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Single phonon excitations, with energies in the 1−100meV range, are a powerful probe of

light dark matter (DM). Utilizing effective field theory, we derive a framework to compute

DM absorption rates into single phonons starting from general DM-electron, proton, and

neutron interactions. We apply the framework to a variety of DM models: Yukawa coupled

scalars, axionlike particles (ALPs) with derivative interactions, and vector DM coupling via

gauge interactions or Standard Model electric and magnetic dipole moments. We find that

GaAs or Al2O3 targets can set powerful constraints on a U(1)B−L model, and targets with

electronic spin ordering are similarly sensitive to DM coupling to the electron magnetic dipole

moment. Lastly, we make the code, PhonoDark-abs (an extension of the existing PhonoDark

code which computes general DM-single phonon scattering rates), publicly available.
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I. INTRODUCTION

Recent years have seen rapid development in dark matter (DM) direct detection technol-

ogy. As experimental constraints utilizing nuclear recoil, e.g., ANAIS [1], CRESST [2–4],

DAMA/LIBRA [5], DAMIC [6, 7], DarkSide [8], DM-Ice [9], KIMS [10], LUX [11–13], SABRE [14],

SuperCDMS [15–20], and XENON [21–25], continue to increase sensitivity, others, such as,

CDEX [26], DAMIC [6, 7, 27–29], DarkSide [30–32], EDELWEISS [33–35], SENSEI [36–38],

SuperCDMS [20, 39, 40], and XENON [41–43], are utilizing electronic excitations to drive sensitiv-

ity to smaller DM masses. The lightest DM mass the experiments utilizing electronic excitations

are sensitive to is set by the ionization energy in noble liquids, O(10 eV), and the band gap in

crystal targets, typically O(eV). While a scattering DM particle needs to be heavier than an MeV

to generate these electronic transitions, a DM particle being absorbed may be much lighter, since

the energy deposited is approximately the DM mass. Therefore the lightest DM masses direct

detection experiments are currently sensitive to is O(eV).

The same production mechanisms for O(eV) scale DM, e.g., inflationary production [44], para-

metric resonance [45, 46], or misalignment mechanisms [47–49] also allow for lighter, sub-eV scale

DM candidates. Therefore the search for light DM should not end at O(eV), and there have been

a variety of proposals to explore this sub-eV mass region. Electronic excitations can be utilized in

targets with small excitation gaps such as superconductors [50–57], Dirac materials [58–60], doped

semiconductors [61], graphene [62–64], narrow gap semiconductors [65], and spin-orbit coupled

targets [66, 67].

Collective excitations, such as phonons [68–72] and magnons [73–77], have also been proposed

as an avenue to detect light DM. These excitations have energies in the O(1− 100meV) range and

targets typically have O(10) modes, making them excellent prospects for direct detection of sub-

GeV DM. In addition to being kinematically favorable, the experimental program for single phonon

detection is being actively pursued. The TESSARACT experiment [78], currently in development,

will utilize single phonon excitations in GaAs and Al2O3 (sapphire) targets. The combination of

motivated DM models and a maturing experimental program compels us to quantitatively compute

the reach of experiments to a broad range of theoretically consistent DM models.

The theory of DM-single phonon scattering has been well developed in the literature [70–72,

77, 79–82]. Recently an effective field theory (EFT) approach was used to compute the general

DM-single phonon scattering rate [77], building on the EFT framework first developed for general

DM-nucleus scattering [83–88]. However, in the absence of external electromagnetic fields, DM
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absorption on single phonons has only been computed for the kinetically mixed dark photon DM

model [70, 89]. The purpose of this work is to generalize the computation of DM absorption to

any DM model which has a Yukawa-like interaction Lagrangian of the form,

L ⊃ g ϕ Ψ̄OΨ , (1)

where g is a perturbatively small coupling constant, ϕ is the DM field, Ψ ∈ {e, p, n} is either

an electron, proton, or neutron Standard Model (SM) field, and O is an operator. The simplest

example of this interaction Lagrangian is when O = 1, and ϕ is a scalar field coupling to, e.g.,

electrons; then Eq. (1) is simply L ⊃ g ϕ ēe. Eq. (1) can also apply to vector DM, Vµ, when O has

a matching Lorentz index, e.g., L ⊃ g Vµ ēγ
µe and O = γµ. This can be further extended when the

operator O is allowed to contain momentum (derivatives) acting on the DM and SM fields, such

as for an axionlike particle (ALP), a, with derivative coupling to electrons: L ⊃ g ∂µa ēγ
µγ5e. In

momentum space, this simply corresponds to O = −i qµ γµγ5, where qµ is the four-momentum of

the ALP field.

To compute the DM absorption rate for a general DM model we utilize the self-energy for-

malism developed in Refs. [67, 90–92] for electronic excitations. Using the optical theorem, the

absorption rate can then be computed diagrammatically. Computing the single phonon absorption

rate involves similar diagrams to electron absorption, although here the intermediate excitations

are phonons instead of electrons. This framework has two main benefits: first, it automatically

includes screening effects, which arise from DM-photon mixing. Second, setting up the calculation

as a Feynman diagram calculation allows for straightforward generalizations to different DM mod-

els, by simply changing the Feynman rules at the vertex. The problem becomes finding Feynman

rules of the DM-phonon vertex, ascertained from a Lagrangian coupling the DM to the ion dis-

placement/phonon operator, u. We develop a method to find this DM-phonon EFT Lagrangian

starting from a UV Lagrangian of the form Eq. (1).

In addition to the general operators encompassed by Eq. (1), we consider targets with and

without fermionic spin ordering, e.g., (anti) ferromagnets. We find that targets with different spin

orderings can be sensitive to different DM models. For example, in the absence of spin ordering,

ALP DM does not couple to phonons via the derivative coupling; however, in a spin ordered target

phonons can be excited.

We make the code used to compute the absorption rates for all targets, PhonoDark-abs �,

publicly available here �. This program complements PhonoDark [77, 93], which was developed to

compute general DM-single phonon scattering rates.

https://github.com/kpardo/PhonoDark-abs
https://github.com/kpardo/PhonoDark-abs
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The paper is organized as follows. In Sec. II we provide a theoretical framework to compute

the DM absorption rate into single phonons via a general, Yukawa-like interaction in the form of

Eq. (1). This derivation will proceed in three steps: first, in Sec. II A we write the absorption rate

in terms of self-energy diagrams using the optical theorem. Second, in Sec. II B we compute the

phonon contribution to these diagrams, whose imaginary part leads to single phonon absorption,

in terms of vertex Feynman rules, which are then derived in detail in Sec. II C. Before computing

the DM absorption rate into single phonons, we compute the single phonon contribution to the

dielectric function in Sec. IIIA, which serves both as a cross check of the formalism, and verification

of the first principles calculations of the target properties. In Secs. III B - III E we compute the DM

absorption rate into single phonons for different DM models and show the projected constraints.

Specifically, we consider scalar DM (Sec. III B), the derivative coupling of ALP DM (Sec. III C), and

two models of vector DM, one which couples to the SM vector currents (Sec. IIID), and another

which couples to the SM particles electric and magnetic dipole moments (Sec. III E).

II. GENERAL SINGLE PHONON ABSORPTION RATE

The purpose of this section is to compute DM single phonon absorption rates due to Yukawa-

like interactions in the form of Eq. (1). The derivation proceeds in three steps. First, in Sec. II A,

we use the optical theorem to write the DM absorption rate in terms of in-medium self-energies.

Second, in Sec. II B, we write the phonon contribution to the self-energies in terms of crystal form

factors, F , describing how the DM field couples to phonons. These form factors will depend on

the properties of the ions at each lattice site, e.g., the number of protons or the electronic spin.

Third, in Sec. II C, we detail how the form factors are derived using non-relativistic effective field

theory (NR EFT) starting from Eq. (1).

A. Absorption Rate In Terms of Self-Energies

Following Refs. [67, 90–92], we start by deriving the DM absorption rate in terms of in-medium

self-energies, Π. While this formalism was originally developed to compute DM absorption on

electrons, it is agnostic about the underlying crystal degrees of freedom and can be similarly

applied to the case of phonon absorption. The optical theorem states that the absorption rate of

the λth polarization of the DM field, ϕ, is,

Γλ = − 1

mϕ
Im

[
Πλϕϕ

]
, (2)
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where mϕ is the DM mass, Πλϕϕ is the self-energy between two ϕ particles of the λth polarization.

