Search for stealth supersymmetry in final states with two photons, jets, and low missing transverse momentum in proton-proton collisions at $\sqrt{s} = 13$ TeV

The CMS Collaboration*

Abstract

The results of a search for stealth supersymmetry in final states with two photons and jets, targeting a phase space region with low missing transverse momentum ($p_{\text{T}}^{\text{miss}}$), are reported. The study is based on a sample of proton-proton collisions at $\sqrt{s} = 13$ TeV collected by the CMS experiment, corresponding to an integrated luminosity of 138 fb$^{-1}$. As LHC results continue to constrain the parameter space of the minimal supersymmetric standard model, the low $p_{\text{T}}^{\text{miss}}$ regime is increasingly valuable to explore. To estimate the backgrounds due to standard model processes in such events, we apply corrections derived from simulation to an estimate based on a control selection in data. The results are interpreted in the context of simplified stealth supersymmetry models with gluino and squark pair production. The observed data are consistent with the standard model predictions, and gluino (squark) masses of up to 2150 (1850) GeV are excluded at the 95% confidence level.

Submitted to Physical Review D

© 2023 CERN for the benefit of the CMS Collaboration. CC-BY-4.0 license

*See Appendix A for the list of collaboration members
1 Introduction

The search for signatures of models featuring supersymmetry (SUSY) with a stable lightest SUSY particle (LSP) [1] is an important part of the physics program at the CERN LHC. Such models can solve the hierarchy problem, can allow for the unification of the gauge couplings, and can provide a candidate for dark matter. Typically, such signatures involve a significant imbalance in the momenta of detected particles in a collision, because LSPs do not interact with the material of the detector. Therefore, many searches for SUSY focus on events that feature a significant imbalance in the sum of the momenta in the transverse plane, called the missing transverse momentum \vec{p}_T^{miss}, whose magnitude is defined as p_T^{miss} [2–9].

On the other hand, there are many SUSY models that do not exhibit this signature, such as those with compressed spectra [10, 11], R-parity violation [1, 12, 13], hidden valleys [14–16], and others [17–21]. Given recent results imposing progressively higher bounds on gluino and squark masses ($m_\tilde{g}$ and $m_\tilde{q}$) in models of SUSY with high-p_T^{miss} signatures [22–27], a thorough study of such alternatives becomes important. One such alternative is the stealth scenario [28–30], in which the minimal supersymmetric standard model (MSSM) is augmented with a light hidden sector. This sector only couples weakly to the SUSY-breaking sector. Consequently, the particles in this sector are nearly mass degenerate with their SUSY partners. The simplest hidden sector consists of a single scalar boson, called a singlet S, and its corresponding SUSY fermion, called a singlino \tilde{S}. As the mass degeneracy between them is broken only through suppressed or second-order diagrams, their mass difference $\Delta m(S, \tilde{S})$ is naturally expected to be small. Previously, searches have been performed for stealth SUSY in events with top quarks and several light-flavor partons [31]. A previous study was also performed for stealth SUSY with jets, photons or leptons, and low p_T^{miss} at $\sqrt{s} = 8$ TeV [32]. In that analysis, the background model for the diphoton final state used an assumption called S_T scaling, which is described in Section 5. The present study relaxes the assumption of S_T scaling and uses simulated background samples to estimate the corrections needed to a background model derived from this assumption for a diphoton final state.

In the stealth SUSY models considered in this study, the gravitino \tilde{G} is the LSP, and is produced through the decay of the stealth sector singlinos, $\tilde{S} \rightarrow GS$. Because the mass splitting $\Delta m(S, \tilde{S})$ is small compared to the masses of S and \tilde{S}, the momentum of the LSP is suppressed by the small kinematic phase space available. As p_T^{miss} arises predominantly from the unobserved LSPs in the final state, stealth SUSY decays will lead to lower average values of p_T^{miss} than their regular SUSY counterparts. This is true even when the singlino is Lorentz boosted by initial state radiation (ISR): in a two-body decay with small mass splitting between the parent and the heavier of its daughters, the light daughter (here the LSP) acquires a small fraction of the parent’s energy. This is in contrast with a typical compressed-spectrum SUSY model in which the heavy daughter is the LSP.

Supersymmetric particles can decay through the hidden sector without violating R-parity, with an MSSM electroweakino—an MSSM partner of a standard model (SM) gauge boson—decaying to the \tilde{S} via the emission of an SM gauge boson. In this paper, we present a search for stealth SUSY signatures in final states with two photons from the decays of electroweakinos. The data used in the search correspond to an integrated luminosity of 138fb^{-1} of proton-proton (pp) collisions collected at $\sqrt{s} = 13$ TeV by the CMS experiment in 2016–2018.

We consider models with strongly produced SUSY particles, with pairs either of squarks \tilde{q} or of gluinos \tilde{g} produced in the primary interaction, as shown in Fig. 1. These colored SUSY particles decay to quarks and neutralinos $\tilde{\chi}_1^0$. Neutralinos further decay to the stealth sector via
Figure 1: Diagrams of the simplified models considered in this paper. The decay chain starts from the production of either gluino pairs (left) or squark pairs (right) and results in a final state consisting of two photons, multiple jets, and low p_T^{miss}.

the emission of photons. Each singlet S decays to two SM gluons.

The masses of \tilde{S} and S are parameters of these models, and are fixed to 100 and 90 GeV, respectively, in this study. These values imply a small mass splitting of 10 GeV, as required by the stealth mechanism, and are consistent with stealth benchmark points proposed in Ref. [28]. The gravitino \tilde{G} is taken to be massless. We consider a two-dimensional scan of models by allowing $m_{\tilde{g}}$ ($m_{\tilde{q}}$) to vary in the range $1250 < M < 2350$ GeV ($1100 < M < 2000$ GeV) in increments of 50 GeV. The neutralino mass $m_{\chi_1^0}$ is varied in changing increments in the range 150 GeV $< M < m_{\tilde{g}}$ ($m_{\tilde{q}}$) $- 100$ GeV, with more points simulated near the boundaries, where the acceptance of the analysis is often sensitive to small changes.

The final state consists of two photons, many jets, and low p_T^{miss} carried by the light and soft gravitinos. To obtain an estimate of the SM background, a hybrid approach is used, in which control samples in the data yield a first estimate, which is then adjusted using simulated samples of the major SM processes contributing to the diphoton background.

This paper is organized as follows. In Section 2, we describe the features of the CMS detector and simulated samples used in this analysis. The trigger criteria and object definitions are given in Section 3. The details of the event selection, including the definitions of the search and control regions, are given in Section 4. Section 5 discusses the method used to estimate the SM backgrounds in the search, and Section 6 describes the sources of systematic uncertainty. The results of the search, including exclusion limits, are presented in Section 7. Section 8 summarizes our findings. Tabulated results are provided in the HEPData record for this analysis [33].

2 The CMS detector and simulated samples

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. Forward calorimeters extend the pseudorapidity (η) coverage provided by the barrel and endcap detectors. Muons are detected in gas-ionization chambers embedded in the steel flux-return yoke outside the solenoid. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [34].

