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Fabian,1 Michael A. Fedderke,7 Madison Forseth,8 Brian Garthwaite,1 Peter W. Graham,9, 10 Will Griffith,11

Erik Helgren,8 Katie Hermanson,8 Andres Interiano-Alvarado,8 Brittany Karki,8 Abaz Kryemadhi,11

Andre Li,8 Ehsanullah Nikfar,6 Jason E. Stalnaker,6 Yicheng Wang,1 and Derek F. Jackson Kimball8, ‡

1Department of Physics & Astronomy, Bucknell University, Lewisburg, Pennsylvania 17837, USA
2School of Physics & Astronomy, University of Minnesota, Minneapolis, MN 55455, USA

3Tsung-Dao Lee Institute (TDLI), Shanghai Jiao Tong University, Shanghai 200240, China
4Berkeley Center for Theoretical Physics, University of California, Berkeley, CA 94720, USA

5Theory Group, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
6Department of Physics & Astronomy, Oberlin College, Oberlin, Ohio 44074, USA

7The William H. Miller III Department of Physics and Astronomy,
The Johns Hopkins University, Baltimore, MD 21218, USA

8Department of Physics, California State University – East Bay, Hayward, California 94542-3084, USA
9Stanford Institute for Theoretical Physics, Department of Physics, Stanford University, Stanford, CA 94305, USA

10Kavli Institute for Particle Astrophysics & Cosmology, Stanford University, Stanford, CA 94305, USA
11Department of Computing, Math and Physics, Messiah University, Mechanicsburg, PA 17055, USA

(Dated: June 21, 2023)

Earth can act as a transducer to convert ultralight bosonic dark matter (axions and hidden pho-
tons) into an oscillating magnetic field with a characteristic pattern across its surface. Here we
describe the first results of a dedicated experiment, the Search for Non-Interacting Particles Exper-
imental Hunt (SNIPE Hunt), that aims to detect such dark-matter-induced magnetic-field patterns
by performing correlated measurements with a network of magnetometers in relatively quiet mag-
netic environments (in the wilderness far from human-generated magnetic noise). Our experiment
constrains parameter space describing hidden-photon and axion dark matter with Compton frequen-
cies in the 0.5-5.0 Hz range. Limits on the kinetic-mixing parameter for hidden-photon dark matter
represent the best experimental bounds to date in this frequency range.

I. INTRODUCTION

Understanding the nature of dark matter is of paramount importance to astrophysics, cosmology, and particle
physics. A well-motivated hypothesis is that the dark matter consists of ultralight bosons (masses ≪ 1 eV/c2) such as
hidden photons, axions, or axion-like particles (ALPs) [1–3]. If ultralight bosons are the dark matter, under reasonable
assumptions1 the ensemble of virialized bosons constituting the dark matter halo has extremely large mode-occupation
numbers and can be well described as a stochastic classical field [8–12].

Ultralight bosonic fields can couple to Standard Model particles through various “portals” [13, 14], one of which is
the interaction between the ultralight bosonic dark matter (UBDM) and the electromagnetic field. Several ongoing
laboratory experiments employ sensitive magnetometers located within controlled magnetic environments to search for
electromagnetic signatures of UBDM; see, for example, Refs. [15–25]. As noted in Refs. [26–28], the conceptual frame-
work for UBDM-to-photon conversion upon which these aforementioned laboratory searches are based also applies to
Earth as a whole. For hidden-photon dark matter, the non-conducting atmosphere sandwiched between the conduc-
tive Earth interior and the ionosphere acts as a transducer to convert the hidden photon field into a real magnetic
field, just as laboratory-scale shields act as transducers in lumped-element or resonant-cavity experiments [23–25].
For axion dark matter, Earth’s geomagnetic field causes axion-to-photon conversion via the inverse Primakoff ef-
fect [29, 30], playing the role of the applied magnetic field in laboratory-scale axion haloscope experiments [15–22].
Thus, unshielded magnetometers can be used to search for ambient oscillating magnetic fields generated by UBDM.

