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In this paper, we present a novel methodology to search for intranuclear neutron-antineutron transition (n → n̄) followed
by annihilation within an 40Ar nucleus, using the MicroBooNE liquid argon time projection chamber (LArTPC) detector.
A discovery of n → n̄ transition or increased lower limit on the lifetime of this process would either constitute physics
beyond the Standard Model or greatly constrain theories of baryogenesis, respectively. The approach presented in this paper
makes use of deep learning methods to select n → n̄ events based on their unique features and differentiate them from
cosmogenic backgrounds. The achieved signal and background efficiencies are (70±6)% and (0.0020±0.0003)%, respectively. A
demonstration of a search is performed with a data set corresponding to an exposure of 3.32×1026 neutron-years, and where the
background rate is constrained through direct measurement, assuming the presence of a negligible signal. With this approach,
no excess of events over the background prediction is observed, setting a demonstrative lower bound on the n → n̄ lifetime in
40Ar of τm > 1.1 × 1026 years, and on the free n → n̄ transition time of τn−n̄ > 2.6 × 105 s, each at the 90% confidence level.
This analysis represents a first-ever proof-of-principle demonstration of the ability to search for this rare process in LArTPCs
with high efficiency and low background.

I. INTRODUCTION

Processes such as neutron-antineutron transition [1]
can provide a unique test of theoretical extensions to the
Standard Model of particle physics that allow for the vio-
lation of baryon number conservation [2]. The transition
of a neutron to antineutron (n → n̄) is a theoretically
motivated beyond-Standard Model process that violates
baryon number by two units [1, 3]. The process of in-
tranuclear n → n̄ involves the transformation of a bound
neutron into an antineutron. This antineutron then an-
nihilates with a nearby nucleon (neutron or proton) and
produces, on average, 3–4 final state pions [4, 5]. The
branching ratios of n̄p and n̄n annihilation products are
based on past measurements of p̄n and p̄p interactions,
respectively [4–7]. In a vacuum, the final state pions
produced by a motionless and unbound annihilating pair
are expected to have zero total momentum and a total
invariant mass corresponding to the sum of the masses
of the two (anti)nucleons. Deviations from this expecta-
tion are due to nuclear effects—specifically, intranuclear
Fermi motion of the annihilating (anti)nucleons, their
nuclear binding energy, and final state interactions as
the initial state mesons traverse the nuclear medium—
leading to smearing effects of the observed final state
kinematics. The annihilation has a star-like, spherical
topological signature, which can be used to differentiate
it from background interactions.

∗ microboone info@fnal.gov

An experimental discovery or stringent lower bound,
surpassing the current best limits [4, 8], on the rate of
intranuclear n → n̄ would make an important contribu-
tion to our understanding of the baryon asymmetry of
the Universe. To date, limits have been placed on the
mean lifetime of this process by various experiments us-
ing either free neutrons or neutrons bound in nuclei [9–
18]. The free-neutron n → n̄ lifetime (τn−n̄) and bound-
neutron n → n̄ lifetime (τm) are related through a fac-
tor (R) [19, 20] as shown in Eq.(1), which accounts for
the high suppression of the transition due to differences
in the nuclear potentials of neutrons and antineutrons
within the nucleus where this process could take place,

τm = Rτ2n−n̄. (1)

For 40Ar nuclei, R is expected to take on a value of
5.6×1022 s−1 with an uncertainty of 20% [19]. The most
stringent limit on the free neutron transition time is pro-
vided by ILL in Grenoble [8] at 0.86 × 108 s at the 90%
confidence level (CL), while the Super-Kamiokande ex-
periment, using oxygen-bound neutrons and an associ-
ated suppression factor of 5.17× 1022 s−1 [20, 21], corre-
sponds to τn−n̄ > 4.7× 108 s at the 90% CL [4].
This work presents a deep learning (DL)-based anal-

ysis of MicroBooNE data, making use of a sparse con-
volutional neural network (CNN) [22, 23], to search for
n → n̄ like signals using primarily their topological sig-
nature. This analysis can be extended to future, larger
liquid argon time projection chamber (LArTPC) detec-
tors such as the Deep Underground Neutrino Experiment
(DUNE) [24–26], which will enable a higher sensitivity
to this rare process because of its much larger detector
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mass. The results reported in this paper use the Micro-
BooNE off-beam data (data collected when the neutrino
beam was not running) with a total exposure of 372 s,
corresponding to 3.32× 1026 neutron-years.