Monte Carlo (MC) simulation is used to obtain the potential stealth SUSY signal yield. Each of
the simplified models introduced in Section 1 is generated with MADGRAPH5_aMC@NLO 2.4.3 [35, 36] at leading order (LO), with PYTHIA 8.230 [37] used for showering and hadronization. For the simulation of the underlying event, the CP2 tune [38] is used. This tune uses the NNPDF3.1LO parton distribution functions (PDFs) [39]. The cross sections are calculated with a next-to-next-to-LO (NNLO) approximation up to next-to-next-to-leading logarithmic (NNLL) accuracy [40–44]. The CMS detector response is determined via fast simulation [45].

The MC simulation is also used to refine the background estimate based on control samples in data by looking at the sum of three primary contributions to the SM background: diphoton (with both photons reconstructed from the initial hard scattering), γ+jet (with one photon reconstructed from the initial hard scattering and one from jet fragmentation or from a misidentified jet), and quantum chromodynamics (QCD) multijets (with both photons reconstructed from jet fragmentation or from misidentified jets). All samples are generated separately for 2016, 2017, and 2018 data-taking conditions. In each of the three samples, PYTHIA 8.230 is used for showering and hadronization. The γ+jet and QCD multijet samples are generated with MADGRAPH5_aMC@NLO 2.4.3 at LO and MADGRAPH5_aMC@NLO 2.6.0 at LO for 2016–2017 and 2018 running conditions, respectively. The 2016 subsamples of both the QCD multijet and γ+jet samples are generated with the CUETP8M1 tune [46], which uses the NNPDF3.0LO PDFs [47], while the 2017–2018 subsamples of both the QCD multijet and γ+jet samples are generated with the CP5 tune [38], which uses the NNPDF3.1LO PDFs. The diphoton samples are generated at LO with SHERPA 2.1.0 [48], SHERPA 2.2.4, and SHERPA 2.2.10 for 2016, 2017, and 2018 running conditions, respectively, and use the CT10 PDFs [49] from the LHAPDF sets [50] for all three years. The CMS detector response is modeled with GEANT4 [51] for all background samples. Additional pp interactions within the same or nearby bunch crossings (pileup) are included in the simulation.

The particle-flow (PF) algorithm [52] aims to reconstruct and identify each particle in an event, with an optimized combination of information from the various elements of the CMS detector. The energies of photons are obtained from the ECAL measurement. The energies of electrons are determined from a combination of the electron momentum at the primary interaction vertex as determined by the tracker, the energy of the corresponding ECAL cluster, and the energy sum of all bremsstrahlung photons spatially compatible with originating from the electron track. The energies of muons are obtained from the curvature of the corresponding track. The energies of charged hadrons are determined from a combination of their momentum measured in the tracker and the matching ECAL and HCAL energy deposits, corrected for the response function of the calorimeters to hadronic showers. Finally, the energies of neutral hadrons are obtained from the corresponding corrected ECAL and HCAL energy deposits.

3 Trigger and object selection

Events of interest are selected using a two-tiered trigger system. The first level of the trigger system, composed of custom hardware processors, uses information from the calorimeters and muon detectors to select events at a rate of around 100 kHz within a fixed latency of about 4 μs [53]. The second level, known as the high-level trigger, consists of a farm of processors running a version of the full event reconstruction software optimized for fast processing, and reduces the event rate to around 1 kHz before data storage [54].

As described in Section 4, the analysis uses a diphoton signal selection, a diphoton control selection, and a single-photon control selection. We employ two very similar diphoton triggers, of which one was active in the 2016 data-taking period, and the other in the 2017–2018 data-taking periods. These triggers require leading and subleading photons with thresholds on the
transverse momentum p_T at 30 and 18 GeV, respectively. Both triggers impose a threshold requirement of 55 GeV on the invariant mass of the two photons ($m_{\gamma\gamma}$). The 2016 trigger vetoes events if both photon candidates are associated with charged tracks, to limit contamination from electrons. The 2017–2018 trigger vetoes events if either photon candidate is associated with charged tracks. These diphoton triggers are used to populate the signal selection and the diphoton control selection. In addition, we employ a single-photon trigger, which requires at least one photon with a p_T threshold of 200 GeV in addition to a loose isolation requirement. The single-photon trigger is used to populate the single-photon control selection.

Jet candidates are reconstructed using PF objects via the anti-k_T clustering algorithm [55] with a distance parameter of 0.4 [56]. Jet momentum is determined as the vectorial sum of all PF object momenta in the jet, and is found from simulation to be, on average, within 5–10% of the true momentum over the entire p_T spectrum and detector acceptance. Pileup can contribute additional tracks and calorimetric energy depositions, increasing the apparent jet momentum. To mitigate this effect, tracks identified to be originating from pileup vertices are discarded and an offset correction is applied to correct for remaining contributions. Jet energy corrections are derived from simulation studies so that the average measured energy of jets becomes identical to that of particle level jets. In-situ measurements of the momentum balance in dijet, γ+jet, Z+jet, and multijet events are used to determine any residual differences between the jet energy scale in data and simulation, and appropriate corrections are made [57]. Additional selection criteria are applied to each jet to remove jets potentially dominated by instrumental effects or reconstruction failures. After correction, jet candidates are required to have $p_T > 30$ GeV and to be within the range $|\eta| < 2.4$.

Photon candidates are reconstructed from energy clusters in the ECAL. Candidates are required to be reconstructed in the ECAL barrel, with $|\eta| < 1.442$. In order to reduce background from misidentification of electrons as photons, candidates are rejected if they have measurements in the pixel detector compatible with the ECAL cluster. This veto eliminates candidates with two or more measurements in the pixel detectors pointing toward the ECAL cluster corresponding to the candidate. For each photon candidate, we compute PF-based isolation variables by summing the p_T magnitudes of all reconstructed charged and neutral hadrons, and additional photons within an angular cone of $\Delta R \equiv \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.3$, ϕ being the azimuthal angle in radians. These isolation variables are used to reduce the misidentification of hadrons as photons. Further details on photon identification criteria can be found in Ref. [58]. Candidates that meet all kinematic criteria, and tight shower shape and isolation requirements, are classified as nominal photons in this analysis.

The vector \vec{p}_T^{miss} is defined as the negative vector p_T sum of all reconstructed PF objects in the event, adjusted for jet energy corrections. The p_T^{miss} is then the magnitude of this vector. Dedicated filters are applied to remove artificial contributions to p_T^{miss} from various sources, including the beam halo, noise from detector electronics, poorly reconstructed muons, and poorly calibrated ECAL endcap crystals [59].