In this paper we describe initial results of the “Search for Non-Interacting Particles Experimental Hunt” (SNIPE
Hunt [31]): a campaign to search for axion2 and hidden-photon dark matter using magnetometers located in the

∗ ibrahim.sulai@bucknell.edu
† kalias@umn.edu
‡ derek.jacksonkimball@csueastbay.edu
1 Here we assume models where the self-interactions among the bosons are sufficiently feeble that they do not collapse into large composite
structures (such as boson stars [4]). Therefore, the bosons can be treated as an ensemble of independent particles described by the
standard halo model (SHM) of dark matter [5–7].

2 We use the term “axion” as a generic descriptor of both QCD axions (that solve the strong-CP problem) and axion-like particles (ALPs).
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“wilderness” (away from the high levels of magnetic noise associated with urban environments [32, 33]). This work
extends to higher axion/hidden-photon Compton frequencies (covering the range from 0.5-5 Hz) than earlier analyses
of archival data from the SuperMAG network of magnetometers [34–36] published in Refs. [27, 28]. In this frequency
range, the dominant magnetic field noise sources are anthropogenic [37], so we anticipate that the sensitivity to UBDM
can be drastically enhanced by measuring in a remote location.

The rest of this paper is structured as follows. Section II reviews the model developed in Refs. [26, 28] to predict
the global magnetic field patterns induced by hidden-photon and axion dark matter and used to interpret our data. In
Sec. III, we discuss the experimental setup for the magnetometers that measured the magnetic fields at three different
locations in July 2022 as well as the time and frequency characteristics of the acquired data. In Sec. IV, the data
analysis procedure is described, which is closely based on that presented in Refs. [27, 28]. Section IV is subdivided
into one subsection on the hidden-photon dark-matter analysis and another on the axion dark-matter analysis; in
both cases no evidence of a dark-matter-induced magnetic signal was discovered, so each subsection concludes by
summarizing the constraints obtained on relevant parameters. In Sec. V, we summarize the next steps for the SNIPE
Hunt research program, namely developing and carrying out an experiment for higher Compton frequencies with more
sensitive magnetometers. Finally, in our conclusion we summarize results and compare them to other experiments
and observational limits.

II. DARK-MATTER SIGNAL

First, we review relevant features of the theory motivating our hidden-photon dark-matter search. The hidden
photon is associated with an additional U(1) symmetry, beyond that corresponding to electromagnetism, which is a
common feature of beyond-the-Standard-Model theories, such as string theory [38]. In our case, we are interested
in hidden photons that kinetically mix with ordinary photons [39]. This allows hidden and ordinary photons to
interconvert via a phenomenon akin to neutrino mixing [40]; i.e., the mass (propagation) and interaction eigenstates
are misaligned. Hidden photons possess a non-zero mass mA′ and can be generated in the early universe (see, for
example, Refs. [41–44]), which means that they have the right characteristics to be wave-like dark matter [45]. A
useful way to understand the impact of the existence of hidden-photon dark matter on electrodynamics is to write
the Lagrangian describing real and hidden photons in the “interaction” basis [24, 26]:3

L ⊃ −1

4

[
FµνF

µν + (F ′)µν(F
′)
µν
]
+

1

2
m2

A′(A′)µ(A
′)
µ
+ εm2

A′(A′)
µ
Aµ − Jµ

EMAµ , (1)

where only terms up to first order in the kinetic mixing parameter ε ≪ 1 are retained. In Eq. (1), Fµν is the
field-strength tensor for the “interacting” mode of the electromagnetic field that couples to charges, (F ′)µν is the
field-strength tensor for the “sterile” mode that does not interact with charges, Aµ is the four-potential for the
interacting mode, (A′)µ is the four-potential for the sterile mode, and Jµ

EM is the electromagnetic four-current density.
In our case of interest, the hidden-photon dark-matter field in the vicinity of Earth is a coherently oscillating vector
field with random polarization:4

A′(r, t) ≈
√
2ρDM

mA′
e−imA′ t

3∑
i=1

ξi(r, t)n̂ie
iϕi(r,t) , (2)

where A′ is the sterile vector potential, ρDM ≈ 0.3 GeV/cm3 is the local dark-matter density [48], n̂i are a set of
orthonormal unit vectors, ξi(r, t) are slowly varying O(1) amplitudes, and ϕi(r, t) are slowly varying random phases.
Both the amplitudes ξi(r, t) and phases ϕi(r, t) of the hidden-photon dark-matter field change stochastically on length
scales given by the dark-matter coherence length,