II. EXPERIMENTAL SETUP

The MicroBooNE LArTPC detector [27] employs an
active volume of 85 metric tonnes of liquid argon (LAr).
The detector is a 10.4m long, 2.6m wide, and 2.3m high
LArTPC and is located on-surface and on-axis to the
Booster Neutrino Beamline [28] at Fermilab. Due to its
on-surface location, the MicroBooNE detector is exposed
to a large flux of cosmic rays, leading to a variety of
cosmogenic activity in the detector. Charged particles
produced from interactions within the LAr leave a trail
of ionization electrons which drift, under the effect of
a uniform electric field, with a maximum electron drift
time of 2.3ms towards anode wire planes. Three anode
wire planes named U , V , and Y , with U and V plane
wires oriented at ±60◦ relative to vertical, and Y plane
wires oriented vertically, sense and collect the ionization
charge. A light detection system composed of photomul-
tiplier tubes (PMT) detects scintillation light produced
in the interaction which in turn helps to determine the
drift time (time taken by ionization electrons to drift to
the anode wires), achieving 3D particle reconstruction.
Data was collected from 2015–2021 and includes off-beam
data during periods when there was no neutrino beam.

III. ANALYSIS OVERVIEW

The methodology used to search for intranuclear
n → n̄ transition in MicroBooNE was developed using
off-beam data that were recorded using an external, ran-
dom trigger. Each trigger corresponds to an exposure
of 2.3ms (an “event”), the standard readout length of
MicroBooNE. The readout window (or exposure inter-
val) ensures that all ionization information associated
with a given interaction at trigger time occuring any-
where in the active volume is collected by the read-
out. During this period, light and unbiased (raw) ion-
ization charge data were collected and analyzed, search-
ing for interaction “clusters” with a characteristic star-
like topology. The dominant source of interactions dur-
ing these short beam-off exposures come from cosmic ray
muons (straight track-like features) and other cosmogenic
activity, and/or products of their electromagnetic and
hadronic showers, which are expected to contribute as the
dominant background to the n → n̄ search. This source
of background is unique to a search using the Micro-
BooNE detector, due to its on-surface location, whereas
searches with detectors located deep underground, such
as DUNE, are expected to be limited by atmospheric
neutrino backgrounds.

Relevant to the analysis strategy, MicroBooNE does

not use a dedicated Monte Carlo simulation for cosmic
backgrounds but instead relies on in-situ measurements
to directly measure and thus constrain the rate of these
interactions. As such, a data-driven approach was fol-
lowed to search for n → n̄ under the assumption of neg-
ligible signal being present in the data. In this approach,
the off-beam data sample was divided into four statisti-
cally independent sub-samples, where 40% was reserved
for analysis development and, in particular, to train ma-
chine learning algorithms, 50% was reserved as the test
sample to determine signal selection efficiency and pre-
dict background rates, 5% was set aside for the develop-
ment validation of a blinded analysis using “fake data”,
and the remaining 5% corresponding to 372 s of expo-
sure was reserved as the “data” sample for the final mea-
surement and reported results. This analysis was per-
formed blind, with final data distributions and extracted
n → n̄ limits obtained only after the review of the analy-
sis. The data-driven approach used to generate the signal
and background samples automatically enables accurate
“modeling” of cosmogenic activity and noise sources, in-
cluding any time dependence in the detector response.
However, this approach assumes that there are no signif-
icant signal events in the off-beam data. This is a safe
assumption, given the current best limits on n → n̄ from
the Super-K experiment [4].
Signal n → n̄ interactions are simulated uniformly

across the detector’s active volume using the GENIE neu-
trino event generator (GENIE v.3.00.04) [29–31], where
the (anti)nucleon’s Fermi motion and binding energy are
modeled using a local Fermi gas model, and the empiri-
cal, data-driven hA Intranuke algorithm is used to sim-
ulate final state interactions (FSI). The 40Ar nucleus is
assumed to be at rest during the n → n̄ process. The po-
sition of a neutron (to be oscillated into an antineutron)
within the nucleus is simulated using GENIE’s density
profile of nucleons (Woods-Saxon distribution [32]),

