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This is a lightweight manual for PTArcade, a wrapper of ENTERPRISE and ceffyl
that allows for easy implementation of new-physics searches in PTA data. In this
manual, we describe how to get PTArcade installed (either on your local machine or
an HPC cluster). We discuss how to define a stochastic or deterministic signal and
how PTArcade implements these signals in PTA-analysis pipelines. Finally, we show
how to handle and analyze the PTArcade output using a series of utility functions
that come together with PTArcade.
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1 Introduction

The detection of gravitational waves (GWs) by the LIGO and VIRGO collaborations [1] heralds
the beginning of GW astronomy. The extremely weak interaction between GWs and matter
makes them ideal probes for dense astrophysical and cosmological environments, one relevant
example being the pre-recombination Universe. This epoch in the cosmological evolution is
characterized by high densities of charged particles, which makes it opaque to electromagnetic
radiation. However, any gravitational-wave signal produced during this epoch would propagate
essentially unimpeded over cosmic distances to be measured today. Detecting a primordial GW
signal will then provide a direct glimpse into the primordial Universe and potentially allow us
to test beyond Standard Model (BSM) physics, where the production of primordial GWs is a
ubiquitous feature [2–4].

Recently, several pulsar timing array (PTA) collaborations have found convincing evidence for a
gravitational wave background (GWB) in the nanohertz band (see for example reference [5]). The
origin of this background is still unknown, and while supermassive black hole binaries (SMBHBs)
remain the primary suspect [6–11], a primordial origin is also a viable explanation at this stage.
The recent NANOGrav search for new-physics signals [12] has considered several BSM models
that could generate a primordial GWB compatible with the one observed in the NANOGrav
15yr dataset. However, many models remain to be tested.

In this work, we present PTArcade, a wrapper of ENTERPRISE [13, 14] and ceffyl [15].
PTArcade aims to provide an accessible way to perform Bayesian analyses of new-physics signals
with PTA data. The user can either specify the signal by providing the GW energy density
spectrum as a fraction of the closure density ΩGW(f ; θ⃗) (in case of GWB signals) or the sig-
nal time series h(t, θ⃗) (in case of deterministic signals). Here, θ⃗ is an array containing all the
model parameters characterizing the new-physics signal for which PTArcade will allow to derive
posterior probability distributions and upper limits.

Users can specify their models by using simple Python files, which allows for great flexibility
and allows to specify signals either analytically or using tabulated data. PTArcade is shipped
with sensible default settings that closely resemble official PTA analyses, but users may override
them on a case-by-case basis through a pure-Python configuration file.
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While all the necessary information needed to install and run PTArcade can be found in this
manual, more details and examples can be found in the PTArcade documentation web page.

2 Quick Start

The first step consists in installing PTArcade. The easiest way to do this is to use the Python
package manager conda. Simply download this environment file, open a terminal, and type1

conda env create -f ptarcade.yml

If everything went smoothly, great, PTArcade is now installed on your machine and you can start
using it!2

To guide our discussion, we will consider a toy model: Suppose you have a model that produces
a GWB with a broken power-law spectrum of the form

h2ΩGW(f ;A∗, f∗) = A∗

(
f∗
f

+
f

f∗

)−1

, (1)

and you want to know for what values of the parameters A∗ and f∗ this GWB can reproduce the
signal observed in the NG15 data. The first step is to create, what we call, a model file. This
is a simple Python file that contains the definition of the GWB spectral shape and the prior
distributions for the model parameters. For the GWB from our example, the model file is:

A Typical Model File

from ptarcade.models_utils import prior

parameters = {’log_A_star’ : prior("Uniform", -14, -6),
’log_f_star’ : prior("Uniform", -10, -6)} ➊

def S(x):
return 1 / (1/x + x)

def spectrum(f, log_A_star, log_f_star): ➋

A_star = 10**log_A_star
f_star = 10**log_f_star

return A_star * S(f/f_star)

In general, the model file for a GWB signal needs to contain the following two things:

➊ parameters: This variable has to be assigned to a dictionary whose keys are strings
corresponding to the model parameters’ names and whose values are the parameters’ priors.
The prior distributions can be specified using the prior function from the models_utils

1Here we are assuming that the .yml file is located in the local directory. If that is not the case you should pass
the full path to the .yml file when executing conda env create.

2If you encounter any problem during the installation, refer to the "Troubleshooting" section in the PTArcade
documentation web page for possible solutions.
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module. The syntax for this function is the following: The first argument that is passed
to this function is a string specifying the prior type. The subsequent arguments are the
parameters describing the prior.3 By default, the parameters are assumed to be common
across all pulsars in the array. If you want a parameter to be pulsar dependent, you need
to add the flag common=False when instantiating the prior object.

In our example, we have chosen the names log_A_star and log_f_star for the parame-
ters log10A∗ and log10(f∗/Hz). For both, we have chosen uniform priors with the ranges
[−14,−6] and [−10,−6], respectively.

➋ spectrum(f, ...): this function specifies the GWB spectrum. Its first parameter should
be named f, and it has to be a NumPy array containing the frequencies (in units of Hz)
at which the spectrum is evaluated. The names of the remaining parameters should match
the ones defined in the parameters dictionary (in our case log_A_star and log_f_star).
The spectrum function should return a NumPy array with the same dimensions as f and
contain the value of h2ΩGW at each of the frequencies in f.

Once you have created the model file, you are ready to run PTArcade. To proceed, open a
terminal window and type the following:

1 ptarcade -m ./model_file.py

The argument passed to the -m input flag is supposed to be the path to the model file. By
default, PTArcade will output a chain of Markov Chain Monte Carlo samples (together with
other files discussed in the next section) to the directory ./chains/np_model/chain_0.4 This
chain of MC samples can then be used to derive the posterior distribution for the parameters of
the user-specified signal.

Once the sampling of the chains is complete, you can use one of the many market-available tools
to produce posterior-distribution plots. Two popular choices are corner [16] and GetDist [17].
PTArcade itself provides two modules, chains_utils and plot_utils, that can be used to
help in this procedure (see section 3.6). When using these two modules, producing the posterior
plots can be done with only a few lines of code:

Loading Chains and Parameter Files

import ptarcade.plot_utils as p_utils
import ptarcade.chains_utils as c_utils

chain, params = c_utils.import_chains(’./chains/np_model/’) ➌

p_utils.plot_posteriors([chain] , [params]) ➍

In ➌, we use the function import_chains to load the MCMC chains and the parameter files of
the run. This function takess the path to a folder containing the chains and loads them into a
NumPy array. Additionally, it returns a dictionary containing the names of the model parameters
as keys and a list with the parameters’ prior ranges as values. The plot_posteriors function in

3A list of the built-in prior types and their parameters can be found in Table 1.
4The user can change the location of the output directory. See Section 3 for more details on how to do this.
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Figure 1: Reconstructed posterior distributions for the parameters of the example GWB described
in Eq. (1). On the diagonal of the corner plot, we report the 1D marginalized distributions
together with the 68% and 95% Bayesian credible intervals (vertical lines), while the off-diagonal
panels show the 68% (darker) and 95% (lighter) Bayesian credible regions in the 2D posterior
distributions. We construct all credible intervals and regions by integrating over the regions of
highest posterior density.

