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Mechanisms for suppressing thermalization in disorder-free many-body systems, such as Hilbert
space fragmentation and quantum many-body scars, have recently attracted much interest in foun-
dations of quantum statistical physics and potential quantum information processing applications.
However, their sensitivity to realistic effects such as finite temperature remains largely unexplored.
Here, we have utilized IBM’s Kolkata quantum processor to demonstrate an unexpected robustness
of quantum many-body scars at finite temperatures when the system is prepared in a thermal Gibbs
ensemble. We identify such robustness in the PXP model, which describes quantum many-body
scars in experimental systems of Rydberg atom arrays and ultracold atoms in tilted Bose–Hubbard
optical lattices. By contrast, other theoretical models which host exact quantum many-body scars
are found to lack such robustness, and their scarring properties quickly decay with temperature. Our
study sheds light on the important differences between scarred models in terms of their algebraic
structures, which impacts their resilience to finite temperature.

Introduction.—The development of programmable
Rydberg atom arrays [1] (see also the review [2]) has
ushered in an era of the experimental explorations of
weak breakdown of thermalization, now commonly re-
ferred to as quantum many-body scars (QMBSs) [3–5].
In QMBS systems, only a small (typically vanishing in
system size) fraction of eigenstates violate the Eigen-
state Thermalization Hypothesis (ETH), while the rest
of the many-body spectrum is chaotic. Such systems ex-
hibit thermalizing dynamics from most initial conditions,
however their dynamics can be strikingly regular from a
small set of special states, as indeed observed in exper-
iments [1, 6, 7]. This “intermediate” behavior between
full chaos and integrability has attracted attention in the
context of controlling quantum-information dynamics in
complex systems [6] and applications such as quantum-
enhanced metrology [8–10].

Given the strong sensitivity of scarred dynamics on the
initial state, in this work we address the natural question
for experiments and applications of QMBSs: how sensi-
tive is scarring to finite temperature T? For example,
imperfections in state preparation – due to finite tem-
perature – could strongly impact the dynamics. In a
scenario commonly studied in the literature, an initial
state of interest, |ψ0⟩, is prepared as the ground state of
a simple preparation Hamiltonian Ĥi. The system is then
quenched by rapidly changing the parameters so that the
dynamics is now governed by a final Hamiltonian Ĥf , for
which our prepared state is no longer close to the ground
state. Here, we will consider the case where, instead of
the ground state, the Gibbs state of Ĥi at temperature
T is obtained as a result of preparation.

For the so-called PXP model – the effective model of
Rydberg atom arrays mentioned above – we find that the
finite-T preparation scheme still results in remarkably ro-
bust QMBS signatures, even at high temperatures. We
present evidence for this based on both large-scale classi-
cal simulations as well as quantum simulation of finite-T
quenches on the IBM quantum computer. Surprisingly,
for other models where QMBS states obey exact alge-
braic relations, such as the spin-1 XY magnet [11], we
find opposite behavior: signatures of QMBS decay fast
with temperature. Our results establish the robustness
of QMBSs at finite temperature in the PXP model, and
show they can be harnessed on existing quantum hard-
ware. Moreover, they highlight the fine differences be-
tween QMBS models depending on the nature of the un-
derlying scarring mechanism and the algebraic structure
of their QMBS subspaces.
PXP model and finite-T quench protocol.—To

probe the effect of temperature, we prepare the system
in a thermal Gibbs state at a given inverse temperature
β = 1/T using some pre-quench Hamiltonian Ĥi, to be
specified below, with eigenstates |En⟩ and corresponding
eigenenergies En+1 ≥ En. The initial state is a mixed
state

ρ̂(β) =
e−βĤi

Z
=

1

Z

∑
n

e−βEn |En⟩⟨En| , (1)

with Z =
∑

n e
−βEn the partition function of Ĥi. For

simplicity, we will always add a constant diagonal contri-
bution to Ĥi to ensure that the ground state has energy
E0 = 0, which has no impact on the physics but sim-
plifies the calculations. At time t = 0, we quench the
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system with the Hamiltonian Ĥf , generally distinct from

Ĥi, and let it evolve freely as a closed system.
The model we consider is the “PXP” model [12, 13]

which comprises a one-dimensional (1D) chain of spin-1/2
degrees of freedom, defined in terms of Pauli matrices:

ĤPXP
f =

N∑
j=1

P̂j−1σ̂
x
j P̂j+1, (2)

where P̂j = (1̂j−σ̂z
j )/2 and we assume periodic boundary

conditions (PBCs). This model physically arises as an ef-
fective model in the strong Rydberg blockade regime [14],
where neighboring excitations of the atoms are forbidden.
In the spin language, the projectors P̂ ensure that flips
do not generate any pairs of ↑↑. Unless specified other-
wise, we will work fully within the constrained Hilbert
space where there are no neighboring pairs ↑↑.
The PXP model displays non-thermalizing dynamics

when initialized in the Néel state, |Z2⟩ ≡ |↑↓↑↓ ... ↑↓⟩.
Evolving this state with the Hamiltonian in Eq. (2), one
observes that the dynamics of local observables is ap-
proximately regular [15]. By contrast, other initial states
exhibit fast equilibration, as expected in a chaotic sys-
tem [1]. Conversely, this atypical dynamics is also re-
flected in ergodicity breaking among a subset of eigen-
states of the PXP model [16–18], even in the presence of
perturbations [19, 20] or in energy transport [21]. Given
the special role of the |Z2⟩ state for scarred dynamics in
the PXP model, for our finite-temperature state prepa-
ration we use the staggered magnetization operator

