. 2021; Nadler et al.

2021), and stellar kinematics (Dalal & Kravtsov 2022).
Without convincing evidence for a signal, we compute

constraints on the ULDM model parameters, shown in
Figs. 13-15. All constraints are the 95th percentile of the
marginalized posterior distribution for the parameter on
the vertical axis. The curves labeled “(un)correlated”
correspond to the analysis done in the (un)correlated

limit, discussed in the previous section.
In Fig. 13, we show the constraints on the local ULDM

energy density that can be derived assuming only gravi-
tational coupling between the ULDM and SM fields. In
Fig. 13, we show the constraints on the local ULDM
energy density that can be derived assuming only grav-
itational coupling between the ULDM and SM fields.
The strongest bounds are obtained in the mass range

mϕ ≲ 10−23 eV, where we nearly constrain ULDM to
be a subcomponent of the total DM abundance. While
we show constraints down to mϕ = 10−24 eV, it is
easy to extrapolate them to lower masses, where we
expect them to remain flat down to m ∼ 10−26 eV,
where 1/mϕ becomes of the same order of the inter-
pulsar separation and the ULDM signal is additionally
suppressed (Khmelnitsky & Rubakov 2014; Unal et al.
2022). While future PTA analyses will be able to im-
prove on these constraints, constraining ULDM with
mϕ ≳ 10−23 eV to have a local abundance smaller than
ρϕ = 0.4GeV cm−3 will be challenging, given that the
constraints scale as ρlimϕ ∝ m3

ϕ for mϕ ≳ 1/Tobs.
In Fig. 14, we show the constraints for all the d pa-

rameters describing the scalar ULDM Lagrangian in
Eq. (64). Note that, for each panel, we assume that
the parameter constrained is the only nonvanishing one.
Overall, the limits are in rough agreement with the pro-
jections from Kaplan et al. (2022) and competitive with
laboratory constraints (Hees et al. 2016; Bergé et al.

2018; Kumar Poddar et al. 2019; Dror et al. 2020; Op-
tical Network et al. 2020). The strongest constraints,
relative to laboratory bounds, are for ULDM models

coupled to the electron, de, and muon, dµ, mass terms.
Indeed, relative shifts of the energy levels utilized in
atomic clock experiments are insensitive to the de cou-

pling, since atomic energy levels in different atoms scale
identically with electron mass, leading to no relative en-
ergy level shifts (Van Tilburg et al. 2015; Kaplan et al.
2022). Such an insensitivity is not a problem for the

PTA observable, though, since the pulsar phase evolu-
tion is not affected in the same way as the atomic energy
levels. The lack of laboratory constraints on dµ is simply

because there is not a large number of muons to study
on Earth, whereas pulsars host a large number of them.
As for the gravitational signal, we can extrapolate the
constraints to lower masses, where we expect them to

scale as d ∝ 1/mϕ down to mϕ ∼ 10−26 eV, where 1/mϕ

becomes comparable to the interpulsar separation.
In Fig. 15, we show constraints on the gauge coupling

of models where the ULDM is the gauge boson of ei-
ther U(1)B or U(1)B−L. Our constraints are roughly
consistent with those published by the PPTA Collabo-

ration (Porayko et al. 2018). This result is somewhat
expected: while NANOGrav observes more pulsars, the
average observation time is longer in PPTA, so roughly
similar bounds are expected.
The constraints presented in Figs. 14 and 15 assume

that ULDM makes up the entire DM content of the uni-
verse. However, if ULDM is only a subcomponent of
the total DM abundance, these constraints can be easily
rescaled. Indeed, from Table 1, we see that the ampli-
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Figure 14. The red solid (dashed) lines show our constraints at the 95% credible level on the d parameters of the ULDM model,
Eq. (64), derived by searching for an (un)correlated signal. We assume that all reference clocks use the transition between the
two hyperfine levels of the 133Cs ground state. Additionally, for each panel we assume that the d parameters not shown are set
to zero. The lower gray shaded regions correspond to regions of parameter space where the signal amplitude is less than the
purely gravitational signal. Current constraints “Rb/Cs atomic clocks” (purple) are from Hees et al. (2016), “Al/Hg atomic
clocks” (turquoise) are from Optical Network et al. (2020), “MICROSCOPE” (teal) are from Bergé et al. (2018), “H/Si clock
shift” (orange) are from Optical Network et al. (2020), and “NS binary system” are from Kumar Poddar et al. (2019) and Dror
et al. (2020).

tudes for the direct coupling signals scale as d
√
ρϕ for

the scalar case and Q
√
ρϕ for the vector case. Therefore,

if ULDM is only a faction fϕ of the total DM abundance,
the constraints are weakened by a factor

√
fϕ.

Lastly, we comment on the prior choice for ϕ̂. Pre-
vious studies (Porayko & Postnov 2014; Kato & Soda
2020) assumed that ϕ̂ is not a random variable in the
problem and placed constraints assuming that this pa-

rameter is simply 1. However, as pointed out by Centers
et al. (2021), this assumption is not appropriate. Since
the observation time of PTAs is much smaller than the
coherence time of the DM, τ ∼ (mϕv

2)−1, only one in-
stance of the field is being sampled within each correla-
tion patch. The DM density in any correlation patch is
then a random number, which follows a Rayleigh distri-
bution with mean ρϕ, and the priors should be chosen
to reflect this. We also note that while Porayko et al.

(2018) find the distribution of ϕ̂ through numerical sim-
ulation, these results are consistent with the analytic
predictions by Foster et al. (2018).

6.2. Dark matter substructures

MODEL DESCRIPTION

In the ΛCDM model, the structures we observe in
the universe are seeded by primordial curvature fluctua-
tions generated during inflation and then imprinted onto
the DM density field. CMB observations indicate that
these fluctuations have a nearly scale-invariant power
spectrum on large scales (i.e., for comoving wavenum-

bers k ≃ Mpc−1). However, on smaller scales, various
theories of DM leave unique fingerprints on primordial
perturbations or their evolution, resulting in different
predictions for the amount of subgalactic DM substruc-
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Figure 15. The red solid (dashed) lines show our constraints at the 95% credible level for the two vector ULDM models
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tures. Consequently, measuring local DM substructures
could be crucial in determining the correct model of DM.
PBHs are perhaps the simplest example of such small-

scale DM substructures. They can be formed in infla-
tionary theories that create large density fluctuations
on small scales (like the ones described in Section 5.2).

Several studies investigated the possibility of identify-
ing a galactic PBH population by analyzing the Doppler
and Shapiro signals they can leave in PTA data (Seto &
Cooray 2007; Siegel et al. 2007; Dror et al. 2019; Ramani

et al. 2020; Lee et al. 2021a,b). In this analysis, we will
closely follow the method outlined by Lee et al. (2021b)
to constrain the local PBH abundance.10

The Doppler signal results from the apparent shift in
the pulsar spin frequency, generated by the acceleration
induced by the gravitational pull of a passing PBH. Ac-
cording to the timescale of the transit event, τ , the signal
can be further classified as dynamic (static) if τ is much
smaller (larger) than the observation time, Tobs. In the
static regime, the leading-order term of the Doppler sig-
nal that is not degenerate with the timing model is given

10 A similar approach could be applied to set constraints on the
local abundance of DM subhalos. However, we do not consider
this case, since our constraints for PBHs are already quite weak.
Constraints on DM subhalos would likely be even weaker, making
it a less promising target for future PTAs.

by (Ramani et al. 2020; Lee et al. 2021a,b)

hD,sta(t) =
AD,sta

yr2
t3 , (67)

where AD,sta is a dimensionless parameter that can be
related to the kinematic parameters of the transiting

event (see Appendix C.6 for more details). In the dy-
namic limit, and assuming that the signal is dominated
by the closest transiting PBH, we get

hD,dyn(t) = AD,dyn (t− t0)Θ(t− t0) , (68)

where Θ is the Heaviside step function, AD,dyn is a di-
mensionless amplitude that can be related to kinematic
parameters of the transiting event, and t0 is the time of
closest approach (see Appendix C.6 for more details).
The Shapiro signal refers to shifts in the TOAs caused

by metric perturbations along the photon geodesic pro-
duced by PBHs transiting along the observer’s line of
sight. In the static limit, and after subtracting away de-
generacies with timing model parameters, the leading-
order term of this signal can be parameterized as

hS,sta(t) =
AS,sta

yr2
t3 , (69)

where, as for the Doppler case, AS,sta is a dimension-

less parameter that can be related to the kinematic pa-
rameters of the transiting event (see Appendix C.6 for
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Figure 16. The black solid (dashed) lines show the posterior
distributions p(log10 Asta|δt) (p(log10 Adyn|δt)) for a repre-
sentative pulsar (J1909-3744). The filled distributions show
the conditional probability distributions p(log10 A|fPBH) for
the same pulsar and different values of fPBH. In this plot,
M = 10−6 (10−10) M⊙ for the Doppler static (dynamic) sig-
nal, and M = 10M⊙ for the Shapiro static signal.

more details). In the dynamic limit, there is no simple

parametrization of the Shapiro signal; therefore, we do
not search for this signal.
Assuming a monochromatic PBH population, our goal

is to derive a posterior distribution for the PBH mass
fraction, fPBH ≡ ΩPBH/ΩDM, as a function of the PBH
mass, M : p(fPBH|δt,M). We do this as follows:

• For each given value of fPBH and M , we use the Monte
Carlo code developed by Lee et al. (2021a) to generate
a PBH population surrounding each of the pulsars in
our array. From this distribution, we derive the ampli-
tude of the static Doppler and Shapiro signals generated
by the entire PBH population and the amplitude for the
dynamic Doppler signal generated by the closest transit-
ing PBH. Finally, we repeat this procedure for 2.5× 103

realizations to obtain the conditional probability distri-
butions p(log10 AI |fPBH), where I indexes pulsars in the
array and A refers to any of the PBH signal amplitudes

introduced in Eqs. (67), (68), and (69). In Fig. 16 we
report some of the distributions derived in this way.11

• One at a time, we include the PBH signals given in
Eqs. (67), (68), and (69) in the timing model, and we
analyze our data to derive the posterior distributions

for the various PBH signal amplitudes, p(log10 A|δt).
Since the PBH signal in different pulsars is assumed to
be independent, these distributions can be factorized as

p(log10 A|δt) =
NP∏
I=1

p(log10 AI |δt) . (70)

Some of the p(log10 AI |δt) are reported in Fig. 16.

