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Noiseless measurement of a single quadrature in systems of parametrically coupled oscillators
is theoretically possible by pumping at the sum and difference frequencies of the two oscillators,
realizing a backaction-evading (BAE) scheme. Although this would hold true in the simplest scenario
for a system with pure three-wave mixing, implementations of this scheme are hindered by unwanted
higher-order parametric processes that destabilize the system and add noise. We show analytically
that detuning the two pumps from the sum and difference frequencies can stabilize the system and
fully recover the BAE performance, enabling operation at otherwise inaccessible cooperativities.
We also show that the acceleration demonstrated in a weak signal detection experiment [PRX
QUANTUM 4, 020302 (2023)] was only achievable because of this detuning technique.

I. INTRODUCTION

Parametric processes such as amplification and
frequency-conversion are crucial to the field of quan-
tum information, with broad applications across quan-
tum computing, quantum communication, and quantum
sensing [1–7]. Processes that circumvent the quantum
noise limit are of particular interest. A well-studied ex-
ample uses two parametric pumps to evade the quan-
tum backaction induced by measurement [8–12]. Unfor-
tunately, these backaction-evading (BAE) schemes are of-
ten thwarted by higher-order nonlinearities. These non-
linearities yield undesired parametric processes which can
add noise and cause unstable behavior in the system.

Across the various platforms that employ this style of
measurement, several strategies have been developed to
help mitigate these higher-order effects. Unfortunately,
these strategies either add complexity or sacrifice other
desirable features of the measurement. For microwave-
frequency signals, three-wave mixing Josephson circuits
can be designed to have a suppressed fourth-order (Kerr)
nonlinearity [13, 14] at a single operating frequency [9]
or over a range of frequencies with the addition of an
extra flux bias [15]. For measurements of the state of
a mechanical oscillator, a transient (pulsed) scheme has
been demonstrated which intentionally induces mechani-
cal instability [16]. Across both platforms, strategies that
introduce destructive interference using additional pump
tones have been proposed [17, 18] but these complicate
the process of tuning to the correct operating point.

In this article, we present a simpler strategy to com-
pensate the dominant fourth-order effects, unwanted
single-mode squeezing (SMS), which diminish BAE per-
formance and lead to instability. By introducing detun-
ings to both of the parametric drives, we show that the
BAE performance of the system can be completely recov-
ered. Crucially, this technique does not require any ad-
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ditional control parameters such as flux biases or pumps
that would add complexity, and it can be implemented
at any bias point. Moreover, the technique can be read-
ily combined with any of the aforementioned strategies
to mitigate any residual SMS effects caused by imperfec-
tions in a Kerr-free device or by nonlinearities higher than
fourth-order. We specifically discuss the technique in the
context of one implementation of the two-tone BAE mea-
surement: the gain and conversion (GC) microwave am-
plifier [10, 19, 20].
In Sec. II, we discuss the theoretical basis for the tech-

nique at the Hamiltonian level. In Sec. III, we charac-
terize the technique for an open quantum system and
we demonstrate analytically its effectiveness at recover-
ing BAE performance. Finally, in Sec. IV, we describe
how the technique can be applied to ultrasensitive quan-
tum sensing experiments with a specific example from a
recent BAE search for a microwave-frequency signal [10].

II. BACKACTION-EVADING HAMILTONIAN
ENGINEERING

The model for the two-tone BAE system, as shown in
Fig. 1(a), consists of a science mode A and a measure-
ment mode B coupled with a state swapping interac-
tion and a two-mode squeezing interaction with matched
rates g. It is useful to consider an example for how
this Hamiltonian may manifest in a physical system such
that we can later discern how undesired SMS arises. To
engineer this Hamiltonian between microwave-frequency
modes using Josephson circuits, a three-wave mixing el-
ement (such as the Josephson ring modulator [3, 19, 21])
can be used to provide a trilinear term which mixes the
superconducting phase φ across the science mode, the
measurement mode, and a pump mode C such that it
is of the form φAφBφC . When the C mode is driven
strongly off its resonance, it can be treated as a classi-
cal pump field under the stiff pump approximation. The
resulting interaction strength is then proportional to the
amplitude of the pump field α. Driving the C mode at
the sum and difference of the A and B mode frequencies
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FIG. 1. (a) Simplified mode diagram of a BAE system. A sci-
ence mode A (blue) and a measurement mode B (red) have
external couplings κA and κB . The two modes are coupled by
balanced two-mode squeezing and state-swapping interactions
at a rate g. (b) Frequency diagram of the modes, pumps, ref-
erence frames, and detunings. The pump tones (black arrows)
are detuned by δ∆ and δΣ with respect to the difference and
sum frequencies of the Kerr-shifted science and measurement
mode frequencies (ωA,B). The Hamiltonian is written in the
rotating frame of the half pump frequencies (ωΣ ∓ ω∆)/2 for
each mode (dashed purple lines).