Ĥi = 1̂N + M̂SN, M̂S =
1

N

N∑
j=1

(−1)j σ̂z
j , (3)

which has the |Z2⟩ state as its unique ground state with
zero energy. The initial Hamiltonian (3) is chosen as it is
easily realizable in experiment and quantum simulation,
it breaks the degeneracy between the Néel state and its
translated equivalent, and its first excited eigenstates can
be considered defects on top of the |Z2⟩ state due to
thermal fluctuations.

Diagnostics of thermalization.—We will consider
the interferometric Loschmidt echo

F(t) =
∣∣Tr{e−iĤf tρ̂

}∣∣2, (4)

which is a suitable generalization of the more familiar re-
turn fidelity, to which it reduces in case of a pure state. If
Ĥf obeys the ETH and ρ̂ is close to infinite temperature

with respect to Ĥf , then we expect F to quickly approach
1/D, with D the Hilbert space dimension. On the other
hand, after a quench from a scarred initial state, we ex-
pect F(t) to return to an O(1) value after some number
of cycles with period τ . As such, the main quantity we
will investigate is Fk, which is the maximum of F(t) in
the vicinity of t = kτ . When performing system-size

scaling to the thermodynamic limit, we will also use the
fidelity density, f = ln (F) /N , and we will use the same
notation of fk to denote ln (Fk) /N .
In order to develop some intuition about the behavior

of F(t), we derive in the Supplemental Material (SM) [22]
its expected maximum assuming that all oscillations are
caused by the ground state:

E [Fk] =
F∞

k

Z2
+

(
1− 1

Z

)2
D , (5)

with F∞
k the value at β = ∞, which is equal to 1 in

the case of perfect scarring. The symbol E denotes
an expectation value (in the probabilistic sense). It is
needed here as F(t) contains a term that is directly re-
lated to the spectral form factor (SFF), which is not self-
averaging [23]. As in the PXP model there are no free
parameters to average over, we can expect deviations
from this prediction (5) in our simulations. However,
this should only have an impact at very high temper-
atures, where the SFF contribution is significant. For
models that obey our assumption of the ground state
solely contributing to F(t), we confirmed good agreement
with Eq. (5) at low and intermediate temperatures [22].
As a second diagnostic, we study the evolution of the

staggered magnetization density, ĥi = Ĥi/N . As our fo-
cus is on initial states at infinite temperature with respect
to the quench Hamiltonian Ĥf , we are interested in the
deviation from the infinite-T expectation value, thus we
define δĥi = (ĥi−⟨ĥi⟩β=0)/⟨ĥi⟩β=0. Note that ĥi is posi-
tive semi-definite by construction as the ground state en-
ergy is 0. As it is not proportional to the identity, it must
have strictly positive eigenvalues and so ⟨ĥi⟩β=0 (equal to
the mean of the eigenvalues) cannot be 0, meaning that

δĥi is not singular. We will once again focus on the value
after k periods, denoted by hk. In the PXP model, scar-
ring is characterized by state transfer between the two
Néel states, which are the extremal eigenstates of Ĥi. As
such, we expect ⟨δĥi⟩(t) to be maximal at t = (n+1/2)τ
and minimum at t = nτ with n integer, thus we will
study δhk with k both integer and half-integer. Analo-
gous to Eq. (5), we can derive the expected behavior in
large systems to be [22]

δĥk =
(
h∞k / ⟨ĥi⟩β=0 − 1

)
/Z, (6)

where h∞k is the value at zero temperature, which reduces
to 0 in the case of perfect scarring. The simplicity of this
expression comes from the various conditions we have set
on our initial state [22].
Classical simulation.—The dynamics of Fk, fk,

and hk are obtained via exact diagonalization and plot-
ted in Fig. 1 for various system sizes indicated in the
legend. For reference, we also plot the predictions of
Eqs. (5) and (6) with dashed lines. Surprisingly, Fig. 1
shows that, for all the metrics, there are strong deviations
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FIG. 1. (a) Fidelity density and (b) deviation of staggered
magnetization density as a function of temperature in the
PXP model. Inset of (a) shows the fidelity. All quantities
show strong deviation from the naive expectation of Eqs. (5)
and (6) denoted by the dashed lines of the same color.

from theoretical predictions. An obvious reason for the
mismatch between numerics and theoretical predictions
could be finite-size effects. This appears unlikely, how-
ever, as a sensitive quantity such as the fidelity density is
well converged in system size, as shown in Fig. 2 for an
illustrative point β ∼ 1, away from both the β ≈ 0 and
β → ∞ regimes. One can clearly observe fidelity peaks
at times that are multiples of τ ≈ 4.8, which coincides
with the known revival period of the PXP model [16].
Consequently, we still see strong deviations in fk and
Fk at large system size N = 28, where D = 710647,
while for hk we probed system sizes up to N = 22, where
D = 39603. A detailed study of finite-size scaling of fk
and δhk is provided in Fig. 2(b). These results show that
both quantities are well converged already at N ≈ 20,
and we expect the observed behavior to persist in larger
systems, including the larger-than-expected fidelity den-
sity near infinite temperature.