ρ(r) =
ρ0

1 + e
r−R0

a

, (2)

where r is the radial position inside the nucleus, R0 =
r0A

1
3 is the nuclear radius, with r0 defined as 1.4 fm in

GENIE. ρ0 is normalized in order to express nuclear den-
sity as a probability distribution, and a is a parameter
describing the surface thickness of the nucleus, set to
a = 0.54 fm.
This analysis considers the annihilation of an antineu-

tron with either a neutron or a proton and simulates the
resulting products of annihilation (3–4 pions on an av-
erage) using the branching ratios informed by previous
measurements [4–7], reproduced in Table I, accounting
for the available kinematic phase-space on an event-by-
event basis [31]. The final state particles are subsequently
propagated through the detector with Geant4 [33]. This
is followed by the custom detector simulation for the
MicroBooNE detector [34–36] to take account of the de-
tector response. The resulting simulated detector signals
are overlaid with real data with cosmogenic activity.
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TABLE I. Effective branching ratios for antineutron annihila-
tion in 40Ar, as implemented in GENIE. The branching ratios
are adapted from analysis by the Super-K collaboration [4]
and are derived from past antiproton annihilation measure-
ments on hydrogen and deuterium, with a phase-space ap-
proximation [31].

n̄+ p n̄+ n
Channel Branching ratio Channel Branching ratio

π+π0 1.2% π+π− 2.0%
π+2π0 9.5% 2π0 1.5%
π+3π0 11.9% π+π−π0 6.5%

2π+π−π0 26.2% π+π−2π0 11.0%
2π+π−2π0 42.8% π+π−3π0 28.0%
2π+π−2ω 0.003% 2π+2π− 7.1%
3π+2π−π0 8.4% 2π+2π−π0 24.0%

π+π−ω 10.0%
2π+2π−2π0 10.0%

Because of abundant cosmogenic activity, each 2.3ms
event includes multiple reconstructed cosmic candidate
interactions in the LAr volume, referred to as “clus-
ters”. Three-dimensional clusters are reconstructed us-
ing the WireCell reconstruction package [37] as collec-
tions of 3D spacepoints, where each spacepoint carries
information about its corresponding wire position, time-
tick, and charge deposition. The true n → n̄ interaction
clusters are identifiable through the comparison of two
events (one with and one without a signal interaction)
with the same background overlay source, as depicted
in Fig. 1. The topological features of the signal clus-
ters (“star-like”) and the background clusters (“straight
track-like”) are then used to develop the selection as de-
scribed in the next section.

IV. ANALYSIS TECHNIQUES AND
SELECTION CRITERIA

The cluster reconstruction is followed by a series of se-
lection criteria which are applied in three stages. The
first, or preselection, stage makes use of a Boosted De-
cision Tree (BDT) using xgboost [38] to significantly
reduce the number of background clusters while main-
taining high signal efficiency. The BDT is trained using
variables that contain information about the number of
spacepoints along with wire positions and time associ-
ated with the spacepoints of each cluster, and which are
shown in Fig. 2. We define the “extent” of a cluster as
the number of wires or time-ticks over which the cluster
is contained in the U , V , or Y wire-plane or time-tick
dimension (one time-tick corresponds to 0.5 µs), respec-
tively. These variables enable us to distinguish between
signal and background clusters based on their topological
features, such as the more localized, spherical topology
for the signal n → n̄ clusters and the straight, track-like
topology for the background clusters.

The BDT training outcome exhibits a clear separation

between the signal (n → n̄) and background (cosmic)
processes, as shown in Fig. 3 (left). Selecting clusters
with BDT score > 0.1 rejects 91% of the background
clusters and maintains high signal efficiency of 86%.
The second stage of selection applies an image-based

selection criterion, using a sparse CNN with the VGG16
network architecture [22, 23, 39, 40]. A sparse CNN
makes use of localized inputs within an image (star-like
topology for the signal clusters and straight track-like
topology for the background clusters) that highlight fea-
tures on which the network trains rather than the full
image. This selection stage makes use of 2D projections
of the preselected clusters onto three sense wire planes of
the MicroBooNE detector. These projections contain in-
formation about the wire position, time-tick, and charge
deposition associated with each cluster, and are format-
ted in such a way so as to retain only the pixels associ-
ated with the signal or background clusters, thus making
it highly memory efficient. The trained CNN’s perfor-
mance on the test sample is shown in Fig. 3 (right).
The CNN score criterion is optimized with respect to

the projected sensitivity at 90% CL. As a prerequisite for
the sensitivity calculation, efficiencies for the signal and
background events are calculated for various CNN score
criteria and are shown in Table II. For these particular
CNN score criteria (where the background rejection is
∼ 99%), preliminary sensitivity values were calculated,
using the TRolke package in ROOT [41], based on the
following assumptions:

• The assumed search region statistics correspond to
372 s of exposure, and were evaluated by scaling
the test sample (containing ×10 higher statistics)
by a factor of 0.1, making it equivalent in size to
the MicroBooNE “data” statistics for the analysis.