(ωA+ωB and ωB−ωA) and matching the interaction rates
results in the ideal balanced two-tone BAE Hamiltonian.
Written in the rotating frame of the measurement mode
ωB , this Hamiltonian is given by

ĤBAE = g (Â†B̂ + e−iϕÂ†B̂†) + h.c. (1)

where ℏ = 1, Â and B̂ are the annihilation operators
for modes A and B, and ϕ is the relative phase between
the two-mode squeezing and state-swapping drives. The
phase ϕ determines the amplified quadrature, but will
not change any of the results in the following discussion.
Without loss of generality, we set ϕ to 0.
We can identify the BAE quadratures of interest by ex-

pressing the Hamiltonian in the quadrature basis. Defin-
ing the operator for a general quadrature as X̂M,θ =
1√
2
(e−iθM̂ + eiθM̂†) for M ∈ {A,B}, we can express

the BAE Hamiltonian in terms of X̂M = X̂M,0 and

ŶM = X̂M,π/2 as

ĤBAE = 2gX̂AX̂B . (2)

This Hamiltonian yields the Heisenberg equations of mo-
tion in the BAE quadratures of interest given by

dŶB/dt = −2gX̂A, dX̂A/dt = 0. (3)

These equations indicate that the information contained
in X̂A appears at ŶB with noiseless amplification and
that continuous measurement of ŶB does not perturb
X̂A. Taken together, this implies that the measurement
is BAE.

Unfortunately, higher-order nonlinearities intrinsic to
the system Hamiltonian introduce additional paramet-
ric processes that diminish the BAE nature of the mea-
surement. Of these, the leading-order effect is undesired
single-mode squeezing (SMS). This SMS arises from four-
wave mixing terms in the Hamiltonian of the form φ2

Aφ
2
C

and φ2
Bφ

2
C . We note that these four-wave-mixing terms

additionally give rise to undesired frequency shifts in re-
sponse to applied pump power, known as Kerr shifts. In
this work, we assume that these Kerr shifts have already
been accounted for, such that ωA and ωB describe the
Kerr-shifted mode frequencies.
The specific choice of drive frequencies causes the four-

wave-mixing terms to oscillate at ωΣ + ω∆ = 2ωB and
ωΣ − ω∆ = 2ωA. Written in the quadrature basis, this
results in Hamiltonian terms that survive the rotating
wave approximation (RWA) of the form

ĤSMS =
sA
2

(
X̂2

A − Ŷ 2
A

)
+

sB
2

(
X̂2

B − Ŷ 2
B

)
, (4)

where sA and sB are the SMS rates for each mode. Given
that they arise from terms that are quadratic in φC , sA
and sB are both proportional to the pump power α2,
whereas the BAE interaction rate g is proportional to α.
Including ĤSMS modifies the equations of motion, now
given by

dŶB/dt =− 2gX̂A − sBX̂B ,

dX̂A/dt =− sAŶA,

dX̂B/dt =− sBŶB ,

dŶA/dt =− 2gX̂B − sAX̂A.

(5)

From these modified equations, it is clear that the unde-
sired SMS interactions degrade the BAE performance.
Fortunately, intentionally detuning the applied state

swapping and two-mode squeezing drives from the dif-
ference and sum frequencies of the A and B modes can
cancel the SMS effects on X̂A and ŶB . We define these
intentional detunings δΣ and δ∆ such that the applied
pump frequencies are given by ωΣ = ωA + ωB + δΣ and
ω∆ = ωB−ωA+δ∆, as depicted by the horizontal arrows
in Fig. 1(b).