Another possibility for the mismatch between numer-
ics and theory in Fig. 1 could be due to unjustified as-
sumptions in the latter. We test this in Fig. 3 where we
compute the fidelity in the case where the ground state
is artificially brought to infinite energy. We can engi-
neer this by including an energy penalty V |E0⟩⟨E0|, with
V→∞, in Ĥi. Not only are clear revivals visible when
the ground state is excluded, the same is true when the
first set of excitations is excluded as well. This indicates
that the presumption that only the ground states gives a
significant contribution is not correct, accounting for the
discrepancy with the theoretical predictions.

Quantum simulation.—Our previous results for the
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FIG. 2. Fidelity density and observables after a quench in
the PXP model. (a) Fidelity density over time for differ-
ent system sizes for β = 0.89, away from the high- and low-
temperature regimes. (b) Fidelity density and (c) observable
extrema. The dashed lines correspond to the theoretical ex-
pectations of Eqs. (5) and (6) for k = 1. Both metrics are
well converged in system size and show robustness to finite
temperature when compared to the expected behavior.
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FIG. 3. Interferometric amplitude after a quench in the pure
PXP model for N = 28 at zero temperature with energy
penalties placed on the low-energy spectrum. Revivals can
be seen even when the ground state and the first set of ex-
cited states are excluded from the initial Gibbs state.

PXP model strongly suggest that scarring signatures per-
sist at finite temperature. We now demonstrate that this
robustness can be witnessed in current experimental de-
vices. We have employed the IBM quantum processor,
Kolkata, which uses a heavy hex topology and has quan-
tum volume 128 [24], to simulate finite-T quenches in the
PXP model. The IBM processors use a cross-resonance
gate to generate the CNOT entangling operation. On
this hardware, we simulated the time dependence of the
staggered magnetization, M̂S , in Eq. (3). We simulate
the evolution of the system under the Hamiltonian (2)
but now, for convenience, assuming open boundary con-
ditions. As in the classical simulations, we simulate
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FIG. 4. (a) Time dependence of M̂S for β ∈ {0.1, 1, 4} in the
PXP model with 8 qubits and OBC. The experimental data
shows good agreement with the numerical simulations. (b)

Relative deviation after a half period of ⟨Ĥi⟩/N from its pre-
dicted value of Eq. (6). The quantum simulation data shows
larger deviation than the naive expectation. In both panels,
the error bars correspond to partial systematic errors from
rescaling and statistical sampling from the density matrix.
The simulations for β = 2 were run on July 26, 2023 and all
other β on August 4th.

evolution for an initial Gibbs state (1) at temperature
1/β, working fully within the constrained Hilbert space.
However, rather than preparing the thermal state (1)
explicitly on the quantum computer, we use the EρOq
method [25–27], which involves sampling from the den-
sity matrix (1) via the traditional Markov Chain Monte
Carlo (MCMC) method, see SM [22] for details. In par-
ticular, to the authors’ best knowledge, this is the largest-
scale demonstration of the EρOq algorithm on quantum
hardware to date. We have used the suite of error miti-
gation techniques provided by QISKit Runtime [28, 29],
which include: dynamic decoupling [30–38], randomized
compiling [39–46], and readout mitigation (specifically
T-REx) [47–64]. We also used a rescaling procedure to
counteract the signal loss from the effective depolarizing
channel caused by the randomized compiling [65–67].

We have simulated the PXP model at 5 different in-
verse temperatures β ∈ {0.1, 0.5, 1, 2, 4} and generated
Nc = 105 configurations at each β. The time-evolution
operator was decomposed using the Trotter approxima-
tion with a time step of δt = 0.4. The time evolution of

M̂S is shown for 8 qubits in Fig. 4(a) for β ∈ {0.1, 1, 4}.
While this is a relatively small system, the PXP model
is known to be difficult to simulate even with advanced
error-mitigation techniques [68]. We find that a reliable
signal for the time dependence can be obtained up to
one oscillation or roughly ten Trotter steps. From this
data, we can extract δhk; in fact, as ⟨ĥi⟩β=0 = 1, it is

straightforward to see that δĥ = M̂S. In Fig. 4(b), we
plot δh1/2 for our quantum simulation along with the
exact results. Both show larger deviations from the ther-
mal value that our naive expectation would predict in
Eqs. (5) and (6). While we need to keep in mind the
small system size used, which limits the accuracy of our
prediction based solely on the ground-state contributing,
its relatively good agreement with the exact data means
that we can expect the same kind of behavior in larger
systems.

Conclusions and discussion.— We have studied
the fate of QMBS revivals at finite temperature in the
PXP model. The initial density matrix at temperature
1/β is produced by an annealing procedure, instead of
the usual pure states previously considered in the liter-
ature. We have observed robust QMBS signatures at
finite temperature in both the fidelity and local observ-
ables. Finite-size scaling shows that this behavior is well
converged within the accessible system sizes. Using a dig-
ital quantum computer, we have demonstrated persistent
QMBS revivals in the IBM device at finite temperature.