4 Event selection

We define S_T as the scalar sum of p_T^{miss} and the p_T values of all jets and photons in the event, as selected with the criteria given in Section 3. Events with $S_T > 1200$ GeV, and with two or more reconstructed jets, are considered for the analysis. Based on the number and quality of the selected photon candidates, events are categorized into three selections:

- The signal selection is constructed from events passing the diphoton trigger prese-
lection requirements. Events are required to have a leading photon candidate with $p_T > 35 \text{ GeV}$ and at least one subleading photon candidate with $p_T > 25 \text{ GeV}$, and the two candidates are required to have $m_{\gamma\gamma} > 90 \text{ GeV}$. Both candidates are required to pass the nominal photon criteria described in Section 3.

- The diphoton control selection is constructed from events passing the diphoton trigger preselection. Events are required to have two photon candidates passing the same requirements on the p_T values and $m_{\gamma\gamma}$ as those of the signal selection. For the diphoton control selection, one or both photon candidates are required to fail the tight shower shape or isolation requirements of nominal photons.

- The single-photon control selection is constructed from events passing the single-photon trigger preselection. The candidate photon is required to have $p_T > 200 \text{ GeV}$ and to pass tight shower shape and isolation requirements.

In all events, the jet multiplicity N_{jets} is defined as the number of selected jet candidates that are more than $\Delta R = 0.4$ away from a selected photon. All three selections are further divided into subregions based on S_T and N_{jets}. Events with exactly two jets compose the shape sideband, which is used to derive the shape of the S_T distribution to be used at higher values of N_{jets}, as described in Section 5. The region $1200 < S_T < 1300 \text{ GeV}$ is defined as the normalization sideband and is used to obtain the normalization, in each N_{jets} bin, for the S_T shape determined from the shape sideband. In each selection, the search region consists of events with four or more jets and $S_T > 1300 \text{ GeV}$, and is divided into three N_{jets} bins (4, 5, and ≥ 6) and six ranges of S_T (1300–1400, 1400–1500, 1500–1700, 1700–2000, 2000–2500, and $>2500 \text{ GeV}$) for a total of 18 search regions.

5 Background estimation

The SM backgrounds to this search arise mainly from multijet events with two photons produced in the initial scattering. In general, multijet SM backgrounds at high N_{jets} can be derived using the S_T shape invariance method [60–63]. The key idea is that in SM processes, the fragmentation products of a boosted jet are nearly collinear and therefore have an S_T close to that of similar events with fewer reconstructed jets. In other words, the S_T distribution of events with low values of N_{jets}, where the signal contamination is very low for the models studied, can be used to predict the background S_T distribution at high values of N_{jets}. In this analysis, because the selection requires events with two reconstructed photons, deviations from S_T scaling could arise from selection efficiency biases. Therefore, we use simulated background samples to estimate first-order corrections to the baseline expectation of S_T invariance. The background model used in this analysis can be expressed as follows:

$$b(N_{\text{jets}}, S_T \text{ bin } i) = N^{\text{evts}}(N_{\text{jets}}, 1200 < S_T < 1300 \text{ GeV}) \times f^{\text{AGK}}(S_T \text{ bin } i) \times r(N_{\text{jets}}, S_T \text{ bin } i),$$

where $b(N_{\text{jets}}, S_T \text{ bin } i)$ is the expected background in a given (N_{jets}, S_T) bin. Here, $N^{\text{evts}}(N_{\text{jets}}, 1200 < S_T < 1300 \text{ GeV})$ is the number of events in a low-S_T normalization bin in the selection at a given N_{jets}. $f^{\text{AGK}}(S_T \text{ bin } i)$ is a shape template obtained from the data selection at $N_{\text{jets}} = 2$, and $r(N_{\text{jets}}, S_T \text{ bin } i)$ is a correction to the shape template estimated from simulated background samples. These shape and correction factors are described in further detail below.

The factors $f^{\text{AGK}}(S_T \text{ bin } i)$ are obtained using the shape in the signal selection of the observed S_T distribution for the SM background for $N_{\text{jets}} = 2$. This shape is determined as an adaptive
Gaussian kernel (AGK) \cite{AGK}, which provides an unbinned estimate of the density of the S_T distribution. The AGK template depends only on a single parameter ρ, which is used to tune the balance between resilience to statistical fluctuations and ability to pick up small-scale features. In order to estimate the optimal value of ρ to use for the S_T template, we divide the data set with $N_{\text{jets}} = 2$ into three equal sets, and evaluate the negative log likelihood (NLL) for each third of the data set with respect to the kernel obtained from the remaining two sets. In this approach, called 3-fold cross-validation, the value of ρ that minimizes the sum of the NLLs over each third of the data set is taken as the value of ρ to use in the S_T template. The factors $f_{\text{AGK}}(S_T \text{ bin } i)$ in each S_T bin are then obtained as the integral of the AGK template $K(S_T)$ in the given bin, normalized to the integral of the AGK template in the normalization bin. Figure 2 shows the data and the AGK template at the nominal value of ρ as well as templates with ρ shifted by one standard deviation ($\pm 1\sigma$), as described in Section 6. We note that lower values of ρ allow the kernel to pick up features in the data at smaller scales.

The correction terms $r(N_{\text{jets}}, S_T \text{ bin } i)$ are found from a sum of three simulated backgrounds, those corresponding to diphoton, $\gamma + \text{jet}$, and QCD multijet processes. We first obtain the nominal shape template from the combined background at $N_{\text{jets}} = 2$. At $N_{\text{jets}} \geq 4$, a modified version of the nominal shape template is fit to the S_T distribution in the combined background. More specifically, the template at $N_{\text{jets}} \geq 4$ is taken to be the nominal shape template multiplied by a simple linear adjustment of the form $[A + m(S_T^\text{norm} - 1)]$ (where $S_T^\text{norm} = 1250 \text{ GeV}$ is the center of the normalization bin). The A and m values for each N_{jets} bin are the parameters of the fit, and their best fit values can be found in Table 1. Finally, the factors $r(N_{\text{jets}}, S_T \text{ bin } i)$ are evaluated as the ratio of the corrected to the uncorrected prediction in a given S_T bin. We note that the factors $r(N_{\text{jets}}, S_T \text{ bin } i)$ encode the deviation from S_T scaling in the combined simulated background.

In each (N_{jets}, S_T) bin, the signal prediction is obtained directly from a signal MC sample. Because the method used to obtain the background is based on control samples in the data, the background estimate is susceptible to potential signal contamination. To correct for this, we evaluate the background contamination and subtract it from the signal prediction in each (N_{jets}, S_T) bin. In addition, we limit inference of upper limits, as detailed in Section 7, to those regions of the $(m_{\tilde{g}}(m_{\tilde{q}}), m_{\chi_1^0})$ parameter space in which the potential signal contamination in the sidebands is below 10%, by eliminating the region with $m_{\tilde{g}}(m_{\tilde{q}}) - m_{\chi_1^0} < 100 \text{ GeV}$. Further-
more, the signal efficiency is quite small in the region of the phase space with very low \(m_{\chi_0^1} \) (at high values of \(N_{\text{jets}} \), the signal efficiency goes from \(\approx 7\% \) at low \(m_{\chi_0^1} \) to \(\approx 30\% \) at higher \(m_{\chi_0^1} \)), because in such events the neutralino is highly Lorentz-boosted, and its decay results in collimated jets and photons. Therefore, for inference, we do not consider the phase space below \(m_{\chi_0^1} = 125(200) \) GeV for gluino (squark) samples.