• The statistical uncertainty on the background is
considered within the TRolke method, assuming
Gaussian fluctuations on the data-sized test. The
sensitivity calculation within TRolke assumes zero
signal and hence no statistical uncertainty is as-
sumed on the signal.

• The systematic uncertainty on the signal selection
efficiency, for the CNN score criterion optimization
study, is approximated to be 15% uncertainty. The
systematic uncertainty on the background is eval-
uated as the statistical uncertainty on the back-
ground obtained using the test sample, as the back-
ground is measured in-situ.

Considering sensitivity as a figure of merit, the optimal
CNN criterion is found to be 0.80.
After CNN selection, approximately 2% of the re-

maining clusters have zero extent in time or one of the
wire dimensions, as a consequence of reconstruction
inefficiencies [42]. Therefore, a third and final selection
stage, based on topological information, is applied
to reject zero- and low-extent clusters, which cannot
represent the signal topology. The distributions of
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FIG. 1. (top) Event display showing an event with background clusters, collected in MicroBooNE off-beam data. (bottom)
Event display showing an event with a GENIE-simulated n − n̄ signal cluster (highlighted in the red circle) overlaid on top
of the same background event. The vertical and horizontal scales are the same. Color represents the amount of deposited
ionization charge where dark blue corresponds to 1/3 the energy deposited by a Minimum Ionizing Particle (MIP). Similarly,
cyan, green, and red correspond to energy deposited by 1 MIP, 2 MIP and 4 MIP respectively.

TABLE II. Preliminary sensitivity for various CNN score criteria around the optimized score of 0.80. The signal and background
efficiencies are calculated using the test sample. The background is also estimated using the test sample and then scaled by a
factor of 0.1 to make it equivalent in size to the MicroBooNE data sample which corresponds to 372 s of exposure. Errors in
the table account for finite MC statistics only.

CNN criterion Signal Efficiency Background Efficiency(10−4) Background Estimate Sensitivity (1025 yrs)
0.797 0.8274 ± 0.0003 1.53 ± 0.10 24.8 ± 1.6 2.62
0.798 0.8222 ± 0.0003 1.27 ± 0.09 20.5 ± 1.4 2.83
0.799 0.8012 ± 0.0003 1.08 ± 0.08 17.5 ± 1.3 2.98
0.800 0.7360 ± 0.0003 0.88 ± 0.07 14.2 ± 1.2 2.99
0.801 0.6392 ± 0.0004 0.66 ± 0.06 10.7 ± 1.0 2.95
0.802 0.5081 ± 0.0004 0.50 ± 0.06 8.1 ± 0.9 2.65
0.803 0.3490 ± 0.0004 0.43 ± 0.05 6.9 ± 0.8 1.95

extent variables after CNN selection are shown in Fig. 4
and the final selection criteria are chosen by visual
inspection of these variables. The final selection requires
the extent of a cluster in at least one of the three wire
dimensions to be > 70 wires, and in the time dimension
to be > 70 time-ticks. The final selection criteria were
chosen to effectively reject the majority of background
events, particularly those peaking in the range between
0 and 70 in extent as shown in Fig. 4.

The number of signal and background events in the test
sample before and after each of the three selection stages
is shown in Table III. The analysis yields an overall signal
selection efficiency of 70.0%, corresponding to the ratio
of events at stage 3 to events before any selection. At the
same time, it rejects 99.99% of the total background.

TABLE III. The number of predicted signal and background
events in the test sample before and after each of the three
selection stages.