In order to understand the origin of the observed ro-
bustness of scarring, we have studied in the SM [22] finite-
T quenches for the perturbed PXP model with nearly
perfect scarring [69, 70] as well as other models with anal-
ogous QMBS states, such as the spin-1 XY magnet [11].
While PXP perturbations yield essentially the same re-
sults as presented above, the behavior of the spin-1 XY
model is found to be completely different: the low-T be-
havior of the return fidelity as well as the oscillations of
observables are now well described by Eqs. (5)-(6), im-
plying that only the T = 0 state gives a non-vanishing
contribution and the QMBSs are much more fragile.

We attribute the difference in finite-T behavior be-
tween the PXP and other models to the different al-
gebraic properties of their QMBS states. Namely, the
QMBS states in the PXP model form a representation
of a large su(2) spin [70], which is a special case of the
“restricted spectrum generating algebra” that describes
many other QMBS models, including the mentioned spin-
1 XY magnet [71–73]. In most of these models, the non-
thermal eigenstates are completely decoupled from the
thermal bulk, hence they exactly form a single algebra
representation. By contrast, in the PXP model the al-
gebra is inexact, due to the small residual couplings to
the thermal bulk. Furthermore, the non-thermal eigen-
states form towers of multiple su(2) representations that
originate from a collective spin-1 degree of freedom [18].
This means that when starting from a finite-temperature
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ensemble in the PXP model, we can have coherent con-
tributions from states belonging to different su(2) repre-
sentations, which effectively “shield” QMBSs from finite
temperature.

Unfortunately, due to a lack of an exhaustive construc-
tion of multiple su(2) representations in the PXP model,
their impact on finite-T quench dynamics remains a con-
jecture at this stage. One interesting direction to pur-
sue would be to construct toy models with a controllable
number of embedded algebra representations and probe
their finite-T behavior. On the other hand, it is worth
noting that there are also other frameworks for building
QMBS models that extend beyond the simple Lie algebra
scheme considered here, e.g., [73–75], and it would be in-
teresting to understand if any of them display a similar
robustness to finite temperature.
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In this Supplemental Material, we derive the low-temperature approximation for the fidelity and observable density.

We then show the result of finite-temperature quenches in the spin-1 XY model with two different preparation

Hamiltonians. We also provide results for the perturbed PXP model where scarring is essentially exact. Finally,

we give additional information on the algorithm and error-mitigation techniques used for our results on the IBM

Kolkata quantum processor.

LOW-TEMPERATURE APPROXIMATION

Here we derive the expected behavior of the interfero-
metric Loschmidt echo and of the expectation value of
a local observable ĥi in a scarred system following a
quench.

Interferometric Loschmidt echo

Let us first focus on the interferometric Loschmidt
echo, defined in the main text as

F(t) =
∣∣Tr{e−iĤf tρ̂

}∣∣2. (S1)

Let us denote by |En⟩ the eigenstates of Ĥi with eigenen-
ergies En. As was done in the main text, we will assume
E0 = 0. For a given value of the inverse temperature β
(with respect to Ĥi), our initial mixed state will then be
given by

ρ̂ =
1

Z

∑
En

e−βEn |En⟩⟨En| , (S2)

where Z is the partition function defined as

Z =
∑
En

e−βEn . (S3)

Substituting the expression for the density matrix,
Eq. (S1) becomes

Fρ̂(t) =
1

Z2

∣∣∣∣∑
En

e−βEn⟨En|e−iĤf t|En⟩
∣∣∣∣2. (S4)

At times that are multiples of the period, t = kτ , we

know that ⟨E0|e−iĤf t|E0⟩ =
√
F∞

k , where the 0 sub-
script denotes infinite β (or equivalently zero tempera-
ture). Let us discuss the other eigenstates |En⟩ with

n ̸= 0. We assume them to be thermalizing with respect

to Ĥf and so we should get ⟨En|e−iĤf t|En⟩ ≈ e−irn/
√
D

for t long enough, with e−irn essentially a random phase.
As they are essentially random with a very small indi-
vidual contribution, we can forget about their weights
and consider their equal superposition. While this is not
very accurate for larger values of β where their weights
can strongly vary, in that regime the contribution of the
ground state completely dominates around t = kτ . As
such, any inaccuracy in the contribution of the other
eigenstates will be effectively negligible. On the other
hand, for small β the ground state no longer dominates
but the prefactor of each eigenstate is close to equal.
Thus, our approximation is justified and we can rewrite

Fρ̂(kτ) =

∣∣∣∣
√

F∞
k

Z
+

(
1− 1

Z

)∑
n̸=0

⟨En|e−iHfkτ |En⟩
∣∣∣∣2

≈
∣∣∣∣
√
F∞

k

Z
+

(
1− 1

Z

)
Tr
[
e−iHfkτ

] ∣∣∣∣2.
(S5)

Taking the expectation value, the cross product van-
ishes as its expectation value is zero for a chaotic sys-
tem. Meanwhile Tr

[
e−iHfkτ

]
|2 is simply the spectral

form factor (SFF) and its expectation value is 1/D once
the Heisenberg time has been reached. Hence, the expec-
tation value of Fρ̂(kτ) for a long enough τ is

E [Fρ̂(kτ)] =
F∞

k

Z2
+

(
1− 1

Z

)2
D . (S6)

Note that, as the SFF is not self-averaging, we expect
to reach this quantity in the thermodynamic limit only
after averaging over a number of realizations, denoted by
the probabilistic expectation E. However, this gives us
an idea of the expected behavior.

