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We present a scalable technique for the simulation of collider events with multi-jet final states,
based on an improved parton-level event file format. The method is implemented for both leading-
and next-to-leading order QCD calculations. We perform a comprehensive analysis of the I/O
performance and validate our new framework using Higgs-boson plus multi-jet production with up
to seven jets. We make the resulting code base available for public use.

I. INTRODUCTION

The simulation of events with high-multiplicity final-states in experiments at the Large Hadron Collider (LHC)
is a challenging computational problem [1–4]. Using the best available algorithms, the calculation of the integrand
for multi-jet processes scales at best exponentially with increasing particle multiplicity. The integration over the
many-body phase space calls for suitable importance-sampling techniques, which often also scale exponentially [5–15].
Hence, while being a solved problem in principle, the calculation of cross sections and the production of unweighted
events at high jet multiplicity is still a hard problem to date. Computing techniques have remained conceptually
identical since their inception four decades ago and typically make use of dynamic programming [15–24].

While the calculation of hard cross sections with full quantum interference effects is a considerable challenge even at
tree level, the Markovian methods used in parton showers are often sufficient to describe the dynamics of collider events,
and in fact they are necessary to properly account for the all-orders resummation of virtual corrections [1, 25, 26].
The combination of the evolution implemented in parton showers with the exact calculations implemented by hard
matrix elements provides the best available physics modeling of LHC events, accounting for both inter-jet correlations
and intra-jet evolution by means of NLO matching [27–31] and multi-jet merging [32–45]. However, parton showers
and the subsequent hadronization [46–51] and multiple interaction [52–54] models are associated with various free
parameters. Varying these parameters is key to assessing the uncertainty of LHC simulations. The large difference in
required computation time, and the need to perform the simulation for multiple parton shower, underlying event and
hadronization parameters makes it natural to separate the generation of LHC events into the calculation of the hard
interaction and the simulation of the remaining physics aspects.

A number of approaches have been proposed to address this problem. The earliest and most widely used include
the user process functionality of Pythia [55], and the LesHouches event file format [56–58]. More recently, with the
need for high-statistics event simulation leading to the use of high-performance computing facilities [59], the need for
improved I/O performance and truly parallel I/O has become apparent. In this manuscript we report on the extension
of a new event file format [60] for particle-level events. Firstly, we enable the storage of the standard and hard events
needed for next-to-leading matching in the MC@NLO method. Secondly, we propose a new layout of the event file
in order to increase the performance in large-scale parallel processing. Thirdly, we implement the new technology in
various parton-level and particle-level event generators. At parton level we use Sherpa [61, 62] with the two internal
matrix-element generators Amegic [63] and Comix [15], as well as the new GPU-accelerated leading-order parton-level
event generator Pepper [14, 64]. At particle level, we use the event generators Pythia [55, 65] and Sherpa [61, 62].

We also provide a first physics application of our new algorithms. We simulate Higgs boson plus multi-jet events
with up to seven jets at tree level, and up to two jets at next-to-leading order QCD precision. With the High-
Luminosity LHC (HL-LHC) expected to collect 3 ab−1 of data, these predictions can be used to test QCD associated
Higgs production over a large dynamic range. Moreover, Higgs-boson plus multi-jet events play an important role as
irreducible backgrounds to more detailed tests of the Higgs sector of the Standard Model, and especially in weak vector
boson fusion. Using the MEPS@NLO merging method [41, 42], in particular the reweighting of higher-multiplicity
tree-level predictions with the help of Born-local K-factors from the Higgs plus two-jet setup, our new code base
enables the most precise predictions of Higgs plus ≥4 jet events to date. We make the corresponding input event
samples available for public use1 and provide a publicly available version of the parton- and particle-level event
generators that can be used to process these event files.

1 The event samples can be obtained from https://doi.org/10.5281/zenodo.7751000 and https://doi.org/10.5281/zenodo.7747376.
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This manuscript is structured as follows: Section II discusses the challenges faced in previous simulations and pro-
vides a documentation and performance assessment of our new event file format and parallel event generation tech-
niques, including the changes needed for the simulation of events at next-to-leading order QCD precision. Section III
discusses the new GPU-accelerated parton-level simulation pipeline. Section IV presents the first phenomenological
application and discusses the impact of NLO matching and multi-jet merging in Higgs plus multi-jet production. We
conclude with an outlook in Sec. V.