To account for these detunings, the Hamiltonian
should be expressed in the rotating frame defined by the
modified pump frequencies as given by (ωΣ − ω∆)/2 =
ωA+δd for the A mode and (ωΣ+ω∆)/2 = ωB+δc for the
B mode. Here, δc = (δΣ + δ∆)/2 and δd = (δΣ − δ∆)/2
represent the common and differential detunings of the
two pumps. The Hamiltonian (under the same RWA of
Eqs. 2 and 4) can then be rewritten in this “half-pump”

frame as Ĥ = ĤBAE + ĤSMS + ĤDET. ĤBAE and ĤSMS

are unchanged in this new frame, but there are additional
terms in the Hamiltonian resulting from the detunings.
These additional terms take the form

ĤDET = −δd
2

(
X̂2

A + Ŷ 2
A

)
− δc

2

(
X̂2

B + Ŷ 2
B

)
. (6)

In the quadrature basis, ĤDET looks very similar in form
to ĤSMS as shown in Eq. 4.
We find that δd can be chosen to compensate the A

mode squeezing on the BAE quadratures at δd = −sA,
and that δc can be used to compensate the B mode
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FIG. 2. SMS compensation with pump detunings. (a) Signal and noise gain as measured at ŶB (Gs and Gn) and backaction

at X̂A (Bs and Bn) for a sample set of conditions. We assume that sA = sB = s, κA = κB = κ, and s = g/5 = κ/4. The
response when no compensatory detunings are applied (δd = δc = 0) is marked with a green double-headed arrow and the

response when optimal detunings are applied (δd = −δc = −s) is marked with a purple arrow. (b) SNR(Ω) as measured at ŶB ,
corresponding to a measurement angle of θ = π/2. The SNR is normalized to the peak value of the s = 0 case (grey). With no
detunings, the peak SNR is reduced due to reduced transmission gain and amplified measurement noise from squeezing. With
optimal compensatory detunings, the SNR of the s = 0 case is completely recovered, indicating that BAE performance has
been restored. (c) SNR(θ) for generalized quadratures as measured on resonance with the half-pump frame at Ω = 0. With or

without compensatory detunings, SMS shifts the optimal readout angle away from π/2 (away from ŶB).

squeezing at δc = sB . With these compensatory detun-
ings, the equations of motion become

dŶB/dt =− 2gX̂A,

dX̂A/dt =0,

dX̂B/dt =− 2sBŶB ,

dŶA/dt =− 2gX̂B − 2sAX̂A,

(7)

where the equations for the BAE quadratures of interest
X̂A and ŶB have been restored to their ideal forms given
in Eq. (3). Operating at this point deposits all of the
undesired effects induced by SMS into the unmeasured
quadratures X̂B and ŶA.
The compensation technique works as long as the SMS

and the BAE interactions arise from the same underlying
nonlinearity. This is the case in Josephson circuits where
both the third and fourth-order terms in the Hamilto-
nian arise from the Josephson nonlinearity. But in op-
tomechanical systems, the origin of the parametric insta-
bility is less clear [11, 22], and in some cases may not
be solved by pump detuning. In particular, the single-
mode squeezing and instability observed in microwave
frequency optomechanics is sometimes attributed to a

parasitic thermal effect mediated by the mechanical oscil-
lator’s temperature-dependent resonance frequency [23].
Temperature oscillations are caused by the pump power
oscillations at twice the mechanical frequency but they
have a time delay. The delay causes the associated SMS
Hamiltonian from Eq. 4 to have additional components of
the form X̂AŶA + ŶAX̂A and X̂BŶB + ŶBX̂B , precluding
its compensation with pump detuning.

III. SQUEEZING COMPENSATION IN AN
OPEN QUANTUM SYSTEM

To understand how squeezing compensation would
manifest in the presence of noise and loss, we extend our
analysis to study an open quantum system. We consider
the A mode to be coupled to the signal at a rate κA,
and the measurement mode to be coupled to the readout
port at a rate κB , as shown in Fig. 1(a). We assume for
simplicity that both modes have negligible internal loss,
and that measurement noise enters at the B mode port.
We derive the Heisenberg-Langevin equations from the
full Hamiltonian with generalized detunings and squeez-
ing rates. Solving the equations of motion in the fre-
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quency domain together with the input-output relations
[24] yields the scattering parameters between the A and
B ports. We express the scattering parameters in the
quadrature basis as a function of Ω, the detuning from
the half-pump frame. For example, we use SYBXA

to

denote the output field at the Ŷ quadrature of port B
induced by the incoming field at the X̂ quadrature of
port A. These are given by