We can identify two leading contributions that con-
tribute at different temperature regimes. At very low



S2

temperature, the ground state will be the main contri-
bution, while at very high temperature the largest term
will come from the thermal states. We are mostly inter-
ested in the low temperature regime, where we can still
expect to see traces of ergodicity breaking. In this regime
β ≫ 1, we should have F(kτ) ≈ F∞

k /Z2.

Observables

We now derive an expression for the expectation value
of ĥi if only the ground states of Ĥi shows perfect revival
in Ĥf and all its other eigenstates thermalize rapidly. As
in the previous section, we denote by |En⟩ the eigenstates
of the pre-quench Hamiltonian Ĥi and by τ the revival
period. The previous assumption then translates into the
statement

⟨En|e−iĤfτ |Em⟩ = δ0,0 +
(1− δn,0)(1− δm,0)√

D − 1
, (S7)

with D the Hilbert space dimension and τ is assumed to
be large. This will prove useful to compute the expecta-
tion value of ĥi =

1
N Ĥi over time, defined as

⟨ĥi⟩ (t) = Tr
{
ρ̂(t)ĥi

}
=

1

N

∑
n,m

P (Em) ⟨En| e−iĤf t |Em⟩ ⟨Em| eiĤf tĤi |En⟩

=
1

N

∑
n,m

P (Em)En ⟨En| e−iĤf t |Em⟩ ⟨Em| eiĤf t |En⟩

=
1

N

∑
n,m

P (Em)En

∣∣ ⟨En| e−iĤf t |Em⟩
∣∣2

=
1

N

∑
n,m

P (Em)Ẽn

∣∣ ⟨En| e−iĤf t |Em⟩
∣∣2,

(S8)
with P (En) = e−βEn/Z and Ẽn = En/N . For t = kτ we
can use the assumption made in Eq. (S7) to get

⟨ĥi⟩ (kτ) ≈ P (E0)Ẽ0 +
∑
n̸=0

∑
m̸=0

P (En)Ẽm

D − 1

= P (E0)Ẽ0+

∑
m̸=0

P (Em)

(∑n̸=0 Ẽn

D − 1

)

= P (E0)Ẽ0+(1−P (E0))

(
−Ẽ0 +

∑
n Ẽn

D−1

)

= P (E0)Ẽ0+(1−P (E0))

(
D ⟨ĥi⟩β=0 −Ẽ0

D−1

)

= P (E0)Ẽ0+(1−P (E0))

(
D ⟨ĥi⟩β=0 −Ẽ0

D−1

)
.

(S9)

In the limit of large system sizes, we can take D
D−1 → 1

and Ẽ0

D−1 → 0, since Ẽ0 = E0/N is O(1). This leads to

⟨ĥi⟩ (τ) = P (E0)Ẽ0 + (1− P (E0)) ⟨ĥi⟩β=0

= ⟨ĥi⟩β=0 + P (E0)
(
Ẽ0 − ⟨ĥi⟩β=0

)
= ⟨ĥi⟩β=0 +

1

Z

(
Ẽ0 − ⟨ĥi⟩β=0

)
.

(S10)

For a large enough system size, we expect both E0 and
⟨ĥi⟩β=0 to converge towards a finite value, and so in
the infinite temperature limit where Z = D we recover
⟨ĥi⟩β=0. On the other hand, at zero temperature we have

that Z = 1 and and we simply get Ẽ0 = ⟨ĥi⟩β=∞.
If we are now interested in the deviation from the in-

finite temperature value, we find the simple expression

⟨δĥi⟩ (kτ) =
1

Z

(
Ẽ0

⟨ĥi⟩β=0

− 1

)
. (S11)

In the simple case we consider here, we also have that
E0 = 0, leading to the even simpler formula of

⟨δĥi⟩ (kτ) = − 1

Z
. (S12)

If the revivals are not perfect, after one revival the
ground state wavefunction does not lead to a value of
Ẽ0 = 0 but instead to h∞k . In that case we can simply

replace Ẽ0 by the this value to get

⟨δĥi⟩ (kτ) =
1

Z

(
h∞k

⟨ĥi⟩β=0

− 1

)
. (S13)

SPIN-1 XY MODEL

In this section, we show results for finite-temperature
quenches in the 1D spin-1 XY magnet [11], where quan-
tum many-body scar (QMBS) eigenstates can be exactly
constructed. The spin-1 XY model is described by the
Hamiltonian

Ĥf,XY =J
N−1∑
j=1

(
Ŝx
j Ŝ

x
j+1 + Ŝy

j Ŝ
y
j+1

)

+ h
N∑
j=1

Ŝz
j +D

N∑
j=1

(
Ŝz
i

)2
+ J3

N−3∑
j=1

(
Ŝx
j Ŝ

x
j+3 + Ŝy

j Ŝ
y
j+3

)
. (S14)

