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Abstract

The combinatorics of track seeding has long been a computational bottleneck for
triggering and offline computing in High Energy Physics (HEP), and remains so
for the HL-LHC. Next-generation pixel sensors will be sufficiently fine-grained to
determine angular information of the charged particle passing through from pixel-
cluster properties. This detector technology immediately improves the situation
for offline tracking, but any major improvements in physics reach are unrealized
since they are dominated by lowest-level hardware trigger acceptance. We will
demonstrate track angle and hit position prediction, including errors, using a
mixture density network within a single layer of silicon as well as the progress
towards and status of implementing the neural network in hardware on both FPGAs
and ASICs.
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1 Introduction

Tracking detectors are an important component of modern particle physics detectors that provide the
majority of kinematic information describing the aftermath of a collision of fundamental particles.
The tracking detector’s basic function is the measurement of space points, i.e. the “hits" on a “track”,
along the trajectories of charged particles that are typically being deflected by a magnetic field,
without significantly altering the particles’ trajectories during these measurements. Those space
points are processed later by pattern recognition algorithms to yield instances of track hypotheses,
each with estimates of the true parameters of the charged particle’s kinematics. Achieving these
measurements often requires algorithms that scale with the number of possible combinations of all
input data, and this causes a significant increase in an experiment’s computational needs for future
colliders such as HL-LHC, FCC-hh, or a muon collider. Any new technology that restricts the number
of combinations improves the physics impact of these future colliders by reducing this compute
burden and allowing for more detailed downstream analysis. If a large enough reduction is achieved, it
makes real-time trigger systems possible that drastically alter the physics reach of detectors. Focusing
on trackers designed using silicon sensors, this reduction is traditionally achieved using special
double-layers with local pattern recognition logic to select interesting hit pairs yielding coarse track
hypotheses that permit fewer valid combinations when considering the output of other layers. In
this work we demonstrate the feasibility of making single-layer track trajectory measurements using
a pixelated silicon device, including credible error estimates, by applying machine-learning based
uncertainty prediction techniques in quantized neural networks that can be rendered into both FPGA
and radiation-hard circuits on the pixel readout ASIC. Furthermore, given the general nature of the
techniques used, this technology could be beneficially applied in other real-time, on-device pattern
recognition tasks. This technique improves the information supplied by a single layer of silicon, while
reducing the material budget necessary to make such measurements, to the point that a pixel-based
trigger system becomes feasible for the challenging environments expected at the HL-LHC and
beyond.

2 Related Work

Usage of neural networks in pattern recognition problems is commonplace in HEP, though typically
as a discriminant or refinement to the output of traditional pattern recognition algorithms. Both the
CMS [1, 2] and ATLAS [3, 4] collaborations employ neural networks in their current reconstructions
to improve the processing efficiency by removing or correcting mis-reconstructed space points or
trajectory hypotheses. Expanding on this theme, next-generation pattern recognition algorithms that
are based mostly or wholly in neural architectures are merging these refinements with the higher-
level pattern recognition [5] to reduce the combinatorial fake rate and corresponding computational
load. Our contribution to this avenue of research is to refine the techniques discovered so far by
providing a complete statistical interpretation of the space-point and trajectory angle information,
and to synthesize the network predicting these data into a form that is implementable in detector
front-end hardware. This creates the possibility for novel, intelligent, and low mass detectors that can
significantly improve triggering capabilities by providing space points close to the interaction region
that do not cause egregious combinatorial growth in the number of patterns to consider.

3 Dataset and model architecture

The studies in this paper are based on a simulated dataset of silicon pixel clusters produced by
charged particles (pions) [6]. The kinematic properties of the incident particles are taken from
fitted tracks in CMS 13 TeV proton-proton collision data. To study a concrete sensor configuration,
charge deposition is simulated in a 21 x 13 array of pixels described by coordinates x X y, with the
z direction normal to the sensor plane. The position (x, y) where the charged particle traverses the
sensor mid-plane is assumed to be uniform across the central 3 x 3 pixel array. The sensor is taken to
be 100 um thick with pixel pitch 50 um x 12.5 ym in = X y. A bias voltage of -100V is applied and
the detector is immersed in a 3.8 T magnetic field parallel to the x coordinate. The particle origin
point is taken to be 30mm from the sensor plane.