II. EXTENDED PARALLELIZATION FRAMEWORK

The first scalable particle-level event generator was based on legacy versions of Alpgen [22] and Pythia 6 [55] and
was introduced in Ref. [59]. To make state-of-the art parton-level and particle-level simulation tools available for use
on HPC systems, Ref. [60] proposed a new event generation framework, based on Sherpa 2 [62] and Pythia 8 [65].
This framework is based on a parallelized main routine for Pythia 8, and a new parton-level event file format, using
the HDF5 library for parallel I/O.2 It solved the main problem of making the event production scalable to thousands
of MPI ranks, but still suffers from an I/O bottleneck. Various modern high-performance computing systems are not
well suited for the fast writing and reading of large amounts of data, as is common in parton-level event simulations.
The solution to this problem is discussed in this section.

Reference [60] also did not provide a means to store information for parton-level events simulated at NLO QCD
precision. At present, a pure leading-order based event simulation falls short of the precision requirements at the
LHC experiments. Therefore, an extension of the previous event file format to NLO QCD precision is an additional
problem we will address. At leading order QCD, one can write the expectation value of an arbitrary infrared safe
observable, O, at particle level as

⟨O⟩ =
∫

dΦB B(ΦB)FMC(O,ΦB) , (1)

where B is the differential Born cross section, including flux and symmetry factors, as well as the parton luminosity,
and dΦB is the differential phase-space element, including the integration over the light-cone momentum fractions of
the initial-state partons. The functional FMC(O,ΦB) implements the parton shower and is explained in more detail
in [27, 30]. In the MC@NLO [27] or POWHEG [28] NLO QCD matching technique, Eq. (1) becomes

⟨O⟩ =
∫

dΦB

[
B(ΦB) + V(ΦB) + I(ΦB) +

∫
dz1dz2 KP(ΦB , z1, z2)

+
∑
ijk

∫
dΦ+1,ijk

(
D

(A)
ijk (ΦB ,Φ+1,ijk)−D

(S)
ijk (ΦB ,Φ+1,ijk)

)]
FMC(O,ΦB)

+

∫
dΦR

(
R(ΦR)−

∑
ijk

S
(
ΦB,ijk(ΦR)

))
FMC(O,ΦR) ,

(2)

where V and R are the virtual and real-emission corrections, S and I are the differential and integrated NLO infrared
subtraction counterterms, and KP are the factorization scale dependent finite corrections arising from the combination
of the integrated infrared subtraction counterterms with collinear mass-factorization counterterms. The infrared
subtraction counterterms are most commonly defined in the Frixione-Kunszt-Signer [66] or the Catani-Seymour [67, 68]
subtraction scheme and depend on the momenta and flavors of two partons i and j that are to be combined, as well
as a spectator or recoil momentum, k. The differential phase-space element for the real-emission process is given by
dΦR. It can be factorized into a differential Born phase-space element and a single-emission phase-space element as
dΦR = dΦB,ijkdΦ+1,ijk [30].
The NLO QCD expression, Eq. (2), shows a number of important differences compared to the LO expression,

Eq. (1):

• There are two different classes of events, one with parton-shower starting condition ΦB (the so-called standard
events, or S-events), and one with parton-shower starting condition ΦR (the so-called hard events, or H-events).

• The H events require a simple, leading-order like phase-space generator for dΦR, which implies that the event
file format is the same as at leading order.

2 The source code can be found at https://gitlab.com/hpcgen/ and https://gitlab.com/sherpa-team/sherpa/-/tree/rel-2-3-0.

https://gitlab.com/hpcgen/
https://gitlab.com/sherpa-team/sherpa/-/tree/rel-2-3-0
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Name Data type Contents

version 3 × int Version ID
init 10 × double beamA, beamB, energyA, energyB,

PDFgroupA, PDFgroupB, PDFsetA, PDFsetB,
weightingStrategy, numProcesses

procInfo 6 × double procId, npLO, npNLO,
xSection, error, unitWeight

events 9 × double pid, nparticles, start,
trials, scale, fscale, rscale, aqed, aqcd

particles 9 × double id, status, mother1, mother2,
color1, color2, px, py, pz, e, m, lifetime, spin

ctevents 9 × double ijt, kt, i, j, k, z1, z2, bbpsw, tlpsw
ctparticles 4 × double px, py, pz, e

TABLE I. Data sets in the LHEH5 event format.

• The S events require two additional integrations, one for the KP counterterms, and one for the one-emission
phase space dΦ+1,ijk. They also require a sampling of the indices i, j and k.

In order to make MC@NLO S-events reproducible and enable a reweighting of events to arbitrary PDF sets and/or
scales at NLO QCD, the event format therefore requires the storage of the indices i, j and k, as well as the phase-space
point (ΦB ,Φ+1,ijk) and the momentum fractions z1 and z2. We will define the corresponding structures in Sec. II A.