Table 1: Best fit values of \(A \) and \(m \) with statistical \(\pm 1\sigma \) errors, obtained from the simulated background.

<table>
<thead>
<tr>
<th>(N_{\text{jets}})</th>
<th>(A)</th>
<th>(m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1.04 ± 0.03</td>
<td>0.75 ± 0.09</td>
</tr>
<tr>
<td>5</td>
<td>0.99 ± 0.04</td>
<td>1.30 ± 0.15</td>
</tr>
<tr>
<td>(\geq 6)</td>
<td>1.11 ± 0.06</td>
<td>2.42 ± 0.23</td>
</tr>
</tbody>
</table>

6 Systematic uncertainties

The background prediction is obtained from Eq. (1), each factor of which has potential uncertainties that affect the background yield. The signal prediction, being estimated from simulation, also has several potential uncertainties that affect the signal yield. In the following paragraphs, we describe the methods used to evaluate the effect of each source of uncertainty on the overall yield.

First, we describe the uncertainties affecting background yield. In Eq. (1), there exists a systematic uncertainty in the prediction arising from the statistical uncertainty in \(N_{\text{evts}}(N_{\text{jets}}, 1200 < S_T < 1300 \) GeV\). We use a 68\% Poisson confidence interval around the observed value of \(N_{\text{evts}}(N_{\text{jets}}, 1200 < S_T < 1300 \) GeV\) to estimate the effect of this uncertainty, which we find to be in the range 15–22\%, depending on the \(N_{\text{jets}} \) bin.

There are two sources of uncertainty in the shape factors \(f^{AGK}(S_T \text{ bin } i) \) in Eq. (1). First, because of a limited number of events in the data at \(N_{\text{jets}} = 2 \), the template shape estimated as an AGK from the data is subject to statistical fluctuations. To evaluate this effect, we use the nominal template as a probability distribution function to generate simulated pseudo-data sets, where the number of events in each search region is chosen independently. The resulting distribution of \(f^{AGK}(S_T \text{ bin } i) \) for each \(S_T \) bin is then used to determine the relative uncertainty in the nominal prediction. This uncertainty is in the range 10–25\%, depending on the \(S_T \) bin. Second, there is an uncertainty introduced by the choice of the parameter \(\rho \) of the template. This uncertainty is estimated by varying the nominal value of \(\rho \) by its \(\pm 1\sigma \) fluctuations obtained from the NLL curve of the 3-fold cross-validation, and finding the relative change in \(f^{AGK}(S_T \text{ bin } i) \). This uncertainty is less than 3\% for all bins.

There are three sources of uncertainty in the corrections \(r(N_{\text{jets}}, S_T \text{ bin } i) \) in Eq. (1). First, the best fit corrections that enter Eq. (1) are subject to statistical fluctuations because they are estimated from a statistically limited simulated background sample. This uncertainty is evaluated by diagonalizing the covariance matrix of the fits to the \(S_T \) distribution in each \(N_{\text{jets}} \) bin. The fluctuations of \(r(N_{\text{jets}}, S_T \text{ bin } i) \) for each \(N_{\text{jets}} \) bin, estimated as variations of the best fit parameters consistent with the covariance matrix, are used as a measure of this uncertainty. This procedure yields uncertainty estimates of less than 7\% in all bins. Next, because these corrections are estimated from a simulated sample, we account for the potential mismodeling in the simulation both as a function of \(S_T \) and as a function of \(N_{\text{jets}} \) each of which is treated as a separate source of uncertainty. In order to estimate the uncertainty in \(r(N_{\text{jets}}, S_T \text{ bin } i) \) due to mismodeling as a
function of N_{jets}, we vary the cross section of each of the three backgrounds to the combination up and down by a factor of 2, thereby varying the relative composition of the simulated background, and the variation in $r(N_{\text{jets}}, S_T \text{ bin } i)$ is then used to determine the uncertainty. This uncertainty in $r(N_{\text{jets}}, S_T \text{ bin } i)$ leads to an uncertainty in the background prediction of less than 8% in all bins. Next, in order to estimate the uncertainty in $r(N_{\text{jets}}, S_T \text{ bin } i)$ due to mismodeling as a function of S_T, we consider two event selections orthogonal to the diphoton selections used in this analysis: a selection of events with exactly one selected photon, and a selection of events that pass the trigger but do not pass the event selection. In both selections, we obtain the ratio of S_T distributions at high values of N_{jets} to the S_T distribution at $N_{\text{jets}} = 2$ both for the data and for the simulated background. A ratio of the 2-to-n correction in data, $r(N_{\text{jets}}, S_T \text{ bin } i)$, to this correction in the simulated background, is a measure of the nonclosure of this procedure in both orthogonal selections, and is used to estimate the uncertainty in the background prediction due to mismodeling as a function of S_T. This leads to a flat 10% uncertainty in all signal bins.

The uncertainties in the signal prediction are typically much smaller than the uncertainties in the background. There is a systematic uncertainty related to the finite size of the simulated signal samples (1–5%, depending on the signal point). Next, there are systematic uncertainties due to the uncertainty in the knowledge of the jet energy scale (about 10%), due to a potential mismeasurement of the integrated luminosity (1.6%) [65–67], and due to uncertainties in the trigger efficiency (2–10%). Other uncertainties, such as in the photon reconstruction efficiency and in the value of p_T^{miss} due to the jet energy resolution and unclustered energy in the event, are negligible.

7 Results

The yield in a given (N_{jets}, S_T) bin is modeled as $b + \mu s$, where b is the background estimate, s is the signal expectation, and μ is the signal strength. Both b and s are functions of nuisance parameters that model the various uncertainties described in Section 6. A comparison of the measured S_T distribution and the post-fit background prediction (i.e., the background prediction obtained by setting all nuisance parameters to those specific values that maximize the likelihood function at zero signal strength), with post-fit uncertainties, is shown in Fig. 3 for each N_{jets} bin. The data reveal no indication of any deviation from the background prediction.

The results are interpreted as 95% confidence level (CL) upper limits on the gluino and squark pair production cross sections of the simplified stealth SUSY models described in Section 1. For the statistical inference of these upper limits, we use the CL$_s$ criterion [68, 69], which is based on a log-likelihood ratio test statistic, modified for upper limits [70], that compares the SM-only hypothesis to the hypothesis that there is an additional contribution from the signal. An asymptotic approximation [71] for the test statistic is used to extract the observed limits. Systematic uncertainties are incorporated into the test statistic as nuisance parameters. The background prediction, signal expectation, and observed number of events in each search region are combined into a single statistical interpretation, and evaluated as a multichannel counting experiment.