➍ produces a plot with the 2D and 1D marginalized posteriors for the parameters of our model.
For the example at hand, we obtain the plot which is shown in Figure 1. Details on how to
control the appearance of this plot are provided in Section 3.6.

3 More Details

In this section, we provide more details on the installation procedure (Section 3.1), how to
run PTArcade (Section 3.2), how PTArcade implements user-specified signals in PTAs analysis
pipelines (Section 3.3), how to personalize a PTArcade run by using model and configuration
files (Section 3.5), the structure of the output data (Section 3.4), and the content of the utility
modules (Section 3.6). Throughout this section, user-controllable parameters will be highlighted
in green and hyperlinked to the relevant discussion in the model or configuration file sections.

3.1 Installation methods

If you are familiar with Python and want to install PTArcade on your local machine, we recom-
mend doing so by using either conda or pip. If you are not familiar with Python or want to
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install PTArcade on a cluster, we recommend using a docker or a singularity container. In the
following, we will discuss all these possible installation methods.

Conda installation recommended

The easiest way of installing PTArcade is via the Python package manager conda. We are
in the process of submitting PTArcade to the conda forge-channel, and soon you will be able
to install PTArcade as a conda package (refer to the "Installation section" of the PTArcade
documentation web page for updates on this). In the meantime, you can install PTArcade using
conda by downloading this environment file, and typing in a terminal

1 conda env create -f ptarcade.yml

This will install PTArcade and all the required dependencies in a conda environment named
ptarcade, and download the PTA data from the NANOGrav [18] and IPTA collaboration [19].
If you do not have conda installed on your machine, you should follow the instructions at this
link.

PyPI installation

PTArcade is also released as a PyPI package and can be installed usingpip. However, the pip
installation requires that non-Python dependencies are installed separately on your machine
(or in a virtual environment). These dependencies are tempo2, SuiteSparse, and an MPI
implementation. You can install these packages by typing the following in a terminal

• tempo2

1 curl -sSL https://raw.githubusercontent.com/vallis/libstempo/master/
install_tempo2.sh | sh

• suite-sparse

1 # on mac
2 brew install suite-sparse
3
4 # on debian
5 sudo apt install libsuitesparse-dev

• MPI

1 # on mac
2 brew install open-mpi
3
4 # on debian
5 sudo apt install libopenmpi-dev openmpi-bin

Once you have installed these dependencies, you can install PTArcade from a terminal by typing
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1 pip install ptarcade

This will install all necessary Python dependencies and download the PTA data from the
NANOGrav and IPTA collaboration.

With Docker

PTArcade is also packaged as a Docker image—including its Python and non-Python dependen-
cies. You can download the image from a terminal by typing

1 docker pull ngnewphy/ptarcade:latest

With singularity

You create a Singularity image for PTArcade by typing in your terminal

1 singularity pull ptarcade.sif docker://ngnewphy/ptarcade:latest

This will create a Singularity image and save it as ptarcade.sif in the current working directory.

3.2 Run PTArcade

If you have installed PTArcade with pip or conda, you can run PTArcade by opening a terminal
and typing5

1 ptarcade -m ./model.py

Here, the argument passed to the -m input flag is the path to a model file (in this example we
are passing a model file named model.py and located in the current directory). In addition to
a model file, other two optional arguments can be passed when running PTArcade:

• A configuration file can be passed via the input flag -c. Configuration files allow the user
to control several aspect of the run, including the PTA dataset used, the number of MC
trials, etc. More details on configuration files can be found in Section 3.5.

• A string that will be appended to the MC chain folder. This can be useful if you are
running multiple instances of PTArcade for the same model (which can help you to get
faster convergence) and you want to use the same output directory for all of them. By
default, the chains will be saved in ./chains/np_model/chain_0. Each of the three
elements of this path can be controlled by the user. ./chains can be changed by using
the out_dir parameter in the configuration file, np_model can be changed by using the
name parameter in the model file, and chain_0 can be changed via the argument passed
to the -n input flag of the ptarcade command. The argument passed to the -n flag
will be appended to chain_, so that passing -n 42 will result in the output directory
./chains/np_model/chain_42.

5Remember to activate the correct virtual environment if you installed PTArcade inside one!
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Run PTArcade with Docker

The commands in Section 3.2 must be slightly modified to run within a Docker container. Docker
does not mount any directories into the container by default. You must pass directories to mount
inside the container using the syntax -v <source>:<destination>. In the example below, we
assume that the only directories you will pass to the command line options of PTArcade are
accessible from your current working directory.

1 docker run -v $(pwd):$(pwd) -w $(pwd) -i -t ptarcade -m ./model.py

• -v tells Docker what to mount from the host computer and where to mount it in the
container. Here, we mount the current working directory of the host into the container
using its full path.

• -w sets the working directory of the container. In this case, it sets it to the current working
directory that was just mounted.

• -i -t keeps STDIN open and allocates a pseudo-TTY

The ptarcade in the docker run command refers to the name of the Docker image. If you
would like to run something else inside the container, then replace the PTArcade options with
the program to run. For example, to run an interactive Bash shell

1 docker run -v $(pwd):$(pwd) -w $(pwd) -i -t ptarcade bash

Run PTArcade with Singularity

As with Docker, the commands to run PTArcade must be slightly modified to run using Singular-
ity. However, the commands are much simpler because Singularity will automatically mount your
home directory inside the container. Using the ptarcade.sif file you created in Section 3.1,
type into a terminal

1 singularity run ptarcade.sif -m ./model.py

You can also pass another command to run. For example, to start a Jupyter notebook type

1 singularity run ptarcade.sif jupyter notebook

If you want an interactive shell, run the following command

1 singularity shell ptarcade.sif

3.3 Statistical tools and their implementation

In this section, we provide more details on the inner workings of PTArcade and the implemen-
tation of the user-specified input in ENTERPRISE or ceffyl.
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The PTA likelihood

Searches for stochastic or deterministic signals with PTAs utilize the pulsars’ timing residuals, δ⃗t,
which measure the discrepancy between the observed times of arrival (TOAs) of the pulses and
the TOAs predicted by the pulsar timing model [20–22]. Timing residuals receive contributions
by any effect not captured in the timing models used to derive them. This includes not only
instrumental and spin noise but also GWB signals and possible deterministic signals. Specifically,
we model the timing residuals as the sum of white noise, red noise, and small errors in the fit to
the timing-ephemeris parameter [23]:

δ⃗t = n⃗+ F a⃗+M ϵ⃗ . (2)

The first term on the right-hand side of Eq. (2), n⃗, describes the white noise that is assumed
to be left in each of the NTOA timing residuals after subtracting all known systematics. White
noise is assumed to be a zero-mean normal random variable, fully characterized by its covariance.
Following standard conventions [24, 25], PTArcade sets the parameters of this NTOA × NTOA
covariance matrix to their maximum-posterior values as recovered from single-pulsar noise studies
(see reference [26, 27] for NG12, [28] for NG15, and [29] for IPTA DR2).