However, when ϕ can mix with the photon field, A, this introduces complications since one must

include diagrams mixing ϕ and A. The sum of all the diagrams can be succinctly written in terms of

1PI diagrams by first going to the “in-medium” basis, where the fields are no longer mixed. When

ϕ and A are perturbatively coupled, the leading order self-energy of the in-medium “DM-like”

state, ϕ̂, is given by,

Πλ
ϕ̂ϕ̂

≃ Πλϕϕ +
∑
η

ΠληϕAΠ
ηλ
Aϕ

m2
ϕ −ΠηAA

, (3)

where we have introduced the self-energies polarization components defined as, Πλλ′ ≡ −eλµΠµνeλ
′∗
ν ,

where eλµ are the polarization vectors of the subscripted fields, e.g., Πλλ′
ϕA = −eλϕ,µΠµνeλ

′∗
A,ν . The

polarization vectors are defined to diagonalize the Πϕϕ and ΠAA self-energies, i.e., Πλλ′
AA = ΠλAAδ

λλ′ ,

and in general will differ from the vacuum longitudinal and transverse polarization vectors. Given

Eq. (3), the total DM absorption rate is given by,

Γλ = − 1

mϕ
Im

[
Πλ
ϕ̂ϕ̂

]
= − 1

mϕ
Im

[
Πλϕϕ +

∑
η

ΠληϕAΠ
ηλ
Aϕ

m2
ϕ −ΠηAA

]
, (4)

and the DM-polarization averaged absorption rate, per target mass and exposure time, R, is then,

R =
ρϕ

ρTmϕ

1

n

∑
λ

Γλ , (5)

where ρϕ is the DM density, taken to be 0.4GeV/cm3, ρT is target density and n is the number of

polarizations of the DM field.

The absorption rate in Eq. (5) can be simplified further if we assume that the photon self-

energy is independent of polarization, i.e., Πλ
AA ≃ ΠAA, which is true in the isotropic limit. To

simplify the following analysis we assume isotropy, and leave a study of anisotropic corrections to

future work. In this case, the sum over η can be performed exactly using the completeness relation∑
η e

µ
A,ηe

ν,∗
A,η = −gµν . Moreover, the Ward identity, QµΠ

µν = 0, demands the time components

to be q-suppressed relative to the spatial components. Therefore, −gµνΠλµϕAΠνλAϕ ≈ ΠλiϕAΠ
iλ
Aϕ, and

Eq. (5) simplifies to,

R = − ρϕ
ρTm2

ϕ

1

n

∑
λ

Im

[
Πλϕϕ +

ΠλiϕAΠ
iλ
Aϕ

m2
ϕ −ΠAA

]
. (6)

This leads to our final absorption rate expressions for (pseudo) scalar DM, RS , and vector DM,
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RV :
1

RS = − ρϕ
ρTm2

ϕ

Im

[
Πϕϕ +

ΠiϕAΠ
i
Aϕ

m2
ϕ −ΠAA

]
, RV = − ρϕ

3ρTm2
ϕ

Im

[
Πiiϕϕ +

ΠijϕAΠ
ji
Aϕ

m2
ϕ −ΠAA

]
. (7)

When deriving the absorption rate for vector DM we have once again used the completeness relation

of the polarization vectors to perform the sum over the DM polarizations. Notice how in both the

scalar and vector case we were able to remove the dependence on the photon and DM polarizations,

such that the problem of computing the absorption rate has now shifted to deriving the spatial

components of the in-medium self-energies.

The in-medium self-energies receive contributions from both electronic excitations, Πel, and

phonon excitations, Πph. For example, at one loop, the following graph topologies will contribute:

Π = Πph +Πel = + + ,
(8)

where the first diagram represents the phonon contribution while the last two diagrams encode the

contribution from electronic excitations. Here we will assume that the electronic band gap is much

larger than the energy of phonon excitations, such that no electron excitation can go on shell at

energies relevant for DM absorption into phonons. As a result, Im [Πel] ≃ 0 and

Π ≃ Πph +Re [Πel] . (9)

Therefore, in order to compute the absorption rates given in Eq. (7), in addition to the phonon

contribution to the self-energies one also has to compute the real contribution from electronic

excitations. The electron contribution to in-medium self-energies has been extensively studied in

Refs. [57, 67, 90], therefore, in the following we will focus on the novel phonon contribution and

use the values of Re [Πel] derived in these previous works.

B. Phonon Contribution To Self-Energies

The phonon contributions to the diagrams in Πϕϕ,ΠϕA and ΠAA can all be understood from

the same diagram:

Q−→
Φ Φ′

where Qµ = (ω,q) is the incoming four-momentum, Φ and Φ′ can be either ϕ or A (the diagram

1 Any directional q̂ dependence within the rate is averaged over, i.e., we compute R̄ = 1
4π

∫
dΩq̂R(q̂) for both scalar

and vector DM models. Furthermore we take q = ωv0, where v0 = 230 km/s.
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inherits the Lorentz indices of the field, e.g., ΠAA → ΠµνAA), and the central double line is a phonon

propagator. To compute the diagram the phonon propagator and vertex rule are needed. The

phonon propagator, Dνk(ω), is given by [94],

Dνk(ω; γνk) =
2i ωνk

ω2 − ω2
νk + iωγνk

, (10)

where ν,k index the phonon branch and momentum within the first Brillouin zone (1BZ), respec-

tively, ωνk is the phonon energy, and γνk is the phonon linewidth, or inverse of the phonon lifetime.

Assuming, for now, that the left and right vertex rules are given by, MΦ,νk, M
∗
Φ′,νk, respectively,

the self-energy is,

iΠΦΦ′(Q) =
1

NΩ

∑
νk

MΦ, νkDνkM
∗
Φ′, νk , (11)

where V = NΩ is the volume of the target, N is the number of unit cells, and Ω is the unit cell

volume. Analogous to the self-energy, MΦ,νk will inherit the Lorentz indices of the field Φ.

In order to separate the part of the vertex that depends on the structure of the UV Lagrangian

from the part that is common among different UV interactions, we parameterize the vertices for

scalar and vector fields as

S νk
= iMS, νk ≡ −

√
N δq,k

∑
j

FS, j · Tjνk (12)

V νk
= iMµ

V, νk ≡ −
√
N δq,k

∑
j

Fµ
V, j · Tjνk , (13)

respectively, where S is a scalar field, V is a vector field, and the double line indicates a phonon.

We will summarize the meaning of each term here, and provide a detailed derivation of MΦ,νk

in Sec. II C. A factor of
√
N has been factored out to cancel the 1/N in Eq. (11), as well as the

momentum conservation factor δq,k. j indexes the ions in each unit cell, and the sum indicates

that all the ions in the unit cell contribute to the generation of a phonon. Tjνk is defined as the

phonon transition matrix element,

Tjνk =
√
Neik·x

0
ℓj ⟨νk|uℓj |0⟩ =

1√
2mjωνk

ϵ∗jνk , (14)

uℓj is the displacement operator,

uℓj =
1√

2Nmj

∑
νk

eik·x
0
ℓj

√
ωνk

(
aνk + a†νk

)
ϵjνk , (15)
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|νk⟩ = a†νk|0⟩ is a single phonon state at ν, k, x0
ℓj is the equilibrium position of the jth ion in the

ℓth unit cell, mj is the mass of the jth ion, and ωνk, ϵjνk are the phonon energies and polarization

vectors, respectively. The phonon transition matrix element, Tjνk, is coming from a |0⟩ → |νk⟩
transition in the vertex. Lastly, the form factors FS, j and Fµ

V, j are vectors that contain the

information about how the scalar, S, or vector field, V couple to the displacement operator, uℓj ,

via macroscopic properties of the ion, e.g., total number of electrons. These form factors may

contain contributions from each fermion type, e, p, n at the lattice site j, and therefore can be

further decomposed as F j =
∑

ψF jψ, where ψ ∈ {e, p, n}. The detailed derivation of these form

factors is given in Sec. II C, and summarized in Table I for the DM models of interest.

Substituting Eqs. (10) and (14) into Eq. (11) gives the final expression for the phonon contri-

bution to the self-energies,

ΠΦΦ′(Q) =
1

Ω

∑
ν

∑
j

F j · Tjνq

 2ων
ω2 − ω2

ν + iωγν

∑
j

F j · Tjνq

∗

, (16)

where the S, V index on F follows from directly from the Φ,Φ′ particle type, e.g., when computing

Πϕϕ for scalar ϕ, FS, j should be used. We have also simplified the phonon propagator since for

absorption kinematics, q ≪ ω, ωνq ≈ ων .