• Finally, we can write

p(fPBH|δt) =
NP∏
I=1

∫
d log10 AI p(fPBH| log10 AI)p(log10 AI |δt) ∝

NP∏
I=1

∫
d log10 AI p(log10 AI |fPBH)p(log10 AI |δt) (71)

where, in the second step, we used Bayes theorem and
assumed uniform priors on log10 AI and fPBH. More de-
tails on each of these three steps can be found in Ap-
pendix C.6 or in Lee et al. (2021b).

DM substructures can also possess macroscopic

charges and interact with baryonic matter via long-range
Yukawa interactions. These interactions can be modeled

11 From now on, we suppress the PBH mass, M , in the expressions
for the conditional probabilities for the sake of notation.

by a potential of the form

Vfifth(r) = −α̃
GMMP

r
e−r/λ , (72)

where M and MP are the masses of the DM and pul-
sar, respectively, λ is the range of the interaction, and α̃
is the effective DM-barion coupling, normalized against
the gravitational coupling (also known as the Yukawa
parameter). Here the DM can be either a particle or
a macroscopic object such as a nugget of asymmet-
ric DM (Detmold et al. (2014); Wise & Zhang (2014);
Hardy et al. (2015); Krnjaic & Sigurdson (2015); Gre-
sham et al. (2017, 2018)). These Yukawa interactions

can arise from an effective Lagrangian of the form L ⊃
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gXϕX̄X + gnϕn̄n, where X and n are the effective DM
and neutron fields, and ϕ is a massive (but potentially
light) scalar or vector field. The effective coupling is re-
lated to the coupling constants by α̃ ≈ gngX

4πGmXmn
, where

mn is the neutron mass. These interactions are con-
strained to be weaker than gravity for the mass range
M ≲ 100 GeV by the CMB, Lyman-α forest (Xu et al.
2018), and direct detection experiments such as X-ray
Quantum Calorimeter (XQC) (Mahdawi & Farrar 2018)
and Cryogenic Rare Event Search with Superconducting
Thermometers (CRESST) (Angloher et al. 2017) (for a
review on these constraints see Xu & Farrar (2020)).
However, stronger-than-gravity fifth forces are allowed
if M ≫ 100 GeV, even when X accounts for the en-
tirety of the DM population.
If present, these Yukawa interactions will contribute

to the pulsar’s acceleration induced by a transiting
DM substructure and contribute to the Doppler signal
discussed before (the expression for the Yukawa con-

tribution to the Doppler signal can be found in Ap-
pendix C.6). Therefore, as shown by Gresham et al.
(2023), following a procedure similar to the one used to
constrain the abundance of PBHs, we can constrain the

value of the Yukawa parameter, α̃ . Specifically, for each
given value of α̃ and M , we use the Monte Carlo code
developed by Lee et al. (2021a) to generate a population

of DM substructure surrounding each of the pulsars in
our array. From this distribution, we derive the am-
plitude of the static Doppler signal generated by the
closest transiting substructure by considering the accel-

eration induced by both the gravitational and Yukawa
interaction. By repeating this procedure for multiple
populations of DM substructure, we derive the distri-

bution p(log10 AI |α̃). By plugging this quantity into an
expression similar to the one given in Eq. (71), we can
derive p(α̃|δt) and use this quantity to constrain α̃.

RESULTS AND DISCUSSION

We start by searching for PBH signals on top of a
GWB that we model as a power law with amplitude and
spectral index allowed to float within the following prior
ranges: log10 AGWB ∈ [−11,−18] and γGWB ∈ [0, 7]. We
find no statistically significant evidence for any of the
PBH signals described in the previous section. There-
fore, we proceed to set constraints on the local PBH
abundance. The prior distributions used for the PBH
signal parameters are reported in Table 3.
The 95% upper limits on fPBH derived from the static

Doppler and Shapiro signals are reported in Fig. 17. The
dynamic Doppler signal is too weak to produce any de-
tectable signal for any of the fPBH values considered.
These are the first constraints on fPBH derived using
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Figure 17. Constraints at the 95% credible level on the local
PBH abundance derived from the search for static Doppler
(red shaded region) and static Shapiro signals (blue shaded
region). The solid lines interpolate between the PBH masses
simulated in this work, while the red dashed line shows an
extrapolation of the constraints to higher masses.

real PTA data. As expected, our constraints are much
weaker compared to the projections that were derived

by Lee et al. (2021b) using mock data and including
only white noise. Indeed, as already discussed by Lee
et al. (2021b), the presence of a common red-noise pro-

cess significantly reduces the sensitivity to PBH signals.

Finally, in Fig. 18 we show the constraints on α̃ set by
NG15 data. These constraints are compared with sev-

eral other constraints that can be placed on α̃. Specifi-
cally, in teal we show weak equivalence principle (WEP)
constraints (Wagner et al. 2012; Shao et al. 2018; Sun
et al. 2019) (properly rescaled to take into account the
finite range of the interaction (Gresham et al. 2023))
derived by considering differential acceleration of bary-
onic test bodies toward the galactic center. In blue we
report constraints from neutron star (NS) heating (as-
suming additional short-range DM-baryon interaction)
induced by DM capture (Gresham et al. 2023), derived
from the coldest known NS to date - PSR J2144-3933
(Guillot et al. 2019). And in gray we report the indirect
constraints that can be derived by combining the fifth-

force constraints on baryon-baryon interactions (Bergé
et al. 2018; Fayet 2019), and Bullet Cluster constraints
on DM-DM interactions (Spergel & Steinhardt 2000;
Kahlhoefer et al. 2014) (see Coskuner et al. (2019); Gre-
sham et al. (2023)). We find that the NG15 constraints
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Figure 18. The 95% credible level for the fifth-force
strength α̃ derived from the NG15 data (red lines) is com-
pared with constraints from NS kinetic heating (blue lines),
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(dashed) lines are deriving assuming λ = 1pc (λ = 10−1 pc),
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are competitive with WEP and NS kinetic heating, es-
pecially in the M ≳ 10−12 M⊙ regime. However, the

combined constraint from the Bullet Cluster and MI-
CROSCOPE dominates over all other constraints in the
entire mass range of interest. We note, however, that the

combined constraint is an indirect probe of the Yukawa
parameter and depends on the specific form of the light
mediator coupling to DM and baryons. Specifically,
in deriving the combined constraints, we have assumed
that the Yukawa DM-baryon interaction arises from a
Lagrangian of the form L ⊃ gXϕX̄X + gnϕn̄n. In ad-
dition, if only a subcomponent of DM interacts through

the long-range fifth force, then the Bullet Cluster con-
straint will quickly lift, while the other constraints only
deteriorate linearly with the DM fraction.