The second term on the right-hand side of Eq. (2) describes time-correlated stochastic pro-
cesses, including pulsar-intrinsic red noise and GWB signals. These processes are modeled using
a Fourier basis of frequencies i/Tobs, where i indexes the harmonics of the basis and Tobs is the
timing baseline, extending from the first to the last recorded TOA in the complete PTA data
set. Since we are generally interested in processes that exhibit long timescale correlations, the
expansion is truncated after Nf,red frequency bins for the intrinsic red-noise component, and
Nf,GWB frequency bins for the GWB component. This set of Nf sine–cosine pairs evaluated
at the different observation times are contained in the Fourier design matrix, F . The Fourier
coefficients of this expansion, a⃗, are assumed to be normally-distributed random variables with
zero mean and the covariance matrix, ⟨⃗aa⃗T⟩ = ϕ, given by6

[ϕ](ak)(bj) = δij (ΓabΦi + δabφa,i) . (3)

Here, a and b index the pulsars, i and j index the frequency harmonics, and Γab is the GWB
overlap reduction function, which describes average correlations between pulsars a and b as a
function of their angular separation in the sky. For an isotropic and unpolarized GWB, Γab is
given by the Hellings & Downs correlation [30], also known as “quadrupolar” or “HD” correlation.

The first term on the right-hand side of Eq. (3) parameterizes the contribution to the timing
residuals induced by a GWB in terms of the model-dependent coefficients Φi. These coefficients
can be related to the GWB energy density per logarithmic frequency interval, dρGW/d ln f , as a
fraction of the closure density, ρc, via [31]

h2ΩGW(f) ≡ h2

ρc

dρGW(f)

d ln f
=

8π4f5

H2
0/h

2

Φ(f)

∆f
. (4)

Here, ∆f = 1/Tobs is the width of the Nf frequency bins. H0 is the present-day value of the
Hubble rate, and h is the reduced Hubble constant, H0 = h× 100 km s−1 Mpc−1. Finally, Φ(f)

6For the case of IPTA DR2 data, dispersion measure variations are also modeled as a time-correlated red noise
process.
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determines the coefficients Φi in Eq. (3), i.e., Φi = Φ(i/Tobs). PTArcade will build h2ΩGW from
any spectrum function defined by the user in the model file, and, if smbhb=True, add to it the
expected signal produced by SMBHBs. The latter is modeled as a power law of the form

h2ΩGW(f) =
2π2A2

BHB

3H2
0

(
f

year−1

)5−γBHB

year−2 . (5)

For a population of binaries whose orbital evolution is driven purely by GW emission, the ex-
pected spectral index is γBHB = 13/3 [32]. However, current observations and numerical sim-
ulations only provide weak constraints on the value of ABHB. A commonly adopted choice in
the literature is a constant value prior for γBHB, and a (somewhat arbitrary) uniform prior,
[log10A

min
BHB, log10A

max
BHB], for log10ABHB. A more sophisticated prior choice that connects the pri-

ors to the underlying SMBHB model has been proposed in [12]. The authors of this work chose a
2D Gaussian prior for the SMBHB parameters, which was fitted to the distribution of ABHB and
γBHB derived by performing a power-law fit to the SMBHB populations simulated in [11]. These
Gaussian priors are available in PTArcade and can be used by setting bhb_th_prior=True in
the configuration file.

The last term in Eq. (3) models pulsar-intrinsic red noise in terms of the coefficients φa,i,
where

φa(f) =
A2

a

12π2

1

Tobs

(
f

year−1

)−γa

year3 (6)

and φa,i = φa(i/Tobs) for all Nf frequencies. The priors (one per pulsar) for the amplitudes of
the intrinsic red-noise processes are taken to be log-uniform in the range [−20,−11], while the
priors for the spectral indices are taken to be uniform in the range [0, 7].

Finally, M ϵ⃗ accounts for deviations from the initial best-fit values of the m timing model
parameters. The design matrix, M , is an NTOA × m matrix containing the partial derivatives
of the TOAs with respect to each timing-ephemeris parameter evaluated at the initial best-fit
value. ϵ⃗ is a vector containing the linear offset from these best-fit parameters.

Since we are not interested in the specific realization of the noise but only in its statistical
properties, we can analytically marginalize over all the possible noise realizations, i.e., integrate
over all the possible values of a⃗ and ϵ⃗. We are then left with a marginalized likelihood that
depends only on the (unknown) parameters describing the red-noise covariance matrix. We col-
lectively denote these parameters with θ⃗, which includes Aa, γa, as well as any other parameters
describing the user-specified signal. The likelihood reads [33, 34]:

p(δ⃗t|θ⃗) =
exp

(
−1

2 δ⃗t
T
C−1δ⃗t

)
√

det(2πC)
, (7)

where C = N + TBT T . Here, N is the covariance matrix of the white noise, T = [M ,F ].
B = diag(∞,ϕ) where ∞ is a diagonal matrix of infinities, which effectively means that we
assume flat priors for the parameters in ϵ⃗. Since in our calculations, we always deal with the
inverse of B, all these infinities reduce to zeros. If the user specifies a deterministic signal via
the signal function in the model file, Eq. (7) will be modified by shifting the timing residuals
as δ⃗t → δ⃗t − h⃗, where h⃗ is an array containing the value of the signal function evaluated at
each of the TOAs.
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Evaluating the likelihood given in Eq. (7) requires inverting the covariance matrix, C. When
spatial correlations are included in the calculation (corr=True), C is a dense NTOA × NTOA
matrix, and likelihood evaluation takes O(0.2 s) [15]. When spatial correlations are ignored
(corr=False), the covariance matrix is block diagonal, and the likelihood evaluation time reduces
to O(0.01 s) [15]. However, if we are interested in analyzing a stochastic signal, we can further
improve upon this. We can follow the procedure outlined in [15] with a subsequent fit of the
stochastic-signal spectrum to the free spectrum of the PTA data, i.e., a violin plot. The free
spectrum effectively gives the posterior distribution of Φi at each sampling frequency: p(Φi|δ⃗t).
Refitting a stochastic signal to the free spectrum can be effectively accomplished by using, instead
of Eq. (7), the following PTA likelihood [15]:

p(δ⃗t|θ⃗) =
Nf,GWB∏

k=1

p(Φk|δ⃗t)
p(Φk)

∣∣∣∣∣
Φk=ΦGWB(k/Tobs; θ⃗)

. (8)

Here, p(Φk) is the prior probability of Φk adopted in the analysis used to derive the free-spectrum
p(Φk|δ⃗t), and ΦGWB(f ; θ⃗) is the GWB spectrum with θ⃗ being the parameter of the model.