C. Dark Matter-Phonon Interaction Form Factors

In Sec. II A we wrote the single phonon absorption rate in terms of electron and phonon self-

energies, and in Sec. II B we wrote the phonon self-energies, Eq. (16), in terms of some form

factors, F j . These results were independent of both the UV Lagrangian and target material,

whose dependence manifests within the aforementioned form factors. In this section, we derive

these form factors starting from the UV Lagrangian in Eq. (1). Schematically, the derivation

proceeds as follows,

LUV(Ψ)
NREFT−→ LNR(ψ)

⟨⟩ℓj−→ L(uℓj)
|0⟩→ |νk⟩−→ F j . (17)

The first step “NR EFT” (Sec. II C 1) (non-relativistic effective field theory) reduces the UV

Lagrangian, LUV, written in terms of the four-component Ψ fields, to the NR Lagrangian, LNR,

written in terms of two-component fields, ψ, which describe the electron, proton, and neutrons in

the target. The NR expansion is appropriate when the energy and momentum transfers are much

smaller than the fermion masses, which is certainly the case for absorption processes.



10

Model (LO) Form Factors, F j

No Spin Ordering Spin Ordering

Spin-0 DM (FS, j)

g ϕΨ̄Ψ g Nj q g Nj q

g

2mΨ
∂µa Ψ̄γ

µγ5Ψ - − i g ω
2

mΨ
Sj

Spin-1 DM
(
Fµ

V, j = Fµi
V, j =

(
F0i

V, j ,Fki
V, j

))
g VµΨ̄γ

µΨ g Nj

(
qi, ω δki

)
g Nj

(
qi, ω δki

)
dM
2
VµνΨ̄σ

µνΨ dM
ω2

2mΨ
Nj

(
qi , ω δki

)
2i dMω

(
ϵiab qa Sb

j ,−ϵbki ω Sb
j

)
dE
2
VµνΨ̄σ

µνiγ5Ψ - 2i dE (q · Sj)
(
qi , ω δki

)

TABLE I. DM-phonon interaction form factors, F j , Eqs. (12) and (13), for the DM Model (UV Lagrangian)

shown in the left column. The leading order form factor is shown for targets with no spin ordering (middle

column), and targets with spin ordering (right column). For spin-1 DM we write the i index on the vector

FV, j to avoid confusion with the µ index. Explicitly, F0i
V,j (F

0
V,j) is the left component inside the parentheses,

and Fki
V,j , the i

th component of the vector Fk
V,j , is the right component. Dashed lines indicate negligible,

higher order responses. Note the ψ index on the form factor has been dropped from N,S for simplicity.

The “0” components of the spin-1 DM form factors are related by the Ward identity, QµFµ
V, j = 0, where

Qµ = (ω,q) is the incoming DM four-momentum.

While the NR Lagrangian is written directly in terms of the particles constituting the target, it

does not contain any information about the target itself. In the case of a crystal, the target state is

simply a lattice of ions at positions xℓj = x0
ℓj+uℓj , where x

0
ℓj is the equilibrium position of the ion,

uℓj are the displacement operators, and each site indexed by ℓj, where ℓ indexes the unit cell, and

j indexes the ion inside the unit cell. This information is added in the second step, labeled “⟨⟩ℓj”
in Eq. (17), or “Target Expectation Value” (Sec. II C 2), which transforms the DM-ψ interaction

Lagrangian to DM coupling to the lattice properties at each site, e.g., ϕψ†ψ → ∑
ℓj ϕnjψ(x−xℓj),

where njψ is the number density of ψ particles on the jth site, by summing the expectation values

at each lattice site.

In the last step, “|0⟩ → |νk⟩” in Eq. (17), or “Form Factor Calculation” (Sec. II C 3), the form

factors, or vertex rules in Eqs. (12) and (13), are derived from the interaction Lagrangian, L(uℓj),
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which is written in terms of the displacement operators. This step is simply computing quantum

mechanical matrix elements of the transition between an initial state with no phonon and incoming

DM particle, to a final state containing no DM particle and a single phonon indexed by νk.

These three steps are described in the following subsections. While the procedure to connect

the UV Lagrangian to the form factors is the same for each operator O in Eq. (1), the details

can differ. Therefore to avoid repetition, at each step in the derivation we begin with a general

discussion, and then provide an example calculation for vector DM, V , coupling the (spatial part)

of a vector current, LUV(Ψ) = gVµΨ̄γ
µΨ ⊃ −g V i Ψ̄γiΨ. The form factors for all of the DM models

considered in Sec. III can be found in Table I.

1. NR EFT

The purpose of finding the NR limit of a UV Lagrangian is to isolate the dynamics of the

two-component field, ψ, which satisfies the Schödigner equation, within the Lagrangian containing

two two-component fields inside Ψ. Our starting point is the Dirac Lagrangian,

L = Ψ̄ (iγµDµ −mΨ)Ψ , (18)

where Dµ is the gauge covariant derivative, and mΨ is the mass of the fermion. The problem

becomes more clear after a change of variables, Ψ → e−imΨtΨ which transforms Eq. (18) to,

L = Ψ̄ (iγµDµ + 2mΨP−)Ψ , (19)

where P± = (1 ± γ0)/2 are projection operators. Eq. (19) describes the dynamics of two two-

component fields, P±Ψ, where P+Ψ is massless, and P−Ψ is massive. For this reason, we will refer

to P+Ψ as the “light” field and P−Ψ as the “heavy” field. If there were no terms in Eq. (19) which

mixed the heavy and light fields then there would be no problem; the dynamics of the two fields

are decoupled.

However, the γiDi term mixes the heavy and light fields, and therefore to isolate the dynamics

of the light field, a procedure to remove the heavy field needs to be performed. This is the

fundamental problem of NRQED/QCD [95–97], and there are many different approaches. We will

give a summary of two methods that have been utilized in the context of DM direct detection,

Refs. [57] and [90], and refer the reader to these references for more details.

Ref. [57] used the “equation of motion” (EOM) method, which is the most physically intuitive.

One simply solves for the EOM of the heavy field in terms of the light field, and then substitutes
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the heavy field back into the Lagrangian. This generates a Lagrangian which only depends on the

light field. The NR limit of the interaction Lagrangian in Eq. (1) is also readily found; to first

order in the DM coupling, one can simply substitute the heavy field which satisfies the EOM when

no DM field is present. Including the O(g) dependence in the heavy field EOM only introduces

extra O(g2) terms.

While physically straightforward, when integrating out the heavy field extra time derivatives

enter, which require careful field redefinitions to keep canonically normalized fields. Another ap-

proach, used in Ref. [90] and known more generally as a Foldy-Wouthuysen (FW) transforma-

tion [98–103], avoids this by removing the mixing with consecutive field redefinitions at each order

in 1/mΨ. That is, one finds n Hermitian operators, {X0, X1, ..., Xn−1} such that,

Ψ → e−imΨt

[
exp

(
−i X0

mΨ

)
. . . exp

(
−iXn−1

mn
Ψ

)]
Ψ , (20)

removes all heavy/light field mixing to O(m−n
Ψ ). One can show that the operators,

X0 =
1

2
γiDi , X1 =

i

4
γ0γi

[
D0, Di

]
, (21)

remove the heavy/light field mixing to O(1/m2
Ψ) when substituted into Eq. (20) and then Eq. (18).

These operators can then be used to simplify any Yukawa-like DM interaction in Eq. (1), to

O(g/m2
Ψ), by simply substituting Eq. (20) into Eq. (1),

Ψ̄OΨ ≈ ψ†Tr

[
P+

[
γ0O +

i

mΨ

[
X0, γ

0O
]
− 1

m2
Ψ

[
X0,

[
X0, γ

0O
]]

+
i

m2
Ψ

[
X1, γ

0O
]]]

ψ , (22)

where the Tr is performed over the 2 × 2 block diagonal matrix, and ψ, in the Dirac basis, is the

upper two components of Ψ on the right-hand side of Eq. (20). Eq. (22) gives the general form

of the first step in Eq. (17). Applying Eq. (22) to the example UV DM Lagrangian, and keeping

terms leading order in both 1/mΨ and absorption kinematics (q ≪ ω), yields,

LUV(Ψ) = −g V i Ψ̄γiΨ −→ LNR(ψ) ≈ −g V i ψ†
(
iDi

mΨ

)
ψ , (23)

which comes solely from the second term in Eq. (22) using [γi, γ0γj ] = 2δij .

