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Generalized Ginsparg-Wilson relations
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We give a general derivation of Ginsparg-Wilson relations for both Dirac and Majorana fermions
in any dimension. These relations encode continuous and discrete chiral, parity and time reversal
anomalies and will apply to the various classes of free fermion topological insulators and supercon-
ductors (in the framework of a relativistic quantum field theory in Euclidian spacetime). We show
how to formulate the exact symmetries of the lattice action and the relevant index theorems for the
anomalies.

I. INTRODUCTION

The Ginsparg-Wilson (gw) relations govern how mass-
less lattice fermions without doublers can optimally re-
alize anomalous continuum symmetries [1–4]. They were
originally derived for describing massless Dirac fermions
with chiral symmetries in even spacetime dimensions,
while analogous relations were posited for a massless
Dirac fermion in three dimension with a parity anomaly
[5]. Lattice operators which satisfy these relations re-
alize anomalous symmetries in the “best” possible way:
the fermion propagator respects the symmetry at any
nonzero spacetime separation, and as in the continuum,
the lattice action possesses an exact, nearly local form
of the symmetry [4], which is therefore respected by the
Feynman rules in perturbative calculations. On the other
hand, the lattice integration measure is not invariant un-
der this “Lüscher symmetry”, and the resultant Jaco-
bian in the lattice theory correctly reproduces the con-
tinuum anomaly expressed in terms of the the index of
the fermion operator. Here we give a unified derivation
of such relations for Dirac and Majorana fermions alike
in any dimension, and show how these continuous and
discrete anomalous symmetries are realized. The con-
nection between gw fermions and extra dimensions is
well established — the first explicit solution to the gw

equations being the overlap operator [2, 6–9] which was
derived to describe edge states of domain wall fermions
in one higher dimension [10–13]. It has since been un-
derstood that these relativistic systems are equivalent to
the topological insulators and superconductors studied
in condensed matter physics, and so the generalized gw

relations we derive apply to the massless edge states of
the wide variety of topological classes [14, 15] of such
materials.

In the following analysis we are interested in the cases
of NF flavors of Dirac or Majorana fermions where (i)
the massless theory respects a symmetry G; (ii) a mass
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term is possible for regulating the theory; (iii) the mass
term necessarily breaks the symmetry G. In this set of
circumstances we expect the massless theory to have an
t’Hooft anomaly involving the G symmetry, a gw rela-
tion to exist for the ideally regulated fermion operator,
and the existence of an exact G symmetry obeyed by
the regulated action, for which the Jacobian reproduces
the anomaly of the continuum theory, a generalization of
Lüscher symmetry1.

II. GENERALIZED GINSPARG-WILSON

RELATIONS FOR DIRAC FERMIONS

A. Derivation of the relations

Following the logic of the original derivation, we start
by considering the continuum theory of a free Dirac
fermion Ψ in Euclidian spacetime of arbitrary dimension,
possibly in background gauge or gravitational fields, de-
scribed by the path integral

Z =

∫

dΨ dΨ̄e−S(Ψ̄,Ψ) . (1)

We now do a block transformation, defining a function
f(x) whose support lies in a volume ad about the origin,
and our block averaged variables to be

ψn =

∫

ddx Ψ(x)f(x − na) (2)

1 Notation: we use upper case Greek letters such as Ψ(x) to denote
continuum fields, and lower case, such as ψn for lattice variables,
generally suppressing indices for the latter. We take Euclidean γ
matrices to be Hermitian with {γµ, γν } = 2gµν ; the gauge covari-
ant Dirac operator /D = γµDµ is therefore anti-Hermitian with
imaginary eigenvalues. For a regulated Dirac operator, such as
a generic Ginsparg-Wilson operator, overlap operator, or Pauli-
Villars regulated operator, we use the notation DGW,Dov,DPV

or simply D. For Majorana fermions, we work with an antisym-
metric kinetic and mass operators denoted as D and m. We use
the mostly plus convention for our Minkowski metric.

FERMILAB-PUB-23-541-T

http://arxiv.org/abs/2309.08542v1
mailto:mclancy2@uw.edu
mailto:dbkaplan@uw.edu
mailto:hershsg@uw.edu


2

and similarly for ψ̄n. The parameter a will be our lattice
spacing, and for the rest of this article we will work in
“lattice units” with a = 1. Lattice variables χn and a
lattice action Slat = χ̄Dχ are defined by

e−χ̄Dχ =

∫

dΨ dΨ̄e−S(Ψ̄ ,Ψ) e−(ψ̄−χ̄)m(ψ−χ) (3)

so that up to an overall normalization,

Z =

∫ ∏

n

dχdχ̄ e−χ̄Dχ . (4)

The parameterm is an invertible Hermitian matrix which
we can take to be a real number m times the identity ma-
trix, but we will leave it in matrix form for now so that
the identities for Dirac fermions and Majorana fermions
(for which m is replaced by m, an imaginary antisym-
metric matrix) look similar.

We now assume that the continuum action S is invari-
ant under a global symmetry transformation Ψ → ΩΨ ,
Ψ̄ → Ψ̄ Ω̄, where Ω̄ and Ω are some operators. The sym-
metry transformations of interest are those which are bro-
ken by the Gaussian term proportional to m that we have
added to the path integral. Examples we will consider
include a U(1)A chiral transformation, a discrete chiral
transformation (not contained in U(1)A), and a coordi-
nate reflection:

Ω = Ω̄ = eiαγ̄ (chiral symmetry) , (5)

Ω = Ω̄ = γ̄ (discrete chiral symmetry) , (6)

Ω = −Ω̄ = εR1γ1 (reflection symmetry) , (7)

γ̄ being the analog of γ5 in arbitrary even dimension,
where R1 reflects the sign of the x1 coordinate; generally
ε = 1, but in certain Majorana theories ε = i. Under re-
flections we assume that background fields are similarly
reflected. We will subsequently consider an antilinear
symmetry in Euclidian space related to time reversal in
Minkowski spacetime. We focus primarily on a single fla-
vor of fermion, and hence do not discuss nonabelian fla-
vor symmetries, but our analysis can be easily extended
to include those. Other symmetries which are directly
broken by the discretization function f , such as transla-
tion symmetry, spacetime rotations, conformal transfor-
mations or supersymmetry transformations do not seem
to yield useful relations and we do not consider these.

While the action is invariant under the Ω, Ω̄ transfor-
mation, the measure generally transforms as dΨdΨ̄ →
dΨdΨ̄ e2iA , where A is called the anomaly and arises
from the Jacobian of the transformation [16].