Bayesian inference and MCMC sampler

All the techniques implemented in PTArcade use Bayesian inference to derive information on
the parameters of the user-specified signal from the pulsars’ timing residuals. Timing residuals
measure the discrepancy between the observed pulse times of arrival and the ones predicted by
the pulsar timing model (for more details on the timing model used in PTArcade see e.g [35]).
Specifically, given the timing residuals, δ⃗t, and a set of parameters, θ⃗, for the model that we use
to describe them, we can use Bayes’ theorem to write

p(θ⃗|δ⃗t) = p(δ⃗t|θ⃗)p(θ⃗)
p(δ⃗t)

. (9)

Here, p(θ⃗|δ⃗t) is the posterior probability distribution for the model parameters, p(δ⃗t|θ⃗) is the
PTA likelihood, p(θ⃗) is the prior probability distribution, and

Z ≡ p(δ⃗t) =

∫
dθ⃗ p(δ⃗t|θ⃗)p(θ⃗) (10)

is the marginalized likelihood or evidence. We want to derive the posterior distribution, as it
encodes the probability distribution for the model parameters (which include the parameters
of the user-specified signal) given the observed data. If mode="enterprise", PTArcade will
use the PTA likelihood given in Eq. (7) and implement it using ENTERPRISE [13] and ENTER-
PRISE_EXTENSIONS [14]. If mode="ceffyl", PTArcade will use the PTA likelihood given in
Eq. (8) and implement it with ceffyl [15].

While, in principle, the likelihood in Eq. (7) is all we need to derive the (with respect to the
noise and DM parameters) marginalized posteriors for the user-specified parameters. However,
this is computationally expensive given the large dimensionality of the typical parameter space.
Therefore, these integrals are performed by using Monte Carlo sampling. Specifically, PTArcade
uses the Markov chain Monte Carlo (MCMC) tools implemented in the PTMCMCSampler pack-
age [36] to sample Nsam parameter points from the posterior distribution.
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Model comparison

PTArcade can also be used to perform a model selection analysis between the user-specified
model, H1, and the reference model, H0, where the only source for the GWB is provided by
SMBHBs. Specifically, PTArcade can be used to derive the Bayes factor defined as

B10 =
Z1

Z0
=

p(δ⃗t|H1)

p(δ⃗t|H0)
. (11)

To compute the Bayes factor between the two models, PTArcade uses product space methods [37–
39]. Correspondingly, if mod_sel=True in the configuration file, a model indexing variable con-
trolling which model likelihood is active at each MCMC iteration will be sampled along with
the parameters of the competing models. Then, the Bayes factor between models can be derived
by taking the ratio of samples in each bin of the model indexing variable. The uncertainty on
the Bayes factors obtained in this way can be derived by using statistical bootstrapping [40].
When bootstrapping, new sets of Monte Carlo draws are created by resampling the original set
of draws. We can then obtain a distribution for the Bayes factors from these independent re-
alizations of the sampling procedure and compute the mean and the standard deviation of this
distribution that we use to estimate the Bayes factor and its uncertainty. PTArcade provides
the function compute_bf in the chains_utils module to compute Bayes factors. This function
can either compute the Bayes factor directly from the chain, as described below (11), or use the
bootstrapping method.

3.4 Output details

The output generated by PTArcade matches that produced by ENTERPRISE, and it includes,
beyond the MC chains, several files that summarize valuable information on the run and the MC
sampler. By default, the structure of the output is the following:

./chains/
np_model/

chain_0/
chain_1.txt
pars.txt
priors.txt
. . .

By default, the root directory for the output material is ./chains. The user can change this
using the out_dir parameter in the configuration file. Inside this root directory, the results of
the current run are saved in a folder that, by default, is called np_model. The user can change
the name of this folder via the name parameter in the model file. Finally, inside this folder,
there will be one (or more, depending on how many chains you ran for this model) folder named
chain_0. In case you want to run multiple chains for the same model, it can be useful to store
all your results in the same folder, as discussed in Section 3.2. You can do this by changing the
number appended to the chain_ folder via the -n input flag when running PTArcade. For our
purposes here, the most important files produced by PTArcade are:

• pars.txt
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This file contains the names of the model parameters. The order in which the parame-
ters appear in this file will also dictate the order in which the parameters appear in the
chain_1.txt file.

When running with mode="ceffyl", the pars.txt file for the example model discussed
in Section 2 will read as follows:

1 log_A_star
2 log_f_star

When running with mode="enterprise", in addition to the user-specified parameters,
pars.txt will also include intrinsic red noise parameters (two per pulsar) and, in the case
of the IPTA dataset, DM parameters.

• chain_1.txt

This file contains the MC chains. It is formatted such that each line represents an MC
sample, and each column corresponds to a parameter of our model. The ordering of the
parameters, i.e., which column is associated with each parameter, can be read out from
the pars.txt file. In addition to the model parameters, the last four columns of each row
report the values of the posterior, the likelihood, the acceptance rate, and an indicator
variable for parallel tempering, which does not matter in our case since PTArcade does not
use parallel tempering at the moment. For the example model discussed in Section 2, the
output of a run in Ceffyl-mode will be:

1 -7.893 -7.353 -15.606 4.715 -64.582 -60.960 0.507 1.0
2 -8.187 -7.509 -15.606 4.675 -65.498 -61.872 0.507 1.0
3 -8.088 -7.638 -15.741 4.674 -65.598 -61.943 0.507 1.0

Here, the first two columns give the values of log10A∗ and log10(f∗/Hz) and the remaining
columns give the value of the posterior, the likelihood, the acceptance rate, and the parallel-
tempering indicator. Note that, when running with mode="enterprise", in addition to
the user-specified parameters, the chains will also include intrinsic red noise parameters
(two per pulsar) and, in the case of the IPTA dataset, DM parameters.

• priors_1.txt

The prior file is similar to the priors.txt file, but it includes their prior distributions in
addition to the parameter names. Here is an example of our test model when running in
Ceffyl mode.

1 log_A_star:Uniform(pmin=-14, pmax=-6)
2 log_f_star:Uniform(pmin=-10, pmax=-6)

3.5 User inputs

When running PTArcade, the user can provide two input files:
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– Model file · Required – This file, passed via the -m input flag, contains the definition of the
new-physics signal. In the case of stochastic signals, this boils down to defining the GWB
energy density per logarithmic frequency interval. In the case of deterministic signals, the
user should define the time series of induced timing delays, h(t), in units of seconds.

– Configuration file · Optional – In addition to the model file, the user can pass a configu-
ration file via the input flag -c. The configuration file is a simple Python file that allows
the user to adjust several run parameters.

In this section, we will discuss in detail the structure and the functionalities of these two input
files.

Model file

The model file is a simple Python file that allows the user to define their model. At minimum,
the model file needs to contain the two following information:

• parameters

This variable needs to be assigned to a dictionary. The keys of this dictionary must be strings, which
will be used as names for the model parameters. The values of this dictionary are ENTERPRISE
Parameter objects. The user can create these objects via the prior helper function defined in
the models_utils module. The first argument passed to the prior function needs to be a string
identifying the prior type. The following arguments are the parameters of the selected prior type.
Several of the most common priors are already implemented in PTArcade. They are listed in
Table 1 with their associated parameters and functional form. By default, the parameters are
assumed to be common across pulsars. If you want to specify a pulsar-dependent parameter, you
can pass common=False as a keyword argument to the prior function.