SYBXA
=2g(iΩ+ κA/2)(iΩ+ κB/2)

√
κAκB/β,

SYBYA
=− 2g(sA + δd)(iΩ+ κB/2)

√
κAκB/β,

SYBXB
=
(
4g2(sA + δd) + βA(sB − δc)

)
κB/β,

SYBYB
=1− βA(iΩ+ κB/2)κB/β,

(8)

where the quantities

βA = (iΩ+ κA/2)
2 −

(
s2A − δ2d

)
,

βB = (iΩ+ κB/2)
2 −

(
s2B − δ2c

)
,

β = βAβB − 4g2(sA + δd)(sB + δc),

(9)

have been defined for simplicity.
We can directly see how compensation restores back-

action evasion in the science quadrature of interest, X̂A,
by studying another set of scattering parameters. These
are given by

SXAXA
=1− βB(iΩ+ κA/2)κA/β,

SXAYA
=βB (sA + δd)κA/β,

SXAXB
=− 2g(sA + δd)(iΩ+ κB/2)

√
κAκB/β,

SXAYB
=2g(sA + δd)(sB + δc)

√
κAκB/β.

(10)

It is useful to group the first set of scattering parameters
according to whether they describe the gain experienced
by the signal or by the measurement noise. We therefore
define the gain of the signal and noise as measured at ŶB

as

Gs = |SYBXA
|2 + |SYBYA

|2,
Gn = |SYBXB

|2 + |SYBYB
|2.

(11)

Similarly, the second set of scattering parameters describ-
ing backaction on X̂A can be categorized according to

Bs = |SXAXA
|2 + |SXAYA

|2,
Bn = |SXAXB

|2 + |SXAYB
|2.

(12)

In Fig. 2(a) we plot the set describing the signal and

noise gain at ŶB and X̂A ({Gs, Gn, Bs, Bn}) for a sam-
ple set of conditions. We assume for simplicity that the
modes have equal external coupling rates κ and equal
squeezing rates s < κ, g. Note that none of these as-
sumptions are required for compensation.

Even when the squeezing rates are small compared to
κ, when no compensatory detunings are applied (green
double-headed arrow), the amplifier suffers both reduced
signal transmission Gs and amplified measurement noise

Gn as a result of the squeezing. The poor amplifier per-
formance is a symptom of diminished backaction evasion.
This assessment is confirmed by the non-zero transmis-
sion of noise Bn from the measurement port to X̂A, as
can be seen in the bottom panel of Fig. 2(a). In con-
trast, when optimal compensatory detunings are applied
(purple arrow), Bn(Ω) = 0, indicating that BAE per-
formance has been restored. It follows, therefore, that
under these conditions, the measurement will not suffer
amplified measurement noise at ŶB .

From the signal and noise gain at ŶB , the signal-to-
noise ratio (SNR) is given as SNR ∝ Gs/Gn. Figure 2(b)
plots this SNR for the case of no compensatory detun-
ings (green) and optimal detunings (purple), normalized
to the ideal (s = 0) SNR (grey). When BAE perfor-
mance is restored by optimal detunings, the ideal SNR is
completely recovered when measuring ŶB .

Crucially, detunings only recover BAE readout along
ŶB . The effects of the squeezing can still be seen when
reading out other quadratures. Where before we con-
sidered measurements of ŶB (θ = π/2), in Fig. 2(c) we
instead measure along a generalized quadrature parame-
terized by θ and plot the SNR at the half-pump frequency
(Ω = 0). Uncompensated SMS (green line) causes a re-
duced SNR in almost all quadratures relative to the s = 0
case (grey), and we see that reading out at θ = π/2 is
no longer optimal in this case. Instead, the SNR is max-
imized along the quadrature marked by the green point
that experiences squeezed measurement noise rather than
amplified signal. Because the signal is not amplified along
this quadrature, the SNR is highly sensitive to deviations
in θ as compared to the more flat-topped s = 0 case.