We wish to distinguish between the continuum trans-
formation Ω and the transformation ω of the block aver-
aged variables,

ψm →

∫

Ω Ψ(x)f(x − am) ddx = ωmn ψn . (8)

The matrices ω, ω̄ are the lattice regulated forms of Ω, Ω̄.
They act as ordinary matrices on the lattice variables

ψn, but in the case of reflections, they also reflect the
background fields. Defining

Dω = ω̄Dω , mω = ω̄mω , (9)

it follows that

e−χ̄Dωχ =

∫

dΨ dΨ̄ e2iA e−S(Ψ̄ ,Ψ) e−(ψ̄−χ̄)mω(ψ−χ) . (10)

Using the relation eq. (A2) we have

e−(ψ̄−χ̄)mω(ψ−χ) = eTr lnmωm
−1

e∂χXω∂χ̄ e−(ψ̄−χ̄)m(ψ−χ),
(11)

where

Xω = m−1 −m−1
ω , (12)

and so

e−χ̄Dωχ = e2iA eTr lnmωm
−1

e∂χXω∂χ̄ e−χ̄Dχ

= e2iA eTr lnmωm
−1+Tr lnQω e−χ̄

1
Qω

Dχ , (13)

where

Qω ≡ (1−DXω) , (14)

and in the last step we used the identity eq. (A2) for a
second time.

By equating the χ dependence on both sides of eq. (13)
we arrive at two equations. The first requires the prefac-
tors of the exponentials to be equal, and we will refer to
this as the “anomaly equation”:

e2iA = det
(

mωm
−1Qω

)−1
= det (ω̄ωQω)

−1 . (15)

The second equation follows from requiring that the
fermion operators in the exponents must be equal,

Dω = Q−1
ω D , (16)

or equivalently,

Dω −D = DXωDω , (17)

and this we call the generalized gw equation. If D is
invertible, the gw equation may be written in the simple
form

ω

(

1

D
−

1

m

)

ω̄ =

(

1

D
−

1

m

)

, (18)

which states that the propagator is symmetric up to a
constant local subtraction. Assuming m does not cou-
ple neighboring sites, this subtraction is a delta-function
in coordinate space. This relation can be further trans-
formed to a yet simpler form by writing

D = m
ih

1+ ih
, (19)
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in which case the gw relation eq. (18) reduces to the
statement that mh is invariant under the ω transforma-
tion,

ω̄(mh)ω = mh , (20)

or if m commutes with ω̄, h itself is invariant. The re-
quirement that D describes a massless Dirac fermion in
the continuum limit means that D → i/p for p2 ≪ m2;
thus h → /p/m in that limit, which is hermitian (as-
suming for now that m is just a number). If we as-
sume that h both satisfies eq. (20) and is hermitian
for all momenta, then we can define the unitary matrix
V = −(1 − ih)/(1 + ih) and arrive at another useful ex-
pression for D,

D =
m

2
(1+ V ) , V †V = 1 , (21)

with

V → −1+
2i/p

m
+O

[

(

/p

m

)2
]

(22)

The eigenvalues of V lie on a unit circle centered at the
origin in the complex plane, and those of D lie on a circle
of radius m centered at m/2. When the theory is gauged,
low-lying eigenvalues of /D lie near V = ?1, while large
ones are mapped to the neighborhood of V = +1. This
is familiar from the discussion in Ref. [2].

B. Solutions to the Ginsparg-Wilson equation

We now examine solutions to the gw equation, which
not only satisfy eq. (16), but also satisfy D → /D in the
continuum limit m ≫ p, in order to describe a massless
Dirac fermion, and which for free fermions only vanish at
zero momentum, so as to describe a single flavor in the
continuum limit.

1. The Pauli-Villars solution

Although the gw equation was derived in the context
of a lattice regularization, it is in fact more general, and a
simple continuum solution to the gw and anomaly equa-
tions existed decades before Ginsparg and Wilson wrote
their paper: a fermion regulated by a Pauli-Villars ghost.
Examining this case yields insights into the nature of lat-
tice solutions and symmetries.

We have seen that D = mih/(1+ ih) will solve the gw

equation and describe a massless Dirac fermion in the low
eigenvalue limit ifmh obeys the continuum symmetries of
a massless Dirac fermion, and mh→ /p for a free fermion
at low p. The simplest possible solution to these criteria
is to simply set ih = /D/m, in which case the gw solution
describes a Pauli-Villars regulated fermion:

/D → DPV = m
/D

/D +m
=
m

2

(

1−
1− /D/m

1+ /D/m

)

, (23)

where we will take m > 0 with the “continuum” limit
being m → ∞. The operator DPV is not fully regu-
lated, but the phase of its determinant is, which is where
anomalies appear. The unitary matrix V in eq. (21) is
given by

h = −i /D/m , V = −
1− /D/m

1+ /D/m
. (24)

We will show that the operator DPV simply illustrates
two general properties of solutions to the gw equation
which we discuss below. The first is that the regulated η-
invariant of the continuum operator – which describes the
phase of the fermion determinant – is realized in terms
of ln detV . The second is that when ghost fields are
introduced to represent the PV-regulated fermion, the
exact symmetry of the regulated action discovered by
Lüscher can be simply related to the symmetry of the
unregulated action. The Pauli-Villars solution will also
help inform our analysis of massless Majorana fermions
in ??.

2. The overlap solution

The first explicit lattice solution to the gw equation
was the overlap operator of Neuberger [2], based on the
earlier work in conjunction with Narayanan in Refs. [6–
8] and on the domain wall fermion construction in [10].
This solution takes the V matrix to be

V =
Dw

√

D†
wDw

, (25)

where Dw is the lattice operator for a Wilson fermion
with mass −M < 0 and Wilson coupling r =M 2,

Dw =
∑

µ

δµγµ −M −
M

2
∆ , (26)

where δµ is the covariant symmetric difference operator,
and ∆ is the covariant lattice Laplacian. Without gauge
fields, this gives

D̃w(p) =
∑

µ

(i sin pµ) +M

[

−1+
∑

µ

(1− cos pµ)

]

(27)

→M

(

−1+ i
/p

M
+O(p2/M 2)

)

. (28)

Evidently V →
(

−1+ i /
p

M +O(p2/M 2)
)

and one can see

that near the corners of the Brillouin zone where dou-
blers reside for naive lattice fermions one finds V = +1.

2 As shown in [11, 12] there is actually an interesting sequence of
topological phase transitions as a function of M/r, and taking
M/r = 1 places the theory in one of several possible topological
phases.
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Therefore this operator behaves correctly as a massless
Dirac fermion in the continuum limit.

In even spacetime dimensions, one has chiral symme-
try with ω = ω̄ = eiαγ5 . Then the gw equation as
expressed by eq. (20) is equivalent to {γ5, h} = 0 or
γ5V γ5 = V †. This latter property readily seen to be sat-
isfied by the overlap solution. In odd spacetime dimen-
sions one is interested in reflection symmetry for which
ω = −ω̄ = R1γ1 and eq. (20) requires {h, ω} = 0, implying
that ωV ω−1 = V †, which is also seen to be satisfied by
the overlap operator.