For stochastic signals

• spectrum

Stochastic signals are defined via the spec-
trum function. The first parameter of this
function should be named f, and it is sup-
posed to be a NumPy array containing the
frequencies (in units of Hz) at which to eval-
uate the spectrum. The names of the remain-
ing parameters should match the keys of the
parameters dictionary. The spectrum func-
tion should return a NumPy array containing
the value of h2ΩGW at each of the frequencies
in f.

For deterministic signals7

• signal:

Deterministic signals are defined via the sig-
nal function. The first parameter of this
function should be named toas and it is sup-
posed to be a NumPy array containing the
times of arrival (TOAs) (in units of seconds)
at which to evaluate the deterministic sig-
nal. The name of the remaining parameters
should match the keys of the parameters
dictionary. The signal function should re-
turn a NumPy array with the same dimen-
sions as toas containing the value of the in-
duced shift for each TOA in toas.

The model file can also contain additional (optional) variables that control the new-physics
signal in more detail. To be specific, you can control the following:

7Note that mode="enterprise" is required to analyze deterministic signals.
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Prior Functional form Identifier Parameters

Uniform (pmax− pmin)−1 "Uniform" (pmin, pmax)

Normal
(2π)−size/2√
det(sigma)

exp
(
− 1

2 (x− mu)Tcov−1(x− mu)
)

"Normal" (mu, cov, size)

Exponential if: pmin ≤ x ≤ pmax : ln(10) · 10x

10pmax−10pmin ; else: 0 "LinearExp" (pmin, pmax)

Constant δ(x− val) "Constant" (val)

Gamma 1
scale·Γ(a)

(
x−loc
scale

)a−1
exp

(
−x−loc

scale

)
"Gamma" (a, loc, scale)

Table 1: Common prior functions already implemented in PTArcade. The second column gives
the expression for the distribution, the third column gives the string that needs to be passed
to the prior function to select the corresponding prior, and the last column gives the prior
parameters that need to be passed to the prior function in addition to the string identifier.

• name:

Default: "np_model" – This variable can be assigned to a string to specify the model name. Its
value determines the name of the output directory associated with the model file.

• smbhb:

Default: False – If set to True, the expected signal from SMBHBs will be added to the user-
specified signal.

The model files used in the NANOGrav 15-year search for new-physics [12] can be found here.

Configuration file

The configuration file is a Python file that allows the user to adjust several run parameters. The
parameters that can be set in the configuration file are:

• pta_data

Default: "NG15" – This variable needs to be assigned to a string specifying the PTA dataset
to be used in the analysis. The datasets currently implemented in PTArcade are NANOGrav
15-year (pta_data="NG15") [35], NANOGrav 12.5-year (pta_data="NG12") [26], and IPTA DR2
(pta_data="IPTA2") [29].

• N_samples:

Default: 2e6 – This variable can be assigned to an integer, which specifies the number of points
generated by the Monte Carlo sampler. Note that the MC chains are automatically thinned by a
factor of 10 to reduce the auto-correlation length. Therefore, the number of MC samples that will
be saved is given by N_samples/10.

• mode:
Default: ceffyl – PTArcade can be run in two modes:
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– mode="enterprise": In this configuration, the code will analyze the PTA dataset at the
level of the timing residuals and use the PTA likelihood given in Eq. (7).

– mode="ceffyl": In this configuration, the code will analyze the PTA dataset at the level of
the Bayesian periodograms and use the PTA likelihood given in Eq. (8).

• out_dir:

Default: "./chains" – This variable can be assigned to a string to specify the output directory.

• resume:

Default: "./chains" If resume=True, the code will look for MCMC chains in the output directory
and, if it finds any, it will restart sampling from those instead of starting from scratch. If resume =
True, but there are no existing chains in the output directory, the sampler will start from scratch.

• mod_sel:

Default: False – If mod_sel=True, a model-indexing variable controlling which model likelihood
is active at each MCMC iteration will be sampled along with the parameters of the competing
model. This setup will then allow one to derive the Bayes factor between models by simply taking
the ratio of samples spent in each bin of the model-indexing variable (see Section 3.6 for more
details on this PTArcade feature). Notice that, at the moment, model selection is only available if
mode="enterprise".

• corr:

Default: "False" – If set to True, the overlap reduction function for the common red noise term
in Eq. (3) will be set to the HD correlation; if set to False, the code will ignore cross-correlations
and set Γab = δab.

• red_components

Default: 30 – This variable can be assigned to an integer specifying the number of frequency
components that model the intrinsic red noise.

• gwb_components

Default: 14 – This variable can be assigned to an integer specifying the number of frequency
components that model the common red noise produced by a GWB.

• bhb_th_prior:

Default: True – If bhb_th_prior=True, the prior for the SMBHB signal parameters will be
chosen to reflect predictions from astrophysical models. This is only relevant if you have selected
smbhb=True in the model file or mod_sel=True in the configuration file.

• A_bhb_logmin

Default: -18 – This variable can be assigned to a floating point or integer number to set the
lower bound on the log-uniform prior of the SMBHB-signal amplitude. This is only relevant if
bhb_th_prior=False and you have selected smbhb=True in the model file or mod_sel=True in
the configuration file.
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• A_bhb_logmax

Default: -14 – This variable can be assigned to a floating point or integer number to set the
upper bound on the log-uniform prior of the SMBHB-signal amplitude. This is only relevant if
bhb_th_prior=False and you have selected smbhb=True in the model file or mod_sel=True in
the configuration file.

• gamma_bhb

Default: None – This variable can be assigned to a floating point or integer number to set the
value of γBHB. If gamma_bhb=None, a uniform prior between 0 and 7 will be used instead. This
is only relevant if bhb_th_prior=False and you have selected smbhb=True in the model file or
mod_sel=True in the configuration file.

If the user passes no configuration file to the -c flag, the default configuration file is the
following:

Default configuration file

1 pta_data = ’NG15’
2
3 mode = ’ceffyl’
4
5 mod_sel = False
6
7 out_dir = ’./chains/’
8 resume = False
9 N_samples = int(2e6)
10
11 # intrinsic red noises parameters
12 red_components = 14
13
14 # bhbh signal parameters
15 corr = False
16 gwb_components = 14
17 bhb_th_prior = True

3.6 Utilities

PTArcade comes with several handy utility modules, which are designed to assist the user in
building model files, evaluating MCMC chains, and creating posterior plots.

– ptarcade.models_utils – This module aims at facilitating the creation of model files.
It contains several useful constants expressed in natural units, a parametrization of the
effective number of relativistic degrees of freedom contributing to the Universe’s energy
and entropy densities, gρ and gs, and a function to define spectra for stochastic signals
from tabulated data.
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– ptarcade.chains_utils – This module serves two primary functions: Loading chains
and model parameters of a PTArcade run and computing the Bayes factor and its error for
a PTArcade run comparing, e.g., a GWB of new-physics origin to a GWB produced solely
from SMBHBs.

– ptarcade.plot_utils – This module contains functions to produce trace plots of MCMC
chains to allow for visualization of their convergence. Moreover, it can be utilized to plot
the 1D- and 2D-posteriors for all parameters of interest.