Unless specified otherwise, we will set J = 1, h = 1, D =
0.1, and J3 = 0.1 and assume open boundary conditions
(OBCs). For these values of parameters, the model was
shown to be non-integrable and displaying chaotic level
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statistics [11]. At the same time, preparing the system
in the initial state

|ψ0⟩ =
N⊗
j=1

[ |+1⟩ − (−1)j |−1⟩√
2

]
(S15)

was shown to give rise to perfect oscillatory dynam-
ics [11], revealing the existence of QMBSs. These os-
cillations can be understood as spin precession, due to
the state |ψ0⟩ in Eq. (S15) having overlap on only N +1
scarred eigenstates of Ĥf,XY. This motivates our choice
of this model, as it admits a similar algebraic descrip-
tion as the PXP model, but with the added possibility
of writing down the scarred eigenstates in closed analytic
form.

Note that the state |ψ0⟩ has an expectation value of
energy equal to DN , while the middle of the spectrum of
Ĥf is at energy 2DN/3. As we use a small value of D, the
initial state is thus very close to infinite temperature with
respect to Ĥf (e.g., forN = 8 we find βf = 8.8×10−3). In
the remainder of this section, we repeat the computations
of the same metrics as for the PXP model in the main
text and contrast the behavior of the two models.

To prepare the state in Eq. (S15), we can use the pre-
quench Hamiltonian proposed in Ref. [11]:

Hi,XY =
N

2
+

N∑
j=1

(−1)j
[(
Ŝx
j

)2
−
(
Ŝy
j

)2]
. (S16)

The resulting thermal state at temperature β will always
be close to infinite temperature with respect to Ĥf , war-
ranting our expectation of thermalization to the corre-
sponding ensemble.

Figure S1 shows F1 after a quench along with its the-
oretical counterpart, computed using

Z = (1 + e−β + e−2β)N , (S17)

which is straightforward to obtain as the Hamiltonian
Ĥi,XY is non-interacting. The agreement with the pre-
diction is quite good, showing that the contribution to
revivals of states above the ground state is indeed very
small.

To further verify how much these states impact the
dynamics, we investigate the scenario where an energy
penalty V |E0⟩⟨E0| with V → ∞ is added to the prepa-
ration Hamiltonian. This essentially removes the ground
state while leaving the rest of the spectrum completely
untouched due to the orthogonality of eigenstates. We
plot results for this and for the case where the first set of
excited states are also removed in Fig. S2. We see that
the revivals are destroyed, except from small fluctuations
that are expected to decay with system size.

Finally, we study the deviation of the expectation value
of Ĥi/N to the thermal value after a quench, as shown
in Fig. S3. Overall, we see that our approximation of
any non-thermalizing dynamics stemming solely from the
ground state holds well.
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FIG. S1. Maximum interferometric amplitude after a quench
in the XY spin-1 model for various values of the temperature
using the preparation Hamiltonian in Eq. (S16). The dashed
lines show the expected scaling following Eq. (5), with the
partition function given by Eq. (S17). The agreement with
the expect scaling should be contrasted with the PXP model
in Fig. 1.
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FIG. S2. Maximum interferometric amplitude at zero tem-
perature after a quench in the XY spin-1 model with N = 10
and using Ĥi in Eq. (S16). Various energy penalties on the
low-energy spectrum are compared. The perfect revivals in
the top panel and their absence in the bottom two panels
should be contrasted with the PXP case in Fig. 3.

ALTERNATIVE PREPARATION HAMILTONIAN
FOR THE XY MODEL

In order to compare more directly our results of the
XY model with those of PXP model, here we use an
alternative preparation Hamiltonian than holds a closer
relation with the algebraic structure of the scarred states.
This will have the effect of enhancing the overlap of states
in the low-energy spectrum with scarred eigenstates. We
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FIG. S3. Extremal value of ⟨ĥi⟩ around t = kτ for the

spin-1 XY model with system size N = 9 and using Ĥi in
Eq. (S16). The dashed black line indicates the theoretical
prediction from Eq. (6). It provides a good approximation to
the exact dynamics, despite the much smaller system size and
Hilbert space size in this case compared to the PXP model in
Fig. 1.

now use the pre-quench Hamiltonian

Ĥ
(2)
i,XY =

N∑
j=1

(−1)j
[(
Ŝx
j

)2
−
(
Ŝy
j

)2]
+V

N∏
j=1

[
1̂j−

(
Ŝz
j

)2]
.

(S18)
Note that with respect to the preparation Hamiltonian in
Eq. (S16), the additional term ∝ V has been added. This
has no effect on the ground state. However, if we choose
V ≫ 1 this heavily penalizes any occurrence of the |0⟩
state. As a consequence, the first excited states have a
single (|+1⟩ ± |−1⟩)/

√
2 turned into (|+1⟩ ∓ |−1⟩)/

√
2.