In comparison, when compensatory detunings are ap-
plied (purple line), we see that the optimal readout
quadrature is largely insensitive to small changes in θ
due to the recovered signal amplification. Additionally,
there is actually a modest increase to the peak SNR as
compared to the s = 0 case. This improvement comes
from sacrificing some signal amplification in exchange for
squeezed measurement noise along a quadrature marked
by the purple dot. In fact, if it were possible to mea-
sure along a different quadrature at each frequency Ω,
the inadvertent squeezing effects could be leveraged to
enhance the SNR over the whole measurement range.
This could potentially be implemented by applying a
frequency-dependent phase shift to the fields exiting the
measurement port such that the readout angle is opti-
mized separately for each Fourier component [25].

One should note that detuning compensation restores
the BAE performance in quadratures defined in the half-
pump frame rather than in the mode frame. The mea-
surement’s sensitivity will therefore peak for forces driv-
ing the A mode at the half-pump frequency ωA + δd
marked by the purple dashed line in Fig. 1(b) instead
of at ωA. Fortunately, because the peak sensitivity is
fully recovered, as long as the experimentalist is aware of
this shift, it can easily be accounted for in experiment.

Beyond just destroying the BAE performance, unde-
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FIG. 3. Scan rate enhancement in the GC-enhanced search for a weak microwave signal at unknown frequency in the presence of
unwanted SMS. (a) SRE as a function of pump detunings which are varied about their optimal values (−sA and sB). Operating
points with zero and optimal detunings are marked by the green triangle and purple star. The grey shaded region marks the
unstable regime. The condition for canceling the SMS of the science mode satisfies δd = −sA and is marked by a purple line.
The SRE along this line is plotted in the top panel. (b) Robustness of compensation procedure to increased cooperativity C.
Upper panel: SRE increases with cooperativity, but uncompensated SMS causes the SRE to turn over (green dashed line) due
to amplified measurement noise. The squeezing additionally causes the system to become unstable where the green dashed
line ends. Detuning compensation protects the system from these effects, enabling a six-fold acceleration to be achieved and
preserving stability as the cooperativity is increased (purple line). Bottom panel: SRE normalized to its optimally compensated
value at a given cooperativity. With increased cooperativity, the narrowing of the yellow band reveals an increase in sensitivity
to the detuning control parameters. The unstable regime approaches the line of compensation asymptoptically with increased
cooperativity (bottom panel), making further SRE beyond C = 10.4 (purple star) difficult to achieve.

sired SMS causes these measurement schemes to become
unstable, placing a hard limit on the achievable coop-
erativity. The poles of the scattering parameters (the
roots of β) give the criteria for stability. The existence
of a root with a negative imaginary component signifies
that the system is unstable. While squeezing destabi-
lizes the system, compensatory detunings counteract the
destabilization such that the point of optimal compen-
sation δd = −sA and δc = sB is always stable for any
combination of the squeezing rates.

IV. IMPLEMENTATION FOR QUANTUM
SENSING

In Sec. III, we made the simplifying assumptions that
internal loss was negligible compared to the external cou-
pling rates (κℓ ≪ κA, κB), and that the coupling rates
were equal (κA = κB). While these assumptions gen-
erally hold true for amplifiers used in quantum signal
processing applications [21], this is not usually the case
for ultrasensitive quantum sensing applications where the
signal is weakly coupled to the science mode [11, 26].
In this section, we extend our analysis to consider this
quantum sensing application. We treat the system un-
der the assumptions that the internal loss κℓ of the sci-

ence mode dominates over its weak coupling to the signal
κA, and that both of these rates are small compared to
the measurement port coupling rate (κA ≪ κℓ ≪ κB).
We maintain the assumption that the internal loss of the
measurement mode is negligible.
In order to focus discussion, we consider one particu-

lar sensing application: the search for a weak microwave
signal at an unknown frequency, a problem of particular
interest for axion dark matter searches [26]. Recently,
the two-tone BAE measurement technique was applied
to an experiment designed to mimic a real axion search,
and a six-fold acceleration to the spectral scan rate was
demonstrated [10]. This acceleration was only possible
by successfully canceling undesired SMS using the com-
pensatory detuning scheme described in this paper.
In this section, we analytically predict the scan rate

enhancement (SRE) using the system parameters from
the axion search demonstration experiment [10]. We take
g/2π = 7.3 MHz, κℓ/2π = 960 kHz, and κB/2π = 20.6
MHz. The squeezing rates sA and sB are estimated to
be around 7% and 14% of the GC interaction rates g
respectively. Following the procedure outlined in Sec. III,
we calculate the scattering parameters and the SNR for
this system. The spectral scan rate scales as

∫
(SNR)

2
dΩ.