A. Event file format

In this subsection we describe the new event file layout, which includes the optimizations that will be described
in Sec. II B as well as extensions for event simulation at NLO QCD. Both are inspired by Les Houches Event Files
(LHEF) standard [56], which is widely used in the high-energy physics community. It is based on XML, which makes
it flexible enough to add any desired feature, but poses a challenge for I/O operations at scale. In contrast the HDF5
format uses a computing model similar to databases, making it rigid, but highly efficient in parallel workflows.

The LHEF format comprises global properties as well as event-wise properties [56]. Global properties include
process information (i.e. the type of collisions), total cross-sections as well as reweighting information. The event-wise
properties are the process ID, the event weight, the scale of the hard process as well as the values of αQCD, αQED

and the list of particles generated. The latter contain information about momentum four-vectors, particle ID, charge,
spin and lifetime, as well as production history. We collect this information in consolidated datasets, reflecting the
global, event-wise and particle properties. In addition, we introduce two new datasets, which include the event-wise
and particle-wise information needed to simulate NLO QCD events in the MC@NLO matching scheme. We will call
this structure the LHEH5 event file format.3

We follow the naming scheme of Ref. [60] and define datasets called init and procInfo that are used to store basic
information about the entirety of events contained in the file. We also add a new dataset, version that identifies the
version of the event file format. Event-wise properties for leading-order events are stored in the dataset events and
for MC@NLO S-events in the dataset ctevents. Particle-wise properties for leading-order events are stored in the
dataset particles and for MC@NLO S events in the dataset ctparticles.
Each dataset is a two-dimensional array and has an HDF5 attribute properties that identifies the individual

columns of the dataset in order of appearance. For example the procInfo dataset has the properties procId, npLO,
npNLO, xSection, error and unitWeight. In future updates of the event file format, these attributes can be
used to communicate the content of the individual entries to the user of the file, similar, although not quite as flexible
as in the case of XML-based Les Houches event files. The content of all datasets is summarized in Tab. I. In addition
to Ref. [60], we introduce the following entries:

• Process properties npLO and npNLO. If the process is computed at leading order QCD, we set npLO to the
final-state particle multiplicity. If the process is computed at next-to-leading order QCD, we instead set npNLO
to the final-state particle multiplicity at Born level.

3 Together with this publication, we provide a set of simple tools to parse event files written in the new format, to merge two event files,
and to filter event files for overweight and zero weight events. The source code can be found at https://gitlab.com/hpcgen/tools.

https://gitlab.com/hpcgen/tools
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(a) POSIX operations (before) (b) MPI-IO operations (before) (c) I/O cost (before)

(d) (+collective I/O) (e) (+collective I/O) (f) (+collective I/O)

FIG. 1. Darshan graphs depicting the I/O behavior of Sherpa during parton-level event generation for H+3 jets at leading
order QCD on 1024 MPI ranks. Left: POSIX I/O behavior. Middle: MPI-IO behavior. Right: Overall I/O cost. Top row:
Before optimizations. I/O operations are fragmented and uncoordinated among processes. Bottom row: Including collective
I/O, improved file layout to reduce metadata operations and limiting stat calls to the master rank. The number of events was
held constant for this test, and the total amount of data written was 1.01 GiB.

• At NLO QCD, we include the minimal information needed to reconstruct the complete event weight in the
MC@NLO matching method. For hard remainder events (H-events), the leading-order type information is
sufficient. For standard events (S-events) we add the following:

– Counterterm properties in the ctevents dataset: ijt and kt refer to the Born-level QCD dipole used to
generate a real-emission phase-space point in Eq. (2), i, j and k correspond to the respective particle IDs at
real-emission level. tlpsw is the phase-space weight dΦB and bbpsw is the corresponding single-emission
phase-space weight dΦ+1,ijk. The variables z1 and z2 are the MC points of the integration variables in
the KP contribution. See Eq. (2) for details.

– Counterterms properties in the ctparticles dataset: px, py, pz and e store the momenta of all particles
in the phase-space point (ΦB ,Φ+1,ijk). See Eq. (2) for details.

B. I/O operations at scale

Our event simulation frameworks read and write event data through a multi-layered I/O software stack based on
HDF5 [69], an array-oriented library and data model, which in turn uses MPI-IO [70]. Within Sherpa and Pythia,
HDF5 is accessed through the HighFive header library [71]. Each layer typically provides tuning parameters. Optimal
performance can in principle be achieved with the help of sophisticated I/O tuning systems [72]. However, selecting
the right parameters with the help of subject expertise is often more efficient and more reliable. In our case, some
straightforward changes to the I/O layer resulted in large performance gains, reducing the I/O for particle-level events
to a very small fraction of the overall runtime.