7. DISCUSSION

The analysis of the NANOGrav 15-year data set has
produced the first convincing evidence for a stochastic
background of GWs in the nanohertz frequency range.
The origin of this background is still unknown. In this
work, we considered various cosmological sources and
compared them to the commonly studied astrophysical
signal produced by a population of inspiraling super-
massive black-hole binaries. Specifically, we considered

the signals produced by nonminimal inflation scenar-
ios, scalar-induced GWs, cosmological phase transitions,
several cosmic-string models, and domain walls.
For each of these models, we identified regions of the

parameter space that are compatible with the observed
signal. We find that, with the exception of stable cosmic
strings of field theory origin, all new-physics models con-
sidered in this analysis are capable of reproducing the
GWB signal. Many models allow us in fact to fit the
signal better than the SMBHB reference model, which
is reflected in Bayes factors ranging from 10 to 100 (see
Fig. 2). When the new-physics signals are combined
with the astrophysical one, we obtain comparable re-
sults. More precisely, in several models, the addition
of the SMBHB signal leads to a slight decrease of the
Bayes factor, which indicates that the SMBHB contri-
bution does not help to improve the quality of the fit but
merely increases the prior volume. In other models, on
the other hand, such as pt-sound and dw-dr, adding

the SMBHB signal on top of the new-physics signal can
lead to a slight increase of the Bayes factor, indicating
that the SMBHB signal can in fact play a dominant role
in the total GW spectrum. For all four stable-string

models, we find Bayes factors between 0.1 and 1. Cos-
mic superstrings, on the other hand, which are also sta-
ble but not of field theory origin, can explain the data

at a level comparable to other new-physics sources.
Despite the fact that some of the Bayes factors derived

in this paper might suggest that a purely astrophysical
interpretation of the signal is disfavored by the data, we

caution against this interpretation. The Bayes factors
do not account for the full range of uncertainties in both
the cosmological and astrophysical signals and are prior

dependent. It is conceivable that, as our understanding
of SMBHB signals and our noise models improve, the
tension between observations and astrophysical predic-

tions will decrease, potentially weakening the evidence
in favor of cosmological signals.
Future data sets will improve the spectral character-

ization of the signal and improve our ability to dis-
criminate cosmological sources from the SMBHB sig-
nal. Unfortunately, similarities in the spectral shape
and theoretical uncertainties will make it challenging to
definitively determine the origin of the background using
power spectrum characterization alone. However, the
observation of anisotropies could eventually resolve this
debate, as the expected anisotropies generated by black

hole binaries are significantly larger than those produced
by most cosmological sources. Similarly, the detection
of a continuous wave from a single binary would provide
convincing evidence in favor of an astrophysical origin of
the signal. Ultimately, measurements of the GWB spec-
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tral shape and angular power spectrum may be comple-
mented by observations of its polarization content and
possible deviations from Gaussian statistics, which can
again help to discriminate between an astrophysical and
a cosmological origin of the signal.
It is worth emphasizing that in all parts of our analysis

we described cosmological signals using effective param-
eters, e.g., T∗, α∗, and H∗R∗, for the phase transition
models. Moving forward, it will be crucial to identify mi-
croscopic models that can reproduce the values of these
parameters that we found to best fit the GWB signal.
That is, in order to shed more light on the various cos-
mological interpretations of the signal, we require a bet-
ter understanding of how the NANOGrav signal could
possibly result from the fundamental parameters of a
particle physics Lagrangian that describes the genera-
tion of GWs in the early universe.
Along with searching for a cosmological GWB, we also

analyze our data to search for deterministic signals gen-

erated by models of ULDM and DM substructures. We
do not find significant evidence for either of these sig-
nals. Nonetheless, we are able to place constraints on the
parameters space of these models. For a wide range of

ULDM models, our constraints compete or outperform
laboratory constraints in the 10−23 eV ≲ mϕ ≲ 10−20 eV
mass window. The signal from DM substructures is

harder to detect; as a consequence, we are able to set
very weak constraints on the local abundance of these
objects. Future data sets will improve our reach, but a
better characterization of the GWB will be needed to

probe realistic models of DM substructures.
The discovery of a GWB will lead to significant break-

throughs in our understanding of cosmology and parti-

cle physics. As future PTA data sets become available,
we will establish the origin of the GWB. Regardless of
whether the signal is of cosmological origin, we have

shown how PTAs will undoubtedly contribute to explor-
ing new physics, either as a discovery tool or as a new
way to constrain the parameter space of BSM models.
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APPENDIX

A. PARAMETER RANGES AND LIMITS

In this appendix, we specify the prior assumptions for all model parameters used in our analyses and report charac-
teristic values for these parameters that we extract from the corresponding reconstructed 1D marginalized posterior
distributions. In Table 2, we list our prior assumptions for the pulsar-intrinsic red-noise parameters Ared and γred (Aa

and γa in Eq. (4)) as well as for the SMBHB parameters ABHB and γBHB. In the latter case, we work with a bivariate
normal distribution for (log10 ABHB, γBHB) whose mean and covariance matrix are given by

µBHB =

(
−15.6

4.7

)
, σBHB = 10−1 ×

(
2.8 −0.026

−0.026 1.2

)
, (A1)

which we obtain by fitting the log10 ABHB and γBHB distributions extracted from the SMBHB simulations in the
GWOnly-Ext library in NG15smbh (see Section 4). In Table 3, we list our prior assumptions for the model parameters

of all new-physics models considered in this work, and in Table 4, we summarize various key values extracted from
the corresponding 1D marginalized posterior distributions. Specifically, we report the Bayes estimator, including its
standard deviation; the maximum posterior estimator, including the 68% credible interval; and (when applicable) the

upper bound based on the requirement that the K ratio in Eq. (10) should not be smaller than 1/10.
The Bayes estimator ⟨θ⟩ of a parameter θ with marginalized 1D posterior probability distribution P (θ|D,H) cor-

responds to the expectation value with respect to the distribution P (θ|D,H), while the standard deviation σθ of the
Bayes estimator corresponds to the positive square root of the associated variance σ2

θ ,

⟨θ⟩ =
∫

dθ θ P (θ|D,H) , σ2
θ = ⟨θ2⟩ − ⟨θ⟩2 =

[∫
dθ θ2 P (θ|D,H)

]
−
[∫

dθ θ P (θ|D,H)

]2
. (A2)

In practice, in a given analysis and for a given chain of MCMC samples, we compute the Bayes estimator and
its standard deviation in terms of the corresponding sample mean and sample variance. The maximum posterior

estimator θmax of a parameter θ with marginalized 1D posterior probability distribution P (θ|D,H) corresponds to the
θ value where P (θ|D,H) reaches its global maximum across the predefined prior range,

P (θmax|D,H) = max
θ

P (θ|D,H) , (A3)

and the 68% Bayesian credible interval
[
θmin
68 , θmax

68

]
follows from integrating the posterior distribution P (θ|D,H) over

the regions of highest posterior density such that the integral returns an integrated probability of 68%,∫ θmax
68

θmin
68

dθ P (θ|D,H) = 0.68 , (A4)

where P (θ|D,H) > P68 for all θ ∈
[
θmin
68 , θmax

68

]
and some appropriate threshold P68. Similarly, we can also construct

95% Bayesian credible intervals. Finally, we mention again that the K-ratio bound in the last column of Table 4
indicates the value θK of the parameter θ that returns K = 1/10 (see Section 3.2),

K (θK) =
P (D|θK ,H)

P (D|θ0,H)
=

1

10
. (A5)

Note that, unlike all other quantities discussed in this section, the K ratio is not defined in terms of a posterior
probability distribution, but rather in terms of a likelihood ratio, which makes it robust against our prior assumptions.
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Table 2. Prior distributions for the pulsar-intrinsic red-noise parameters and the parameters of the astrophysical SMBHB
signal. The mean and covariance matrix of the Gaussian prior distribution for (log10 ABHB, γBHB) are given in Eq. (A1).

Parameter Description Prior Comments

Pulsar-intrinsic red noise

Ared red noise power-law amplitude log-uniform [−20,−11] one parameter per pulsar

γred red noise power-law spectral index uniform [0, 7] one parameter per pulsar

Supermassive black-hole binaries (smbhb)

(log10 ABHB, γBHB) SMBHB signal amplitude and slope normal(µBHB,σBHB) one parameter for PTA
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Table 3. Priors distributions for the parameters of the new-physics models considered in this work. The ∗ indicates parameters
that are present only in the uncorrelated ULDM analyses.

Parameter Description Prior Comments

Inflationary gravitational waves (igw)

Trh [GeV] reheating temperature log-uniform [−3, 3] one parameter per PTA

r tensor-to-scalar ratio log-uniform [−40, 0] one parameter per PTA

nt tensor spectral index uniform [0, 6] one parameter per PTA

Scalar-induced gravitational waves (sigw-delta)

A scalar amplitude log-uniform [−3, 1] one parameter per PTA

f∗ [Hz] peak frequency log-uniform [−11,−5] one parameter per PTA

Scalar-induced gravitational waves (sigw-gauss)

A scalar amplitude log-uniform [−3, 1] one parameter per PTA

f∗ [Hz] peak frequency log-uniform [−11,−5] one parameter per PTA

∆ width uniform [0.1, 3] one parameter per PTA

Scalar-induced gravitational waves (sigw-box)

A scalar amplitude log-uniform [−3, 1] one parameter per PTA

fmin [Hz] lower frequency log-uniform [−11,−5] one parameter per PTA

fmax [Hz] upper frequency log-uniform [−11,−5] one parameter per PTA

Cosmological phase transition (pt)

T∗ [GeV] transition temperature log-uniform [−4, 4] one parameter per PTA

α∗ transition strength log-uniform [−2, 1] one parameter per PTA

H∗R∗ bubble separation log-uniform [−3, 0] one parameter per PTA

a
low-frequency slope (pt-bubbles) uniform [1, 3] one parameter per PTA

low-frequency slope (pt-sound) uniform [3, 5] one parameter per PTA

b
high-frequency slope (pt-bubbles) uniform [1, 3] one parameter per PTA

high-frequency slope (pt-sound) uniform [2, 4] one parameter per PTA

c
spectral-shape width (pt-bubbles) uniform [1, 3] one parameter per PTA

spectral-shape width (pt-sound) uniform [3, 5] one parameter per PTA

Cosmic strings (stable)

Gµ string tension log-uniform [−14,−6] one parameter per PTA

Metastable cosmic strings (meta)

Gµ string tension log-uniform [−14,−1.5] one parameter per PTA
√
κ decay parameter uniform [7, 9.5] one parameter per PTA