The additional excitation will follow the same scheme,
and the states with |0⟩ sites — which are orthogonal to
scarred states — will only contribute at large tempera-
ture. Effectively, this Hamiltonian acts as the Ĵx opera-
tor of the effective su(2) algebra, while Ĥf acts as Ĵz in
the scarred subspace. The same relation is obeyed with
Ĥi and Ĥf in the PXP model.
One of the main effects of this is that the symmetric

superposition of the first set of excited states is entirely
contained in the scarred subspace. So we now get that
one state in the N first excited states is meaningful for re-
vivals. This is similar to the situation in the PXP model,
where one state out of the N/2 in the first set of exci-
tations belongs to the scarred subspace. However, this
contribution still goes to 0 as N → ∞. In the rest of this
section, we set V = 50. In order to adapt our analytic
expectation to this change, we change Z to

Z =(1+e−2β)N

+e−βV
[
(1+e−β+e−2β)N−(1+e−2β)N

]
, (S19)

which is very close to simply (1+e−2β)N for β > 10−1.
Indeed, while away from the β ≪ 1 regime, the initial
state has essentially no overlap with any state with a |0⟩
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FIG. S4. Maximum interferometric amplitude after a quench
in the XY spin-1 model for various values of the tempera-
ture. The dashed lines indicate the expected scaling for the
data of the same color. (a) Comparison between the prepa-
ration Hamiltonians in Eqs. (S16) and (S18) for N = 10. (b)
Quenches using the preparation Hamiltonian in Eq. (S18) for
various system sizes. While there are some deviations from
the expected behavior, they decay with system size and only
happen for very low values of the fidelity density.

site. Results for this case are shown in Fig. S4. While we
see a good fidelity compared to the original pre-quench
Hamiltonian in Eq. (S16), this is essentially due to the
difference of the weight on the ground state as captured
by the analytic prediction. There are also some small
deviations with respect to the theoretical prediction for
β ≈ 0.1, but they clearly decay with system size. They
also happen in a regime where the observed fidelity is
effectively zero, meaning that traces of scarring in the
system will be extremely difficult to measure. This show-
cases that, as seen with the previous preparation Hamil-
tonian, only the ground state of Ĥi is expected to con-
tribute to the non-ergodic dynamics in the thermody-
namic limit.

This is confirmed by quenches where the contribution
of the ground state is artificially removed by setting an
energy penalty on it; see Fig. S5. While the peak in
the middle panel is slightly larger than in Fig. S2, the
difference is small and expected to decay with system
size.

PERTURBED PXP MODEL

While the QMBS phenomenology in the spin-1 XY
model resemble that of the PXP model discussed in the
main text, one obvious difference is that the former hosts
exact QMBS and perfect revivals. Thus, in order to be
able to compare the two models on the same footing,
we consider the perturbed version of the PXP model,
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FIG. S5. Interferometric amplitude after a quench in the XY
spin-1 model with N = 10 using the preparation Hamiltonian
in Eq. (S18). Various energy penalties on the low-energy spec-
trum are compared. The only visible difference with Fig. S2
is the slightly larger amplitude of the fluctuations around
t = 2τ .

ĤPXP
f +δĤ, in which scarring is essentially perfect. This

perturbation was devised in Ref. [70] and takes the form

δĤ = −
N∑
j=1

N/2∑
d=2

hdP̂j−1σ̂
x
j P̂j+1

(
σ̂z
j−d + σ̂z

j+d

)
, (S20)

with

hd = h0
(
ϕd−1 − ϕ1−d

)−2
, (S21)

h0 = 0.051, and ϕ = (1 +
√
5)/2 the golden ratio. The

first order term in this expansion was also considered
in Ref. [69]. Low-order terms of an expansion such as
Eq. (S20) can be iteratively derived in a process of “cor-
recting” the structure constants of the su(2) algebra rep-
resentation, furnished by QMBS eigenstates [76]. Thus,
the perturbation in Eq. (S20) makes the revivals from the
Néel state essentially perfect and the associated algebra
in the QMBS subspace nearly su(2), allowing for a much
closer comparison with the spin-1 XY model.

Using the perturbed PXP model in Eq. (S20), we re-
peat the computations for the pure PXP model given in
the main text, in order to check to what extent the ex-
actness of QMBS structure impacts the conclusions. The
dynamics of Fk, fk, and hk for the perturbed PXP model
are shown in Fig. S6. For all metrics, we see strong de-
viations from the naive thermal predictions. In Fig. S7
we compute the fidelity in the case where the ground
state is artificially brought to infinite energy. Not only
are clear revivals visible when the ground state is ex-
cluded, the same is true when the first set of excitations
is excluded as well. The symmetric superposition of all
states with one defect on top of the Néel state should have
overlap exclusively on scarred eigenstates. However, the
other N/2 − 1 superpositions will be orthogonal to it,
and should theoretically not contribute to the revivals.
Thus, as only one state out of N/2 contribute, we expect
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FIG. S6. Fidelity, fidelity density, and deviation of observable
density for various values of the temperature in the perturbed
PXP model. All quantities show strong deviation from the
naive expectation denoted by the dashed black lines.

its contribution to be similar to what was seen in the
XY model. The next set of excitations is then made of
the Néel state with two defects. As once again only the
symmetric superposition is in the scarred subspace, this
concerns one state in N(N/2− 1)/2. Overall, one would
expect the behavior to be the same as in the XY model,
but it clearly is not.
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FIG. S7. Interferometric amplitude after a quench in the per-
turbed PXP model for N = 28 with energy penalties placed
on the low-energy spectrum. Clear revivals can be seen even
when the ground state and the first set of excited states are
removed.