C. An exact symmetry of the lattice action

Eq. (16) together with eq. (9) implies that the action
χ̄Dχ for a gw fermion obeys an exact Lüscher symmetry,

χ̄→ χ̄Qωω̄ , χ→ ωχ. (29)

This symmetry constrains the Feynman rules for the the-
ory, eliminating the possibility of an additive mass renor-
malization for χ in perturbation theory since a mass term
breaks the symmetry with

χ̄χ→ χ̄Qωω̄ωχ , (30)

where Qωω̄ω 6= 1 for the symmetry transformations of in-
terest3. The transformation is also not a symmetry of the
χ measure, with Jacobian equal to (1/ det ω̄ωQω), which
we see from the anomaly equation eq. (15) exactly repro-
duces the exp(2iA) anomaly in the original continuum
theory. This symmetry was discovered in the context of
infinitesimal chiral transformations in even spacetime di-
mension by Lüscher [4] with ω = ω̄ = 1 + iαγ5 + O(α2),
which we have generalized here to include discrete sym-
metries.

This symmetry may seem somewhat peculiar, but be-
comes transparent when considering the Pauli-Villars so-
lution. First one simply adds a gaussian term for a spinor
ghost with Bose statistics,

Sχ → χ̄DPVχ+mφ̄φ = m

(

χ̄
/D

/D +m
χ+ φ̄φ

)

, (31)

integrating over the φ fields, which has no effect other
than modifying the normalization of the path integral.
The fermion operator DPV is defined in eq. (23). We
then make the simultaneous change of variables

χ̄ = χ̄ ′(1+ /D/m) , φ̄ = φ̄ ′(1 + /D/m) , (32)

leaving χ and φ unchanged. Because χ̄ and φ̄ have oppo-
site statistics, the Jacobians from these transformations

3 This symmetry does not protect against finite nonperturbative
additive mass renormalizations, such as those that can be gener-
ated by instantons as discussed in [17].

cancel in the integration measure. The action now looks
like

Sχ =
[

χ̄ ′ /Dχ + φ̄ ′( /D +m)φ
]

, (33)

which is the conventional form for Pauli-Villars regular-
ization in perturbative applications with a massless Dirac
fermion and a ghost of mass m.

Using the identity

Qωω̄ =
1

(1+ /D/m)
ω̄(1+ /D/m) . (34)

the Lüscher symmetry transformation of eq. (29) be-
comes very simple in terms of our new variables,

χ→ ωχ , χ̄ ′ → χ̄ ′ω̄ , (35)

with φ and φ̄ ′ not transforming at all. In other words, the
transformations of the χ and χ̄ ′ fields are just the sym-
metry transformations that leave the continuum Dirac
action invariant. Furthermore, as in the continuum, vi-
olation of the symmetry comes from the path integral
measure since eq. (35) has no compensating transforma-
tion of the ghost field. It is clear that since the Feynman
rules for χ and χ̄ ′ in this theory with ghosts respect the ω
symmetry, no symmetry-violating operators will be gen-
erated by radiative corrections in perturbation theory.

D. The anomaly equation

The anomaly equation eq. (15) states that the con-
tinuum anomaly exp(2iA) = 1/ detQω for chiral sym-
metry transformations (for which det ω̄ω = 1), while
exp(2iA) = 1/ det(−Qω) for reflections (where ω̄ω =
−1), which in both cases equals the Jacobian for the
symmetry transformation in eq. (29). This relates A,
which is a functional of the background fields, to prop-
erties of the fermion spectrum. Here we show that in
even spacetime dimensions the equation reproduces the
Atiyah-Singer index theorem as shown in [4], while in
odd spacetime dimensions it reproduces the relation be-
tween the parity anomaly and the η-invariant discovered
in Ref. [18]. For recent work on the η-invariant in the
context of the overlap operator, see [19].

We first consider the Pauli-Villars solution in both
odd and even dimensions. The phase of the determi-
nant for a massless Dirac fermion may be expressed as
exp(−iπηD(0)/2) , where ηD is defined as a regulated
sum of the signs of eigenvalues of i /D, and ηD(0) is the
universal value as the regulator is removed [20]. The
Pauli-Villars solution to the gw equation replaces /D by
its regulated form DPV = (m/2)(1 + V ) where V is uni-
tary. It follows that

detDPV

detD†
PV

= e
Tr ln 1+V

1+V † = eTr lnV . (36)
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The eigenvalues of V are (−iλ/m − 1)/(−iλ/m + 1) =
−1− 2iλ/m+O(1/m2), and so we have

Tr ln V = −iπ
∑

λ

λ

|λ|
+ O(1/m) ≡ −iπηD(1/m) . (37)

Thus we see that

ηD(0) = lim
m→∞

i

π
ln detV (38)

and the phase of the fermion determinant detDPV may
be written as e−i

π
2
ηD . This result applies generally to

solutions of the gw equation.
In odd spacetime dimensions with a space reflection

transformation as in eq. (7) we have ω̄ω = −1, mω = −m
and −Qω = −1 + 2D/m = V . Therefore the anomaly
equation states that A = − 1

2
Tr lnV = iπηD/2, correctly

realizing the parity anomaly as the regulator is removed
[18]. The perturbative expansion of ηD yields the Chern-
Simons action, a result also consistent with Ref. [21].

In even spacetime dimensions for a U(1)A chiral trans-
formation the anomaly equation states exp(2iA) =
1/ detQω. In this case it is simplest to expand to lin-
ear order in α and one finds

Qω = 1− 2iα/mDγ5 + O(α2) , (39)

and the anomaly equation states that

2iA =
2iα

m
Tr γ5D (40)

where the continuum anomaly functional A is propor-
tional to α. The Atiyah-Singer index theorem states
that the right side of the above equation should equal
−2iα times the index of the Dirac operator, (n+ − n−),
where m± equals the number of ±1 chirality zeromodes.
This result follows from the analysis by Lüscher [4], after
taking into account the relative normalization of am/2
between D and the gw operator analyzed in that paper.

E. Anti-linear symmetry

A theory that possesses an anti-linear time reversal
symmetry ψ(x, t) → Tψ(x,−t) in Minkowski spacetime
will respect a related anti-linear symmetry in Euclidian
spacetime that does not reverse any coordinates. This
is simply because after replacement of t with −iτ , the
conjugation of the i in −iτ has the same effect as t→ −t.
For this symmetry Ω = Ω̄† = T̂T where the operator T̂

reverses time in Minkowski spacetime but acts trivially in
Euclidian, while T is a unitary matrix satisfying T †γµT =
±γTµ . When this transformation is a symmetry of the
massless theory but is necessarily broken by a fermion
mass term, then it will in general be anomalous and there
will be corresponding gw relations. A simple example is
a massless Dirac fermion in 2 + 1 dimensions where we
can take the γ matrices to be γ0 = σ1, γ

1 = iσ2, γ
2 = iσ3

and T = σ2. Under time reversal the fields transform as
ψ(x, t) → Tψ(x,−t) and ψ̄(x, t) → −ψ̄(x,−t)T which is a
symmetry of the action for a massless Dirac fermion, but
for a massive fermion the transformation flips the sign
of the mass term. In Euclidian spacetime the symmetry
transformation is identical, ψ → Tψ and ψ̄ → −ψ̄T ,
except that there is no change in the coordinates; again
one finds that the massless Dirac action is invariant but
that a mass term is odd.