Cosmic superstrings (super)

Gµ string tension log-uniform [−14,−6] one parameter per PTA

P intercommutation probability log-uniform [−3, 0] one parameter per PTA

Domain walls (dw-sm)

T∗ [GeV] transition temperature log-uniform [−4, 4] one parameter per PTA

α∗ energy fraction in DWs log-uniform [−3, 0] one parameter per PTA
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b high-frequency slope uniform [0.5, 1] one parameter per PTA

c spectral-shape width uniform [0.3, 3] one parameter per PTA

Domain walls (dw-ds)

T∗ [GeV] transition temperature log-uniform [−4, 4] one parameter per PTA

∆Neff amount of dark radiation log-uniform [−3,−0.41] one parameter per PTA

b high-frequency slope uniform [0.5, 1] one parameter per PTA

c spectral-shape width uniform [0.3, 3] one parameter per PTA

Ultralight dark matter (ULDM)

Ai [s] ULDM signal amplitude log-uniform [−9,−4] one parameter per PTA

mϕ [eV] ULDM mass log-uniform [−24,−19] one parameter per PTA

ϕ̂2
E Earth normalized signal amplitude e−x one parameter per PTA

ϕ̂2
P pulsar normalized signal amplitude e−x one parameter per pulsar∗

γE Earth signal phase uniform [0, 2π] one parameter per PTA

γP pulsar signal phase uniform [0, 2π] one parameter per pulsar

Primordial black holes (pbh-dynamic)

A signal amplitude log-uniform [−20,−12] one parameter per PTA

T0/Tobs normalized time of closest approach uniform [0, 1] one parameter per PTA

Primordial black holes (pbh-static)

A signal amplitude log-uniform [−21,−13] one parameter per PTA
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Table 4. Bayesian Estimators, Maximum Posterior Values, and 68% Credible Intervals for the Parameters of the New-physics
Models. Values annotated with ∗ are at the boundary of the prior range used in the analysis.

Parameter Bayes Estimator Maximum Posterior 68% Credible Interval K Bound

NP NP+SMBHB NP NP+SMBHB NP NP+SMBHB

Inflationary Gravitational Waves (igw)

log10 Trh/GeV 0.02± 1.60 −0.07± 1.61 −0.53 −0.60 [−1.51, 2.53] [−1.89, 2.11] ...

log10 r −14.06± 5.82 −15.97± 7.27 −10.14 −10.59 [−22.16,−6.58] [−23.03,−7.21] ...

nt 2.61± 0.85 2.68± 0.97 2.02 2.08 [1.53, 3.92] [1.56, 4.03] 5.72

log10 ABHB ... −15.60± 0.56 ... −15.64 ... [−16.20,−15.14] ...

γBHB ... 4.61± 0.37 ... 4.64 ... [4.26, 5.00] ...

Scalar-induced Gravitational Waves (sigw-delta)

log10 A −0.69± 0.47 −0.71± 0.49 −0.14 −0.17 [−1.00,−0.01] [−1.03,−0.02] ...

log10 f∗/Hz −5.90± 0.60 −5.93± 0.67 −5∗ −5∗ [−6.17,−5∗] [−6.19,−5∗] ...

log10 ABHB ... −15.77± 0.46 ... −15.71 ... [−16.18,−15.29] ...

γBHB ... 4.65± 0.35 ... 4.65 ... [4.31, 4.99] ...

Scalar-induced Gravitational Waves (sigw-gauss)

log10 A −0.38± 0.58 −0.36± 0.61 −0.34 −0.29 [−1.03, 0.20] [−1.04, 0.24] ...

log10 f∗/Hz −6.32± 0.71 −6.30± 0.73 −7.03 −6.85 [−7.25,−5.65] [−7.17,−5.57] ...

∆ 1.35± 0.70 1.30± 0.70 1.60 1.54 [0.51, 2.07] [0.37, 1.92] ...

log10 ABHB ... −15.72± 0.46 ... −15.65 ... [−16.14,−15.22] ...

γBHB ... 4.65± 0.34 ... 4.65 ... [4.32, 5.00] ...

Scalar-induced Gravitational Waves (sigw-box)

log10 A −1.06± 0.52 −1.02± 0.57 −1.26 −1.25 [−1.72,−0.82] [−1.68,−0.74] ...

log10 fmin/Hz −7.34± 0.48 −7.29± 0.55 −7.50 −7.48 [−8.01,−6.97] [−7.97,−6.84] ...

log10 fmax/Hz −6.06± 0.65 −6.12± 0.81 −5.40 −5.36 [−6.42,−5∗] [−6.45,−5∗] ...

log10 ABHB ... −15.70± 0.49 ... −15.64 ... [−16.15,−15.21] ...

γBHB ... 4.65± 0.35 ... 4.66 ... [4.31, 5.00] ...

Cosmological Phase Transition (pt-bubble)

log10 T∗/GeV −0.76± 0.49 −0.71± 0.70 −0.90 −0.89 [−1.33,−0.39] [−1.34,−0.34] ...

log10 α∗ −0.26± 0.47 −0.23± 0.52 1∗ 0.74 [0.03, 1∗] [0.01, 1∗] ...

log10 H∗R∗ −0.42± 0.26 −0.47± 0.39 0∗ −0.06 [−0.56, 0∗] [−0.58, 0∗] ...

a 2.04± 0.48 2.07± 0.49 1.97 2.01 [1.49, 2.54] [1.54, 2.63] ...

b 1.97± 0.58 1.98± 0.58 1∗ 1∗ [1∗, 2.32] [1∗, 2.33] ...

c 2.03± 0.57 2.03± 0.57 3∗ 2.93 [1.69, 3∗] [1.69, 3∗] ...

log10 ABHB ... −15.68± 0.51 ... −15.65 ... [−16.17,−15.21] ...

γBHB ... 4.64± 0.35 ... 4.65 ... [4.30, 5.00] ...
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Cosmological Phase Transition (pt-sound)

log10 T∗/GeV −1.84± 0.41 −1.56± 1.06 −2.00 −1.95 [−2.33,−1.48] [−2.31,−1.30] ...

log10 α∗ −0.22± 0.44 0.14± 0.56 −0.21 −0.15 [−0.37, 1∗] [−0.34, 0.73] ...

log10 H∗R∗ −0.81± 0.36 −0.87± 0.51 −1.05 −1.01 [−1.28,−0.57] [−1.26,−0.45] ...

a 3.58± 0.47 3.74± 0.54 3∗ 3∗ [3∗, 3.72] [3∗, 3.98] ...

b 2.87± 0.57 2.92± 0.57 2∗ 2∗ [2∗, 3.17] [2∗, 3.25] ...

c 4.16± 0.56 4.09± 0.57 5∗ 5∗ [3.87, 5∗] [3.77, 5∗] ...

log10 ABHB ... −15.45± 0.55 ... −15.39 ... [−16.04,−14.94] ...

γBHB ... 4.63± 0.38 ... 4.67 ... [4.27, 5.03] ...

Cosmic Strings: Cusp-only Spectrum (stable-c)

log10 Gµ −10.15± 0.16 −11.41± 1.25 −10.18 −10.22 [−10.33,−10.01] [−12.13,−9.88] −9.67

log10 ABHB ... −14.95± 0.58 ... −14.56 ... [−15.58,−14.31] ...

γBHB ... 4.34± 0.38 ... 4.24 ... [3.91, 4.66] ...

Cosmic Strings: Kink-only Spectrum (stable-k)

log10 Gµ −10.33± 0.15 −11.34± 1.17 −10.36 −10.38 [−10.50,−10.21] [−11.84,−10.04] −9.87

log10 ABHB ... −15.04± 0.61 ... −14.56 ... [−15.68,−14.34] ...

γBHB ... 4.39± 0.38 ... 4.28 ... [3.95, 4.72] ...

Cosmic Strings: Monochromatic Emission (stable-m)

log10 Gµ −10.53± 0.14 −11.47± 1.09 −10.56 −10.60 [−10.68,−10.42] [−11.91,−10.27] −10.10

log10 ABHB ... −15.05± 0.61 ... −14.58 ... [−15.67,−14.34] ...

γBHB ... 4.39± 0.38 ... 4.28 ... [3.96, 4.73] ...

Cosmic Strings: Numerical Spectrum (stable-n)

log10 Gµ −10.18± 0.15 −11.34± 1.23 −10.21 −10.25 [−10.35,−10.05] [−11.99,−9.90] −9.71

log10 ABHB ... −14.99± 0.59 ... −14.56 ... [−15.61,−14.32] ...

γBHB ... 4.37± 0.38 ... 4.26 ... [3.93, 4.69] ...

Metastable Cosmic strings: Loops Only (meta-l)

log10 Gµ −5.80± 0.78 −5.9± 1.2 −5.04 −5.05 [−6.14,−4.84] [−6.19,−4.83] ...
√
κ 7.95± 0.13 7.95± 0.18 7.85 7.84 [7.81, 8.00] [7.80, 8.00] ...

log10 ABHB ... −15.73± 0.48 ... −15.67 ... [−16.18,−15.25] ...

γBHB ... 4.64± 0.35 ... 4.66 ... [4.30, 5.00] ...