Figure 1 shows profiling results obtained with the help of Darshan [73, 74] for a parton-level simulation of Higgs
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(a) POSIX operations (b) MPI-IO operations (c) I/O cost

FIG. 2. Darshan graphs depicting the I/O behavior of Sherpa during particle-level event generation for H+4 jet leading order
multi-jet merging on 1024 MPI ranks. Left: POSIX I/O behavior. Middle: MPI-IO behavior. Right: Overall I/O cost. All
figures after including collective I/O, improved file layout to reduce metadata operations and limiting stat calls to the master
rank. The number of events was held constant for this test, and the total amount of data read was 128.85 GiB.

plus four jets at leading order, run on 1024 ranks of the Cori system at NERSC.4 Here we make use of a new feature
of Darshan, depicting which ranks perform I/O at which times. The color in the heatmap represents the transferred
data volume. Time runs along the x axis, MPI ranks along the y axis. A histogram along the x axis reports the total
data volume over time. A histogram along the y axis reports the total data volume per rank. The top panels depict
the initial performance of our simulation framework for parton-level event production [60]. The left and middle panels
show the data transfer at the POSIX and MPI-IO level. The right panels show the fraction of runtime consumed by
the I/O operations. As described in [60], the near lockstep event production implies that I/O also occurs in locksteps,
making it a good candidate for collective operations. The top panels in Fig. 1 show that the output operations start
at the same time on the various ranks, but they end at very different times, being responsible for a large variation in
runtime overall. The bottom panels in the same figure show the I/O with collective operations turned on, for which
we make use of an updated HighFive library, exposing HDF5’s collective data and collective metadata features. At
the POSIX level, there are now very few ranks participating in actual write operations, and the start and end times
are nearly identical on all ranks. An additional timing improvement is obtained from consolidating the individual
HDF5 data sets proposed in [60] into a single data set. We also limit stat calls performed by the program to the
master rank and broadcast the results of the call via MPI. The overall I/O time is reduced to a negligible amount,
below 1s per rank. This concludes our optimization of the parton-level simulation.

Figure 2 shows profiling results obtained with the help of Darshan [73, 74] for a particle-level simulation of Higgs
plus four jets with leading-order multi-jet merging, run on 1024 ranks of the Perlmutter system at NERSC.5 For this
test, we used the CPU-only nodes and did not access the scratch file system in order to give a more reliable estimate
of the expected I/O time on typical computing clusters and HPC machines. The total amount of data read during
the test was 128.85 GiB, and the time spent in I/O operations was less than 5% of the runtime. The POSIX-level
data rate was 103.44 GiB/s and the MPI-IO level data rate was 14.43 GiB/s. Figure 2 shows that the I/O operations
in our improved code are spread evenly over the runtime of the simulation, leading to more file access operations,
but smaller data transfers per operation. While the file system would support larger transfer rates, storing the data
for processing in the simulation program would require larger RAM allocations, leading to slower overall execution
times. This effect becomes particularly important at larger scales, of the order of 1000 ranks and beyond, where
the aggregate time needed for heap allocation would constitute a substantial part of the total runtime and break the
strong scaling. This concludes our optimization of the particle-level simulation.

Figure 3 shows the strong scaling tests for the parton-level and the particle-level component of the simulation. The
test is performed on the Perlmutter system at NERSC. We begin at a scale similar to the upper end of the tested
range in [60]. For parton-level calculations, we observe good scaling properties up to 8192 MPI ranks. We note that
the work for this test was selected such that the minimum runtime would correspond to about 30s, below which the
initialization time of the executable consumes a significant fraction of the overall runtime. In practice, one would rather

4 Cori was a Cray XC40 system, comprised of 2388 Intel Xeon “Haswell” processor nodes, 9688 Intel Xeon Phi “Knight’s Landing”
(KNL) nodes and a Cray Aries network with Dragonfly topology with > 45TB/s global peak bisection bandwidth. https://nersc.gov/
systems/cori

5 Perlmutter is a Cray Shasta system, using AMD “Milan” EPYC CPUs, a novel HPE Slingshot high-speed network, and a 35-petabyte
FLASH scratch file system. In total, it is comprised of 3,072 CPU-only and 1,792 GPU-accelerated nodes. https://nersc.gov/systems/
perlmutter

https://nersc.gov/systems/cori
https://nersc.gov/systems/cori
https://nersc.gov/systems/perlmutter
https://nersc.gov/systems/perlmutter
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FIG. 3. Strong scaling test of the simulations. Left: Parton level. Right: Particle level. At particle level, we do not include
the simulation of multiple interactions and hadronization, and we do not process events further. All times are normalized to
the individual results obtained on 512 MPI ranks.