Our derivation of the generalized gw relations proceed
as above, only now Ω and Ω̄ are anti-linear, while the ω
and ω̄ remain as ordinary matrices. This change results
in eq. (9) being replaced by

Dω = ω̄D∗ω , mω = ω̄m∗ω , (41)

With these changes, the anomaly equation eq. (15) and
the gw equation eq. (16) remain valid. It is evident that
DPV satisfies this antilinear gw equation since h ∝ /D;
one can easily check that Dov satisfies it as well.

III. GENERALIZED GINSPARG-WILSON

RELATIONS FOR MAJORANA FERMIONS

The edge states of topological insulators are typically
massless Dirac fermions such as described in the previous
section; on the other hand, the edge states of topological
superconductors without a conserved fermion number are
massless Majorana fermions. Majorana edge states were
first discussed in Ref. [22] in the context of simulating
gluinos in d = 3 + 1 dimensions, and in Ref. [23] for
d = 1 + 1 condensed matter systems. Here we derive the
gw relations for Majorana fermions.

A. Continuum Majorana fermions4

We begin by summarizing properties of continuum Ma-
jorana fermions in arbitrary d dimensions, and enumerate
the symmetries of interest.

1. The Majorana constraint

To obtain a single flavor of massless Majorana fermion
we impose a Lorentz-covariant Majorana constraint on a
massless Dirac fermion,

ψ = ψK , ψK ≡ K
†ψ̄T , (42)

where for Lorentz invariance and self-consistency of the
constraint, K must equal either an antisymmetric C ma-
trix, or a symmetric T matrix, C and T being unitary

4 For a detailed discussion of Majorana fermions in Minkowski and
Euclidian spacetimes, see Ref. [24].



6

d: 1 2 3 4 5 6 7 8

T S S · A A A · S

C · A A A · S S S

γ̄ · − · + · − · +

TABLE I. The C and T matrices in Euclidean dimensions
d = 1, . . . , 8 mod 8 defined in eq. (43). S and A represent
whether the corresponding matrix is symmetric or antisym-
metric, while a dot indicates it does not exist. The last row de-
notes whether Cγ̄C−1 = Tγd+1

T
−1 = ±(γd+1)T , where γ̄ is the

chiral matrix for even d satisfying {γ̄, γµ} = 0 for µ = 1, . . . , d.
The definitions of C and T are given in Section III A 1. For a
single Majorana flavor, only bold entries can play the role of
K in Majorana kinetic terms, and only antisymmetric entries
(A) can appear as M in Majorana mass terms. We refer the
reader to Ref. [24] for a pedagogical discussion of this table.

matrices which satisfy

CγµC
† = −(γµ)

T , TγµT
† = (γµ)

T . (43)

The Majorana constraint as expressed above is equally
valid in Minkowski and Euclidian spacetimes. In Ref. [24]
fermions satisfying these constraints are referred to as
Majorana (K = C) or pseudo-Majorana (K = T); here
we will refer to them as C-Majorana and T-Majorana re-
spectively when distinguishing between them, and simply
by “Majorana” when not. The massless Majorana action
can then take the form5

S =

∫

ddx 1
2
ψTK /Dψ . (44)

Table I lists the properties of the C and T matrices in
different dimensions, and we see that for a single Majo-
rana flavor we can take K = C in d = 2, 3,4 mod 8, and
K = T in d = 1, 2, 8 mod 8, while there is no solution
in d = 5, 6, 7 mod 8. Instead of one flavor, one could
consider two flavors and replace K → K ⊗ τ2, where τ2
is the antisymmetric Pauli matrix in flavor space. Then
one requires K to equal either a symmetric C matrix,
or an antisymmetric T matrix. Such fermions are some-
times referred to as symplectic Majorana fermions. In
this way one can discuss massless fermions with a reality
constraint (C-Majorana, T-Majorana, symplectic Majo-
rana) in any dimension. In this section we will only dis-
cuss a single flavor of massless Majorana and are there-
fore restricted to d = 2, 3,4. We give examples of these
theories with discrete symmetry anomalies, as well as an
anomalous example of symplectic Majoranas.

In order to follow the gw program we must be able to
define a mass term for the Majorana fermion. This can

5 A Majorana fermion may carry gauge charges so long as it is
in a (pseudo-)real representation of the gauge group. In that
case, C and T will have to include the appropriate matrices to
effect the similarity transformation from the generators Ta to the
conjugate generators −TT

a .

d: 2 3 4

(K,M) R γ̄ R R eiαγ̄

(C,C) ✗ ✗ ✗ ✗ ✗

(C,T) · · · XXX ✗

(T,C) XXX ✗ · · ·

(T,T) · · · · ·

TABLE II. Reflection (R) and chiral (discrete or continuous)
symmetries for a single massless Majorana flavor in d = 2, 3,4

for different combinations of the K and M matrices, where
K defines the kinetic term and M is used as the regulating
mass term. A “XXX” indicates a non-anomalous symmetry, an
“✗” denotes that the regulator choice M breaks the symme-
try indicating a possible anomaly, and a dot means that the
(K,M) combination does not exist. For d 6= 2, 3,4, we need
multiple flavors.

be included in the Euclidian action as 1
2

∫
ψTmψ where

m = µM = −m
T , (45)

µ being a number with dimension of mass, while M is
required by Lorentz invariance and fermion statistics to
be either an antisymmetric C or antisymmetric T matrix.
No such matrix exists in d = 1, 7, 8 mod 8. In these cases
we can consider symplectic Majoranas (two flavors) in
which case µ may be replaced by µ τ2 acting in flavor
space, and M must now be a symmetric C or T matrix6.

As can be seen from Table I, the requirement that both
K and M exist still restricts us to discussing d = 2, 3,4
for a single flavor. In d = 3 there is the unique choice
K = M = C. In d = 2 we have the single choice M = C

while K may equal C or T. In d = 4, the reverse is true:
K = C while M may equal C or T. For the two mixed
cases (K,M) = (T,C) in d = 2 and (C,T) in d = 4 we
have T equal to γ̄C, up to a phase, and hermiticity in
Minkowski spacetime is guaranteed if we take

M
−1
K =

{
1 (C,C)

iγ̄ (T,C), (C,T)
. (46)

2. Symmetries

In dimensions d = 2, 3,4 the massless Dirac action
possesses a U(1)V fermion number, reflection symmetry
and charge conjugation symmetries, while in d = 2,4
it also possesses a U(1)A chiral symmetry. Here we ex-
amine what subgroup is left unbroken by the Majorana
constraint, and then what is the effect of the regulator.

6 It is stated in Ref. [24] that T-Majorana fermions are necessarily
massless, but that assumes that a mass term must have the form
ψT

Tψ. When allowing for a ψT
Cψ mass term the statement is

no longer true. This can be generated from a Dirac action by
applying the T-Majorana constraint to a Dirac mass term of the
form iψ̄γ5ψ.
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In all dimensions U(1)V fermion number symmetry is
broken to a Z2 subgroup which acts as (−1)F , an ele-
ment of the Lorentz group. What happens to the U(1)A
chiral symmetry in d = 2,4 depends on the fact that
Kγ̄TK−1 = −γ̄ in d = 2 and +γ̄ in d = 4. In d = 2
in addition to (−1)F the Majorana constraint leaves un-
broken a Z2 subgroup of U(1)V ×U(1)A corresponding to
ψ → γ̄ψ, while in d = 4 the entire U(1)A remains un-
broken. The latter result should not be surprising since
a massless Majorana fermion in d = 4 Minkowski space-
time is equivalent to a massless Weyl fermion, whose ac-
tion possesses a U(1) symmetry; this is not true in d = 2.