Metastable Cosmic Strings: Loops and Segments (meta-ls)

log10 Gµ −5.62± 1.01 −5.70± 1.40 −4.46 −4.44 [−6.26,−4.24] [−6.33,−4.15] ...
√
κ 7.83± 0.18 7.82± 0.23 7.61 7.61 [7.59, 7.92] [7.57, 7.93] ...

log10 ABHB ... −15.71± 0.49 ... −15.67 ... [−16.17,−15.23] ...

γBHB ... 4.64± 0.35 ... 4.65 ... [4.30, 5.00] ...

Cosmic Superstrings (super)

log10 Gµ −11.67± 0.32 −11.68± 0.35 −11.94 −11.96 [−12.08,−11.50] [−12.09,−11.49] −9.97
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log10 P −2.23± 0.55 −2.21± 0.57 −3∗ −3∗ [−3∗,−2.01] [−3∗,−1.99] −−−

log10 ABHB ... −15.76± 0.46 ... −15.70 ... [−16.18,−15.28] ...

γBHB ... 4.64± 0.35 ... 4.65 ... [4.30, 4.99] ...

Domain Walls (dw-sm)

log10 T∗/GeV −0.73± 0.21 −0.65± 0.49 −0.79 −0.78 [−0.96,−0.56] [−0.97,−0.51] ...

log10 α∗ −0.88± 0.21 −0.87± 0.32 −0.92 −0.90 [−1.10,−0.71] [−1.10,−0.66] ...

b 0.74± 0.14 0.74± 0.14 0.5∗ 0.5∗ [0.5∗, 0.83] [0.5∗, 0.83] ...

c 2.01± 0.70 1.92± 0.74 3∗ 3∗ [1.72, 3∗] [1.57, 3∗] ...

log10 ABHB ... −15.60± 0.50 ... −15.49 ... [−16.06,−15.08] −−−

γBHB ... 4.66± 0.35 ... 4.67 ... [4.32, 5.02] ...

Domain Walls (dw-dr)

log10 T∗/GeV −0.98± 0.15 −0.62± 1.37 −0.94 −0.94 [−1.10,−0.82] [−1.27,−0.67] ...

log10 ∆Neff −0.48± 0.06 −0.87± 0.71 −0.41∗ −0.41∗ [−0.49,−0.41∗] [−0.63, 0.41∗] ...

b 0.74± 0.14 0.74± 0.14 0.5∗ 0.5∗ [0.5∗, 0.97] [0.5∗, 0.83] ...

c 1.95± 0.68 1.83± 0.73 3∗ 3∗ [1.62, 3∗] [1.44, 3∗] ...

log10 ABHB ... −15.33± 0.65 ... −15.59 ... [−16.03,−14.40] ...

γBHB ... 4.51± 0.39 ... 4.52 ... [4.10, 4.90] ...

B. MEDIAN GW POWER SPECTRA

In Figs. 3 and 4 in the main text, as well as in Figs. 19 and 20 in this appendix, we show median GW power
spectra for all of the new-physics models considered in this work. The purpose of this appendix is to explain how

these spectra are constructed. The main idea is to take the output of our Bayesian analysis, i.e., the reconstructed
posterior distributions in the parameter space of the respective models, and map these distributions onto distributions
of h2ΩGW values at each frequency in the NANOGrav frequency band. In practice, this means that we sample model
parameter values from our posterior distributions and use these parameter values to evaluate the GW power spectrum

at one frequency after another in small steps in the range from f = 1/Tobs to f = 30/Tobs. At each fixed frequency, we
thus obtain an induced posterior distribution of h2ΩGW values, from which we can derive point values and uncertainty
estimates. The median h2ΩGW value of a distribution at fixed f defines the value of the median GW spectrum at
this frequency. Similarly, the equal-tailed 68% and 95% intervals around the median values provide an uncertainty
estimate for the median GW spectrum; these intervals are shown in terms of the blue and red bands in Figs. 19 and
20.
We stress that the median GW spectra in Figs. 3, 4, 19, and 20 represent effective power spectra that encapsulate

global properties of the underlying distributions of actual GW spectra. In general, no individual GW spectrum at a
given point in parameter space will exactly coincide with the median GW spectrum. For most models, the difference
between the individual GW spectra and the median GW spectrum is rather mild. However, for some models, there
can be noticeable differences, such as in the case of the SIGW models. Note, e.g., that the median GW spectrum
of the sigw-delta model in Fig. 4 does not have the characteristic double-peak structure that each individual GW
spectrum in this model has. The reason for this is clear: the median GW spectrum follows from a distribution of many

individual GW spectra whose peaks are located at different frequencies. The double-peak structure of the GW signal
in the sigw-delta model is therefore washed out owing to the averaging over many individual GW spectra.
Another caveat is that median GW spectra violating an experimental bound (e.g., the LVK bound) do not automat-

ically indicate that the corresponding model is ruled out. Again, as the median GW spectrum is constructed from a
distribution of individual GW spectra, the violation of an experimental bound merely signals that some (maybe most)
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Figure 19. Median GWB spectra (solid lines) for all new-physics models considered in this work except for the cosmic-string
models, together with their 68% and 95% posterior envelopes. Median GWB spectra for the cosmic-string models are shown in
Fig. 20. In the left column (blue shading), we show the median GWB spectra for the new-physics models alone; in the right
column (red shading), we combine the new-physics signals with the signal from SMBHBs. The gray violins are symmetrical
representations of the 1D marginalized posterior probability density distributions of the GW energy density at each sampling
frequency of the data. The dashed black lines show the GWB spectrum produced by inspiraling SMBHBs (see caption of Fig. 3).
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Figure 20. Same as Fig. 19 but for the cosmic-string models considered in this work. See Appendix B for details.

individual GW spectra are in conflict with the experimental data. It is, however, well possible that some fraction of
the underlying distribution of individual GW spectra is not ruled out and is perfectly consistent with all experimental
constraints. This is, e.g., true for the GW spectra from cosmic superstrings. The median GW spectrum of the super
model violates the LVK bound (see Fig. 4). However, at the level of the model parameter space, this merely means
that some parameter regions are experimentally ruled out, while other regions remain viable (see Fig. 11). Another
example is the median GWB spectrum of the igw model, which appears to violate the Neff bound if it is extended to
high frequencies beyond the NANOGrav band (see Fig. 4). However, the igw model as a whole is not ruled out, as
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Figure 21. Same as Fig. 5 but including the SMBHB parameters ABHB and γBHB. The black dashed lines in the three lower-
right panels show the prior distributions for ABHB and γBHB, i.e., one 2D Gaussian and two 1D Gaussian distributions.

one can still choose the number of e-folds during reheating, Nrh, for each individual GW spectrum. In some regions
of parameter space, the Neff bound then persists to pose a problem, despite this additional parametric freedom and
even in the limit Nrh → 0; other regions, however, remain phenomenologically viable (see Appendix C.1 and Fig. 22).

C. SUPPLEMENTARY MATERIAL

C.1. Cosmic inflation

In Fig. 22, we present constraints on the parameter space of inflationary GWs, i.e., the igw model discussed in
Section 5.1. This parameter space is spanned by four quantities: the tensor-to-scalar ratio r, the spectral index of the
primordial tensor power spectrum nt, the reheating temperature Trh, and the number of e-folds during reheating Nrh.
However, because of the strong covariance between nt and r in Fig. 5, we are able to eliminate r and work on the 3D
hypersurface in parameter space where r is given by the linear fit in Eq. (22). The effective parameter space spanned
by Trh, nt, and Nrh is then subject to two constraints: (i) the upper limit on the allowed amount of extra relativistic
radiation, ∆Neff , at the time of BBN and CMB decoupling (see Eq. (23)) and (ii) the upper limit on the amplitude
of the SGWB set by the LVK Collaboration based on their first three observing runs (see Eq. (24)). The Neff bound
can be saturated for a critical value of the cutoff frequency fend in the GW spectrum, which, for given Trh, is solely
controlled by the Hubble rate at the end of inflation, Hend. This means that the Neff bound can be translated to a
maximally allowed cutoff frequency fmax

end , which can then be converted to a maximally allowed Hubble rate Hmax
end and

ultimately an upper limit Nmax
rh on the allowed number of e-folds during reheating. Similarly, if the predicted GW

signal at flvk = 25Hz should exceed the LVK bound, we can derive upper limits Hmax
end and N end

rh by requiring fend not
to exceed the lower end of the LVK band; for definiteness, we use fmax

end = 20Hz.
Our results for Nmax

rh obtained in this analysis are presented in Fig. 22 in terms of black and maroon contour lines,
where the black solid lines refer to the Neff bound, while the maroon dashed lines refer to the LVK bound. In the left
panel we show our results for Nmax

rh itself, while in the right panel we compare Nmax
rh to the duration of reheating that
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Figure 22. Constraints on the parameters of inflationary GWs, i.e., the igw model discussed in Section 5.1. The black solid
lines refer to the Neff bound, while the maroon dashed lines refer to the LVK bound. The left panel shows the results for
Nmax

rh , while the right panel compares Nmax
rh to the duration of reheating that one would naively expect in models of standard

single-field slow-roll inflation. The blue points correspond to the sampled points used to obtain the 2D marginalized posterior
probability density for the model parameters Trh and nt in Section 5.1. See Appendix. C.1 for details.