The upper limit on the gluino (squark) pair production cross section is shown in Fig. 4 as a function of $m_{\tilde{g}}$ ($m_{\tilde{q}}$) and $m_{\tilde{\chi}^0_1}$ for the simplified stealth models used in this analysis. The production cross sections of the model points are determined exclusively by the value of $m_{\tilde{g}}$ ($m_{\tilde{q}}$). For most $\tilde{\chi}^0_1$ masses, we exclude $m_{\tilde{g}}$ up to 2150 or $m_{\tilde{q}}$ up to 1850 GeV at 95% CL. Despite a relaxation of assumptions in the background modeling as compared to previously published
Figure 3: Comparison of the measured S_T distribution with the post-fit background prediction in each of the search regions of the analysis for $N_{\text{jets}} = 4$ (upper), 5 (middle), and ≥ 6 (lower). The post-fit uncertainties on the background prediction are represented by the yellow band around the central prediction. Signal yields at a signal strength of 1 are also overlaid for some representative points in the $(m_{\tilde{g}}, m_{\tilde{q}}), m_{\tilde{\chi}^0_1})$ parameter space.
8 Summary

A search for stealth supersymmetry in events with two photons and at least four jets is presented. No threshold requirement on the missing transverse momentum is imposed. The measurement is based on a data sample corresponding to an integrated luminosity of 138 fb$^{-1}$ of proton-proton collisions at $\sqrt{s} = 13$ TeV recorded by the CMS experiment in 2016–2018. The analysis is performed in bins of S_T, which is the sum of transverse momenta for all reconstructed particles in the event, as well as jet multiplicity N_{jets}. A background model based on control samples in data is employed to estimate the standard model (SM) background in the data. The data are found to be consistent with the SM background prediction with no evidence of significant signal contribution. The results of the search are interpreted as 95% confidence level upper limits on the gluino and squark production cross sections in the context of simplified models of stealth supersymmetry. In simplified stealth models with gluino (squark) pair production, we exclude gluino masses $m_{\tilde{g}}$ (squark masses $m_{\tilde{q}}$) up to 2150 (1850) GeV. These are the most stringent limits to date on these models.
Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid and other centers for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC, the CMS detector, and the supporting computing infrastructure provided by the following funding agencies: SC (Armenia), BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES and BNSF (Bulgaria); CERN; CAS, MoST, and NSFC (China); MINCIENCIAS (Colombia); MSES and CSF (Croatia); RIF (Cyprus); SENESCYT (Ecuador); MoER, ERC PUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); SRNSF (Georgia); BMBF, DFG, and HGF (Germany); GSRI (Greece); NKFIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MES and NSC (Poland); FCT (Portugal); MESTD (Serbia); MCIN/AEI and PCTI (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MCTI (Brazil); MHEST and NFDI (Thailand); TUBITAK and TUBA (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

Individuals have received support from the Marie-Curie program and the European Research Council and Horizon 2020 Grant, contract Nos. 675440, 724704, 752730, 758316, 765710, 824093, and COST Action CA16108 (European Union); the Leventis Foundation; the Alfred P. Sloan Foundation; the Alexander von Humboldt Foundation; the Science Committee, project no. 22rl-037 (Armenia); the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenscap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the “Excellence of Science – EOS” – be.h project n. 30820817; the Beiji Municipal Science & Technology Commission, No. Z191100007219010; the National Natural Science Foundation of the Czech Republic; the Shota Rustaveli National Science Foundation, grant FR-22-985 (Georgia); the Deutsche Forschungsgemeinschaft (DFG), under Germany’s Excellence Strategy – EXC 2121 “Quantum Universe” – 390833306, and under project number 400140256 - GRK2497; the Hellenic Foundation for Research and Innovation (HFRI), Project Number 2288 (Greece); the Hungarian Academy of Sciences, the New National Excellence Program - ÚNKP, the NKFIH research grants K 124845, K 124850, K 128713, K 128786, K 129058, K 131991, K 133046, K 138136, K 143460, K 143477, 2020-2.2.1-ED-2021-00181, and TKP2021-NKTA-64 (Hungary); the Council of Science and Industrial Research, India; ICSC – National Research Center for High Performance Computing, Big Data and Quantum Computing, funded by the EU NexGeneration program (Italy); the Latvian Council of Science; the Ministry of Education and Science, project no. 2022/WK/14, and the National Science Center, contracts Opus 2021/41/B/ST2/01369 and 2021/43/B/ST2/01552 (Poland); the Fundação para a Ciência e a Tecnologia, grant CEECIND/01334/2018 (Portugal); the National Priorities Research Program by Qatar National Research Fund; MCI/AEI/10.13039/501100011033, ERDF “a way of making Europe”, and the Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia María de Maeztu, grant MDM-2017-0765 and Programa Severo Ochoa del Principado de Asturias (Spain); the Chulalongkorn Academic into Its 2nd Century Project Advancement Project, and the National Science, Research and Innovation Fund via the Program
Management Unit for Human Resources & Institutional Development, Research and Innovation, grant B05F650021 (Thailand); the Kavli Foundation; the Nvidia Corporation; the SuperMicro Corporation; the Welch Foundation, contract C-1845; and the Weston Havens Foundation (USA).

References

A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
A. Hayrapetyan, A. Tumasyan

Institut für Hochenergiephysik, Vienna, Austria

Universiteit Antwerpen, Antwerpen, Belgium
M.R. Darwish 3, T. Janssen 4, P. Van Mechelen 4

Vrije Universiteit Brussel, Brussels, Belgium
E.S. Bols 1, J. D’Hondt 1, S. Dansana 1, A. De Moor 1, M. Delcourt 1, H. El Faham 1, S. Lowette 1, I. Makarenko 1, A. Morton 1, D. Müller 1, A.R. Sahasransu 1, S. Tavernier 1, M. Tytgat 1, S. Van Putte 1, D. Vannerom 1

Université Libre de Bruxelles, Bruxelles, Belgium
B. Clerbaux 1, G. De Lentdecker 1, L. Favart 1, D. Hohov 1, J. Jaramillo 1, A. Khalilzadeh, K. Lee 1, M. Mahdavikhorrami 1, A. Malara 1, S. Paredes 1, L. Pétré 1, N. Postiau, L. Thomas 1, M. Vanden Bemden 1, C. Vander Velde 1, P. Vanlaer 1

Ghent University, Ghent, Belgium
M. De Coen 1, D. Dobur 1, J. Knolle 1, L. Lambrecht 1, G. Mestdagh, C. Rendón, A. Samalan, K. Skovpen 1, N. Van Den Bossche 1, B. Vermassen, L. Wezenbeek 1

Université Catholique de Louvain, Louvain-la-Neuve, Belgium
A. Benecke 1, G. Bruno 1, C. Caputo 1, C. Delaere 1, I.S. Donertas 1, A. Giammanco 1, K. Jaffel 1, Sa. Jain 1, V. Lemaitre, J. Lidrych 1, P. Mastrapasqua 1, K. Mondal 1, T.T. Tran 1, S. Wertz 1

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
G.A. Alves 7, E. Coelho 7, C. Hensel 7, T. Menezes De Oliveira, A. Moraes 7, P. Rebello Teles 7, M. Soeiro