The charge conjugation symmetry of the Dirac fermion
survives the Majorana constraint, but either acts trivially
on the Majorana fermion, or as (−1)F .

For reflections we consider transformations of the Dirac
field ψ(x) → Rψ(x) = εγ1ψ(x̃) and ψ̄(x) → Rψ̄(x) =
−ε∗ψ̄(x̃)γ1, where ε is a phase and x̃ has the sign of x1
flipped. This is consistent with the Majorana condition
eq. (42) if ε = 1 when K = C and ε = i when K = T and
is therefore always a symmetry for the massless Majorana
action. Note that this means that for C-Majoranas we
have R

2 = 1 while for T-Majoranas, R
2 = (−1)F .

When a Majorana mass term m is included the (−1)F

symmetry is not broken, but the discrete chiral symmetry
in d = 2 and the continuous chiral symmetry in d = 4
are; therefore it is reasonable to expect anomalies and
gw relations for these transformations. The situation
for reflection symmetry is more complicated. Reflection
symmetry is broken by the mass term if the M matrix is
the same as the K matrix, and unbroken if they are un-
like (e.g. (K,M) = (C,T) or (K,M) = (T,C)). There-
fore we should expect reflection symmetry to be anoma-
lous for Majorana fermions in d = 2, 3 and in d = 4
when M = C. It will not be anomalous for T-Majorana
fermions in d = 2 or C-Majorana fermions in d = 4 with
M = T. These two cases are quite different from each
other, however: in d = 2 both C- and T-Majoranas exist
with only one way to regulate them (with M = C), and
we find that reflections are anomalous in the former but
not the latter. For d = 4 we only have a C-Majorana,
but two ways to regulate, with M = C or M = T, the
former breaking reflections symmetry and the latter not.
In this case we would say that choosing M = C is a poor
choice of regulator, needlessly breaking the symmetry of
the massless fermion, and we would not expect the sym-
metry to be anomalous.

We have summarized the situation with reflection and
chiral symmetries in Table II; cases for which gw rela-
tions pertain are the entries with the “✗”.

B. Derivation of the relations

Similar to the discussion of Dirac fermions in Sec-
tion II, we can derive a gw relation for Majorana
fermions, which we denote asΞ in the continuum. We fol-
low the same block-spin prescription as for Dirac fermions

and perform a transformationΞ → ΩΞ which is assumed
to be a symmetry of the continuum action but not a sym-
metry of either the block-spin gaussian or the measure.
The analogue of eq. (10) is

e−
1
2
ηT

Dωη =
∫
dΞ eiAe−S[Ξ]−(η−ξ)T

mω(η−ξ) , (47)

where ξn are block-averaged lattice fields related to Ξ as
in Eq. (2),

ξn =

∫

ddx Ξ(x)f(x − na) (48)

and m is an invertible, imaginary, antisymmetric matrix.
We have defined

Dω = ωTDω , mω = ωTmω , (49)

where ω is related to Ω in analogy with eq. (8), and sup-
press lattice indices as before. The path integral identity
we derive in Eq. (A4) allows us to recast this equation as

e−
1
2
ηDωη = eiAe

1
2

Tr ln
mω
m
Qωe−

1
2
ηQ−1

ω Dη , (50)

where

Qω = (1− DXω) , Xω = m
−1 − m

−1
ω . (51)

Comparing both sides, we find two equations, the first of
which is a generalized gw relation for Majorana fermions

Dω = Q−1
ω D . (52)

This can be rewritten in a form analogous to the conven-
tional gw relation as

Dω − D = DXωDω. (53)

If there are no zeromodes, then D is invertible and the
gw equation is equivalent to

ωT
(

1

D
−

1

m

)

ω =

(

1

D
−

1

m

)

, (54)

similar to what we found for the Dirac case in eq. (18).
As in the Dirac case, the second equation obtained is

the anomaly equation,

eiA =
1

√

det mω

m
Qω

. (55)

As we shall show, the square root is well defined.

C. Solutions to the Majorana Ginsparg-Wilson

equation

Just as we identified both the Pauli-Villars and overlap
solutions to the gw relations for Dirac fermions, we can
do the same for Majoranas. The Pauli-Villars solution
allows one to easily derive certain useful properties of a
solution which generalize.
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1. Pauli-Villars solution

If we write

D = m
ih

ih+ 1
(56)

then the gw equation eq. (54) is equivalent to the state-
ment

ωTmhω = mh , (57)

or that mh possesses the same symmetry as the con-
tinuum operator for a massless Majorana fermion, K /D.
Furthermore, the continuum limit requiring that D →
iK/p in the low momentum limit for a free fermion implies

that h → m
−1
K/p. As in the Dirac example discussed in

§II B 1, the simplest solution to simply set mh = K /D,
and the interpretation to this solution of the gw equa-
tion is a Pauli-Villars regulated Majorana fermion,

DPV = µK /D
1

M−1K /D + µ
, (58)

where M
−1
K = 1 or M

−1
K = ±iγ̄, depending on which

of the “✗” cases in Table II one is discussing, while µ is
the PV mass scale. Given that K /D and M are antisym-
metric, it is easy to show that DPV is antisymmetric as
well.

This solution can be written as

DPV =
m

2

(

1+ Vmaj

)

, Vmaj = −
µ−M

−1
K /D

µ+M−1K /D
, (59)

where Vmaj is a unitary matrix. The eigenvalues of Vmaj

lie on a circle, as in the Dirac case, where zeromodes of /D
are mapped to Vmaj = −1, while infinite eigenvalues are
mapped to Vmaj = +1. For the cases where M = K = C,
Vmaj is the same matrix we found for Dirac Pauli-Villars
solution, eq. (24).

Various general properties of Vmaj can be derived from
the expression in eq. (59). Antisymmetry of DPV implies
that

mVmajm
−1 = MVmajM

−1 = V Tmaj (60)

Since Vmaj is unitary, we can its eigenvalue equation as

Vmajψn = eiθnψn, while it follows from eq. (60) that

VmajM
†ψ∗

n = eiθnMψ∗
n. Furthermore, ψn and M

†ψ∗
n

are mutually orthogonal due to the antisymmetry of M.
Therefore it follows that the eigenvalues of Vmaj are all
doubly degenerate. This will be relevant below when we
discuss the square root of the determinant of Vmaj.