choose runtimes that are significantly longer, in order to minimize the impact of initialization. At the particle level,
we observe scaling up to about 1024 MPI ranks, above which the behavior depends on the particular implementation
of MPI-IO. Figure 3 compares the Cray implementation to ROMIO. Above 16384 ranks, the Cray implementation
suffers from a problem that prevents collective open calls through HDF5. The ROMIO implementation does allow
collective open calls, but does not reach the full performance of the Cray MPI-IO library in data transfer. However,
we note that at this scale only about 6400 events are processed per rank, leading to an overall runtime of about one
minute for a total of 105 million events. There is no practical need to perform a calculation of this scale in less than
an hour, therefore our example should be seen as a test of the absolute limits of the code. We believe that further
optimization is not needed at this stage. In addition, we note that the particle-level simulation was limited to the
perturbative event phases, i.e. we did not include hadronization, underlying event simulation and hadron decays. Due
to the reduced event processing time in this scenario, any scaling violations observed in our test are more severe than
in practical applications.

We would like to conclude this section with a seemingly obvious but practically very important remark on the
limits of scalability. The aim of an efficient parallel code is to maximize the effective computation time per worker
node, i.e. the time spent in useful computations between I/O operations, with the I/O contributing an insignificant
fraction of the overall runtime. One of the main reasons for scaling violations to occur is that the time between I/O
operations becomes too short because of the limited size of input files. This can lead to significant problems at very
large scales, where the input files must then be tens or hundreds of Gigabytes in size. Therefore, it is not practical
for us to attempt scaling tests for particle-level simulations that go beyond O(104) MPI ranks. We note that this
intermediate scale parallelism is actually advantageous, because it allows to access backfill queues at large computing
centers.

III. PARTON-LEVEL EVENT GENERATION ON GPUS

We have added support for the generation of the proposed parton-level HDF5 event files to the Pepper parton-
level event generator. This recently presented generator, previously called BlockGen [64, 75], is being developed to
deliver performance portability for standard-candle processes, which currently include V+jets, tt̄+jets and pure jet
production at tree level. This is achieved by focusing on this subset of processes, and choosing the right algorithm for
such parallelization [64], for example by making use [75] of a minimal color basis [76–79]. Furthermore, parallelized
execution on accelerators like GPUs is supported. Preliminary results have been reported in [64, 75] for various
processes. Detailed speed comparisons e.g. to Comix and comparing GPU with CPU evaluation will be reported
in a forthcoming publication that will also mark the first public release of Pepper, in combination with the Chili
phase-space generator [14]. As in the Sherpa case (see Sec. II B), we added MPI-IO HDF5 support to Pepper via the
HighFive header library, and enabled HDF5’s collective data and collective metadata features.
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Process Tot. unc. [%]
Sherpa (Comix) Pepper+Chili

Speed-up
Walltime [s] Mem. (USS) [MB] Eff. [%] Walltime [s] Mem. (USS) [MB] Eff. [%]

Z+0j 0.089 68 62 22 10 40 43 6.8
Z+1j 0.19 76 66 5.3 31 33 10 2.5
Z+2j 0.99 92 64 0.28 10 35 1.4 9.2
Z+3j 3.8 95 65 0.037 36 43 0.097 2.6
Z+4j 14 122 115 0.0050 71 133 0.016 1.7

TABLE II. Benchmarks for the production and HDF5 writeout of pp → Z + jets events, comparing Sherpa’s Comix with
Pepper+Chili, on a single core of an Intel(R) Core(TM) i3-8300 CPU at 3.70GHz and 8MB L3 cache. Event samples are
generated with a given target for the total cross section uncertainty (“Tot. unc.”). “Speed-up” gives the walltime gain factor
of Pepper+Chili vs. Sherpa (Comix). For Pepper+Chili, the lower multiplicities Z+0j and Z+1j are generated using helicity
summing, while the higher ones are generated using helicity sampling, in order to achieve the best possible performance in each
case.
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FIG. 4. Differential jet rates for the leading, sub-leading and sub-sub-leading jet clustering in Z+jets production at the LHC.
Simulations have been performed with up to 1-jet, 2-jet and 3-jet matrix elements at leading order QCD. The colored lines
represent the contributions from the parton-level inputs with the specified multiplicity.