ℓcoh ≈ 2π

mA′vDM
, (3)

and time scales given by the coherence time of the field,

τ coh ≈ ℓcoh
vDM

≈ 2π

mA′v2DM

, (4)

3 Throughout, we use natural units where ℏ = c = 1.
4 In this work, we assume that both the hidden-photon phase and its polarization state randomize on the coherence timescale. It is also
possible, depending on the production mechanism and subsequent structure-formation processing, that the hidden-photon polarization
state could be fixed in inertial space; see, e.g., the discussions in Refs. [46, 47]. We do not explicitly consider this case in this work;
a closely related, but different, analysis would need to be undertaken. However, absent accidental geometrical cancellations that are
made unlikely by virtue of the length of the data-taking period compared to Earth’s sidereal rotational period and the widely separated
geographical locations of the magnetic-field stations on which we report, limits in that case are expected to be of the same order of
magnitude as those we obtain.
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where vDM ∼ 10−3 is the characteristic dispersion (virial) velocity of the dark matter in the vicinity of Earth [7, 49].
Note that the timelike component of the four-potential (A′)µ is suppressed relative to the spacelike component (the
vector potential A′) by ∼ vDM ∼ 10−3. From inspection of Eq. (1), it can be seen that the physical effects due to
the hidden-photon dark-matter field (A′)µ are to leading order the same as those generated by an effective current
density

JA′ = −εm2
A′A′ . (5)

Inside a good conductor, the interacting mode vanishes, Fµν = 0 and Aµ = 0, whereas the sterile mode can propagate
into a conducting region with essentially no perturbation. Outside a conducting region, the effective current density
due to the sterile mode acts to generate a non-zero interacting mode. These effects, where Earth’s conducting interior
and the conducting ionosphere provide relevant boundary conditions, give rise to the oscillating magnetic-field pattern
we seek to measure in our experiment, as described in detail in Ref. [26].

The second theoretical scenario we consider is the hypothesis that the dark matter consists primarily of axions [50–
55]. Axions are pseudoscalar particles arising from spontaneous symmetry breaking at a high energy scale associated,
for example, with grand unified theories (GUTs) or even the Planck scale [56]. Combined with explicit symmetry
breaking at lower energy scales, such pseudoscalar particles acquire small masses (≪ 1 eV) and couplings to Standard
Model particles and fields [2]. Like hidden photons, axions are ubiquitous features of beyond-the-Standard-Model
theories [57–60], and have all the requisite characteristics to be the dark matter [1–3]. The focus of our experiment is
the axion-to-photon coupling which is described by the Lagrangian:

L ⊃ −1

4
FµνF

µν +
1

2
(∂µa)

2 − 1

2
m2

aa
2 +

1

4
gaγaFµν F̃

µν , (6)

where a is the axion field, ma is the axion mass, gaγ parameterizes the axion–photon coupling, and F̃µν is the dual field-
strength tensor. The last term appearing in Eq. (6) describes the interaction between the axion and electromagnetic
fields:

1

4
gaγaFµν F̃

µν = −gaγaE ·B , (7)

where E and B are the electric and magnetic fields. In the non-relativistic limit, the leading-order correction to
Maxwell’s equations arising from the existence of the axion–photon coupling described by Eq. (7) appears in the
Ampère–Maxwell Law:

∇×B − ∂tE = J − gaγ(∂ta)B . (8)

It follows that the physical effects of the axion–photon coupling in the presence of a magnetic field B, as in the case
of hidden photons [Eq. (5)], manifest as an effective current:

Ja = −gaγ(∂ta)B = igaγmaa(r, t)B , (9)

where

a(r, t) = a0(r, t)e
−imat (10)

is the axion field with a stochastically (slowly) varying amplitude |a0| ∼
√
2ρDM/ma, with coherence length ℓcoh

and coherence time τ coh analogous to those for hidden photons described by Eqs. (3) and (4), with the replacement
mA′ → ma. The interaction of an axion dark-matter field with the geomagnetic field of Earth thus generates an
oscillating magnetic-field pattern, which is discussed in detail in Ref. [28].