Next we show how symmetries impact the eigenvalue
spectrum of Vmaj. In the continuum, reflection symmetry
for a Dirac fermion takes ψ → (γ1R1)ψ where R1 reflects
the x1 coordinate, with (γ1R1) /D(A)(γ1R1) = − /D(Ã), as-
suming that background fields A are also suitably re-
flected to Ã. It follows that since M

−1
K equals one in

the (C,C) theories and iγ̄ in the (C,T) and (T,C) theo-
ries that

(γ1R1)Vmaj(γ1R1) =

{
V †
maj (C,C)

Vmaj (C,T), (T,C)
, (61)

again assuming a reflection of background fields in the
Vmaj matrices on the right.

The effect of γ̄ in d = 2,4 is seen to be the same as
seen in the Dirac case, namely

γ̄Vmajγ̄ = V †
maj . (62)

We will be interested in the anomalous symmetries
marked by the “✗” in Table II. We see that in each
of these cases we have a unitary matrix U satisfying

UVmajU
† = V †

maj. This implies that if Vmajψn = eiθnψn,

then VmajU
†ψn = e−iθnU

†ψn, and therefore, not only are
all eigenvalues of Vmaj doubly degenerate, but they also
come in complex conjugate pairs7.

2. Overlap solution

Armed with insight from the above PV solution, it is
straightforward to find a lattice overlap solution to the
Majorana gw equation,

Dov =
m

2
(1+ Vmaj) (63)

Vmaj =
Dw

√

D†
wDw

(64)

where

Dw = M
−1
Kγµδµ − µ(1 +∆/2), (65)

where δµ and ∆ are the lattice derivative and Lapla-
cian respectively. The overlap solution for Vmaj obeys
the properties we found for the Pauli-Villars solution,
eq. (60) – eq. (62). Without gauge fields and in momen-
tum space,

D̃w(p) = M
−1
K

∑

µ

γµi sin(pµ)

+µ
[

−1+
∑

µ(1− cos(pµ))
]

. (66)

Near the origin p ≪ π/a we have

D̃w(p) = M
−1
Ki/p+O(p2/µ2). (67)

and thus

Vmaj = −1+
M

−1
Ki/p

|µ|
+ O(p2/µ2),

7 One can relax the assumption that Vmaj is unitary and still con-

clude the eigenvalues come in {λ, λ−1} pairs.
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Dov(p) =
m

2
(1+ Vmaj) =

i

2
K/p +O(p2/µ2), (68)

the correct continuum dispersion relation for a massless
Majorana fermion. At the corners of the Brillouin zone,

however, µ
[

−1+
∑
µ(1− cos(pµ))

]

> 0 and Vmaj ≃ 1 so

that Dov does not have low-lying eigenvalues associated
with these states.

D. Exact lattice symmetry for Majorana fermions

As in the Dirac case for the anomalous chiral and par-
ity symmetries, the Majorana gw action respects exact
versions of the various anomalous symmetries listed in
Table II, with the Jacobians of the transformations re-
producing the anomaly A. Here we discuss the exact
form respected by the gw operator for each of the sym-
metries listed in that table. In the next subsection we
examine the anomaly equation eq. (55) and show how
the Jacobians of the exact lattice symmetry transforma-
tions correctly reproduce the known continuum anomaly
A.

The Majorana gw equation in Eq. (53) implies an ex-
act Lüscher symmetry for any antisymmetric D which
satisfies it. To see this, we can rearrange the Majorana
gw relation as

D =
√

Qω Dω

√

Qω
T

(69)

where Qω = (1 − DXω) and QTω = (1 − XωD). This
can be derived by noting that QωD = DQTω , and so√
QωD = D

√
Qω

T
. Therefore, corresponding to the con-

tinuum symmetry η → ωη, any gw regulated lattice ac-
tion has an exact Lüscher symmetry

η → ω
√

Qω
T
η . (70)

In terms of D = m

2
(1 + Vmaj), we can write

√

Qω
T
= [1− XωD]

1/2

=

[

1

2
(1+ m

−1
ω m) −

1

2
(1− m

−1
ω m)Vmaj

]1/2

.(71)

The low-energy (m → ∞) limit we have Xω → 0 and
Qω → 1. The symmetry transformation then reduces to
η → ωη, as would be expected in the continuum limit.

Although the action is invariant under this symmetry,
the fermion measure is, in general, not. The transfor-

mation in Eq. (70) produces a Jacobian det(ω
√
Qω

T
).

We will see in next subsection that this Jacobian repro-
duces the correct anomaly. While the exact symmetry in
Eq. (70) is completely general for any (continuous or dis-
crete) symmetry, we will restrict now to the symmetries
discussed in Table II for a single-flavor Majorana.

1. Discrete chiral and reflection Z2 symmetries in
d = 2, 3,4

In d = 2, 3 a massless C-Majorana has a Z2 reflection
symmetry which is anomalously broken by the regulating
mass term. The same is true in d = 2 for the discrete
chiral symmetry for either type of Majorana.

In all these cases of a Z2 symmetry broken by the regu-
lator, the mass term flips sign, mωm

−1 = −1. In this case
QTω = −Vmaj and the exact symmetry takes the simple
form

η → ω
√

−Vmajη. (72)

where ω = R1γ1 for the reflection symmetry and ω = γ̄
for the discrete chiral symmetry. Note that the gw

relation implies ωVmajω
−1 = V −1

maj for any Z2 symme-

try with m
−1
ω m = −1. This means (ω

√

−Vmaj)
2 =

(
√

−Vmaj)
−1

√

−Vmaj = 1, and so this is a genuine Z2 sym-
metry. We will analyze the Jacobian in the next subsec-
tion and compare with the continuum anomaly.

The massless C-Majorana in d = 4 and the T-
Majorana in d = 2 have a reflection symmetry R but
it is nonanomalous since a regulating mass term exists
which is R-invariant. In such cases, a gw formulation
is trivially invariant under the corresponding continuum
symmetry, without any modification.

2. U(1)A symmetry in d = 4

In d = 4, the continuum C-Majorana fermion has an
anomalous continuous U(1)A symmetry η → eiαγ̄η, since
either choice of the regulating mass term breaks this sym-
metry, as discussed in Table II. Under the U(1)A trans-
formation ω = eiαγ̄ , the mass term transforms such that
m

−1
ω m = e−2iαγ̄ . The exact lattice symmetry of Eq. (70)

can then be simplified to

η → eiαγ̄/2
{

cosα − i sinαγ̄Vmaj

}1/2
η. (73)

In the low-energy limit, Vmaj → −1, and this reduces to
the continuum symmetry, η → eiαγ̄η.