We emphasize that what we witness in the PXP model
is not a finite-size effect. Actually, the Hilbert space sizes
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FIG. S8. Scaling of fidelity density and deviation of Ĥi/N
after a quench in the perturbed PXP model. The dashed lines
correspond to the theoretical expectations. Both metrics are
well converged in system size and show robustness to finite
temperature when compared to the expected behavior.

explored in this model are larger than the ones in the
XY model. Indeed, in the latter we saw good agreement
with the theoretical predictions already for N = 8 and
N = 10, corresponding to D = 39 = 19683 and D =
310 = 59049, respectively. Meanwhile, in the PXP model
we still see strong deviations in fk and Fk for N = 28
where D = 710647, an order of magnitude larger. For
hk we probed system sizes up to N = 22 where D =
39603. Furthermore, we provide the scaling of fk and
δhk with system size in Fig. S8. Our results show that
both quantities are well converged already at N ≈ 20.
As such, we expect the same special behavior in larger
systems. This includes the higher-than-expected fidelity
density near infinite temperature.

DETAILS OF THE QUANTUM ALGORITHM

To simulate the PXP model, we have employed the
IBM quantum processor, Kolkata, which uses a heavy
hex topology and has quantum volume 128 [24]. The
IBM processors use a cross-resonance gate to generate
the CNOT entangling operation. On this hardware, we
simulated the time dependence of the staggered magne-
tization, M̂S in Eq. (3). We simulate the evolution of the
system under the Hamiltonian in Eq. (2) but now, for
convenience, assuming open boundary conditions. The
boundary terms in the Hamiltonian are taken to be σ̂x

1 P̂2

and P̂N−1σ̂
x
N .

As in all the classical simulations in this work, our

goal is to simulate evolution for an initial Gibbs state
at temperature β, as defined in Eq. (1). This must be
done in the constrained Hilbert space where there are
no neighboring |↑⟩, thus we only consider states in this
subspace for our initial state. The time dependence of
M̂S can be explicitly written as

⟨M̂S(t)⟩=
∑
Ek

e−βEk

Z
⟨Ek|Û†(t)M̂SÛ(t)|Ek⟩, (S22)

where we recall that the |Ek⟩ are the eigenstates of Ĥi

in the constrained Hilbert space. At this point, we can
see that it is sufficient to perform a simulation for all the
states in ρ̂, and perform a weighted average using their
Boltzmann weights, e−βEk/Z.

We prepare the thermal state from Eq. (1) using the
EρOq method [25–27]. this method involves sampling
states from the density matrix in Eq. (1) using traditional
Markov Chain Monte Carlo (MCM) methods rather than
preparing the thermal state explicitly on the quantum
computer.

We generate configurations from the Hamiltonian in
Eq. (3) as follows. Because the Hamiltonian in Eq. (3) is
diagonal, the density matrix can be written as a diagonal
operator

ρ̂i(β) =
1

Z

∑
{Sj}

e−βESj |Sj⟩⟨Sj |, (S23)

where the sum over {Sj} includes only the allowed spin
configurations. We can now identify a corresponding ac-
tion S = Ĥi. The system is prepared in a valid spin
configuration and spin changes are proposed randomly
in MCMC sweeps with a given probability weighted by
the change in total energy: e−β(ES′−ES). If a proposed
change would take the system to an invalid subspace the
proposed change is discarded. After generating Nc con-
figurations of the form |Sj⟩⟨Sj | from the density matrix,

we then simulate the time dependence of M̂S for each
unique spin configuration. The thermal average is then
the weighted average,

⟨M̂S(t)⟩ =
∑
{Si}

pi
Nc

⟨Si|Û†(t)M̂SÛ(t)|Si⟩, (S24)

where pi is the number of times the configuration ap-
peared in the simulation. If an nondiagonal Hamiltonian
is used for state preparation then linear combinations of
the bra and ket vectors in the density matrix need to be
used. In principle the accuracy of this method encoun-
ters an exponential signal to noise problem that is slightly
lessened by the use of a diagonal Hamiltonian [27, 77].

We used the suite of error mitigation techniques pro-
vided by QISKit Runtime [28, 29], which include: dy-
namic decoupling [30–38], randomized compiling [39–46],



S7

and readout mitigation (specifically T-REx) [47–64]. Dy-
namic decoupling is a method which aims to tackle de-
phasing errors that a quantum state accumulates by fre-
quent applications of quantum gates on idling qubits
which act to cancel accumulated phase errors. Ran-
domized compiling is used to transform the unitary er-
rors from the CNOT gate being imperfect into random
stochastic Pauli errors which are typically less catas-
trophic. Readout mitigation is a tool which takes the
output probability distribution measured from the quan-

tum computer and changes the relative bitstring outputs
using apriori knowledge determined when the quantum
computer is calibrated on the likelihood of misidentify
a |0⟩ or |1⟩ state. We also used a rescaling procedure
to counteract the signal loss from the effective depolar-
izing channel caused by the randomized compiling [65–
67]. This method works by running a circuit which con-
tains only Clifford gates and has a known classical output
and using the discrepancy between the measured and ex-
pected value to renormalize the observed value.