Selection Stage Signal Background
No selection 1,633,525 1,618,827
Stage 1 1,411,164 139,802
Stage 2 1,202,281 142
Stage 3 1,147,157 32
Signal selection efficiency 70.0% -
Background rejection efficiency - 99.99%

V. SYSTEMATIC UNCERTAINTIES

The systematic uncertainties on signal and background
events are assessed independently. Systematic uncertain-
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FIG. 2. Distributions of topological variables from 2D cluster projections for the signal (blue) and background (red) clusters.
The background is shown along with its systematic uncertainty band. The systematic uncertainty is small and of the order of
a few percent. The data points corresponding to 372 s of exposure are shown (after unblinding) in black along with statistical
uncertainty. The background clusters, generated with a test sample, are normalized exactly to match the data exposure of
372 s, whereas the signal clusters, which were simulated and overlaid onto the background clusters, were arbitrarily normalized
as they can not be precisely scaled to match the data exposure. The samples used to obtain background prediction and data
are assumed to have a negligible signal.

ties on the signal selection efficiency include contributions
from GENIE, Geant4, and detector model variations.

A. GENIE Systematics

The default GENIE model used in MicroBooNE to
simulate n − n̄ interactions is the hA-Local Fermi Gas
(hA-LFG) model. The signal efficiency using simula-
tions with other possible model variations has been eval-
uated. GENIE offers various models to describe the en-
ergy and momentum of the initial state nucleon, such
as Bodek-Ritchie (BR) or Local Fermi Gas (LFG). Sim-
ilarly, final state interactions (FSI) are described in GE-
NIE either through a full cascade model (hN) or an effec-
tive model that parameterizes FSI as a single interaction
(hA). For each variation, a new independent signal sam-
ple is generated, and the entire selection, as described
in Sec. IV, is applied to each of them to evaluate sig-
nal selection efficiency, and subsequently, the associated
uncertainty. Table IV shows the quantitative estimate
of uncertainty due to various GENIE models on signal
selection efficiency. The fractional uncertainty on the
signal selection efficiency, η, is the uncertainty on the ef-
ficiency for each model (ϵ) with respect to the nominal
GENIE hA-LFG model (ϵnom) calculated using Eq. 3.
This equation does not consider statistical uncertainty

TABLE IV. The fractional uncertainty in signal efficiency η
is shown for various samples with different GENIE models.
The total uncertainty due to GENIE modeling, obtained by
taking the squared sum of η, is estimated to be 4.85%.

GENIE model η (%)
hA-BR 1.17
hN-BR 4.56
hN-LFG 1.14
Total 4.85

on the efficiency evaluated for each model which is found
to be negligible (2×10−4).

η =
ϵnom − ϵ

ϵnom
(3)

The total fractional uncertainty on the signal efficiency
due to GENIE systematic uncertainties is estimated to
be 4.85%.

B. Geant4 Systematics

Uncertainty from Geant4 accounts for hadron-40Ar re-
interaction uncertainties. Charged hadrons can interact
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FIG. 3. Classification performance of the BDT (left) and CNN (right) for the signal n → n̄ (blue) and background (red)
clusters. The background is shown along with the systematic uncertainty band. The data points corresponding to 372 s of
exposure are shown (after unblinding) in black along with statistical uncertainty. The background clusters, generated with a
test sample, are normalized exactly to match the data exposure of 372 s, whereas the signal clusters, which were simulated
and overlaid onto the background clusters, were arbitrarily normalized as they can not be precisely scaled to match the data
exposure. The samples used to obtain background prediction and data are assumed to have a negligible signal.

with external 40Ar nuclei while traveling through the liq-
uid argon volume. Inelastic re-interactions of hadrons
(π+, π−, p) in the LAr volume are simulated by Geant4,
and the cross-sections of these hadronic re-interactions
are varied to account for the corresponding systematic
uncertainty. The uncertainty of these scattering pro-
cesses of protons and charged pions can be significant,
especially when there are many charged hadrons in the
final state, such as in n → n̄ interactions. The impact of
hadron re-interaction uncertainty on n → n̄ signal effi-
ciency has been evaluated using an event re-weighting
scheme [43]. The systematic uncertainty (σ) due to
hadron (π+, π−, p) re-interactions is assessed using the
following equation for each hadron

σ =
1

Nw

Nw∑
i=1

(Wi −N)2, (4)

where i runs over the number of re-weights (Nw=1000)
generated for each of the π+, π− and proton, re-
interactions. Table V shows the fractional uncertainty
on the signal efficiency due to hadron re-interaction
uncertainties with a total Geant4 uncertainty evaluated
to be 2.32%.