2. Target Expectation Value

Given the NR Lagrangian in terms of the electron, proton, and neutron fields, ψ, the DM-phonon

interaction Lagrangian is simply a sum over the expectation value at each lattice site,

L(uℓj) =
∑
ℓj

⟨ LNR(ψ) ⟩ℓj . (24)
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These expectation values will then be written in terms of the target properties at each site, e.g.,

⟨ψ†ψ⟩ℓj = njψ(x− xℓj) , (25)

where njψ is the number density of the ψ field. This step is analogous to the EFT calculation

performed in Ref. [77] for DM-single phonon scattering. However, in Ref. [77] it was the scattering

potential, V, which was written as a sum of the scattering potential at each lattice site, V =∑
ℓj⟨ V ⟩ℓj . Further simplifications were made assuming that the scattering potential only depends

on xℓj in the same way as Eq. (25), i.e., V =
∑

ℓj Vℓj(x − xℓj). This simplified calculations by

allowing the xℓj dependence to be factored out in the Fourier transform of the scattering potential,

Ṽ (−q) =
∑

ℓj e
iq·xℓj Ṽℓj(−q).

Since we are only concerned with single phonon excitations in the q ≪ ω limit here, we perform

a different simplification of these expectation values than in Ref. [77] by focusing on the terms

that are linear in uℓj . The other terms will not enter the matrix element calculations of the form

factors performed in Sec. II C 3, and avoids the exponential dependence on xℓj . Additionally, the

derivation performed here will keep expectation values that are O(ω) which were subdominant in

for the scattering EFT and implicitly dropped when assuming V =
∑

ℓj Vℓj(x− xℓj).

As an example, the linear order in uℓj term in Eq. (25) is,

⟨ψ†ψ⟩ℓj → −uiℓj∇injψ(x− x0
ℓj) . (26)

An additional simplification can be made when we consider that these expectation values multiply

the DM field inside the Lagrangian LNR. Therefore we can integrate by parts and move the

derivative acting on the number density to the DM field, and convert to momentum space with

qµ = i∂µ,

⟨ψ†ψ⟩ℓj → i qi uiℓj njψ(x− x0
ℓj) . (27)

Similar simplifications can be performed for the spin density, sijψ,

⟨ψ†σiψ⟩ℓj → 2i qk ukℓj s
i
jψ(x− x0

ℓj) , (28)

where the factor of two enters from the definition of spin, S = σ/2.

More complicated operators can be simplified using Ehrenfest’s theorem. For example, consider

⟨ψ†kiψ⟩ℓj , Ehrenfest’s theorem states that,

ki = imΨ

[
H0, x

i
]
, (29)
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and therefore,

⟨ψ†kiψ⟩ℓj = imΨ⟨ψ† [H0, x
i
]
ψ⟩ℓj = mΨ

(
⟨∂0ψ†xiψ⟩ℓj + ⟨ψ†xi∂0ψ⟩ℓj

)
= imΨω ⟨ψ†xiψ⟩ℓj

→ imΨω u
i
ℓj njψ(x− x0

ℓj) , (30)

where we have used the Schrödinger equation, H0ψ = i∂0ψ, and, similar to q previously, ω repre-

sents a time derivative acting on the DM field. With one exception that will be discussed later,

the operators, 1, σi and ki are the only operators needed to compute the form factors for all the

models discussed here. Furthermore, we assume that there are no background vector gauge fields,

and therefore ⟨ψ†iDiψ⟩ℓj = ⟨ψ†kiψ⟩ℓj .
With these target expectation values computing the example DM-phonon interaction La-

grangian from Eq. (23) is trivial,

LNR(ψ) ≈ −g V iψ†
(
iDi

mΨ

)
ψ −→ L(uℓj) ≈ −i g ω V i

∑
ℓj

uiℓj njψ(x− x0
ℓj) . (31)

3. Form Factor Calculation

The last step in the derivation is to identify the form factor from the DM-phonon interaction

Lagrangian. This is done by computing the matrix elements from Eqs. (12) and (13),

iMS, νk = i

∫
d3x eiq·x

〈
νk

∣∣∣∣ δL(uℓj)δϕ

∣∣∣∣ 0〉 = −
√
Nδq,k

∑
j

FS,j · Tjνk (32)

iMµ
V, νk = i

∫
d3x eiq·x

〈
νk

∣∣∣∣ δL(uℓj)δVµ

∣∣∣∣ 0〉 = −
√
Nδq,k

∑
j

Fµ
V, j · Tjνk , (33)

respectively, where the δ/δϕ (δ/δVµ) simply removes the scalar field, ϕ (vector field, V ) from the

interaction vertex, leaving only a function of the phonon operators, uℓj . It is easiest to understand

this formula in practice, and similar simplifications hold for all DM-phonon interaction Lagrangians.

Consider the example L(uℓj) in Eq. (31), in this case we have

iMk
V,νk = −gω 1√

N

∑
ℓj

T kjνk e
−ik·x0

ℓj

∫
d3x eiq·xnjψ(x− x0

ℓj) , (34)

where we have written the displacement operator matrix element in terms of the phonon transition

matrix element with Eq. (14). The integral in Eq. (34) can be related to the total particle number,

Njψ, ∫
d3x eiq·x njψ(x− x0

ℓj) = eiq·x
0
ℓj ñjψ(q) ≈ eiq·x

0
ℓj Njψ (35)
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and the sum over ℓ enforces momentum conservation within the crystal,
∑

ℓ e
i(q−k)·xℓ = Nδq,k.

After these simplifications, one can isolate the form factor,

Fki
jψ = g ω δkiNjψ , (36)

where the k index corresponds to the spatial part of µ, and i corresponds to the index of the vector,

Fµ
V, j , i.e., what gets contracted with Tjνk in Eq. (12).

III. APPLICATIONS

In this section, we apply the formalism developed in Sec. II to compute DM absorption rates

into single phonon excitations for a variety of targets and DM models. Our focus will be on

four classes of DM models with Yukawa-like interactions: scalar DM with couplings of the form,

ϕΨ̄Ψ (Sec. III B), pseudoscalar DM with axionlike particle (ALP) derivative couplings, ∂µaΨ̄γ
µγ5Ψ

(Sec. III C), vector DM from spontaneously broken gauge theories coupling to the vector current,

VµΨ̄γ
µΨ (Sec. IIID), and lastly vector DM coupling to the SM electric, VµνΨ̄σ

µνiγ5Ψ, and mag-

netic, VµνΨ̄σ
µνΨ dipole (Sec. III E). The absorption rate for each of these models can be easily

computed with the help of the form factors in Table I. Specifically, for each DM model, we derive

the phonon contribution to the in-medium self-energy by substituting the form factors given in

Table I into Eq. (16). These self-energies are then substituted into Eq. (7) to compute the total

absorption rates.

The phonon transition matrix elements, Tjνk, are computed from first principles in two steps.

First, using first principles density functional theory (DFT) [104] calculations within VASP [105–

109], the lattice is relaxed to its equilibrium position and the equilibrium positions, x0
ℓj , are found.

Each ion is then displaced from its equilibrium position and the forces on the ion are computed,

which generates the spring constants between the ions. VASP is also used to compute the high-

frequency dielectric constant, ε∞. These three pieces of information are contained in the POSCAR,

FORCE SETS, and BORN files output from VASP (or similar DFT software). Second, these files

are then input to the phonopy program [110] which diagonalizes the system and calculates the

phonon energies, ωνk, and eigenvectors, ϵjνk.

PhonoDark-abs � is used to compute all absorption rates shown here. PhonoDark-abs performs

the second step (calling phonopy) internally, and therefore one simply needs to supply the DFT

input files (POSCAR, FORCE SETS, and BORN), for any target material, to compute the absorption

rate. PhonoDark-abs is publicly available here �.

https://github.com/kpardo/PhonoDark-abs
https://github.com/kpardo/PhonoDark-abs
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Before computing DM absorption rates, in Sec. IIIA, we apply our formalism to compute the

long-wavelength dielectric function, ε(ω). This calculation serves a variety of purposes. First, it is

needed to compute the screened contribution to the DM absorption rates in Eqs. (7), as the dielec-

tric function is related to the self-energy of the photon via ΠAA = ω2 (1−ε(ω)). Second, it provides
a cross-check of our formalism since it allows us to compare our results with previous calculations of

the dielectric function in terms of the low-energy electronic and phononic responses [111]. Finally,

by comparing our results with experimentally measured values of the dielectric we can tune the

phonon widths, γν , in the phonon propagator in Eq. (10).