Model Utilities

• The constants and conversion factors reported in Table 2 can be loaded from models_utils.
Unless otherwise specified, they are all expressed in natural units and their values are taken
from [41].

• models_utils.g_rho & models_utils.g_s

These functions return the effective number of relativistic degrees of freedom contributing to the
Universe’s energy and entropy density at a given temperature T (in GeV) or as a function of
frequency f (in Hz). In the latter case, they return the value of these functions at the time of the
cosmological evolution when GWs with comoving wavenumber k = 2πa0f re-entered the horizon.
Here, a0 denotes the value of the cosmological scale factor today, which we set to a0 = 1. The
functions are derived by interpolating the tabulated data in [42]. In the following example, we
evaluate gρ(T ) and gs(f) for T = 1GeV and f =

(
10−9 Hz, 10−8 Hz, 10−7 Hz

)
.

1 import numpy as np
2 from ptarcade.models_utils import g_rho, g_s
3
4 T = 1. #(in GeV)
5 g_1GeV = g_rho(T)
6
7 f = np.array([1e-9, 1e-8, 1e-7]) #(in Hz)
8 g_sf = g_s(f, is_freq=True)

Note, that g_rho and g_s accept any array-like input in the first argument and will return an
array-like object with the same dimensions. The second argument is a bool. By default, this
boolean is set to False, indicating that the first argument is a temperature (in units of GeV). If it
is set to True, the first argument is assumed to be a frequency (in units of Hz).

• model_utils.spec_importer

This function allows to define the spectrum of a stochastic signal by using tabulated data. This is
useful if the spectrum you are interested in is only evaluated numerically without a closed analytical
expression for the stochastic signal amplitude h2ΩGW. spec_importer expects the path to an
HDF5 file containing the spectrum as a function of frequency and eventual other parameters. It
returns a callable function of the frequency f and any other relevant parameters. In the example
below, we interpolate a spectrum parametrized by frequency and one additional parameter p.

1 import os
2 from ptarcade.models_utils import spec_importer
3
4 path = "/This/Is/A/Path/to/the/HDF5/File/spectrum.h5"
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5
6 log_spectrum = spec_importer(path)
7
8 def spectrum(f, p):
9 return 10**log_spectrum(np.log10(f), p = p)

In this example, the HDF5 file was generated from a plain-text file with the following formatting:

1 p f spectrum
2 -1 -10.000000 -19.000000
3 -1 -9.950000 -18.900000
4 -1 -9.900000 -18.800000
5 ...
6 -0.9 -10.000000 -19.100000
7 -0.9 -9.950000 -19.000000
8 -0.9 -9.900000 -18.900000
9 ...

PTArcade provides fast_interpolate.reformat to convert such plain-text files to an HDF5 file
that fast_interpolate.interp will use to quickly interpolate tabulated data. The plain-text
files must meet the following requirements:

– The file has a header with at least spectrum and f present

– Each column is evenly spaced

– The f column must be last if spectrum is not. If spectrum is last, f must be the second-
to-last column.

fast_interpolate.reformat will convert the supplied plain-text file to an HDF5 file at a specified
destination with the the following HDF5 datasets:

– parameter_names - this dataset contains the parameter names from the header other than
spectrum

– spectrum - this dataset contains the spectrum data from the original file

– There will be one additional dataset for each parameter other than spectrum. These datasets
will contain two values: the minimum value the parameter can take and the step size. The
example file above would generate such datasets for f and p. Assuming the HDF5 file has
been read into memory as data, then you would have the following:

1 print(data["p"])
2 [-1.0, 0.1]
3
4 print(data["f"]
5 [-10.0, 0.05]

Chain Utilities

• chains_utils.import_chains

This function can be used to load chains and model parameters of a PTArcade run. It expects only
one argument, namely the path to a folder containing chains generated using PTArcade (for the de-
fault output folder structure discussed in Section 3.4, the user should pass the path to the np_model
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folder). The function loads all chains within the specified folder, merges them, and returns the
resulting merged chain as a NumPy array together with a dictionary containing the parameters of
the run and their priors. By default, import_chains removes 25% of each chain before merging.
You can change the amount of burn-in by using the burn_frac argument, specifying the fraction
of each chain that is to be discarded. Also, note that by default, import_chains only loads the
part of the chains corresponding to user-specified parameters, the likelihood, the posterior, and the
hypermodel index. If you also want to load red noise and eventual DM parameters, you can do so
by setting the flag quick_import=False.

• chains_utils.compute_bf

This function can be used to compute Bayes factors from runs for which mod_sel=True is set in
the configuration file (see Section 3.5). The expected inputs are a chain and a parameter file in the
output format of import_chains. The function returns an estimate for the Bayes factor comparing
the user-specified signal against the SMBHB signal and the associated error. By default, the Bayes
factor is calculated by dividing the number of points in the chain that fall in the hypermodel bin of
the user-specified signal by the number of points falling in the bin of the reference SMBHB model.
For a more precise estimate of the error on the Bayes factor, you can set bootstrap=True. In this
case, the Bayes factor and its standard deviation will be derived by using bootstrapping methods.

1 import ptarcade.chains_utils as utils
2
3 params, chain = utils.import_chains("path_to_chains_folder")
4
5 bf, bf_err = utils.compute_bf(chain, params)

Plot Utilities

• plot_utils.plot_chains

This function produces trace plots of chains from PTArcade runs. It expects a chain and the
associated parameter dictionary in the output format of import_chains. For example, Figure 2
is produced from a chain stored in ’./chains/np_model/’. We can load the chain using im-
port_chains and then pass the merged chains and parameters to plot_utils.plot_chains.

1 from ptarcade import chains_utils as c_utils
2 from ptarcade import plot_utils as p_utils
3
4 params, chain = c_utils.import_chains(’./chains/np_model/’)
5
6 p_utils.plot_chains(chain, params)

Customization of the trace plots is possible using the optional arguments params_name and la-
bel_size. You can produce trace plots for a selected set of parameters or choose the desired format
for the y-axis labels using params_name. This argument expects a dictionary containing the names
of desired parameters as keys and the desired labels as values. By default, params_name=None,
in which case all pulsar-common parameters and all MCMC parameters are plotted without any
additional formatting. The label_size argument expects an int, by default label_size=13,
specifying the font size for the axis and tick labels.

• plot_utils.plot_posteriors
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Figure 2: Trace plots for the default settings of plot_chains for a model with two pulsar-common
parameters, "log_A_star" and "log_f_star", and a merged chain of length ∼ 1.7× 106 after thinning
and removal of the cut-off.

This function produces posterior plots from MCMC chains, see for example Figure 1. These plots
are created using the GetDist package [17]. This package provides kernel density estimation of
the marginalized 1D- and 2D-posterior densities obtained from MC sampling to produce smooth
posterior plots. Note that for plot_posteriors, both the arguments chains and params are
expected to be a list of chains and a list of parameter dictionaries, even if these lists contain
only one item. You can superimpose the results of several runs by adding additional chains and
parameter dictionaries to these lists. This is useful to compare a run set up with smbhb=True to
a run without the SMBHB contribution. Several handy optional arguments for this function allow
for user customization of the posterior plots. Here, we highlight the most useful features. For a
more comprehensive list, please refer to the "Reference section" of PTArcade documentation web
page.