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria
A. Aleksandrov 5, G. Antchev 5, R. Hadjiiska 5, P. Iaydjiev 5, M. Misheva 5, M. Shopova 5, G. Sultanov 5

University of Sofia, Sofia, Bulgaria
A. Dimitrov 5, T. Ivanov 5, L. Litov 5, B. Pavlov 5, P. Petkov 5, A. Petrov 5, E. Shumka 5
Instituto De Alta Investigación, Universidad de Tarapacá, Casilla 7 D, Arica, Chile
S. Keshri, S. Thakur

Beihang University, Beijing, China
T. Cheng, Q. Guo, T. Javaid, M. Mittal, L. Yuan

Department of Physics, Tsinghua University, Beijing, China
G. Bauer, Z. Hu, K. Yi

Institute of High Energy Physics, Beijing, China

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
A. Agapitos, Y. Ban, A. Levin, C. Li, Q. Li, X. Lyu, Y. Mao, S.J. Qian, X. Sun, D. Wang, H. Yang, C. Zhou

Sun Yat-Sen University, Guangzhou, China
Z. You

University of Science and Technology of China, Hefei, China
N. Lu

Institute of Modern Physics and Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) - Fudan University, Shanghai, China
X. Gao, D. Leggat, H. Okawa, Y. Zhang

Zhejiang University, Hangzhou, Zhejiang, China
Z. Lin, C. Lu, M. Xiao

Universidad de Los Andes, Bogota, Colombia
C. Avila, D.A. Barbosa Trujillo, A. Cabrera, C. Florez, J. Fraga, J.A. Reyes Vega

Universidad de Antioquia, Medellin, Colombia
J. Mejia Guisao, F. Ramirez, M. Rodriguez, J.D. Ruiz Alvarez

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
D. Giljanovic, N. Godinovic, D. Lelas, A. Sculac

University of Split, Faculty of Science, Split, Croatia
M. Kovac, T. Sculac

Institute Rudjer Boskovic, Zagreb, Croatia
P. Bargassa, V. Brigljevic, B.K. Chitroda, D. Ferencek, S. Mishra, A. Starodumov, T. Susa

University of Cyprus, Nicosia, Cyprus

Charles University, Prague, Czech Republic
M. Finger, M. Finger Jr., A. Kveton

Escuela Politecnica Nacional, Quito, Ecuador
E. Ayala

Universidad San Francisco de Quito, Quito, Ecuador
E. Carrera Jarrin

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
Y. Assran14,15, S. Elgammal15

Center for High Energy Physics (CHEP-FU), Fayoum University, El-Fayoum, Egypt
A. Lotfy14, M.A. Mahmoud14

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
R.K. Dewanjee16, K. Ehtait15, M. Kadastik, T. Lange15, C. Nielsen15, J. Pata15, M. Raidal15, L. Tani15, C. Veelken15

Department of Physics, University of Helsinki, Helsinki, Finland
H. Kirschenmann16, K. Osterberg16, M. Voutilainen16

Helsinki Institute of Physics, Helsinki, Finland
S. Bharthuar16, E. Brücken16, J. Havukainen16, K.T.S. Kallonen16, M.S. Kim16, P. Kinnunen, T. Lampén16, K. Lassila-Perini15, S. Lehti16, T. Lindén16, M. Lotti, L. Martikainen16, M. Myllymäki16, M.m. Rantanen17, H. Siikonen16, E. Tuominen16, J. Tuominiemi16

Lappeenranta-Lahti University of Technology, Lappeenranta, Finland
P. Luukka17, H. Petrov17, T. Tuuva17

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
M. Besançon18, F. Couderc18, M. Dejardin18, D. Denegri, J.L. Faure, F. Ferri18, S. Ganjour18, P. Gras18, G. Hamel de Monchenault18, V. Lohezic18, J. Malcles18, J. Rander, A. Rosowsky18, M.O. Sahin18, A. Savoy-Navarro18, P. Simkina18, M. Titov18

Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
C. Baldenegro Barrera18, F. Beaudette18, A. Buchot Perraguin18, P. Busson18, A. Cappati18, C. Charlot18, F. Dasas18, O. Davignon18, G. Falmagne18, B.A. Fontana Santos Alves18, S. Ghosh18, A. Gilbert18, R. Granier de Cassagnac18, A. Hakimi18, B. Harikrishnan18, L. Kalipoliti18, G. Liu18, J. Motta18, M. Nguyen18, C. Ochando18, L. Portales18, R. Salerno18, U. Sarkar18, J.B. Sauvan18, Y. Siros18, A. Tarabini18, E. Vernazza18, A. Zabi18, A. Zghiche18

Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
J.-L. Agram18, J. Andrea18, D. Apparu18, D. Bloch18, J.-M. Brom18, E.C. Chabert18, C. Collard18, S. Falke18, U. Goerlach18, C. Grimault, R. Haeberle18, A.-C. Le Bihan18, M.A. Sessini18, P. Van Hove18

Institut de Physique des 2 Infinis de Lyon (IP2I), Villeurbanne, France
S. Beauceron18, B. Blanc18, G. Boudoul18, N. Chanon18, J. Choi18, D. Contardo18, P. Depasse18, C. Dozen19, H. El Mamouni, J. Fay18, S. Gascon18, M. Gouzevitch18, C. Greenberg, G. Grenier18, B. Ille18, I.B. Laktineh, M. Lethuillier18, L. Mirabito, S. Perries, M. Vander Donckt18, P. Verdier18, J. Xiao18

Georgian Technical University, Tbilisi, Georgia
I. Lomidze18, T. Toriaashvili19, P. Tsamalaidze19

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
V. Botta19, L. Feld19, M. Klein19, M. Lipinski19, D. Meuser19, A. Pauls19, N. Röwert19, M. Teroerde19
RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
C. Dziwok, G. Flügge, W. Haj Ahmad, T. Kress, A. Nowack, O. Pooth, A. Stahl, T. Ziemons, A. Zotz

Deutsches Elektronen-Synchrotron, Hamburg, Germany

University of Hamburg, Hamburg, Germany

Karlsruher Institut fuer Technologie, Karlsruhe, Germany

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece
G. Anagnostou, P. Assiouras, G. Daskalakis, A. Kyriakis, A. Papadopoulos, A. Stakia

National and Kapodistrian University of Athens, Athens, Greece

National Technical University of Athens, Athens, Greece

G. Bakas, T. Chatzistavrou, G. Karapostoli, K. Kousouris, I. Papakrivopoulos, E. Siamarkou, G. Tsipolitis, A. Zacharopoulou