In Secs. III B - III E we compute the DM absorption rates into GaAs, Al2O3 (sapphire), and SiO2

(quartz) targets. GaAs was the first studied due to the simple structure of its unit cell [70], while

Al2O3 is desirable for its large number of resonances and directionality [71] and ready availability

in terms of fabrication of ultra-pure single crystals. Both of these targets will be used in the

TESSERACT experiment [78]. SiO2 has been previously identified as an optimal target in terms

of reach to light DM scattering off phonons [72]. The DFT input files for GaAs, Al2O3, and SiO2

are identical to those used in previous works [72, 76, 77, 81, 112]. These targets have no spin

ordering, i.e., the fermion spins are not periodically aligned, Sℓj ψ ̸= Sj ψ. Note that spin ordering

includes both ferromagnetic and anti-ferromagnetic ordering. The lack of spin ordering limits the

DM models that can be reached. Specifically, without spin ordering only scalar DM, vector DM

with gauge interactions, and vector DM with magnetic dipole interactions (at a detrimentally

suppressed rate) can be targeted. Targets with no spin ordering have no sensitivity to ALP DM,

one of the most theoretically motivated DM candidates, although this can be alleviated if the

sample is placed in an external B-field [76, 113].

Therefore we also consider a magnetically ordered target, FeBr2. This magnetic target was

chosen because the first-principles calculations of its phonon properties are publicly available [114–

117]; its purpose is to serve as an example calculation, not promote this specific target as a detector

concept. The Fe2+ ion has a magnetic moment of µ ≈ 3.9µB [118], where µB is the Bohr magneton.

Assuming that the 3d electrons are orbitally quenched, as is common for transition metal electrons

due to crystal field effects, the spin quantum number is S ≈ 1.8. While FeBr2 is ferromagnetically

ordered within the unit cell [116], it is anti-ferromagnetically ordered in adjacent cells [119]. Since

this target is only meant to serve as an example, we will treat it as a ferromagnet and take

Se ≈ [0, 0, 1.8] on the Fe2+ lattice site.
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FIG. 1. Comparison of the imaginary part of the dielectric function, Im [ε(ω)] (top row), and energy

loss function, Im [−1/ε(ω)] (bottom row), from first principles calculation using Eq. (38) (solid lines) and

measurements from Ref. [89] (dotted lines) for GaAs, Al2O3 (sapphire), and SiO2 (quartz). Solid lines

correspond to γν = 10−2 ων , and the boundaries of the shaded regions assume γν = 10−1 ων and γν =

10−3 ων .

A. Dielectric Function

The long-wavelength (q ≈ 0) dielectric function, ε(ω), receives contributions from both the

electron and phonon degrees of freedom in a crystal. This can be understood simply in terms

of two contributions to the photon self-energy, ΠAA = Πel
AA + Πph

AA, where Πel
AA is the electronic

response, and Πph
AA is the phononic response. Well below the band gap, the electronic contribution

is directly related to the “high-frequency” dielectric constant, Πel
AA = ω2(1 − ε∞), encoding the

response of the electrons if the lattice ions were not allowed to move, or “clamped”. Using this,

and the definition of the total dielectric function defined in terms of the total photon self-energy,

ΠAA = ω2(1− ε(ω)), we can write the dielectric function as

ε(ω) = ε∞ − 1

ω2
Πph
AA . (37)
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With the help of Table I and Eq. (16), we can then compute Πph
AA to obtain

ε(ω) = ε∞ +
e2

3Ω

∑
ν

2ων
ω2
ν − ω2 − iωγν

∑
j

Qj T
i
jνq

∑
j

Qj T
i
jνq

∗

, (38)

where the sums over ψ have been simplified in terms of the total electric charge of the ion,∑
ψ gψNjψ = eNj,p − eNj,e ≡ eQj , since gp = −ge = e in the QED Lagrangian, LQED ⊃

−eAµ ēγµe+eAµ p̄γµp, following the convention in Ref. [120] where e = −|e|. The factor of 3 comes

from taking the isotropic limit and averaging over the spatial components, ΠAA, ph = ΠiiAA, ph/3.

This agrees with the standard result in, e.g., Ref. [111], providing a validation of the formalism.2

In Fig. 1 we compare the imaginary part of the dielectric function (top row) and energy loss

function (ELF), Im [−1/ε(ω)] (bottom row), computed from first principles with Eq. (38), to

measured data from Ref. [89] for the non-spin ordered targets GaAs, Al2O3, and SiO2. The

computed dielectric function is shown for different assumptions about the phonon widths, γν ∈
{10−3 ων , 10

−2 ων , 10
−1 ων}. Smaller widths correspond to a larger resonance peak and smaller

off-resonance behavior, and vice versa for larger widths. We find that the measured data can be

well reproduced with phonon widths in this range, with slight shifts to the exact locations of the

resonances. More sophisticated models of the widths as a function of energy could further improve

these fits. For the results shown in Secs. III B - III E we use γν = 10−2 ων .

It is known that the absorption rate on phonons of some DM models, e.g., the kinetically mixed

dark photon [70, 89] and ALPs (in an external magnetic field [113]) can be related to the measured

ELF shown in Fig. 1. That first principles calculation can reproduce the measured ELF further

validates the first principles approach of computing single phonon absorption rates in these models

as studied in, e.g., Ref. [76]. In Fig. 4 we explicitly compare the constraints on the kinetically

mixed dark photon model from the measured and calculated ELFs, whose differences are due to

the differences shown in Fig. 1.

2 Eq. (38) is derived assuming that the electronic wave functions do not distort under ionic motion. These effects

can be incorporated by loosening the assumption, ⟨ψ†γ0ψ⟩ℓj ≈ nℓj,e(x− xℓj) + δnℓj,e, where δnℓj,e ≡ iqi δZik
j uk

ℓj ,

and δZik
j ≡ Zik

j − Qj , where Z
ik
j are the “Born effective charges”. The spatial component, ⟨ψ†γiψ⟩ℓj , follows

a similar simplification by the Ward identity. This adds a form factor to the photon-electron coupling, δFµi
je =

(qm δZmi
j , ω δZki

j ), replacing Qj T
i
jνq → Zik

j T k
jνq in Eq. (38). See Ref. [72] for more details.
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FIG. 2. Projected 95% C.L. constraints (3 events) on de = geΛ/me (Eq. (39), Λ =MPl/
√
4π), utilizing single

phonon excitations in GaAs (solid red), Al2O3 (solid blue), and SiO2 (solid green) targets, assuming a kg ·yr
exposure and no backgrounds. Dashed lines correspond to projected constraints from absorption on electrons

in small band-gap targets, i.e., Al superconductors (“Al-SC”, purple) [52, 57], and spin-orbit coupled targets

ZrTe5 (turquoise) [67]. Shaded regions correspond to constraints from fifth force experiments (teal) [121, 122]

and stellar cooling bounds from red giants (“RG”, pink) [92] and white dwarfs (“WD”, orange) [123].