This continuum U(1)A for Majorana fermions descends
from the anomalous U(1)A symmetry for Dirac fermions
upon imposing a reality condition. However, the Majo-
rana U(1)A symmetry in Eq. (73) is distinct from the
Dirac case of Eq. (29). So one might wonder how these
two definitions of the symmetry are related. To reconcile
this, we note that for Majorana fermions, a straightfor-
ward analogy of Eq. (29) is not possible, since for Dirac
fermions we exploited the freedom to transform ψ̄ and ψ
independently, which is not consistent with the Majorana
constraint. However, that choice for how the Dirac fields
transform was not unique. To illustrate this, we consider
the same example considered in Ref. [4], a Dirac fermion
in d = 4 with D = m

2
(1+ V ), only here for simplicity we



10

assume V is unitary and γ5V γ5 = V †. The infinitesimal
transformation corresponding to Eq. (29) is

δχ = γ5χ, δχ̄ = χ̄(−V γ5) , (74)

where in the continuum limit (V → −1) this reduces to
the conventional chiral symmetry transformation. How-
ever the action m

2

∫
χ̄(1+V )χ is invariant under the more

general transformation, namely

δχ = γ5f(V )χ, δχ̄ = χ̄g(V )γ5 , (75)

with f(−1) = g(−1) = 1, provided that

g(V )

f(V †)
= −V . (76)

Equation (29) satisfies this with f = 1 and g = −V ; alter-
natively, a symmetric form compatible with Minkowski
spacetime where χ and χ̄ are not independent is f = g =
(1 − V )/2 [25]. It is easily checked that this infinitesi-
mal transformation keeps the Majorana action invariant.
This result holds equally well for both (C,C) and (C,T)
regularizations. However, a drawback with this transfor-
mation is that γ̄(1−Vmaj)/2 does not generate a compact
U(1) symmetry, its eigenvalues not in general being inte-
ger.

Equation (76) suggests a different symmetric form con-
sistent with the Majorana constraint, however: f = g =√
−V , which is precisely Eq. (70). This choice has the

feature that γ̄
√
−V is hermitian and has ±1 eigenvalues

so that it generates a compact U(1) symmetry; on the
other hand, one must take care of the branch cut of the
square root. In the basis where Vmaj is diagonal we take

its eigenvalues to be −eiθn with θn ∈ (−π, π] and define
√

−Vmaj to be the matrix with diagonal entries eiθn/2.

This is equivalent to choosing
√
−1 = +i. If gauge fields

or other parameters in the theory are varied are such
that θn passes through π there will be a discontinuity
in

√

−Vmaj — although not in its determinant, given its
eigenvalues are doubly degenerate, as we showed at the
end of Section III C 1. Because of the nonanalyticity of
√

−Vmaj at Vmaj = 1 (at the edge of the Brillouin zone,
in the case of the lattice overlap formulation), this U(1)A
transformation is nonlocal in spacetime, thereby evading
a recent no-go theorem [26].

E. The anomaly equation

We have seen in eq. (55) that the anomaly equation
gives

eiA =
1

√

det mω

m
Qω

. (77)

On the other hand, the exact symmetry of the gw op-
erator is not symmetry of the path integral measure and

gives rise to a Jacobian 1/ det(ω
√
Qω

T
). The first thing

we will show is that these are equivalent. Note that the
square of the anomaly from Eq. (77) is clearly equal to
the square of the Jacobian, so these two agree up to a
sign. It is easy to see that the anomaly equation and the
Jacobian agree for any infinitesimal symmetry transfor-
mation, and so it is only the case of discrete symmetries
that needs careful examination.

For the anomalous discrete symmetries in Table II we
have mωm

−1 = −1 and so eq. (71) gives us QTω = −Vmaj.

The matrix Vmaj has eigenvalues −eiθn with −π < θn ≤ π,
where the θn are doubly degenerate and which occur in ±
pairs for θn 6= 0, π (due to reflection and chiral symmetry
in odd and even dimensions, respectively). Thus there we
can write

dim Vmaj = ν+ + ν− + νc , (78)

where ν± are the numbers of eigenvalues of Vmaj equal to
±1 and νc is the number of complex eigenvalues. Here,
ν± are even integers and νc is a multiple of 4. The eigen-
values of

√

−Vmaj are then eiθn/2 and only the θn = π
eigenvalues contribute nontrivially to its determinant, so

that det
√
Qω

T
= iν+ = (−1)ν+/2. The matrix ω is trace-

less and squares to 1, so detω = (−1)dim Vmaj/2. Thus we
get

det(ω
√

Qω
T
) = (−1)dim Vmaj/2(−1)ν+/2 = (−1)ν−/2 ,

(79)

where we used eq. (78). Since ν− corresponds to the ze-
romodes of D, we find that the Jacobian of our exact
symmetry yields the mod 2 index of D. In compari-
son, for our anomaly equation in eq. (77) we compute
√

det mωm−1Qω =
√

detVmaj which directly gives the

same result, (−1)ν−/2, since only the −1 eigenvalues of
Vmaj contribute.

F. Examples

In this section, we present examples of the Majorana
anomaly equation in which the gw construction repro-
duces global anomalies of Majorana fermions. In all the
examples below we have m

−1
ω m = −1 and Xω = 2µ−1

M,
so the specification of (K,M) matrices completely fixes
the gw equation and its solutions.

1. Two dimensions

In two dimensions it is possible to have either a 2-
component C- or T-Majorana fermion, but only C can
be chosen as the mass term in the regulator. In this sec-
tion, we show that the gw formulation reproduces known
nonperturbative anomalies for both these theories.

The continuum T-Majorana theory with the action∫
ηTT /Dη+mηTCη corresponds to the field theory of the
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Kitaev chain. This has an exact (non-anomalous) reflec-

tion symmetry with R
2 = (−1)F (equivalent to T

2 = 1 in
Minkowski space), but the mass term breaks a discrete
chiral symmetry: η → γ̄η, suggesting an anomaly for the
discrete chiral symmetry. Indeed, the anomaly is given
by the mod-2 index of the Dirac operator on modes of one
chirality [27–29]. With the choice (K,M) = (T,C), we
can formulate gw equation for the massless T-Majorana
fermion and solutions to it. The exact Lüscher symmetry
corresponds to η → γ̄

√

−Vmaj. As shown in the previ-

ous section, the Jacobian gives detω
√

−Vmaj = (−1)ν−/2,
where ν− is the number of modes with Vmaj = −1, which
correspond to exact zeromodes of D. We have seen in

§ III C 1 that γ̄Vmajγ̄ = V †
maj, so the Vmaj = −1 eigen-

modes can be taken to be simultaneous eigenstates of γ̄.
We also showed that the eigenvalues of Vmaj are doubly

degenerate with eigenfunctions ψ and M
†ψ∗. The d = 2

relation Mγ̄M−1 = −γ̄T then tells use that the eigen-
values of the Vmaj = −1 eigenmodes come in ± chiral
pairs. Thus we can write ν− = n+ + n− = 2n+, where
n± are the number of positive and negative chirality zero
modes of D. Therefore, the Jacobian of the discrete chiral
Lüscher symmetry reduces to (−1)n+, which is precisely
the continuum result. On a torus with periodic boundary
conditions in both directions, n+ = n− = 1, and therefore
we find a nontrivial anomaly.