C. Detector Systematics

The detector modeling and response uncertainties are
evaluated for the signal sample using a novel data-driven
technique [44] to account for discrepancies between data
and simulation in charge and light response. This uses in-
situ measurements of distortions in the TPC wire read-

TABLE V. The fractional uncertainty in signal efficiency σ is
shown for various samples with different Geant4 re-interaction
weights in last column. The total uncertainty due to Geant4
modeling, obtained by taking the squared sum of σ, is esti-
mated to be 2.32%.

Geant4 re-interactions σ (%)
π+ 0.89
π− 1.3
proton 1.7
Total 2.32

out signals due to various detector effects, such as diffu-
sion, electron drift lifetime, electric field, and electronics
response, to parametrize these effects at the TPC wire
level.

For each variation, a new independent signal MC sam-
ple is generated. The final selection is applied to each of
these samples and signal efficiency is calculated. Table VI
shows the fractional uncertainty due to various detector
variations on the signal selection efficiency. The frac-
tional uncertainty on signal selection efficiency (quoted
in the last column) includes a statistical uncertainty in
efficiency ηerr and uncertainty in efficiency due to each
detector variation with respect to the nominal ηerrnom
which are defined as

ηerr =

√
ϵ(1− ϵ)

N
, (5)

where ϵ and N are the signal efficiency and the number of
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FIG. 4. The distributions of U ,V ,Y -plane and time-tick extents for the signal n → n̄ (blue) and background (red) events
are shown. The data points corresponding to 372 s of exposure are shown (after unblinding) in black along with statistical
uncertainty. The background events, generated with a test sample, are normalized exactly to match the data exposure of 372 s,
whereas the signal events, for which the clusters were simulated and overlaid onto the background clusters, were arbitrarily
normalized as they can not be precisely scaled to match the data exposure. The samples used to obtain background prediction
and data are assumed to have a negligible signal.

generated events, respectively, for any given model, and

ηerrnom =
ϵnom − ϵ

ϵnom
, (6)

where ϵnom represents the signal efficiency with the nom-
inal sample. The total fractional uncertainty due to de-
tector modeling is evaluated to be 6.72%.

The total fractional uncertainty on the signal selection
efficiency when treating GENIE, Geant4, and detector
systematics as being uncorrelated, is 8.61%. The sys-
tematic uncertainty on the background is 17.68%, and
it corresponds to the statistical uncertainty on the num-
ber of final selected background events in the test sample
shown in Table III.

VI. SENSITIVITY EVALUATION

The final event selection, as described in Sec. IV, yields
an expected background of (3.2± 0.56(stat)±0.17(syst))
events corresponding to 372 s of exposure, obtained by
normalizing the background events reported in Table III
by a factor of 0.1 to predict the background from the
data-sized sample. The sensitivity to the 40Ar-bound
n → n̄ lifetime is evaluated using the TRolke statisti-
cal method [41] following a frequentist approach. This
method takes into account both statistical and system-
atic uncertainties along with various statistical models
to account for signal selection efficiency and background
contamination. We use a Gaussian model that describes
the expectation along with a standard deviation for both
the background and signal selection efficiency. The sen-
sitivity is evaluated assuming the absence of any signal
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TABLE VI. The percent uncertainty in signal efficiency η is shown for various samples with different detector systematic
variations in the last column. The total uncertainty due to detector systematics, obtained by taking the squared sum of the
last column, is estimated to be 6.73%.

Detector variation ηerr % ηerrNom % η %
Recombination 0.13 0.53 0.54
Light yield 0.22 1.15 1.17
Space charge effect 0.12 0.13 0.18
TPC waveform modeling 0.24 6.59 6.59
Total 6.72

contribution, treating any observed events as indistin-
guishable from the background events. The resulting
τm sensitivity for 40Ar corresponds to 6.0 × 1025 years
at 90%CL.

VII. FAKE-DATA ANALYSIS

The analysis is developed as a blind analysis and the
final selection is tested on a dedicated fake-data sam-
ple before looking at the data sample reserved for mak-
ing the final measurement. The fake-data sample corre-
sponds to a data-sized sample of unbiased, off-beam data
events (372 s of exposure), which is statistically indepen-
dent from the data sample and is prepared with a blinded
fraction of x% injected n−n̄ signal, where x% is unknown
to the analyzer. As part of the fake-data test, the x%
is estimated from the developed analysis framework by
performing a fit to the fake data. The final selection, as
described in Sec. IV, is applied to the fake-data sample.
Out of 158,681 events, 268 events passed the selection,
with an expected background of 3.2.