B. Scalar DM

The first model we consider is scalar DM, ϕ, whose couplings to electrons and nucleons are

given by the Lagrangian,

L ⊃
∑

Ψ∈{e,p,n}

gΨ ϕ Ψ̄Ψ −→ LNR =
∑
ψ

gΨ ψ
†ψ +O(1/m2

Ψ) . (39)

Using Table I the relevant self-energies are easily computed,

Πϕϕ = −i
∑
ν

Dν(ω)

Ω

∑
jψ

gΨNjψ q
i T ijνq

∑
jψ

gΨNjψ q
i T ijνq

∗

, (40)

ΠiϕA = −ieω
∑
ν

Dν(ω)

Ω

∑
jψ

gΨNjψ q
k T kjνq

∑
jψ

Qjψ T
i
jνq

∗

− ge
e
ωqi (1− ε∞) , (41)

and Πel
ϕA = Πel

Aϕ. Since only the imaginary component of Πϕϕ enters in the absorption rate given in

Eq. (7), we have ignored the electron contribution to Πϕϕ as it is purely real. This will also apply

to the self-energies discussed in Secs. III C - III E. The electron contribution to ΠϕA was derived
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in Refs. [57, 67], and is given by the last term in Eq. (41).3

While the general absorption rate is given by substituting Eqs. (40) and (41) into Eq. (7), it

is illuminating to study specific combinations of the coupling constants. For example, if the gΨ

coefficients are “photon-like”, i.e., gp = −ge = g, gn = 0, then all the self-energies are proportional

to ΠAA (assuming an isotropic target), indicating that the total absorption rate can be written in

terms of the ELF:

R ≈ g2

e2
q2

ω2

ρϕ
ρT

Im

[ −1

ε(ω)

]
(photon-like ϕ) . (42)

Since the absorption rate can be written in terms of the ELF, it can also be related to the dark

photon absorption rate, Rdp = (ρϕ/ρT )κ
2 Im [−1/ε(ω)] [89]. Therefore the constraints on g can be

related to the constraints on the mixing parameter, κ, of the dark photon model:

g ∼ 4× 10−14
( κ

10−16

)
. (43)

When the couplings are proportional to the particle masses, gΨ = gmΨ, the ions are shaken

in-phase, and therefore optical, or out-of-phase, oscillations are not excited. Therefore, as optical

phonons are the only ones that can match DM absorption kinematics, this leads to a vanishing

absorption rate. This effect, sometimes referred to as the “coupling to mass” effect [70, 71, 76, 80],

mathematically corresponds to the statement that∑
j

mjT
i
jνq ≈ 0 , (44)

in the absorption kinematics limit. While the cancellation is exact for couplings gΨ ∝ mΨ, it is also

important even when the couplings are approximately proportional to the masses. For example,

consider only coupling to the electron number on each site in GaAs, NGa, e = 28, NAs, e = 36.

Parameterically, one would expect Fj ∝ Nj e, however because the masses are mGa = 69.7 u,mAs =

74.9 u, when one subtracts off the contribution which vanishes due to the coupling to mass effect,

Fj → Fj − m̂j
∑

j Fjm̂j , where m̂j = mj/
√∑

jm
2
j , the form factors are roughly a factor of 10

smaller than Nj e.

The scalar DM models affected by the coupling to mass effect are fairly generic. This is because

both the proton and neutron masses are dominantly dependent on the same quantity, the QCD

scale. Therefore scalar DM models which couple to the QCD field strength kinetic term [124], or

the benchmark hadrophilic DM model [125] satisfy gp,n = gmp,n, and single phonon excitations

3 The O(v2e) term, where ve is the velocity of the electron, in the NR Lagrangian, Eq. (39) was important for

absorption into electrons in Ref. [57]. Here its contribution to ΠϕA is suppressed relative to the term in Eq. (39),

since both are q suppressed in targets respecting parity. See Ref. [67] for more details.
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will have limited reach due to the coupling to mass effect. Because of this, and since constraints

on DM models with photon-like couplings can be trivially related to dark photon constraints, we

focus on a DM model with only coupling to electrons, which suffers less from the coupling to mass

effect, as discussed previously.

In Fig. 2 we compare the constraints on the electron coupling derived in this work to stellar

cooling [92, 123] and fifth force [121, 122] constraints assuming no backgrounds and a kg · yr
exposure. To facilitate the comparison with other conventions for the coupling constant, we show

the constraints both on ge, defined in Eq. (39), and the commonly adopted parameterization

de = geΛ/me, where Λ = MPl/
√
4π, and MPl is the Planck mass. Note that, due to the mixing

term in Eq. (7), the resonance structure of the constraints in Fig. 2 does not necessarily match

the resonance structure of the self-energies, which have resonances at ων . This is analogous to the

difference in the resonance structure between the top and bottom rows of Fig. 1. The resonances

of Im [ε(ω)] at ων are inherited from the propagator in Eq. (10), which differ from the resonances

in the ELF.

C. Axionlike Particle DM

The QCD axion [131–134] is one of the most theoretically motivated DM candidates since it

also provides a solution to the strong-CP problem. The canonical QCD axion DM candidate, with

an abundance set by the post-inflationary misalignment mechanism [135–139], is predicted to have

a mass in the 10−6 eV ≲ ma ≲ 10−5 eV range, well below the scale of gapped phonon excitations

in crystal targets. However, non-standard production mechanisms, as well as ALPs that do not

necessarily solve the strong-CP problem, can prefer larger values of the axion mass [140–160].

Our focus will be on the derivative ALP couplings,4

L ⊃
∑

Ψ∈{e,p,n}

gaΨΨ

2mΨ
∂µaΨ̄γ

µγ5Ψ −→ LNR ≈ −i
∑
ψ

gaΨΨ

2m2
Ψ

ω aψ† σ · (iD)ψ . (45)

Näıvely, the leading order term in the NR Lagrangian seems to be higher order than the “axion

wind” term, ∝ gaΨΨ aq · σ/mΨ. However, when evaluating the target expectation value of the

“wind” term, an additional factor of q enters the form factor via Eq. (28). Therefore, the form

factor for the “wind” term is order q2/mΨ, which is much smaller than the form factor for the

term in Eq. (45) (see Table I). More generally, when the leading order term in the Lagrangian

4 The Lagrangian in Eq. (45) is equivalent to L ⊃ −
∑

Ψ gaΨΨ a Ψ̄iγ
5Ψ. Both forms of the Lagrangians give the same

form factor in Table I, but one needs to expand to O(1/m2
Ψ) when taking the NR limit of the aΨ̄iγ5Ψ Lagrangian.

The equivalence can be shown explicitly using the relationship in Eq. (59). See Sec. III E for more details.
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FIG. 3. Projected 95% C.L. constraints (3 events) on the ALP couplings gaee, gann, gapp, Eq. (45) shown

in the left, middle, and right panels, respectively, utilizing single phonon excitations in a variety of targets

assuming a kg · yr exposure and no backgrounds. FeBr2 (solid orange) is a ferromagnetic target with

polarized electronic spins on the Fe site. In each panel the dotted curves labeled GaAs∗ (blue) and Al2O3
∗

(red) correspond to a GaAs and Al2O3 target whose total fermionic spin at each lattice site has been set to

Sj,e = [0, 0, 0.5], Sj,p/n = Nj,p/n [0, 0, 0.5], where {e, p, n} correspond to the left, middle, and right panels,

respectively. Since these are not real targets, their purpose is to give an estimate of a target that does

have non-zero spin ordering. As in Fig. 2, dashed lines correspond to projected constraints from absorption

on electrons in small band-gap targets, i.e., Al superconductors (“Al-SC”, purple) [52, 57], and spin-orbit

coupled targets ZrTe5 (turquoise) [67]. In the left panel, the shaded gray region corresponds to constraints

from solar axion searches with the XENONnT experiment [41], and the shaded light blue region corresponds

to white dwarf (“WD”) cooling constraints [123]. The red line corresponds to constraints from red giant

(“RG”) cooling [126, 127], which have come under recent scrutiny [128]. In the middle and right panel, the

shaded teal region corresponds to neutron star (“NS”) cooling [129]. Tan lines correspond to the prototypical

KSVZ and DFSZ QCD axion models [130], assuming 0.28 ≤ tanβ ≤ 140 in the DFSZ model.

is O(q/mΨ), it is important to check if at next-to-leading order in the O(1/m2
Ψ) NR expansion

there are terms which dominate. For example, a term of the form ωk/m2
Ψ, where k is the fermion

momentum, is dominant compared to the q/mΨ term. This feature will also appear when discussing

the dipole DM models in Sec. III E.

While the phonon contribution to the self-energies is straightforward to derive using the form

factor in Table I, simplifying the electron contribution to ΠaA in a spin ordered target requires

an additional approximation. This can be understood physically: the high-frequency dielectric

corresponds to the electronic response to an electric field, which couples identically to all electrons

in the target. Therefore for any effect to be related to the high-frequency dielectric, it must affect

all the electrons in the same way, i.e., all the electrons have the same spin such that the spin

density is proportional to the number density, sie = ŝiene. However, while all the electrons must be
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spin polarized for an exact correspondence, ΠaA may be approximately written in terms of ε∞ as

long as the electrons which give the dominant contribution to ε∞ are spin polarized. Under these

approximations the relevant self-energies are,

Πaa = −iω4
∑
ν

Dν(ω)

Ω

∑
jψ

gaΨΨ

mψ
Sijψ T

i
jνq

∑
jψ

gaΨΨ

mψ
Sijψ T

i
jνq

∗

(46)

ΠiaA = −eω3
∑
ν

Dν(ω)

Ω

∑
jψ

gaΨΨ

mψ
Skjψ T

k
jνq

∑
jψ

QjΨ T
i
jνq

∗

+
igaeeω

3

eme
ŝie(1− ε∞) , (47)

and Πel
aA = −Πel

Aa.