one would naively expect in models of standard single-field slow-roll inflation (see Eqs. (15) and (16)),

Nmax
rh =

2

3
ln

(
Hmax

end

Hmin
end

)
, Nnaive

rh =
2

3
ln

(
Hnaive

end

Hmin
end

)
, Hnaive

end =

(
π2

2
rAs

)1/2

MPl , (C6)

where Hmin
end denotes the minimal Hubble rate that is necessary to realize the desired value of Trh after inflation,

Hmin
end =

(
π2grh∗
90

)1/2
T 2
rh

MPl

. (C7)

In other words, for given Trh, H
min
end represents the Hubble rate in the limit of instantaneous reheating, Nrh = 0. In

terms of the maximally allowed number of e-folds Nmax
rh and the naive expectation Nnaive

rh , we can then construct

∆Nrh = Nmax
rh −Nnaive

rh =
2

3
ln

(
Hmax

end

Hnaive
end

)
, (C8)

which is the quantity shown in the right panel of Fig. 22. In addition to the contour lines for Nmax
rh and ∆Nrh, we

also display the samples in the Trh –nt plane that we obtain from our MCMC chains. The density of these blue points
approximates the 2D marginalized posterior probability density for the model parameters Trh and nt.
In view of the results in Fig. 22, we can draw several conclusions: (i) Both the Neff bound and the LVK bound are

only relevant at large values of the spectral index. At Trh ∼ 10−3 GeV, the number of e-folds during reheating is only
constrained as long as nt ≳ 2.5, while at Trh ∼ 103 GeV, the bounds on Nrh only appear at nt ≳ 1. At f ≫ frh,
these nt values translate to a slope of the GW spectrum α in the range from α ∼ −1 to α ∼ 0.5, which is in the
regime where we expect the approximate expression in Eq. (25) to be valid (see also the discussion in Kuroyanagi et al.
(2015)). (ii) The LVK bound only depends on Trh. This follows from the fact that it is derived from the requirement
fmax
end = 20Hz, which is independent of r and nt. Typically, the LVK bound on Nrh is much weaker than the Neff bound
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Figure 23. Same as Fig. 6 but including the SMBHB parameters ABHB and γBHB.

on Nrh; only in the parameter region where the Neff bound begins to disappear, Nmax
rh → ∞, does the LVK bound

becomes competitive. (iii) The Neff bound is particularly strong at large reheating temperatures and large values of

the spectral index, where Nmax
rh can become even negative. This region, which we indicate by a dark-gray shading, is

phenomenologically not viable and hence ruled out (see also the regions labeled Neff in Fig. 5). In the excluded region,
we also find ∆Nrh ≪ 0, which indicates that reheating lasting for the naive number of e-folds Nnaive

rh will definitely
result in a violation of the Neff bound. (iv) Farther away from the excluded region, the upper limits on Nrh become

weak very fast, Nmax
rh ≫ 1. In realistic models of inflation and reheating, where we typically expect Nrh ∼ O (1 · · · 10),

these bounds should be easy to satisfy. We therefore, conclude that most of the region shaded in light gray as well as
the entire white region in Fig. 22 can host viable realizations of the igw model. This includes, in particular, scenarios

with a low reheating temperature, Trh ∼ 10−(3···0) GeV, and a large spectral index of the primordial tensor power
spectrum, nt ∼ 3 · · · 4.

C.2. Scalar-induced gravitational waves

The generation of SIGWs relies on enhanced scalar perturbations on small scales, which can simultaneously lead to
the production of PBHs. The parameter space of the SIGW models considered in this work is therefore subject to
the constraint that the PBH mass density must not exceed the relic density of DM, fPBH ≤ 1 (see Eq. (32)). This

appendix explains how we evaluate this bound on the SIGW model parameters. We use the Press–Schechter formalism
for spherical collapse (Press & Schechter 1974; Carr 1975) and mainly follow Inomata et al. (2017b) and Ando et al.
(2018). The main quantity of interest is fPBH, which denotes the total fraction of PBH DM,

fPBH =

∫
dM

M
f(M) . (C9)

with PBH mass function f given as (Ando et al. 2018)

f (M) ≃ γ3/2

(
β(M)

1.6× 10−9

)(
10.75

g∗(T )

)1/4(
0.12

ΩDMh2

)(
M⊙
M

)1/2

. (C10)
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Figure 24. Same as Fig. 7 but including the SMBHB parameters ABHB and γBHB.
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Here M is the mass of the PBH, T is the temperature at the time of PBH formation, γ is the ratio between the PBH
mass and the horizon mass, and β(M) is the PBH production rate. In this work, we only focus on PBHs produced
during the radiation-dominated era. We choose γ = 0.356, following Choptuik (1993),Koike et al. (1995) and Niemeyer
& Jedamzik (1998) and assume that the mass of the PBH is proportional to the horizon mass when k = aH,

M = γMH ≃ γM⊙

(
g∗(T )
10.75

)−1/6(
4.2× 106 Mpc−1

k

)2

. (C11)

We can then express the PBH mass as a function of the temperature using the standard temperature–wavenumber
relation in ΛCDM. Assuming that the density perturbation follows Gaussian statistics, β(M) is given by

β(M) =

∫
δc

dδ√
2π σ(M)

exp

(
− δ2

2σ2(M)

)
≃ σ(M)√

2π δc
exp

(
− δ2c
2σ2(M)

)
, (C12)

where δc is the critical density perturbation for the PBH formation, whose exact value depends on the shape of the
curvature power spectrum and satisfies 0.4 ≲ δc ≲ 0.6 (Musco et al. 2005, 2021), and σ2(M) is the variance of the
coarse-grained density perturbation, which in the radiation domination era is given by

σ2(k) =
16

81

∫
dq

q

( q
k

)4
W 2

( q
k

)
T 2
(
q, k−1

)
PR(q) . (C13)

Here W (x) is some window function smearing over k−1 and

T
(
q, k−1

)
= 3

[
sin

(
q√
3k

)
−
(

q√
3k

)
cos

(
q√
3k

)]/( q√
3k

)3

. (C14)

is the transfer function for the radiation-dominated era. In our work, we choose δc = 0.45 as a fiducial value (Ando

et al. 2018; Wang et al. 2019) and a Gaussian window function W (x) = e−x2/2.
Our analysis is subject to a few caveats. The correct value of the critical density δc depends on the choice of the

power spectrum and the window function (Ando et al. 2018; Musco 2019; Young 2019; Escrivà 2020; Escrivà et al.

2020; Gow et al. 2021; Musco et al. 2021; Dandoy et al. 2023), and the nonlinear relation between density perturbations
and density contrast (De Luca et al. 2019; Young et al. 2019; Escrivà 2020). In this work, we use a single value of δc
for three different power spectra for computational reasons. We also disregard any corrections from the QCD equation
of state, which are expected to be important at the frequency range probed by PTA observations (Abe et al. 2021;

Escrivà et al. 2022a; Juan et al. 2022; Dandoy et al. 2023; Musco et al. 2023).
The statistics of the primordial scalar perturbations also strongly affect the abundance of PBHs since, in general,

enhanced scalar perturbations come with different levels of non-Gaussianity. In this work, we focus on Gaussian

primordial scalar perturbations. With non-Gaussianities, the same PBH abundance can be produced with scalar per-
turbations whose amplitudes are orders of magnitude smaller than those produced with Gaussian scalar perturbations.
Therefore, primordial non-Gaussianity can dramatically affect the PBH bounds (Young & Byrnes 2013; Nakama et al.
2017; Pattison et al. 2017; Garcia-Bellido et al. 2017; Franciolini et al. 2018; Cai et al. 2019; De Luca et al. 2019; Young
et al. 2019; Iacconi & Mulryne 2023). In the parameter region where SIGWs manage to explain the NANOGrav sig-
nal, this would notably aggravate the PBH overproduction problem, which means that sizable non-Gaussianities could
completely rule out the SIGW interpretation of the signal. In this work, we also neglect evolutionary effects on the

PBH mass function, namely accretion and mergers, where accretion effects are expected to be small for sub-solar-mass
PBHs (Ali-Häımoud & Kamionkowski 2017; Raidal et al. 2019; Vaskonen & Veermäe 2020; De Luca et al. 2020).
In summary, the final PBH DM fraction is quite sensitive to the assumptions discussed above. The bounds presented

in the main text should be taken with a grain of salt owing to the uncertainties in the computation of fPBH.

C.3. Cosmological phase transitions

In the phase transition analysis discussed in the main text, we allow the low-frequency spectral index to float despite
that causality predicts a = 3. We do this to capture possible double-peak spectral features with our simple power-law
parametrization. However, it is not clear whether or not a strong and fast phase transition like the one needed to
explain the observed signal could produce such a double-peak structure (Hindmarsh et al. 2017; Hindmarsh & Hijazi
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Figure 25. Same as in Fig. 5 but for the pt-sound (left panel) and pt-bubble models with a low-frequency slope fixed to
the value predicted by causality, i.e., a = 3.