Next, the compatibility of the fake-data observation
with the expectation was quantized by constructing a χ2

as follows:

χ2 =
(O − E)2

E
, (7)

where O = 268 is the observed number of events in the
fake-data sample, and E is the expected background plus
n → n̄ signal events and is defined as

E = xfitNgϵs + (1− xfit)Ngϵb (8)

where xfit is the assumed fraction of injected n → n̄
events in the fake-data sample, Ng = 158, 681 is the
number of events in the fake-data sample, ϵs = 0.70 is
the signal selection efficiency, and ϵb = 1.97×10−5 is the
background efficiency. xfit is varied to obtain the mini-
mum χ2 value, corresponding to the best-fit xbf . Figure 5
shows the expected number of events and χ2 distribution
as a function of xfit. The best-fit fraction of n → n̄ signal
is found to be 0.23%, whereas the actual fraction revealed
after this measurement was performed is 0.25%. The es-
timated fraction matches the actual fraction within the
1σ uncertainty of 0.03% demonstrating the validity of
this analysis.

VIII. RESULTS

After successfully validating the developed analysis se-
lection using the fake-data sample, the analysis examined
the data sample reserved for reporting the final measure-
ment, corresponding to 372 s of exposure. Upon applying
the analysis selection criteria, 2 events are observed, with
an expected background of (3.2± 0.56(stat)±0.17(syst))
events. The observed events are shown in Fig. 6.
The lack of excess of events above the expected back-

ground prediction leads to a demonstrative lower bound
on the 40Ar-bound n → n̄ lifetime of 1.1 × 1026 years
at 90% CL. Using Eq.(1) and R = 5.6 × 1022 s−1 for
40Ar [19], a limit on the free-neutron equivalent n → n̄
lifetime is derived as τn−n̄ > 2.6 × 105 s. This also is
subject to an additional uncertainty associated with R,
which is estimated at 15% [19].

IX. CONCLUSIONS

We have developed and validated a novel approach to
search for neutron-antineutron transitions in 40Ar using
the MicroBooNE detector. This methodology, based on
state-of-the-art reconstruction tools and deep learning
methods specifically tailored for LArTPC experiments,
showcases the high sensitivity capabilities of LArTPCs
in this search. As a proof-of-principle demonstration, we
make use of the off-beam data from the MicroBooNE
detector under the assumption that this data contains
negligible signal events, consistently with Super-K re-
sults [4], to provide a lower limit on the mean neutron-
antineutron transition time that is far lower compared
to those of previous measurements, due to limited ex-
posure and non-competitive detector mass. The selec-
tion achieves a uniquely high signal selection efficiency of
70.0% and a background rejection efficiency of 99.99%;
the former of these represents a large improvement over
previous results, which reported 4.1% signal efficiency [4].
With an already well-developed methodology, this study
demonstrates the future potential of enhanced sensitiv-
ities within forthcoming LArTPC-based detectors such
as DUNE in their searches for such rare signals; further
improvements, such as delineating the actual kinemat-
ics of signals and backgrounds, show still more promise.
It is important to note that the backgrounds in DUNE
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FIG. 5. Distributions of expected events (left) and χ2 (right) of fake-data observation are shown as a function of the fraction
of injected n → n̄ events in fake-data sample, xfit.

FIG. 6. Event displays of the two data events that pass final analysis selection. Only the selected cluster from the final
selection is shown for both events. The x-axis represents the beam direction and the y-axis represents the vertical direction.
Color represents the amount of deposited charge where dark blue corresponds to 1/3 the energy deposited by a Minimum Ionizing
Particle (MIP). Similarly, cyan, green, and red correspond to energy deposited by 1 MIP, 2 MIP and 4 MIP respectively.

and MicroBooNE are distinct. While cosmic ray muons
are the dominant backgrounds in MicroBooNE, atmo-
spheric neutrino interactions are expected to be the main
source of backgrounds in DUNE. Nonetheless, the pre-
sented analysis demonstrates the usefulness of machine
learning techniques and of particularly simple topological
extent variables only available to LArTPCs, confirming
the capabilities of larger, well-shielded LArTPCs such as
DUNE to perform high-sensitivity searches for baryon
number violation.
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