The SRE can then be calculated by comparing the scan
rate to that of a quantum-limited search. A more detailed
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discussion of this calculation can be found in Ref. [10].
The SRE for various combinations of pump detunings

is given in Fig. 3(a), where the unstable regime is repre-
sented by the grey shaded area. Because sB ≪ κB for
this system, the squeezing of the B mode has a negligible
effect on the system, and it is mainly the A mode squeez-
ing that matters for performance and stability. When no
pump detunings are applied (δc = δd = 0), the system
is already unstable. At the optimal cancellation point,
ideal (s = 0) amplifier performance is recovered and the
system is stabilized.

Further SRE can theoretically be achieved by pumping
harder, corresponding with increased interaction rates g

and cooperativity C = 4g2

κB(κℓ+κA) . However, because g ∝
α while sA, sB ∝ α2, pumping harder also increases the
squeezing rates relative to both g and the damping rates.
It is therefore important to consider the robustness of the
compensation to increased cooperativity.

In Fig. 3(b), the interaction rate g and the squeez-
ing rates sA and sB are increased according to their de-
pendence on the pump strength α. In the upper panel,
we plot the SRE for optimal detunings (purple, δc =
−sA, δd = sB) and zero detunings (green, δc = δd = 0).
The zero detunings line ends when the system would be-
come unstable. In this case, the maximum SRE that
could have been achieved was SRE = 3.1 and the system
would have become unstable at cooperativity C = 5.3.
With detunings, C = 10.4 was achieved, resulting in a
scan rate enhancement of SRE = 5.6 [10]. We suspect
that the measured SRE is smaller than we predict analyt-
ically because the experimental operating point was not
exactly the optimal compensatory point. The sensitivity
of the mode frequencies to fluctuations in the magnetic
flux threading the Josephson ring modulator led to chal-
lenges identifying and remaining at the desired operating
point, as discussed in [10].

While the compensation is robust (and the system sta-
ble) to arbitrarily high cooperativity, the experimental
bound on tuning accuracy ultimately limits this quan-
tity. In the bottom panel of Fig. 3(b), δc is chosen to be
optimal (δc = sB) while δd is varied about its optimal
value. We see that when sA becomes large enough that
the system would be unstable in the absence of detun-
ings (which occurs at C = 5.3), the instability begins to
approach the line of perfect cancellation asymptotically.
In the demonstration experiment, the cooperativity was
limited to C = 10.4 for this reason. Experimentally, in-
creasing the interaction rates beyond this point while
maintaining the desired amplifier performance became
more challenging.

V. CONCLUSION AND OUTLOOK

The detuning-based technique presented in this article
provides a simple strategy for compensating the effects
of undesired SMS in two-tone BAE measurements. The
compensation scheme could benefit systems both with

and without intentional Kerr-suppression while adding
very little complexity. This ultimately allows for BAE
operation at cooperativities beyond the threshold where
destabilizing effects from SMS would have otherwise ru-
ined performance.
While compensatory detunings theoretically allow for

operation at arbitrarily high cooperativity without in-
ducing instability or amplified noise, the unstable regime
asymptotically approaches the compensatory operating
point. The limiting factor on these detuned BAE schemes
then becomes the sensitivity of the system to frequency
drifts of the pump tones or modes. Technical improve-
ments in these areas could allow for operation at higher
cooperativities than have been achieved thus far.
The detuning compensation solution also introduces

opportunities to improve on the traditional BAE scheme
by further increasing the SNR. By measuring along a
slightly different quadrature from the one that is ampli-
fied, experiments could leverage the effects of the un-
desired SMS to achieve both signal amplification and
squeezed measurement noise. By applying a frequency-
dependent phase shift to the fields exiting the measure-
ment port, the SNR would be enhanced over the en-
tire measurement range as compared to the case with
no squeezing.
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