University of Ioánnina, Ioánnina, Greece

HUN-REN Wigner Research Centre for Physics, Budapest, Hungary

M. Bartók, C. Hajdu, D. Horvath, F. Sikler, V. Veszpremi

MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary

Institute of Nuclear Research ATOMKI, Debrecen, Hungary

G. Bencze, S. Czellar, J. Karancsi, J. Molnar, Z. Szillasi

Institute of Physics, University of Debrecen, Debrecen, Hungary

P. Raics, B. Ujvari, G. Zilizi

Karoly Robert Campus, MATE Institute of Technology, Gyongyos, Hungary

T. Csörgő, F. Nemes, T. Novak

Panjab University, Chandigarh, India

University of Delhi, Delhi, India

A. Ahmed, A. Bhardwaj, A. Chhetri, B.C. Choudhary, A. Kumar, M. Naimuddin, K. Ranjan, S. Saumya

Saha Institute of Nuclear Physics, HBNI, Kolkata, India

S. Baradia, S. Barman, S. Battacharya, D. Bhowmik, S. Dutta, B. Gomber, P. Palit, G. Saha, B. Sahu, S. Sarkar

Indian Institute of Technology Madras, Madras, India

Tata Institute of Fundamental Research-A, Mumbai, India

T. Aziz, I. Das, S. Dugad, M. Kumar, G.B. Mohanty, P. Suryadevara

Tata Institute of Fundamental Research-B, Mumbai, India

A. Bala, S. Banerjee, R.M. Chatterjee, M. Guhain, S. Karmakar, S. Kumar, G. Majumder, K. Mazumdar, S. Mukherjee, A. Thachayath

National Institute of Science Education and Research, An OCC of Homi Bhabha National Institute, Bhubaneswar, Odisha, India

Indian Institute of Science Education and Research (IISER), Pune, India
A. Alpana, S. Dube, B. Kansal, A. Laha, S. Pandey, A. Rastogi, S. Sharma

Isfahan University of Technology, Isfahan, Iran
H. Bakhshianizadeh, E. Khazaie, M. Zeinali

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
S. Chenarani, S.M. Etesami, M. Khakzad, M. Mohammad Najafabadi

University College Dublin, Dublin, Ireland
M. Grunewald

INFN Sezione di Bari, Università di Bari, Politecnico di Bari, Bari, Italy

INFN Sezione di Bologna, Università di Bologna, Bologna, Italy

INFN Sezione di Catania, Università di Catania, Catania, Italy
S. Costa, A. Di Mattia, R. Potenza, A. Tricomi, C. Tuve

INFN Sezione di Firenze, Università di Firenze, Firenze, Italy

INFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi, S. Bianco, S. Meola, D. Piccolo

INFN Sezione di Genova, Università di Genova, Genova, Italy
P. Chatagnot, F. Ferro, E. Robutti, S. Tosi

INFN Sezione di Milano-Bicocca, Università di Milano-Bicocca, Milano, Italy
S. Belfortea, V. Candelisea,b, M. Casarsaa, F. Cossuttia, K. De Leoa,b, G. Della Riccaa,b, G. Sorrentinoa,b

Kyungpook National University, Daegu, Korea

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
G. Bak, P. Gwak, H. Kim, D.H. Moon

Hanyang University, Seoul, Korea
E. Asilar, D. Kim, T.J. Kim, J.A. Merlin, J. Park

Korea University, Seoul, Korea
S. Choi, S. Han, B. Hong, K. Lee, K.S. Lee, J. Park, S.K. Park, J. Yoo

Kyung Hee University, Department of Physics, Seoul, Korea
J. Goh

Sejong University, Seoul, Korea
H. S. Kim, Y. Kim, S. Lee

Seoul National University, Seoul, Korea

University of Seoul, Seoul, Korea

Yonsei University, Department of Physics, Seoul, Korea
S. Ha, H.D. Yoo

Sungkyunkwan University, Suwon, Korea

College of Engineering and Technology, American University of the Middle East (AUM), Dasman, Kuwait
T. Beyrouthy, Y. Maghrbi

Riga Technical University, Riga, Latvia

University of Latvia (LU), Riga, Latvia
N.R. Strautnieks

Vilnius University, Vilnius, Lithuania
M. Ambrozas, A. Juodagalvis, A. Rinkevicius, G. Tamulaitis

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
N. Bin Norjoharuddeen, I. Yusuff, Z. Zolkapli

Universidad de Sonora (UNISON), Hermosillo, Mexico

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
Asturias (ICTEA), Oviedo, Spain

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain

University of Colombo, Colombo, Sri Lanka

University of Ruhuna, Department of Physics, Matara, Sri Lanka
W.G.D. Dharmaratna, K. Liyanage, N. Perera, N. Wickramage

CERN, European Organization for Nuclear Research, Geneva, Switzerland

Paul Scherrer Institut, Villigen, Switzerland

ETH Zurich - Institute for Particle Physics and Astrophysics (IPA), Zurich, Switzerland

Universität Zürich, Zurich, Switzerland

Brunel University, Uxbridge, United Kingdom
K. Coldham, J.E. Cole, A. Khan, P. Kyberd, I.D. Reid

Bayelor University, Waco, Texas, USA

Catholic University of America, Washington, DC, USA

The University of Alabama, Tuscaloosa, Alabama, USA
R. Chudasama, S.I. Cooper, S.V. Gleyzer, C.U. Perez, P. Rumerio, E. Usai, C. West

Boston University, Boston, Massachusetts, USA

Brown University, Providence, Rhode Island, USA

University of California, Davis, Davis, California, USA

University of California, Los Angeles, California, USA
M. Bachtis, R. Cousins, A. Datta, J. Hauser, M. Ignatenko, M.A. Iqbal, T. Lam, E. Manca, W.A. Nash, D. Saltzberg, B. Stone, V. Valuev

University of California, Riverside, Riverside, California, USA
R. Clare, M. Gordon, G. Hanson, W. Si, S. Wimpenny

University of California, San Diego, La Jolla, California, USA

University of California, Santa Barbara - Department of Physics, Santa Barbara, California, USA

Johns Hopkins University, Baltimore, Maryland, USA

The University of Kansas, Lawrence, Kansas, USA

Kansas State University, Manhattan, Kansas, USA

Lawrence Livermore National Laboratory, Livermore, California, USA
F. Rebassoo, D. Wright

University of Maryland, College Park, Maryland, USA

Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

University of Minnesota, Minneapolis, Minnesota, USA
B. Crossman, B.M. Joshi, C. Kapsiak, M. Krohn, D. Mahon, J. Mans, M. Revering, R. Rusack, N. Schroeder, N. Strobbe, M.A. Wadud

University of Mississippi, Oxford, Mississippi, USA
L.M. Cremaldi

University of Nebraska-Lincoln, Lincoln, Nebraska, USA

State University of New York at Buffalo, Buffalo, New York, USA

Northeastern University, Boston, Massachusetts, USA

Northwestern University, Evanston, Illinois, USA
S. Bhattacharya, J. Bueghly, Z. Chen, K.A. Hahn, Y. Liu, Y. Miao, D.G. Monk,
M.H. Schmitt, A. Taliercio, M. Velasco