Table II shows benchmarks for the production of parton-level HDF5 event files on a single CPU thread for the
pp → Z + n jets process with n = 0, . . . , 4 for a given uncertainty target of the total cross section (“Tot. unc.”),
comparing Sherpa’s Comix generator with Pepper, where the latter uses Chili for the phase-space sampling. Prior
to event generation, the different phase-space generators are optimized until a given accuracy target is reached to
ensure a fair comparison. The benchmark metrics are the walltime for the generation of the event sample, the memory
consumption in terms of the applications’ unique set size (USS) in RAM, and the fraction of the number of non-zero
events over the total number of events generated, i.e. the measured combined efficiency of the phase-space sampling
and unweighting (“Eff.”). For Pepper+Chili, we switch from using helicity summing for the n = 0, 1 multiplicities to
using helicity sampling for the n = 2, 3, 4 ones, in order to achieve the best performance. We find that the walltimes
are significantly lower for Pepper+Chili for the given multiplicities, with the speed-up factor ranging between 2 and
10. For the higher multiplicities, n = 3, 4, the speed-up becomes smaller, but is still significant with factors of 2.6 and
1.7, respectively. The efficiencies for Pepper+Chili are also better by factors between 2 and 5. We remind the reader
that Pepper is based on explicit color sums to achieve a perfect lock-step parallel processing, which is essential for
achieving excellent performance on a GPU. The computational complexity for these explicit sums scales factorially and
will eventually cause Pepper to become slower (and more memory-consuming) than Comix, which uses an algorithm
with overall exponential scaling. For gluon scattering, this transition occurs at seven final-state gluons [64]. This is
also the reason for the larger memory usage growth going from n = 3 to n = 4 for Pepper+Chili compared to Sherpa.

Figure 4 shows a cross-check of differential distributions of kT jet rates between Pepper and Comix, after leading-
order multi-jet merging [38] with Sherpa 2.2 [62]. The first ratio panel compares the predictions obtained with
Pepper+Sherpa to the results from Comix+Sherpa, normalized to the statistical uncertainty of the latter. The second
ratio panel shows the relative contributions from the event samples with Z+0 jets, Z+1 jet, Z+2 jets and Z+3 jets
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FIG. 5. Transverse momentum spectra of the leading, sub-leading and sub-sub-leading jet in Z+jets production at the LHC.
Simulations have been performed with up to 2-jet, 3-jet and 4-jet matrix elements at leading order QCD. The colored lines
represent the contributions from the parton-level inputs with the specified multiplicity.

to the overall prediction. It can be seen that the results are in agreement up to statistical fluctuations, which are
typically at or below the 1σ level, as expected.

IV. PHENOMENOLOGICAL APPLICATIONS

In this section we present first phenomenological applications of our new framework. We show that it can be used to
perform simulations with two of the main particle-level simulation tools for LHC physics, Pythia 8 and Sherpa 2. We
also present the first computation of Higgs with up to seven final-state jets, and we make the corresponding parton-level
event samples available for public use. The source codes for our study can be found at https://gitlab.com/hpcgen
and at https://gitlab.com/sherpa-team/sherpa/-/tree/rel-2-3-0.

A. Systematic comparison of particle-level simulations

The systematic assessment of uncertainties in particle-level simulations has been vital for the success of the LHC
physics program. It is particularly important in cases where the uncertainty is not of parametric type, such as when
switching between two formally equivalent, but practically different, NLO QCD matching schemes [30]. When used
correctly, the residual variations between event generator predictions give the best possible non-parametric estimate
of perturbative (and non-perturbative) uncertainties in the simulation. Our new event generation framework allows to
obtain such uncertainty estimates based on the same parton-level input configurations and at minimal computational
cost. This contributes to creating a sustainable computing model for high-energy physics research.

We carry out an example study of this type for the standard candle process of Z-boson plus multi-jet production.
We consider proton-proton collisions at the high-luminosity LHC at

√
s = 14TeV. The complete setup has been

described in [60]. In particular, we use the CT14 NNLO PDF set [80] and define the strong coupling accordingly.
Our modified parton-level event generator is based on Comix [15] as included in Sherpa version 2.2.4 [61, 62]. Our
modified particle-level event generators are based on Pythia 8 [65] and Sherpa 2.2 [62], including the improvements
reported in [81, 82]. Jets are defined using the kT clustering algorithm with R = 0.4, pT,j > 20 GeV and |ηj | < 6.
Following the good agreement between parton-level and particle-level results established in [83, 84], and the good
agreement between fixed-order and MINLO [85] results established in [86, 87], the renormalization and factorization

scales are set to Ĥ ′
T /2, where Ĥ ′

T =
∑

j∈jets pt,j +
√

m2
ll̄
+ p2

T,ll̄
.