– As for plot_chains, you can specify the parameters to be plotted. This is done by passing
a list of lists containing the desired parameter names for each model to par_to_plot. By
default, all pulsar-common parameters are plotted.

– You can adjust axis labels by passing a list of lists containing the desired formats for each
parameter to par_to_plot. By default, the labels are the parameter names in params.

– When analyzing a run with mod_sel=True, you can specify which hypermodel you want to
plot using the model_id argument. It expects a list of zeros and ones, which select the desired
hypermodel for each chain in chains. The default value is None, in which case hypermodel
zero is plotted for every chain.

– You can choose the confidence levels at which the highest posterior density intervals (HPI)
are computed and shown in the 1D-posterior plots. The argument hpi_levels expects a
list of floats between zero and one corresponding to the desired confidence levels. The
default, hpi_levels=[0.68, 0.95], corresponds to 68% and 95% confidence levels. Note
that confidence levels are specified for every chain in chains, not on a chain-by-chain basis.

– You can choose the level at which to compute and plot the K-ratio bound using the k_ratio
argument. This argument expects a list of float’s between zero and one corresponding to the
desired K-ratio levels which were introduced in [12]. Each element in the list is associated with
a chain in chains. The default value is None, in which case the K-ratio is not plotted. The
K-ratio depends on the Bayes factor for the selected chain, and is, therefore, only sensible for
PTArcade runs with model selection. For this feature to function properly, you need to pass a
list of Bayes factors to the bf argument, where each element in bf was previously determined
from the corresponding chain in chains. We keep the Bayes factors as an external input
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since computing the Bayes factor for a chain can be both time intensive and computationally
expensive.

– The 2D-posterior plots generated by plot_posteriors are shown as contour plots. You can
adjust the confidence levels at which these contours are drawn using the levels argument. It
expects a list of floats between zero and one, corresponding to the desired confidence level.
The default value is None, in which case the contours correspond to 68% and 95% confidence
level.

– By setting the verbose argument to True, you can print a statistical summary for the chains
in chains. This contains information on the confidence intervals, the K-ratio, the highest
posterior density points, and the Bayes estimator for the 1D-marginalized posterior distribu-
tions of every parameter specified to plot_posteriors. The K-ratio and HPI intervals are
determined based on the values passed to k_ratio and hpi_values.
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Attribute Description

G Newton’s constant (GeV−2)
TYPE: np.float64

M_pl Reduced Planck mass (GeV)
TYPE: np.float64

T_0 Present-day temperature of the Universe (GeV)
TYPE: np.float64

z_eq Redshift of matter-radiation equality
TYPE: int

T_eq Temperature of matter-radiation equality (GeV)
TYPE: np.float64

h Reduced Hubble parameter
TYPE: float

H_0 Hubble constant (GeV)
TYPE: np.float64

H_0_Hz Hubble constant (Hz)
TYPE: np.float64

omega_v Present-day dark-energy density [43]
TYPE: float

omega_m Present-day matter density [43]
TYPE: float

omega_r Present-day radiation density [43]
TYPE: float

A_s Amplitude of the primordial scalar power-spectrum [43]
TYPE: np.float64

f_cmb CMB pivot-scale (Hz) [43]
TYPE: float

gev_to_hz Conversion from GeV to Hz
TYPE: np.float64

g_rho_0 Present-day number of relativistic degrees of freedom
TYPE: np.float64

g_rho_0 Present-day number of entropic relativistic degrees of freedom
TYPE: np.float64

Table 2: Constants and conversion factors included in the models_utils module.

23



References

[1] B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. Lett. 116, 061102 (2016),
arXiv:1602.03837 [gr-qc] .

[2] M. Maggiore, Phys. Rept. 331, 283 (2000), arXiv:gr-qc/9909001 .

[3] C. Caprini and D. G. Figueroa, Class. Quant. Grav. 35, 163001 (2018), arXiv:1801.04268
[astro-ph.CO] .

[4] N. Christensen, Rept. Prog. Phys. 82, 016903 (2019), arXiv:1811.08797 [gr-qc] .

[5] G. Agazie et al. (NANOGrav), arXiv (2023), submitted to arXiv.

[6] M. Rajagopal and R. W. Romani, ApJ 446, 543 (1995), arXiv:astro-ph/9412038 [astro-ph]
.

[7] A. H. Jaffe and D. C. Backer, Astrophys. J. 583, 616 (2003), arXiv:astro-ph/0210148 .

[8] J. S. B. Wyithe and A. Loeb, ApJ 590, 691 (2003), arXiv:astro-ph/0211556 [astro-ph] .

[9] A. Sesana, F. Haardt, P. Madau, and M. Volonteri, Astrophys. J. 611, 623 (2004),
arXiv:astro-ph/0401543 .

[10] S. Burke-Spolaor et al., Astron. Astrophys. Rev. 27, 5 (2019), arXiv:1811.08826 [astro-
ph.HE] .

[11] G. Agazie et al. (NANOGrav), arXiv (2023), in preparation.

[12] A. Afzal et al. (NANOGrav), Astrophys. J. Lett. (2023), 10.3847/2041-8213/acdc91.

[13] J. A. Ellis, M. Vallisneri, S. R. Taylor, and P. T. Baker, “ENTERPRISE: Enhanced Numer-
ical Toolbox Enabling a Robust PulsaR Inference SuitE,” Astrophysics Source Code Library,
record ascl:1912.015 (2019), ascl:1912.015 .

[14] S. R. Taylor, P. T. Baker, J. S. Hazboun, J. Simon, and S. J. Vigeland, “enter-
prise_extensions,” (2021), v2.3.3.

[15] W. G. Lamb, S. R. Taylor, and R. van Haasteren, “The need for speed: Rapid refitting
techniques for bayesian spectral characterization of the gravitational wave background using
ptas,” (2023), arXiv:2303.15442 [astro-ph.HE] .

[16] D. Foreman-Mackey, The Journal of Open Source Software 1, 24 (2016).

[17] A. Lewis, (2019), arXiv:1910.13970 [astro-ph.IM] .

[18] M. A. McLaughlin, Class. Quant. Grav. 30, 224008 (2013), arXiv:1310.0758 [astro-ph.IM] .

[19] G. Hobbs et al., Classical and Quantum Gravity 27, 084013 (2010).

[20] H. Ramani, T. Trickle, and K. M. Zurek, JCAP 12, 033 (2020), arXiv:2005.03030 [astro-
ph.CO] .