The response of this detector is simulated using a time-sliced version of PixelAV [7]. This provides
an accurate model of charge deposition by primary hadronic tracks, a realistic electric field map



resulting from the simultaneous solution of Poisson’s Equation, carrier continuity equations, and
various charge transport models, an established model of charge drift physics, a simulation of charge
trapping and the signal induced from trapped charge, and a simulation of electronic noise, response,
and threshold effects. PixelAV also provides the time evolution of the drift and induced currents in
the pixel sensor, and the charge deposition is sampled at 20 time points each separated by 200ps.
Figure 1 shows the time evolution of the cluster for an example particle, and the training dataset
contains 3 million examples of such clusters.
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Figure 1: Charge deposition at different times during the cluster evolution for an example cluster. The
color scale represents the collected charge in kilo-electrons, with blue representing negative induced
charge.

The shape of the charge deposited in the pixel array is sensitive to the particle’s impact position and
angle of incidence. The collected charge is log-compressed, scaled to fit in the range [—1, 1] and then
quantized into 4 bits with a sign bit and 3 bits below the decimal point. The incident angle in the
x — z plane is denoted by «, and by /3 in the yy — z plane (the bending plane of the magnetic field).

In order to achieve a well-performing network that can reduce combinatorics in downstream recon-
struction tasks, we employ a mixture density network (MDN) [8] with some specializations to the
task at hand. In order to provide a trajectory state estimate at the mid-plane of the pixel sensor the
model must predict the local x, y, a, and 3 of the cluster, as well as the associated covariance matrix.
The response and resolution distributions are inherently multi-Gaussian, but safely approximated as
Gaussian per-cluster, from the varying number of hits per cluster. Therefore, the network predicts the
parameters of a single multi-dimensional Gaussian, and we construct the mixture of the MDN at the
level of the likelihood over the training data. This likelihood is the loss function that is minimized for
this machine learning task.

The model itself is a 6 layer quantized network with 3 convolutional layers and 3 dense layers built
using the QKeras package [9], which enables a quantization-aware training. The model is then
trained on the previously described dataset for 300 epochs. The architecture of the model is shown in
Figure 2. The convolutional layers are implemented as depthwise-separable convolutions to reduce
the number of model parameters and total operations needed and the averaging pooling layer is
introduced to reduce the number of dense-layer parameters by nearly a factor of 4, to minimize
on-device resource usage. The optimization of the parameter bitwidths was performed by hand,
focusing on reducing the bitwidth in the computationally expensive convolutional layers as much as
possible while still retaining good regression performance. This has the particular benefit of keeping
the necessary bitwidth for accumulators, registers that contain total results of multiply-accumulate
operations, beneath the threshold of requiring complicated multipliers to be used or implemented
during synthesis for target devices. To translate the algorithm from a quantized graph representation
into an efficient hardware implementation, we use hls4ml, an open-source Python framework for
co-design [10, 11].
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Figure 2: A block diagram of the model architecture used for the mixture-density network based
regression of track parameters. The first two separable convolution layers output five filters have
have a 3x3 kernel, and the final pointwise convolution outputs 5 filters. The first two dense layers
have 16 output units and the last dense layer has 14. The convolutional layers have 4-bit quantized
weights with 3 bits below the decimal point and a sign bit, and the dense layers have 8-bit quantized
weights with 7 bits below the decimal point and a sign bit. All layers except for the average pooling
are activated with a "hard-tanh" function that has the same quantization as for the respective layer
weights. The average pooling is 8-bit quantized with 7 bits after the decimal point and a sign bit.
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Figure 3: A: The mean of the residual distribution and average predicted error band for QKeras
(blue, cross-hatched) and h1s4ml synthesized (orange, horizontal lines) regression networks. There
are slight biases at the endpoints of the training data in the raw network output. Average predicted
local coordinate errors of 5.7 microns in X, 1.1 microns in y, 3.8 degrees in the polar angle, and 1.7
degrees in the azimuthal angle are achieved. B: The distribution of the pull test-statistic for each
predicted variable demonstrating that the predicted errors are 3-18% larger than the width of the
residual distributions. Excellent, but not bitwise perfect, agreement between the QKeras and hls4ml
models is observed.

After training the network and determining quantization parameters that achieve good agreement
between the QKeras and h1s4ml implementations of the network, results are attained as summarized
in Figure 3. To expound upon these results and demonstrate their utility, we shall focus on the
predictions of angles. Using the average predicted errors from the network on the test data sample
of 600,000 clusters and using a tolerance of a factor of four on the error, the average size of a solid
angle patch with high efficiency for a match is smaller than 0.02 steradians, 0.2% of the solid angle,
or a 6 cm? search region for hits in a subsequent pixel layer 4 cm away. This implies that with
such a ‘singlet’ track seed, we can retain high track seeding efficiency without any constraints on



a charged track’s transverse momentum while also reducing the initial combinatorics by orders of
magnitude. Similarly, this relaxes the design requirements for track triggers that include pixel data by
significantly reducing the number of initial matches to search through when, for instance, matching
tracks from an outer tracker to pixel hits. In addition, this reduces needs for data replication and
sharing across multiple trigger regions in the same layer.