Figure 5 shows the transverse momentum spectra of the leading, sub-leading and sub-sub-leading jet in the simu-
lation. The colored lines correspond to the contributions from the individual parton-level input samples after the full
simulation. The upper ratio panel shows the ratio between the Sherpa and the Pythia predictions. This ratio is of the
order of 10%, which can be ascribed to differences in the parton-shower algorithm used in the two different generators.

https://gitlab.com/hpcgen
https://gitlab.com/sherpa-team/sherpa/-/tree/rel-2-3-0
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FIG. 6. Transverse momentum spectrum of the leading jet in Z+jets production at the LHC, simulated using multi-jet merging
for up to two jets at NLO with up to zero, one and two additional jets at leading-order precision (from left to right), compared
to a purely LO multi-jet merged prediction with the same overall multiplicities. The colored lines represent the contributions
from the parton-level inputs with the specified multiplicity, and the hatched and solid bands indicate the uncertainties from
renormalization and factorization scale variations at leading- and at next-to-leading order.

This uncertainty should be added as a variation to the parametric scale uncertainties, which we investigate next.
Figure 6 shows the transverse momentum spectrum of the leading jet in a multi-jet merged setup with up to two

jets computed at next-to-leading order precision, and with up to zero, one and two additional jets computed at leading
order precision.6 For reference, we also show the prediction from a leading-order multi-jet merged event sample with
identical jet multiplicity (dashed lines). The leading-order predictions have been scaled such as to reproduce the total
cross section of the next-to-leading order predictions. The colored lines correspond to the contributions from the
individual parton-level input samples after the full simulation. The hatched bands indicate the scale uncertainties
from a seven-point scale variation at leading order, and the solid bands represent the corresponding uncertainties
at next-to-leading order precision. Note that the scale uncertainties increase with increasing jet multiplicity in the
merging. This is an artifact of the method to estimate the scale uncertainty in the complete calculation, and is
due to the fact that scales are varied in the computation of the hard matrix elements alone. It also indicates the
importance of higher-multiplicity final states for the experimental observable. To obtain a comprehensive picture of
the uncertainty, the renormalization scale dependent terms of the parton-shower resummation at higher logarithmic
order should be taken into account. This is the topic of active research elsewhere [88, 89], and we will therefore not
discuss the effect in this publication. We emphasize, however, that the simulation of additional radiation at tree level
is necessary for a proper physics modeling of high-multiplicity final states, and it is therefore not sufficient to limit the
fixed-order perturbative calculations to low multiplicity. This is where the increased efficiency of our event generation
framework becomes relevant for practical applications at the LHC.

B. Higgs boson plus multi-jet production as an example

With an anticipated 3 ab−1 at the high-luminosity LHC, Higgs-boson plus multi-jet events will be copiously pro-
duced, and even the six jet final state will be measurable at good precision. While not a discovery channel in its own
right, the Higgs-boson plus multi-jet signature can be used to test the dynamics of the Standard Model, and it also
provides the background to a number of Higgs-boson related measurements and searches, such as Di-Higgs produc-
tion. In anticipation of these analyses it behooves us to provide precision simulations. In this subsection, we therefore
present the first study of Higgs-boson production through gluon fusion at the LHC, with up to seven additional jets
computed at LO QCD and up to two jets computed at NLO QCD in the Higgs effective theory [90, 91]. We use the
MEPS@NLO algorithm [41, 42] to merge these calculations into an inclusive event sample. The parton-level inputs
are generated using Amegic [63], Comix [15] and MCFM [92–98]7.

6 The event files for the NLO parton-level input can be found at https://doi.org/10.5281/zenodo.8226865.
7 The event files can be found at https://doi.org/10.5281/zenodo.7751000 and https://doi.org/10.5281/zenodo.7747376.

https://doi.org/10.5281/zenodo.8226865
https://doi.org/10.5281/zenodo.7751000
https://doi.org/10.5281/zenodo.7747376
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FIG. 7. Jet transverse momentum distributions in Higgs-boson+jets events, computed using multi-jet merging with maximum
jet multiplicity equal to N (red), N + 1 (green), N + 2 (blue) and N + 3 (purple), with N the number of measured jets. The
top panels show leading-order, the bottom panels show next-to-leading order merged results with nmax,NLO = 2.

We consider proton-proton collisions at the high-luminosity LHC at
√
s = 14TeV. The basic setup has been

described in [60]. We use the CT14 NNLO PDF set [80] and define the strong coupling accordingly. Our modified
parton-level event generator is based on Comix [15] as included in Sherpa version 2.2.4 [61, 62]. Our modified particle-
level event generator is based on Sherpa version 2.2 [61, 62]. Jets are defined using the kT clustering algorithm with
R = 0.4, pT,j > 20 GeV and |ηj | < 6. Following the good agreement between parton-level and particle-level results

established in [83], the renormalization and factorization scales are set to ĤT,m/2, where ĤT,m =
∑

j∈jets pt,j +√
m2

H + p2T,H .