2019). Therefore, in Fig. 25 we report the results of a phase transition analysis where we assume a = 3. Figure 25
shows the reconstructed posterior distributions for the parameters α∗, T∗, and H∗R∗ of the pt-sound and pt-bubble

models, both for the case where the PT is assumed to be the only source of GWs (blue contours) and for the scenario
where we consider the superposition of the PT and SMBHBs signal (red contours). For the analyses where the SMBHB
signal is included, we also report the posterior distributions for ABHB and γBHB. For the pt-sound model we notice

very minor differences compared to the analysis in the main text. However, for the pt-bubble model we notice how
the posterior for T∗ is peaked to slightly smaller values for the reasons explained in the main text.
In Figs. 26 and 27, we report the posterior distributions for all the parameters of the phase transition models,

including the spectral shape parameters a, b, and c that were excluded from Fig. 8. As expected for the pt-bubble

model, the low-frequency slope is peaked around a ∼ 2, which is the reconstructed slope of the GWB signal, while
the posteriors for b and c are approximately flat. For the pt-sound model, the posterior for a is peaked around the
lower limit of the prior range a = 3, and there is also a mild preference for larger values of the width parameter, as

this would flatten the spectrum close to the peak.

C.4. Cosmic strings

In our discussion of stable cosmic strings in the main text, we only present the reconstructed marginalized 1D poste-
rior distributions for the dimensionless cosmic-string tension, Gµ (see Fig. 9). The four strings-plus-SMBHBs models
stable-c+smbhb, stable-k+smbhb, stable-m+smbhb, and stable-n+smbhb, however, feature three model pa-
rameters in total: Gµ, ABHB, and γBHB. In this appendix, we complement the discussion in Section 5.4 and show the
corner plots for these parameters (see Fig. 28). A notable feature of these corner plots is that the plateau region at
small values of Gµ, which we had already observed in Fig. 9, now also appears in the form of flat directions in the
2D posterior distributions for Gµ and ABHB as well as for Gµ and γBHB. Meanwhile, the 2D posterior distributions
for ABHB and γBHB represent distorted versions of the 2D Gaussian prior distribution that we employ in our analysis,
peaking at large ABHB and small γBHB, where SMBHBs yield the dominant contribution to the signal. All four corner

plots in Fig. 28 are qualitatively identical and only display slight numerical differences.
Next, let us turn to metastable strings. In the main text, we discuss the number density of closed string loops for

the case of stable strings (see Eq. (43)) as well as for metastable strings (see Eq. (46)). In the meta-ls model, we
need in addition the number density of string segments that form when long strings and closed loops break apart as a
consequence of monopole nucleation. In order to compute the GW signal from segments, we use again Eqs. (40) and
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Figure 26. Same as Fig. 8 but including the spectral shape parameters a, b, c and SMBHB parameters ABHB and γBHB.

(42), where we replace the loop number density nl by the segment number density ns and the GW power spectrum Pk

in Eq. (41) by Pk = 4/k, which was derived by Martin and Vilenkin in the approximation of a straight string segment
in Martin & Vilenkin (1997). Meanwhile, all relevant expressions for the segment number density ns were computed

in Leblond et al. (2009) and Buchmuller et al. (2021), which we shall summarize in this appendix. For more details,
we refer to (Leblond et al. 2009) and (Buchmuller et al. 2021).
First, we consider segments that form when long strings break apart. We denote their number density by n̄s, which

we decompose into three different contributions that are relevant at different times and in different parameter regimes,

n̄s (ℓ, t) = n̄rr
s (ℓ, t) + n̄rm

s (ℓ, t) + n̄mm
s (ℓ, t) . (C15)
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Figure 27. Same as Fig. 26 but for the pt-sound model.

Here n̄rr
s (ℓ, t) is the number density of segments that originate from long strings, assuming the scaling regime to end

during radiation domination, evaluated during radiation domination and after the onset of the decay regime,

n̄rr
s (ℓ, t) = Θ (teq − t)Θ (t− ts)

Γ2
d

ξ2r

(t+ ts)
2

(t3ts)
1/2

exp [−Γd (ℓ (t+ ts) + 1/2ΓGµ (t− ts) (t+ 3 ts))] , (C16)

where n̄rm
s (ℓ, t) is the number density of segments that originate from long strings, assuming that the scaling regime

ends during radiation domination, evaluated during matter domination and after the onset of the decay regime,

n̄rm
s (ℓ, t) = Θ (t− teq)Θ (teq − ts)

Γ2
d

ξ2r

(
teq
t

)2
(t+ ts)

2(
t3eqts

)1/2 exp [−Γd (ℓ (t+ ts) + 1/2ΓGµ (t− ts) (t+ 3 ts))] , (C17)
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Figure 28. Posterior distributions for the stable+smbhb strings models including the SMBHB parameters ABHB and γBHB.
We also report the marginalized log10 Gµ posterior distributions for the stable string models (blue lines).

and n̄mm
s (ℓ, t) is the number density of segments that originate from long strings, assuming that the scaling regime

ends during matter domination, evaluated during matter domination and after the onset of the decay regime,

n̄mm
s (ℓ, t) = Θ (t− ts)Θ (ts − teq)

Γ2
d

ξ2m
exp [−Γd (ℓ t+ 1/2ΓGµ (t− ts) (t+ ts))] . (C18)

In view of these expressions, several comments are in order: (i) Throughout our analysis, we assume that GW emission
by segments is as efficient as GW emission by loops, i.e., we work with Γ = 50 for both loops and segments. (ii)
All three expressions depend on the dimensionless correlation length of the long-string network, for which we use the
attractor values in the VOS model, ξr = 0.27 and ξm = 0.63 during radiation and matter domination, respectively.
(iii) For a given choice of parameter values, n̄rr

s , n̄
rm
s , and n̄mm

s never contribute simultaneously to the segment number
density. For teq > ts, only n̄rr

s and n̄rm
s yield nonvanishing contributions (first n̄rr

s at t < teq and then n̄rm
s at t > teq),

whereas for teq < ts, the number density of segments from long strings is solely determined by n̄mm
s at all times t > ts.
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Figure 29. Same as Fig. 10 but including the SMBHB parameters ABHB and γBHB.
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Figure 30. Same as Fig. 11 but including the SMBHB parameters ABHB and γBHB.

In addition to segments from long strings, there is also a population of segments that form when closed string loops
begin to break apart because of monopole nucleation. We denote the number density of this population by ñs,1, where
the index refers to the fact that ñs,1 only describes the first generation of segments that form when closed loops break
apart for the first time. This first generation then gives rise to a second generation of segments that follow from

monopole nucleation on first-generation segments, and so on and so forth. We comment on these higher generations
further below. Before that, however, we discuss ñs,1, which we decompose again into three contributions,

ñs,1 (ℓ, t) = ñrr
s,1 (ℓ, t) + ñrm

s,1 (ℓ, t) + ñmm
s,1 (ℓ, t) . (C19)

Here ñrr
s,1 (ℓ, t) is the number density of first-generation segments that originate from closed loops that formed during

radiation domination, evaluated during radiation domination and after the onset of the decay regime,

ñrr
s,1 (ℓ, t) = Θ (t− ts)Θ (teq − t)Θ (teq − t∗) Γd

[
ℓ (t− ts) + 1/2ΓGµ (t− ts)

2
]
nmeta
l (ℓ, t) , (C20)

where ñrm
s,1 (ℓ, t) is the number density of first-generation segments that originate from closed loops that formed during

radiation domination, evaluated during matter domination and after the onset of the decay regime,

ñrm
s,1 (ℓ, t) = Θ (t− ts)Θ (t− teq)Θ (teq − t∗) Γd

[
ℓ (t− ts) + 1/2ΓGµ (t− ts)

2
]
nmeta
l (ℓ, t) , (C21)

and ñmm
s,1 (ℓ, t) is the number density of first-generation segments that originate from closed loops that formed during

matter domination, evaluated during matter domination and after the onset of the decay regime,

ñmm
s,1 (ℓ, t) = Θ (t− ts)Θ (ts − t∗)Θ (t∗ − teq)

Γd e
−Γd[ℓ(t−t∗)+1/2ΓGµ(t−t∗)

2]

t2 (ℓ+ ΓGµ t)
2 (C22)

×
{
0.27

[
ℓ (t− ts) + 1/2ΓGµ (t− ts)

2
]
+ 0.45 (ℓ+ ΓGµ t)

1+0.31
[F2 (t)− F1 (t)− F2 (ts) + F1 (ts)]

}
, (C23)
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where F2 and F1 are shorthand notations for the following expressions involving the hypergeometric function 2F1,

Fn (x) = 2F1

(
n− β,−β;n+ 1− β;

ΓGµ

ℓ+ ΓGµ t
x

)(
ΓGµ

ℓ+ ΓGµ t

)n−1
xn−β

n− β
, n = 1, 2 , β = 0.31 . (C24)

These results were derived in Buchmuller et al. (2021) based on the loop number densities in the so-called BOS
model (Blanco-Pillado et al. 2014), which explains the occurrence of factors such as 0.27, 0.45, and 0.31 in Eqs. (C22)
and (C23) (see Buchmuller et al. (2021) for more details).
Finally, the expressions in Eqs. (C20), (C21), and (C22) enable us to estimate the total number densities of all

generations of segments that descend from closed loops breaking apart because of monopole nucleation. In principle,
these number densities are described by a partial integro-differential equation where the abundance of the nth segment
generation acts as a source term for the (n + 1)th generation. Formally, this partial integro-differential equation can
be solved analytically in terms of an infinite recursive series (Buchmuller et al. 2021). The numerical evaluation of
this series is, however, technically demanding, which is why we choose to follow a different approach for the purposes
of this paper. As shown in Buchmuller et al. (2021), it turns out that the total number densities for segments from
closed loops result in predictions for the GW spectrum that are very similar to those obtained from the corresponding
first-generation number densities in Eqs. (C20), (C21), and (C22)—up to a numerical fudge factor of O (10). At the
level of the number densities, it therefore suffices to rescale all first-generation number densities by a constant factor
in order to obtain effective number densities for all generations of segments that descend from closed loops breaking
apart,

ñrr
s (ℓ, t) → fudge× ñrr

s,1 (ℓ, t) , ñrm
s (ℓ, t) → fudge× ñrm

s,1 (ℓ, t) , ñmm
s (ℓ, t) → fudge× ñmm

s,1 (ℓ, t) . (C25)

We stress that the functional dependence on ℓ and t is typically not the same for the first-generation and total number
densities; the rescaling in Eq. (C25), however, achieves comparable results at the level of the GW spectrum. In our
analysis, we consistently use a fudge factor of 5, which is a characteristic value across large regions of parameter space.