Concerning technical aspects, it is important to note that while bit-wise equivalence is not attained
with these parameters, the performance of the two implementations of the network is nearly equivalent.
There is also room for additional optimization of the QKeras implementation, particularly the bit-
widths. When synthesized into firmware with the Xilinx Vivado toolkit for the Alveo U250 accelerator
card, this network requires no digital signal processors (DSP) or heavy processing resources to
implement and so stands as a promising candidate for synthesis into the digital part of a front-end
ASIC in a future pixel detector as seen in Table 1. Justifying that, the ASIC synthesis is achieved
in 45 nm CMOS using Catapult HLS [12] for a 200 MHz clock, and the logic synthesis completed
successfully and can now be used to guide place and route for an ASIC design. The differences
in latency between the FPGA and ASIC syntheses can be attributed to different compiler-specific
optimizations being applied, due to the different maturity of backends for Vivado and Catapult in
hls4ml, and are likely not representative of inescapable flaws in the ASIC synthesis. In both cases,
the next major improvement in inference latency and initiation interval will come from a completely
parallel implementation, as opposed to the current streaming implementation, in the h1s4ml backends.
This implementation is not used in this work because the parallel SeparableConv2D layer is missing
from hls4ml and is currently being implemented. This change will remove the predominant source
of latency, which is loading of the data pixel-by-pixel, though it may be replaced by additional
resource usage in the spatial domain. The next steps for this network are to fully validate its current
performance in a real FPGA, and take the preliminary ASIC synthesis further including full place-
and-route, understanding power usage, implementation in our target 28 nm process, and optimize
input data requirements as well as implementation size.

QKeras Model Analysis || Alveo U250 Synthesis ASIC Synthesis (45nm)
4-bit ops. 50,140 || Clock Period 5 ns Clock Period 5 ns
8-bit ops. 3,040 || BRAM_18K 12.5 Area Estimate 1.4 mm?

¥ Layer Ny 17 DSP48E 0 Buffer Area 0.0017 mm?

2™ Layer Ny 9 FF 14,289 Inverter Area 0.055 mm?

3 Layer N 2 LUT 57,398 Logic Area 0.80 mm?

4 Layer N 117 URAM 0 Sequential Area | 0.52 mm?

5% Layer N 15 Latency 1.46 us Latency 27 us

o Layer Ny 51 Interval (II) | 1.38 us - -

Table 1: QKeras Model Analysis (left), FPGA Firmware (middle) and ASIC (right) complete
synthesis figures of merit including resource usage results. The QKeras Model Analysis provides
an operation-wise breakdown of how many N-bit ops occur in the model. The number of sparse
parameters, Ny, per layer, is also summarized, indicating that further model compression is possible
using pruning techniques. FIFO-depth optimization is included in the FPGA synthesis workflow. The
ASIC synthesis is successful and represents the first attempt at using Catapult HLS for this design.
The long latency and II for FPGA and ASIC syntheses are largely due to the implementation of the
architecture as streaming 20 4 bit words per pixel rather than presenting all data in parallel. The
amount and nature of data being fed to the model is under heavy study to achieve a realistic and
low-power implementation, and this should not be taken as a fundamental limitation on the model’s
performance or suitability for implementation.

5 Conclusions

In this work we have demonstrated a highly compressed, quantized, and well performing regres-
sion neural network for predicting track states from a possible future silicon pixel sensor that is
implementable in modern FPGAs and silicon lithography processes. This network is inspired by
and improves upon techniques used in modern tracking detector pattern recognition research. In
addition to mean positions and angles, the covariance matrix for these values is predicted using a



mixture density network technique, which provides the novel capability to predict efficient search
windows for additional hits with a single silicon sensor. The first estimate of the average size of
this window indicates that a reduction of two orders of magnitude in search space for track seeds
is possible without making assumptions on the track momentum parameters, which indicates that
this network could be used as part of the the readout scheme directly on the pixel sensor. Given the
general nature of the technique used here, this sort of on-device, real time, data-compressing feature
extraction with error prediction could be developed for a variety of sensing hardware that can be
deployed in high data-rate experiments across the physical sciences. The next steps of research are to
start investigating network power usage and implementation as an ASIC in 28 nm CMOS, and to
verify the network performance in hardware.
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