24

http://dx.doi.org/10.1103/PhysRevLett.116.061102
http://arxiv.org/abs/1602.03837
http://dx.doi.org/10.1016/S0370-1573(99)00102-7
http://arxiv.org/abs/gr-qc/9909001
http://dx.doi.org/10.1088/1361-6382/aac608
http://arxiv.org/abs/1801.04268
http://arxiv.org/abs/1801.04268
http://dx.doi.org/10.1088/1361-6633/aae6b5
http://arxiv.org/abs/1811.08797
http://dx.doi.org/10.1086/175813
http://arxiv.org/abs/astro-ph/9412038
http://dx.doi.org/10.1086/345443
http://arxiv.org/abs/astro-ph/0210148
http://dx.doi.org/10.1086/375187
http://arxiv.org/abs/astro-ph/0211556
http://dx.doi.org/ 10.1086/422185
http://arxiv.org/abs/astro-ph/0401543
http://dx.doi.org/10.1007/s00159-019-0115-7
http://arxiv.org/abs/1811.08826
http://arxiv.org/abs/1811.08826
http://dx.doi.org/10.3847/2041-8213/acdc91
http://arxiv.org/abs/1912.015
https://github.com/nanograv/enterprise_extensions
https://github.com/nanograv/enterprise_extensions
http://arxiv.org/abs/2303.15442
http://dx.doi.org/10.21105/joss.00024
https://getdist.readthedocs.io
http://arxiv.org/abs/1910.13970
http://dx.doi.org/10.1088/0264-9381/30/22/224008
http://arxiv.org/abs/1310.0758
http://dx.doi.org/10.1088/0264-9381/27/8/084013
http://dx.doi.org/10.1088/1475-7516/2020/12/033
http://arxiv.org/abs/2005.03030
http://arxiv.org/abs/2005.03030


[21] V. S. H. Lee, A. Mitridate, T. Trickle, and K. M. Zurek, JHEP 06, 028 (2021),
arXiv:2012.09857 [astro-ph.CO] .

[22] V. S. H. Lee, S. R. Taylor, T. Trickle, and K. M. Zurek, JCAP 08, 025 (2021),
arXiv:2104.05717 [astro-ph.CO] .

[23] M. Vallisneri et al. (NANOGrav), ApJ (2020), 10.3847/1538-4357/ab7b67,
arXiv:2001.00595 [astro-ph.HE] .

[24] Z. Arzoumanian et al. (NANOGrav), Astrophys. J. 821, 13 (2016), arXiv:1508.03024 [astro-
ph.GA] .

[25] Z. Arzoumanian et al. (NANOGRAV), Astrophys. J. 859, 47 (2018), arXiv:1801.02617
[astro-ph.HE] .

[26] M. F. Alam et al. (NANOGrav), Astrophys. J. Suppl. 252, 4 (2021), arXiv:2005.06490
[astro-ph.HE] .

[27] Z. Arzoumanian et al., Astrophys. J. Lett. 905, L34 (2020).

[28] G. Agazie et al. (NANOGrav), arXiv (2023), submitted to arXiv.

[29] J. Antoniadis et al., Mon. Not. Roy. Astron. Soc. 510, 4873 (2022), arXiv:2201.03980 [astro-
ph.HE] .

[30] R. W. Hellings and G. S. Downs, Astrophys. J. Lett. 265, L39 (1983).

[31] B. Allen and J. D. Romano, Phys. Rev. D 59, 102001 (1999), arXiv:gr-qc/9710117 .

[32] E. S. Phinney, arXiv e-prints , astro-ph/0108028 (2001), arXiv:astro-ph/0108028 [astro-ph]
.

[33] R. van Haasteren and Y. Levin, Monthly Notices of the Royal Astronomical Society 428,
1147 (2012).

[34] L. Lentati, P. Alexander, M. P. Hobson, S. Taylor, J. Gair, S. T. Balan, and R. van
Haasteren, Physical Review D 87 (2013), 10.1103/physrevd.87.104021.

[35] G. Agazie et al. (NANOGrav), Astrophys. J. Lett. (2023), 10.3847/2041-8213/acda9a.

[36] J. Ellis and R. van Haasteren, “jellis18/ptmcmcsampler: Official release,” (2017).

[37] B. P. Carlin and S. Chib, Journal of the Royal Statistical Society. Series B (Methodological)
57, 473 (1995).

[38] S. J. Godsill, Journal of Computational and Graphical Statistics 10, 230 (2001).

[39] S. Hee, W. J. Handley, M. P. Hobson, and A. N. Lasenby, Monthly Notices of the
Royal Astronomical Society 455, 2461 (2015), https://academic.oup.com/mnras/article-
pdf/455/3/2461/9377568/stv2217.pdf .

[40] B. Efron and R. Tibshirani, Statist. Sci. 57, 54 (1986).

25

http://dx.doi.org/10.1007/JHEP06(2021)028
http://arxiv.org/abs/2012.09857
http://dx.doi.org/10.1088/1475-7516/2021/08/025
http://arxiv.org/abs/2104.05717
http://dx.doi.org/10.3847/1538-4357/ab7b67
http://arxiv.org/abs/2001.00595
http://dx.doi.org/10.3847/0004-637X/821/1/13
http://arxiv.org/abs/1508.03024
http://arxiv.org/abs/1508.03024
http://dx.doi.org/10.3847/1538-4357/aabd3b
http://arxiv.org/abs/1801.02617
http://arxiv.org/abs/1801.02617
http://dx.doi.org/10.3847/1538-4365/abc6a0
http://arxiv.org/abs/2005.06490
http://arxiv.org/abs/2005.06490
http://dx.doi.org/10.3847/2041-8213/abd401
http://dx.doi.org/10.1093/mnras/stab3418
http://arxiv.org/abs/2201.03980
http://arxiv.org/abs/2201.03980
http://dx.doi.org/10.1086/183954
http://dx.doi.org/10.1103/PhysRevD.59.102001
http://arxiv.org/abs/gr-qc/9710117
http://dx.doi.org/10.48550/arXiv.astro-ph/0108028
http://arxiv.org/abs/astro-ph/0108028
http://dx.doi.org/10.1093/mnras/sts097
http://dx.doi.org/10.1093/mnras/sts097
http://dx.doi.org/ 10.1103/physrevd.87.104021
http://dx.doi.org/10.3847/2041-8213/acda9a
http://dx.doi.org/10.5281/zenodo.1037579
http://www.jstor.org/stable/2346151
http://www.jstor.org/stable/2346151
http://www.jstor.org/stable/1391010
http://dx.doi.org/10.1093/mnras/stv2217
http://dx.doi.org/10.1093/mnras/stv2217
http://arxiv.org/abs/https://academic.oup.com/mnras/article-pdf/455/3/2461/9377568/stv2217.pdf
http://arxiv.org/abs/https://academic.oup.com/mnras/article-pdf/455/3/2461/9377568/stv2217.pdf
http://dx.doi.org/10.1214/ss/1177013815


[41] P. A. Zyla et al. (Particle Data Group), PTEP 2020, 083C01 (2020).

[42] K. Saikawa and S. Shirai, Journal of Cosmology and Astroparticle Physics 2020, 011 (2020).

[43] N. Aghanim et al. (Planck), Astron. Astrophys. 641, A6 (2020), [Erratum: As-
tron.Astrophys. 652, C4 (2021)], arXiv:1807.06209 [astro-ph.CO] .

26

http://dx.doi.org/10.1093/ptep/ptaa104
http://dx.doi.org/10.1088/1475-7516/2020/08/011
http://dx.doi.org/10.1051/0004-6361/201833910
http://arxiv.org/abs/1807.06209