C.5. Domain walls

In Fig. 31, we report the posterior distribution for all the parameters of the domain wall models, including the
spectral shape parameters b and c that were excluded from Fig. 12. For both the dw-sm and dw-dr models we find
a flat posterior for the high-frequency slope, b. This result is expected since most of the low frequency bins are fit by

the low-frequency tail of the spectrum. For the width parameter, c, instead, both models prefer values near the upper
range of our prior range. This preference for wider spectra derives from a mismatch between the reconstructed slope
of the GWB, a ∼ 2 and the one predicted by causality, a ∼ 3. Larger width parameters make the spectrum from

domain walls flatter near the peak and allow for a better fit to the data.

C.6. Dark matter substructures

In this appendix we provide more details on the procedure that we followed to derive the constraints on fPBH reported
in Section 6.2.
Given a PBH with position relative to the pulsar given by r(t) = r0 + vt, where r0 and v are the initial PBH

position and velocity, respectively, we can write the Doppler and Shapiro signals as

hD(t) =
GM

v2
d̂ ·
(√

1 + x2
Db̂D − sinh−1(x)v̂

)
(C26)

hS(t) = 2GM log(1 + x2
S) , (C27)

where xD ≡ (t− tD,0)/τD and xS ≡ (t− tS,0)/τ S. These expressions only include cubic terms in time t and have been
previously derived in (Dror et al. 2019; Lee et al. 2021b). For the static limit in which τ ≫ Tobs, these expressions
can be expanded in series of t0/τ . Since the O(t2) terms would be degenerate with the timing model, the measurable
new-physics signal can then be parametrized as a term ∝ t3 as

h(t)D(S) =
AD (S), sta

yr2
t3 , (C28)

where AD(S), sta for both the Doppler and Shapiro static signal cases are dimensionless amplitudes given by
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Figure 31. Same as Fig. 12 but including the spectral shape parameters b, c and the SMBHB parameters ABHB and γBHB.
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AD, stat = yr2
GM

2v2
d̂ ·
[
tD,0

τ4D

1

(1 + t2D,0/τ
2
D)5/2

b̂D +
1

3τ3D

1− 2t2D,0/τ
2
D

(1 + t2D,0/τ
2
D)5/2

v̂

]
(C29)

AS, stat = −yr2
4GM

3

tS,0
τ4S

3− t2S,0/τ
2
S

(1 + t2S,0/τ
2
S)

3
. (C30)

For the Doppler case, in the dynamic limit when τ ≪ Tobs, the dominant contribution would come from the first
term in Eq. (C26) where

√
1 + x2

D ∝ |t− t0|. Upto linear order in xD, we can write

hD,dyn(t) = AD,dyn(t− t0)Θ(t− t0) , (C31)

where A D,dyn is the dimensionless amplitude given by

AD,dyn =
2GM

τv2
d̂ · b̂D . (C32)

Given the expressions in Eqs. (C26) and (C27) for the Doppler and Shapiro signals, we use the MC developed in Lee
et al. (2021a) to derive the distributions p(log10 AI |fPBH). Specifically, we proceed as follows:

• For each pulsar we generate a population of NPBH PBHs, where NPBH is implicitly defined by the relation

NPBH = fPBH

ρDMV

MPBH

, (C33)

where the simulation volume, V , is a sphere of radius R = v̄Tobs centered around the pulsar position for the Doppler

signal and a cylinder with the same radius and height given by the Earth–pulsar distance for the Shapiro signal. Here
v̄ ≃ 340 km/s is the average PBH velocity, and Tobs,I is the observation time of the Ith pulsar.

• For each of these PBHs we generate a random initial position and velocity. Since PTA searches are only sensitive to
DM subhalos in the neighborhood of the solar system, we expect the position distribution to be uniform. Therefore,
we use the probability density function f(r) = 1/V to sample initial positions. To sample PBHs’ velocity, we use a

Maxwell–Boltzmann distribution with v0 = 325 kms−1, vesc = 600 kms−1, and the angular dependence assumed to be
isotropic.

• The PBHs’ signals are then classified as dynamic if they satisfy the condition Tobs,I−τ > t0 > τ , and static otherwise.

• To evaluate Astat, we sum the static signals of all PBHs computed by using Eqs. (C26) and (C27), and we fit the

resulting signal to a cubic polynomial in time to extract the t3 term. To compute AD,dyn, we take the closest transiting
object and compute the signal amplitudes using Eq. (C32).

All the previous points are repeated for 2.5×103 realizations to obtain the distributions p(log10 AI |fPBH). Given the
conditional distributions p(log10 AI |fPBH) and the posterior distribution p(log10 AI |δt) derived by analyzing our data,
we can write

p (fPBH|δt) =
NP∏
I=1

∫
p(fPBH| log10 AI)p (log10 AI |δt) d log10 AI . (C34)

Then, using Bayes’ theorem, we can rewrite

p (fPBH| log10 AI) =
p (log10 AI |fPBH) p (fPBH)

p (log10 AI)
. (C35)

Our priors on p (fPBH) and p (log10 AI) are uniform, which allows us to eventually write Eq. (C34) as

p (fPBH|δt) ∝
NP∏
I=1

∫
p(log10 AI |fPBH)p(log10 AI |δt) d log10 AI , (C36)

where the ∝ implies that the p(fPBH|δt) would be subject to the normalization condition,
∫∞
0

p(fPBH|δt) dfPBH = 1.
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In the presence of a DM-baryon fifth force in the form of a Yukawa potential in Eq. (72), assuming point-mass DM,
the pulsar frequency shift due to Doppler effect is given by (Gresham et al. 2023)(

δν

ν

)
fifth

=
α̃GM

τ2Dv
d̂ ·
∫

1

(1 + x2
D)3/2

(
1 +

b

λ

√
1 + x2

D

)
e−(b/λ)

√
1+x2

D (b̂+ xDv̂)dxD . (C37)

The integral in Eq. (C37) has to be computed numerically, and the signal due to the fifth force can be computed by
performing an additional integration over time and subtracting away degeneracies with timing model parameters. The
total signal is the sum of the gravitational and the fifth-force contribution, hD, total(t) = hD, fifth(t) + hD(S)(t). In this
analysis of the fifth-foce constraint, we only consider the scenario where the DM substructure makes up the entirety
of the DM local density, which is equivalent to taking fPBH = 1 for the gravitational contribution. Parameterizing the
signal as hD, total(t) =

AD, total

yr2 t3 similar to the PBH case, the amplitude AD, total is a random variable dependent on λ
and α̃. The probability distribution function P (log10 AD, total|λ, α̃) can be extracted again by Monte Carlo simulations
and Bayes’ theorem. Finally, the posterior distribution of α̃ and λ, P (α̃, λ|δt), is given by the analog of Eq. (C36)

p (α̃, λ|δt) ∝
NP∏
I=1

∫
p(log10 AI |α̃, λ)p(log10 AI |δt) d log10 AI . (C38)
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Ünal, C., Pacucci, F., & Loeb, A. 2021, JCAP, 05, 007,

doi: 10.1088/1475-7516/2021/05/007

Unal, C., Urban, F. R., & Kovetz, E. D. 2022, arXiv.

https://arxiv.org/abs/2209.02741

Vachaspati, T., & Vilenkin, A. 1985, Phys. Rev. D, 31,

3052, doi: 10.1103/PhysRevD.31.3052

Vagnozzi, S. 2021, Mon. Not. Roy. Astron. Soc., 502, L11,

doi: 10.1093/mnrasl/slaa203

Vallisneri, M., Taylor, S. R., Simon, J., et al. 2020, ApJ,

doi: 10.3847/1538-4357/ab7b67

van Haasteren, R., & Levin, Y. 2012, Monthly Notices of

the Royal Astronomical Society, 428, 1147,

doi: 10.1093/mnras/sts097

Van Tilburg, K., Leefer, N., Bougas, L., & Budker, D. 2015,

Physical Review Letters, 115, 011802,

doi: 10.1103/PhysRevLett.115.011802
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