Similar to Sec. III B the absorption rate can be simplified with specific combinations of the

coupling constants. For example, if the target is a ferromagnet, and gapp = −mpgaee/me, gann = 0,

then the absorption rate can be expressed in terms of the ELF (and dark photon absorption rate)

as,

R ≈ 1

4

gaee
e

ω

me

ρϕ
ρT

Im

[ −1

ε(ω)

]
(photon-like a) . (48)

In this case, the constraints on gaee can be related to the constraints on the dark photon coupling

κ:

gaee ∼ 10−9

(
100meV

ω

)( κ

10−16

)
(49)

Additionally, if
∑

ψ gaΨΨSjψ/mψ ∝ mj , then the coupling to mass selection rule in Eq. (44) applies

and the absorption rate vanishes. While the coupling combinations are more contrived than for the

scalar DM models, these two scenarios serve as benchmark points to understand different limits of

the theory.

In Fig. 3 we compute the projections (assuming a kg ·yr exposure and no backgrounds) for three

models, where the only non-zero coupling is the one plotted. We compare these to stellar cooling

bounds [123, 126, 127, 129], the canonical DFSZ and KSVZ QCD axion model [130] predictions.

The solid line in the left panel corresponds to the ferromagnetic FeBr2 target. The dashed lines,

labeled GaAs∗, Al2O3
∗ do not correspond to real targets; GaAs and Al2O3 do not have electron,

neutron, or proton spin ordering. We show these curves to illustrate what the projections might

be in similar targets with proton or neutron spin ordering, which can be achieved in the presence

of a strong magnetic field [161].

We find that single phonon absorption is weaker than stellar cooling bounds for all couplings,

especially gapp and gann. We note that the reach on gapp and gann is severely affected by the
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FIG. 4. Projected 95% C.L. constraints (3 events) on κ = −ge/e = gp/e (left panel) and gB−L, Eq. (50),

in GaAs (solid red), Al2O3 (solid blue), and SiO2 (solid green) targets utilizing single phonon excitations

assuming a kg · yr exposure and no backgrounds. Projected constraints on the kinetically mixed dark

photon model have also been shown in Ref. [89]; the purpose of the comparison here is to illustrate the good

agreement between the first principles calculation performed here, and the data-driven approach (dotted

lines) utilizing the ELF [89], also compared in Fig. 1. Dashed lines are projected constraints from targets

utilizing electronic absorption: doped Si (orange) [61], Al superconductors (“Al-SC”, purple) [52, 57], and

the spin-orbit coupled target ZrTe5 (turquoise) [67] Fifth force constraints are from Ref. [162].

coupling to mass effect. If the proton or neutron spins could anti-align on different sites, to avoid

the coupling to mass selection rule, the reach would improve. However this seems experimentally

unfeasible. While the gaee constraint from Al2O3
∗ is competitive with the XENONnT bounds [41],

and nearly reaches the DFSZ band, the white dwarf [123] and red giant [126, 127] cooling bounds

are stronger by roughly an order of magnitude on resonance. However, recently there has been

some uncertainty surrounding the stellar cooling bounds on gaee [128], which may re-open the

parameter space. Absorption into magnons via the wind coupling [76] is still the dominant process

in electron spin ordered targets. This is because the magnon response from the wind coupling does

not suffer the extra q suppression that the phonon response does, as discussed previously. However,

the strict selection rules governing that process [76] severely limits the number of useful modes in

simple targets, especially in the absence of an external magnetic field, and single magnon readout

is still a developing technology.
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D. Vector DM: Gauge Coupling

Next, we consider vector DM, V , coupled to the SM fermion vector currents,

L ⊃
∑

Ψ∈{e,p,n}

gΨ VµΨ̄γ
µΨ −→ LNR(ψ) ≈ −g V i ψ†

(
iDi

mΨ

)
ψ , (50)

generally arising from U(1) gauge theories. The self-energies are straightforwardly computed,

ΠiiV V = −iω2
∑
ν

Dν(ω)

Ω

∑
jψ

gΨNjψ T
i
jνq

∑
jψ

gΨNjψ T
i
jνq

∗

(51)

ΠikV A = −ieω2
∑
ν

Dν(ω)

Ω

∑
jψ

gΨNjψ T
i
jνq

∑
jψ

Qjψ T
k
jνq

∗

− ge
e
ω2δik(1− ε∞) , (52)

and Πel
V A = Πel

AV .

For gp = −ge = κe, and gn = 0, we recover the kinetically mixed dark photon model [163],

where κ is the kinetic mixing parameter. As shown in Refs. [70, 89], the absorption rate for this

model is directly related to ELF shown in Fig. 1. Interactions of the form given in Eq. (50), also

arise in models where global symmetries of the SM are gauged at some high energy scale, and then

subsequently broken to introduce a mass to the DM. Two common examples of interest here are

U(1)B and U(1)B−L, where B is baryon number. However, due to the coupling to mass effect, the

U(1)B gauge field cannot be absorbed into single phonon excitations. Therefore we focus on the

U(1)B−L model, which behaves identically to a U(1)L model.

In Fig. 4 we compute projected constraints on the kinetically mixed dark photon model (left

panel) and U(1)B−L model (right panel) assuming a kg · yr exposure and no backgrounds. In the

U(1)B−L we also compare our results to the constraints from fifth force experiments [162]. Since

the constraints on the kinetically mixed dark photon model have been computed previously, the

main purpose of this figure is to compare our results with the ones derived by using the ELF.

We see that absorption into single phonons in any of the GaAs, Al2O3 or SiO2 targets can be far

superior not only to fifth force constraints in the 30meV ≲ mV ≲ 100meV mass window, but also

absorption into small gap electronic excitations.

E. Vector DM: Electric and Magnetic Dipole

The last DM models we consider are again vector DM models, but this time with a magnetic or

electric dipole coupling to SM fermions. We will refer to these models as MDM and EDM models,

respectively. These models were studied in Refs. [90, 164, 165] in the context of DM with massmV ≳
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FIG. 5. Projected 95% C.L. constraints (3 events) utilizing single phonon excitations on the MDM coupling

to electrons, dM , and the EDM coupling to electrons, dE , in the left and right panels, respectively, assuming

a kg·yr exposure and no backgrounds. Constraints from GaAs (solid red), Al2O3 (solid blue), and SiO2 (solid

green) targets are weak due to the response in a non-spin ordered target coming at higher order. Similar to

Fig. 3 we also consider a target with ferromagnetic ordering, FeBr2 (solid orange), and use GaAs∗ (dotted

red) and Al2O3
∗ (dotted blue) as an example for other targets with ferromagnetic ordering. Projected

constraints from small band-gap electronic absorption in Al superconductors (“Al-SC”, purple) [52, 57], and

spin-orbit coupled target, ZrTe5, [67], shown as dashed lines, have been rescaled according to Ref. [90]. The

shaded red region (“Therm.”) is excluded cosmologically; couplings in this region would overproduce DM

via freeze-in, even at a reheat temperature of ∼ MeV [90, 164].

keV, where it was shown that production could occur via the standard freeze-in mechanism [164] but

is dominated during reheating due to the dimension five nature of the operators. Other production

mechanisms could produce the DM nonthermally with the MDM/EDM couplings at much smaller

masses [44–49], and therefore it is interesting to study the constraints on these models below the

eV scale where constraints from electronic excitations begin [90].