Figure 7 shows the jet transverse momentum spectra at leading order (top panels) and at next-to-leading order
(bottom panels). We compare multi-jet merged simulations where the maximum jet multiplicity, nmax, is set to the
number of measured jets, N (red), to N + 1 (green), N + 2 (blue) and N + 3 (purple). For NLO merged simulations,
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the maximum number of jets computed at NLO precision is nmax,NLO = 2, and we apply local K-factors based on
this calculation to higher jet multiplicities. The panels on the right show the ratio between different predictions,
normalized to the result for nmax = N + 2. It can be seen that the NLO merged predictions are more stable with
respect to variations of nmax at N = 1, as expected from the higher precision of the calculation at low jet multiplicity.
At N = 2, this effect is diluted by higher-multiplicity tree-level contributions, as explained in Sec. IVA, Fig. 6. NLO
accurate predictions for 3 jets at parton level would help to alleviate this problem [99, 100]. However, we could not
generate the corresponding unweighted event samples within the limited computing budget for this publication, and
we therefore leave a detailed investigation to future work.

C. Implementation in state of the art experimental simulations

We have validated our new event processing framework in the ATLAS benchmark setups described in [81]8. For
practical applications where multiple particle-level simulations are generated with the same parton-level input, the
LHEH5 event file technology will result in a significantly reduced overall production cost. There may however be
remaining obstacles to implementing the method in large-scale event production for the LHC experiments, in particular
the access of sub-samples and the synchronization of sub-samples across various sites of the WLCG. The solution to
this problem must be found in collaboration with experts from the LHC experiments, who are proficient in WLCG
workflows. We therefore postpone the discussion to a future publication.

V. CONCLUSIONS

We have presented a new framework for the precise and efficient simulation of events in collider experiments, with
particular emphasis on the high-luminosity Large Hadron Collider. The new technique is especially suited for the
physics modeling of high-multiplicity final states as it allows to match parton-level calculations at next-to-leading order
QCD precision to parton showers and merge multiple exclusive calculations into inclusive predictions. Parametric
uncertainty estimates can be computed on the fly, using the techniques from [101]. There are no restrictions on the
variations that can be performed, and the variations do not need to be included at the time of parton-level event
production. We have demonstrated scalability of our approach on a state of the art high-performance computer
at a leadership class computing facility. With the computing demands of the LHC experiments becoming an ever
more pressing problem due to increased precision in the measurements, our new framework presents an important
step towards a more flexible as well as economically and ecologically sustainable approach to event generation in the
high-luminosity era. We have validated the new technology against previous simulation programs and enabled event
production with a modern, portable parton-level event generator.
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[54] M. Bähr, J. M. Butterworth, and M. H. Seymour, The Underlying Event and the Total Cross Section from Tevatron to

the LHC, JHEP 01, 065, arXiv:0806.2949 [hep-ph].
[55] T. Sjöstrand, S. Mrenna, and P. Skands, PYTHIA 6.4 physics and manual, JHEP 05, 026, hep-ph/0603175.
[56] J. Alwall et al., A standard format for Les Houches Event Files, Comput. Phys. Commun. 176, 300 (2007), hep-

ph/0609017.
[57] Les Houches 2017: Physics at TeV Colliders Standard Model Working Group Report (2018) arXiv:1803.07977 [hep-ph].
[58] E. Bothmann et al., A standard convention for particle-level Monte Carlo event-variation weights, arXiv:2203.08230

[hep-ph] (2022).
[59] J. T. Childers, T. D. Uram, T. J. LeCompte, M. E. Papka, and D. P. Benjamin, Adapting the serial Alpgen parton-

interaction generator to simulate LHC collisions on millions of parallel threads, Comput. Phys. Commun. 210, 54 (2017),
arXiv:1511.07312 [hep-ph].
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[61] T. Gleisberg, S. Höche, F. Krauss, M. Schönherr, S. Schumann, F. Siegert, and J. Winter, Event generation with Sherpa
1.1, JHEP 02, 007, arXiv:0811.4622 [hep-ph].

[62] E. Bothmann et al. (Sherpa), Event Generation with Sherpa 2.2, SciPost Phys. 7, 034 (2019), arXiv:1905.09127 [hep-ph].
[63] F. Krauss, R. Kuhn, and G. Soff, AMEGIC++ 1.0: A Matrix Element Generator In C++, JHEP 02, 044, hep-ph/0109036.
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