University of Notre Dame, Notre Dame, Indiana, USA

The Ohio State University, Columbus, Ohio, USA
A. Basnet, B. Bylsma, M. Carrigan, L.S. Durkin, C. Hill, M. Joyce, A. Lesauvage, M. Nunez Ornelas, K. Wei, B.L. Winer, B. R. Yates

Princeton University, Princeton, New Jersey, USA

University of Puerto Rico, Mayaguez, Puerto Rico, USA
S. Malik

Purdue University, West Lafayette, Indiana, USA

Purdue University Northwest, Hammond, Indiana, USA
J. Dolen, N. Parashar, A. Pathak

Rice University, Houston, Texas, USA

University of Rochester, Rochester, New York, USA

The Rockefeller University, New York, New York, USA
K. Goulianos

Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA

University of Tennessee, Knoxville, Tennessee, USA

Texas A&M University, College Station, Texas, USA
D. Aebi, M. Ahmad, O. Bouhali, M. Dalchenko, R. Eusebi, J. Gilmore,
Also at Nanjing Normal University, Nanjing, China
9 Now at The University of Iowa, Iowa City, Iowa, USA
10 Also at University of Chinese Academy of Sciences, Beijing, China
11 Also at University of Chinese Academy of Sciences, Beijing, China
12 Also at Université Libre de Bruxelles, Bruxelles, Belgium
13 Also at an institute or an international laboratory covered by a cooperation agreement with
CERN
14 Also at Suez University, Suez, Egypt
15 Now at British University in Egypt, Cairo, Egypt
16 Also at Birla Institute of Technology, Mesra, Mesra, India
17 Also at Purdue University, West Lafayette, Indiana, USA
18 Also at Université de Haute Alsace, Mulhouse, France
19 Also at Department of Physics, Tsinghua University, Beijing, China
20 Also at Tilisi State University, Tilisi, Georgia
21 Also at The University of the State of Amazonas, Manaus, Brazil
22 Also at Erzincan Binali Yildirim University, Erzincan, Turkey
23 Also at University of Hamburg, Hamburg, Germany
24 Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
25 Also at Isfahan University of Technology, Isfahan, Iran
26 Also at Bergische University Wuppertal (BUW), Wuppertal, Germany
27 Also at Brandenburg University of Technology, Cottbus, Germany
28 Also at Forschungszentrum Jülich, Juelich, Germany
29 Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
30 Also at Institute of Physics, University of Debrecen, Debrecen, Hungary
31 Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
32 Now at Universitatea Babes-Bolyai - Facultatea de Fizica, Cluj-Napoca, Romania
33 Also at Physics Department, Faculty of Science, Assiut University, Assiut, Egypt
34 Also at HUN-REN Wigner Research Centre for Physics, Budapest, Hungary
35 Also at Faculty of Informatics, University of Debrecen, Debrecen, Hungary
36 Also at Punjab Agricultural University, Ludhiana, India
37 Also at UPES - University of Petroleum and Energy Studies, Dehradun, India
38 Also at University of Visva-Bharati, Santiniketan, India
39 Also at University of Hyderabad, Hyderabad, India
40 Also at Indian Institute of Science (IISc), Bangalore, India
41 Also at IIT Bhubaneswar, Bhubaneswar, India
42 Also at Institute of Physics, Bhubaneswar, India
43 Also at Deutsches Elektronen-Synchrotron, Hamburg, Germany
44 Now at Department of Physics, Isfahan University of Technology, Isfahan, Iran
45 Also at Sharif University of Technology, Tehran, Iran
46 Also at Department of Physics, University of Science and Technology of Mazandaran, Behshahr, Iran
47 Also at Helwan University, Cairo, Egypt
48 Also at Italian National Agency for New Technologies, Energy and Sustainable Economic
Development, Bologna, Italy
49 Also at Centro Siciliano di Fisica Nucleare e di Struttura Della Materia, Catania, Italy
50 Also at Università degli Studi Guglielmo Marconi, Roma, Italy
51 Also at Scuola Superiore Meridionale, Università di Napoli ‘Federico II’, Napoli, Italy
52 Also at Fermi National Accelerator Laboratory, Batavia, Illinois, USA
53 Also at Università di Napoli ‘Federico II’, Napoli, Italy
Also at Ain Shams University, Cairo, Egypt
Also at Consiglio Nazionale delle Ricerche - Istituto Officina dei Materiali, Perugia, Italy
Also at Riga Technical University, Riga, Latvia
Also at Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
Also at Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico
Also at Trincomalee Campus, Eastern University, Sri Lanka, Nilaveli, Sri Lanka
Also at INFN Sezione di Pavia, Università di Pavia, Pavia, Italy
Also at National and Kapodistrian University of Athens, Athens, Greece
Also at Ecole Polytechnique Fédérale Lausanne, Lausanne, Switzerland
Also at Università Zürich, Zurich, Switzerland
Also at Stefan Meyer Institute for Subatomic Physics, Vienna, Austria
Also at Laboratoire d’Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-le-Vieux, France
Also at Near East University, Research Center of Experimental Health Science, Mersin, Turkey
Also at Konya Technical University, Konya, Turkey
Also at Izmir Bakircay University, Izmir, Turkey
Also at Adiyaman University, Adiyaman, Turkey
Also at Necmettin Erbakan University, Konya, Turkey
Also at Bozok Universitetesi Rektörlüğü, Yozgat, Turkey
Also at Marmara University, Istanbul, Turkey
Also at Milli Savunma University, Istanbul, Turkey
Also at Kafkas University, Kars, Turkey
Also at Hacettepe University, Ankara, Turkey
Also at Istanbul University - Cerrahpasa, Faculty of Engineering, Istanbul, Turkey
Also at Ozyegin University, Istanbul, Turkey
Also at Vrije Universiteit Brussel, Brussel, Belgium
Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
Also at University of Bristol, Bristol, United Kingdom
Also at IPPP Durham University, Durham, United Kingdom
Also at Monash University, Faculty of Science, Clayton, Australia
Also at Università di Torino, Torino, Italy
Also at Bethel University, St. Paul, Minnesota, USA
Also at Karamanoğlu Mehmetbey University, Karaman, Turkey
Also at California Institute of Technology, Pasadena, California, USA
Also at United States Naval Academy, Annapolis, Maryland, USA
Also at Bingol University, Bingol, Turkey
Also at Georgian Technical University, Tbilisi, Georgia
Also at Sinop University, Sinop, Turkey
Also at Erciyes University, Kayseri, Turkey
Also at Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), Bucharest, Romania
Also at Texas A&M University at Qatar, Doha, Qatar
Also at Kyungpook National University, Daegu, Korea
Also at another institute or international laboratory covered by a cooperation agreement with CERN
Also at Universiteit Antwerpen, Antwerpen, Belgium
97 Also at Yerevan Physics Institute, Yerevan, Armenia
98 Also at Northeastern University, Boston, Massachusetts, USA
99 Now at another institute or international laboratory covered by a cooperation agreement with CERN
100 Also at Imperial College, London, United Kingdom
101 Also at Institute of Nuclear Physics of the Uzbekistan Academy of Sciences, Tashkent, Uzbekistan