The UV Lagrangians of the MDM and EDM models are,

LM ⊃
∑

Ψ∈{e,p,n}

dΨM
2
VµνΨ̄σ

µνΨ (53)

LE ⊃
∑

Ψ∈{e,p,n}

dΨE
2
VµνΨ̄σ

µνiγ5Ψ , (54)

respectively, where Vµν ≡ ∂µVν − ∂νVµ. The coupling to the spatial part of the vector DM can be
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further simplified as,

1

2
VµνΨ̄σ

µνΨ ⊃ V i
(
iω Ψ̄σ0iΨ+ iqj Ψ̄σijΨ

)
(55)

1

2
VµνΨ̄σ

µνiγ5Ψ ⊃ V i
(
iω Ψ̄σ0iiγ5Ψ+ iqj Ψ̄σijiγ5Ψ

)
, (56)

and the NR Lagrangians are,

LM,NR ≈
∑
ψ

dΨM
iω

mΨ
V i ψ†

[
(σ × (iD))i +

i

2mΨ

[
D0, Di

]]
ψ (57)

LE,NR ≈
∑
ψ

dΨE V
i ψ†

[
−iωσi + i

mΨ

(
σi(q · (iD))− (iDi)(q · σ)

)]
ψ . (58)

Two terms are kept in the NR limit of the MDM model, the first is the leading order response

when the target is spin ordered, and the second is the leading order response when the target is

not spin ordered. The NR limit of the EDM has multiple terms due to contributions of similar

order from the NR limit of Ψ̄σ0iiγ5Ψ and Ψ̄σijiγ5Ψ in Eq. (56). Note that all terms in Eq. (58)

will contribute at the same order in the form factors.

Before continuing to the self-energies we comment on the target expectation value of
[
D0, Di

]
,

which is a bit subtle. We assume that the SM fermions are bound at the lattice site by the temporal

component of the gauge fields. For example, the electrons are bound by the potential eA0, which

is simply the electrostatic potential generated by the ion. Assuming that the protons and neutrons

are bound by similar strong forces, then D0 = ∂0 + iV , where V is the binding potential, e.g., the

electromagnetic part of V is simply eA0. The NR Lagrangian of the SM fermions is then simply

the Schrödinger equation with this potential, H = p2/2mΨ + V. Furthermore, assuming that the

target expectation value of the spatial part of the gauge fields vanishes (i.e., the spatial part of the

gauge fields does not significantly impact binding) then
[
D0, Di

]
→

[
H, ki

]
, and therefore,

⟨ψ† [D0, Di
]
ψ⟩ℓj = ω ⟨ψ†kiψ⟩ℓj , (59)

which can then be straightforwardly written in terms of the displacement operator with Eq. (30).

In the case of no spin ordering, only the MDM self-energies are non-zero,

ΠiiM, V V = −iω
6

4

∑
ν

Dν(ω)

Ω

∑
jψ

dΨM
mψ

Njψ T
i
jνq

∑
jψ

dΨM
mψ

Njψ T
i
jνq

∗

(60)

ΠikM, V A = −ieω
4

2

∑
ν

Dν(ω)

Ω

∑
jψ

dΨM
mψ

Njψ T
i
jνq

∑
jψ

Qjψ T
k
jνq

∗

− deM
e

ω4

2me
δik(1− ε∞) , (61)
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where the M subscript denotes the MDM model (the E will subscript denotes the EDM model)

and Πel
M,V A = Πel

M,AV . For targets with spin ordering both MDM and EDM have self-energies,

ΠiiM, V V = −4iω4
∑
ν

Dν(ω)

Ω

∑
jψ

dΨM ϵimkSmjψ T
k
jνq

∑
jψ

dΨM ϵimkSmjψ T
k
jνq

∗

(62)

ΠikM, V A = −2eω3
∑
ν

Dν(ω)

Ω

∑
jψ

dΨM ϵimnSmjψ T
n
jνq

∑
jψ

Qjψ T
k
jνq

∗

+ 2i
deM
e
ω3ϵikmŝme (1− ε∞)

(63)

ΠiiE, V V = −4iω2
∑
ν

Dν(ω)

Ω

∑
jψ

dΨE q
mSmjψ T

i
jνq

∑
jψ

dΨE q
mSmjψ T

i
jνq

∗

(64)

ΠikE, V A = −2eω2
∑
ν

Dν(ω)

Ω

∑
jψ

dΨE q
mSmjψ T

i
jνq

∑
jψ

Qjψ T
k
jνq

∗

+ 2i
deE
e
ω2qmŝme δ

ik(1− ε∞) ,

(65)

and Πel
M/E, V A = −Πel

M/E,AV .

In Fig. 5 we focus on models with only an electron coupling which were the focus of Ref. [90, 164].

Projections are computed assuming a kg · yr exposure with no backgrounds, and the line labeled,

“Therm.” corresponds to the minimum coupling needed to not thermally produce the vector DM

in a universe that reheats right before BBN. That is, we require Γ ≲ H at T = MeV, where H is

the Hubble constant, Γ = n̄V σE/M is the interaction rate, n̄V is the equilibrium number density

of V particles, and σE/M ∼ d2E/M [164]. In addition to the thermalization bound we also show

projected constraints from an Aluminum superconductor, and ZrTe5 target. Ref. [90] showed that

the electronic absorption rate of the MDM model could be related to Im [ε(ω)], and therefore the

constraints on gaee can simply be re-scaled accordingly. We see that spin ordering is crucial to be

able to probe either of these models, since targets without spin ordering have no EDM response,

and an MDM N response only at higher in 1/mΨ. In these spin ordered targets single phonon

excitations are able to probe new parameter space for both the MDM model.

IV. CONCLUSIONS

Single phonon excitations are an exciting avenue for direct detection of light DM with sub-eV

thresholds. In Sec. II, using effective field theory (EFT) techniques we provided a framework for

computing the DM absorption rate into single phonons starting from a fairly general UV Lagrangian

(Eq. (1)). This complements previous work which computed general DM-single phonon scattering
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rates [70–72, 77, 79–82] and further illustrates the variety of DM models that can excite single

phonon excitations. Then in Sec. III we applied this formalism to compute the DM absorption

rate of five DM models (Secs. III B - III E) on spin ordered, e.g., FeBr2, and non-spin ordered,

GaAs, Al2O3, SiO2 targets. Additionally, in Sec. III A, we used the formalism to compute the

dielectric function which allows for a direct comparison between first principles calculation and

experimental data. In Fig. 1 we find good agreement between both the dielectric function, ε(ω),

and the ELF, Im [−1/ε(ω)], in GaAs, Al2O3, and SiO2 targets, indicating the reliability of the first

principles calculations. Moreover, this comparison allows for a data-driven approach to set the

only (theoretically) free parameter, the phonon mode widths, γν .

In addition to providing a theoretical framework to compute general DM absorption rates

into single phonon excitations, we developed PhonoDark-abs �. PhonoDark-abs is an extension of

PhonoDark [77, 93], which computes general DM-single phonon scattering rates (see Refs. [72, 77,

81, 112, 166, 167] for examples), and numerically computes the DM absorption rate for any target

material, given the input DFT files discussed in Sec. III. Currently, PhonoDark-abs can reproduce

all the results shown here, and future work will further extend its capabilities and integrate it with

PhonoDark completely. PhonoDark-abs is publicly available here �.

Using PhonoDark-abs, we find that, assuming a kg · yr exposure and no backgrounds, single

phonon excitations in GaAs, Al2O3, and SiO2 can probe new parameter space when DM is the

gauge boson of a broken U(1)B−L symmetry (Fig. 4), and when DM couples to the electron

magnetic dipole moment in spin ordered targets, e.g., the ferromagnetic FeBr2 (Fig. 5).5 For the

latter projected constraints the spin ordering is crucial; without spin ordering the target response

is much higher order and therefore normal targets, e.g., GaAs and Al2O3, project rather weak

constraints. While the projected constraints for the scalar, Fig. 2, and ALP, Fig. 3, DM models

coupling to electrons are competitive with targets utilizing small band-gap electronic transitions,

e.g., Al superconductors [52, 56, 57], ZrTe5 [67], and doped Si [61], strong stellar cooling and fifth

force constraints are still superior in this parameter space. Furthermore the projected constraints

for ALP DM coupling to protons and neutron spin with hyperpolarized targets are much weaker

than the neutron star cooling.

The theoretical framework here may be useful for other other collective excitations, e.g.,

magnons [73–77, 168]. Formulating the absorption rate in terms of self-energies and using NR

EFT, as done in Secs. IIA and IIC 1, has the advantage of being independent of the internal exci-

tations, and therefore may be used to understand general DM absorption into magnon excitations.

5 In addition to the previously well studied kinetically mixed dark photon model [70, 89].

https://github.com/kpardo/PhonoDark-abs
https://github.com/kpardo/PhonoDark-abs
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Additionally, while only targets with particle number and spin ordering were considered, more

novel targets may have, e.g., angular momentum ordering, ⟨L⟩ℓj = ⟨L⟩j , as considered in Ref. [76],

or anisotropic responses, which could have interesting consequences for DM absorption rates.
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