Next we consider the case of a single C-Majorana
fermion in d = 2. This theory has a reflection symmetry
Rη(x) = γ1η(x̃) with R

2 = 1 and a discrete chiral symme-
try, but the C mass term violates them both. It is known
that this theory has a mixed anomaly between R and
(−1)F symmetry which can be detected in the continuum
by computing a mod-2 index on a two-dimensional un-
orientable manifold [28]. In the gw formulation defined
with (K,M) = (C,C), this can again be obtained sim-
ply from the Jacobian of the exact reflection symmetry
for the gw Majorana fermion. The Lüscher symmetry
is η → γ1

√

−Vmajη(x̃). By the same argument as before,

the Jacobian for this symmetry reduces to (−1)ν−/2. On
a torus with periodic boundary conditions, we have two
zero modes. Then (−1)ν−/2 = −1 and therefore the mea-
sure acquires a sign under the reflection symmetry.

2. One dimension

In one dimension, fermi statistics forbid any mass term
for a N = 1 flavor 1-component Majorana, To apply the
gw construction, we therefore need at least N = 2 fla-
vors, which allows for the choice (K,M) = (1, τ2) with
the continuum action S =

∫
ηT ∂0η+µ η

T τ2η, where ηT =
(η1, η2) and η1,2 are one-component Majoranas. Note
that the kinetic term is invariant under a R

2 = (−1)F

reflection symmetry which acts as Rη(t) = iη(−t), but
the mass term is odd under this symmetry. Indeed, this
system corresponds to the edge modes of the Fidkowski-
Kitaev chain and is afflicted by a well-known Z8 anomaly

between R and (−1)F [28, 30].
With (K,M) = (1, τ2), we can proceed with the gw

construction for N = 2 flavors. If na is the number of
zero modes corresponding to flavor a, the antisymmetric
mass matrix M = τ2 ensures a doubling of spectrum and
n1 = n2. As before, the Jacobian for the exact reflection
symmetry produces a phase of (−1)ν−/2 and ν− = 2n1.
Since n1 = n2 = 1 on a circle with periodic boundary con-
ditions, this represents an anomaly. It is interesting to
note that since for two flavors we find a Z2 anomaly, the
gw formulation implies a Z4 anomaly for a single Majo-
rana flavor, even though a mass term cannot be written
in such a theory. The correct answer though is that there
should be a Z8 anomaly. See a discussion in Ref. [31], eq.
(2.26), which suggests that the Z4 follows from being in-
sensitive to a bosonic anomaly.

IV. CONCLUSIONS

The early work on anomaly descent equations [32–34]
and their embodiment in the bulk/boundary correspon-
dence of gapped fermions [35] has been greatly expanded
upon in recent years with the discussions about more
general classes of topological materials and a wider va-
riety of anomalies (see, for example, [20]). A parallel
development from lattice gauge theory had shown that
for the case where the boundary theory is described by
a Dirac fermion, one can describe the physics, including
chiral anomalies, in terms of a theory that makes no ref-
erence to the bulk. Such a theory is governed by the
Ginsparg-Wilson equation [1] which has an explicit so-
lution in the form of the overlap operator [2]. In this
paper we have shown how to generalize the gw analysis
to encompass a wide range of topological materials that
have been classified in the condensed matter literature,
focusing on topological superconductors with Majorana
edge states, which are less familiar to those working in
lattice gauge theory. In each case we have generalized
the notion of a Lüscher symmetry: an exact symmetry
of the lattice action which becomes identical to the con-
tinuum symmetry in the continuum limit, under which
the the lattice integration measure transforms by the ap-
propriate phase to account for the anomaly. The class
of theories for which we can derive gw relations contain
only those for which a fermion mass term can be included,
and therefore does not include chiral gauge theories, for
example.

Open questions remain. In particular the Dai-Freed
anomalies discussed in the literature [28, 36, 37] do not
seem apparent in this approach. Thus, for example, one
of the results in this work was the derivation of a Z4

discrete time reversal anomaly for the Fidkowski-Kitaev
Majorana chain, but not the full Z8 anomaly known to
be correct [37]. On the other hand, we know that the
overlap operator which solves the gw equation is derived
by integrating out bulk modes from a higher dimension
theory [9, 10], which one would expect “knows” about
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such anomalies.
The solutions presented here for the generalized gw

are all formulated in Euclidian spacetime, and are not
amenable to a Hamiltonian description of the physics in
continuous time. Furthermore, not being ultra-local in
Euclidian time makes the derivation of a transfer matrix
and Hamiltonian problematic. We note, though, that we
derived a form for the anomalous U(1)A Lüscher sym-
metry that acts on ψ and ψ̄ in a way consistent with
a Minkowski interpretation, and find that it is not an-
alytic in momentum, and hence not a local operator in
spacetime, evading the no-go theorem in [26]. Pursuing
a Hamiltonian formulation of the ideas presented here in
order to render the results more applicable to real con-
densed matter systems seems like another avenue to ex-
plore in the future.

Finally, while it has been assumed that the fermions we
consider are propagating in smooth, background gauge
and gravitational fields, we have not examined in any
detail the role played by the role played by unori-
entable manifolds, which are understood to play an im-
portant role in understanding the reflection (time rever-
sal) anomalies [37].
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Appendix A: Derivation of path integral identities

Here we derive two identities used in this paper. For
Dirac fermions and an invertible hermitian operator A

we write

e−χ̄Aχ = detA

∫

dψdψ̄ eψ̄A
−1ψ+ψ̄χ+χ̄ψ . (A1)

It follows that

e∂χB∂χ̄ e−χ̄Aχ = detA

∫

dψdψ̄ e−ψ̄(A
−1−B)ψ+ψ̄χ+χ̄ψ

= det (1−AB) e−χ̄(
1

1−AB
A)χ

= eTr log(1−AB) e−χ̄(
1

1−AB
A)χ . (A2)

The above result extends to non-invertible A.

An analogous identity can be derived for Majorana
fermions. Assuming an invertible imaginary antisymmet-
ric operator A we have

e
1
2
ηAη =

1

Pf (A−1)

∫

dν e
1
2
νA

−1ν+νη . (A3)

From this one derives for antisymmetric B

e
1
2
∂ηB∂ηe−

1
2
ηAη =

1

Pf(−A)−1

∫

dν e
1
2
ν(−A

−1+B)ν+ νη

= Pf (A) Pf
(

−A
−1 + B

)

e−
1
2
η( 1

1−AB
A)η ,

= e
1
2

Tr ln(1−AB)e−
1
2
η( 1

1−AB
A)η , (A4)

where for the last line we used the identity
Pf (A) Pf (B) = exp 1

2
Tr ln(−AB). The above result

also extends to non-invertible A.

The Majorana result of eq. (A4) can be seen to be
consistent with the Dirac result eq. (A2) by writing a
Dirac fermion as a Majorana one with

η =

(

χ
χ̄

)

A =

(

0 −AT

A 0

)

, B =

(

0 B
−BT 0

)

.

(A5)

Then the left and right sides of eq. (A4) are equal to

e
1
2
∂ηB∂ηe−

1
2
ηAη = e∂χB∂χ̄e−χ̄Aχ , (A6)

e
1
2

Tr ln(1−AB)e−
1
2
η( 1

1−AB
A)η = eTr log(1−AB) e−χ̄(

1
1−AB

A)χ ,
(A7)

which match the two sides of eq. (A2).
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