In this work, we aim to analyze the first dedicated measurements of the SNIPE Hunt experiment in the frequency
range 0.5–5 Hz. The lower frequency bound of 0.5 Hz for our analysis was chosen for practical reasons: 1/f noise
begins to reduce our sensitivity below ≈ 0.5 Hz and there is ongoing analysis of SuperMAG data covering frequencies
up to ≈ 1 Hz that is expected to surpass the sensitivity of this experiment. For the upper bound of 5 Hz, we have
considered the fact that we do not have a robust prediction for Schumann resonances because of finite conductivity
effects and also inhomogeneities in the ionosphere refractive index [61]. Indeed, the first Schumann resonance occurs
at a frequency around 7.8 Hz with time-dependent fluctuations of the order of 0.5 Hz. Most importantly, its width
is about 2 Hz, which makes f ≤ 5 Hz a region where the dark-matter-induced magnetic-field pattern can be reliably
derived (see Sec. IVC1 for further discussion). The analyses carried out in Refs. [26, 28] considered a quasi-static
limit valid only when the UBDM Compton wavelengths are much larger than Earth’s radius R: λA′ ≈ 1/mA′ ≫ R
and λa ≈ 1/ma ≫ R. This sets an upper limit on the hidden-photon mass mA′ and axion mass ma of ∼ 3× 10−14 eV
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and, correspondingly, for their Compton frequencies: fA′ and fa must be ≪ 7 Hz. As we are working at frequencies
up to 5 Hz, the formulas used in Refs. [26, 28] are only marginally correct, and therefore more robust formulas are
needed here.

In the following we calculate a more general signal for dark-matter masses close to ∼ 1/R. We write the magnetic
and electric fields in terms of vector spherical harmonics (VSH; see Appendix D of [26]) Yℓm, Ψℓm, Φℓm as

B(x, t) = e−iωt
∑
ℓ,m

(
B

(r)
ℓm(r)Yℓm +B

(1)
ℓm(r)Ψℓm +B

(2)
ℓm(r)Φℓm

)
(11)

E(x, t) = e−iωt
∑
ℓ,m

(
E

(r)
ℓm(r)Yℓm + E

(1)
ℓm(r)Ψℓm + E

(2)
ℓm(r)Φℓm

)
, (12)

where ω is the oscillation angular frequency of the dark-matter effective current. For the dark-matter effective current
J which stands for both hidden photons and axion-like particles, we use the fact that it satisfies ∇× J = 0 to write

J(x, t) = e−iωt
∑
ℓ,m

(
J
(r)
ℓm (r)Yℓm + J

(1)
ℓm (r)Ψℓm

)
. (13)

Inserting the above ansatz into Maxwell’s equations, we get(
1

r2
d

dr

(
r2

d

dr

)
+ ω2 − ℓ(ℓ+ 1)

r2

)(
B

(2)
ℓm

E
(2)
ℓm

)
= 0 , (14)

and the other components are determined by

E
(r)
ℓm =

1

iω

(
ℓ(ℓ+ 1)

r
B

(2)
ℓm + J

(r)
ℓm

)
(15)

E
(1)
ℓm =

1

iω

(
1

r

d

dr

(
rB

(2)
ℓm

)
+ J

(1)
ℓm

)
(16)

B
(r)
ℓm = − 1

iω

ℓ(ℓ+ 1)

r
E

(2)
ℓm (17)

B
(1)
ℓm = − 1

iω

1

r

d

dr

(
rE

(2)
ℓm

)
. (18)

This system is solved with boundary conditions such that E
(1)
ℓm and E

(2)
ℓm vanish at both Earth’s surface r = R

and ionosphere r = R + h, where h is the ionosphere height. Because we work in the regime ωh ≪ 1, the boundary

condition for E
(2)
ℓm implies immediately that it is zero everywhere; it follows that B

(r)
ℓm and B

(1)
ℓm also vanish identically.

Writing B
(2)
ℓm = uℓm/r, in the limit in which h ≪ R we find

u′′
ℓm − λ2

ℓuℓm = 0, (19)

where λ2
ℓ = ℓ(ℓ + 1)/R2 − ω2. We write the solution for uℓm as uℓm = αℓm cosh(λℓ(r − R)) + βℓm sinh(λℓ(r − R)).

Notice that the magnetic field signal at Earth’s surface (r = R) is simply given by

B =
∑
ℓ,m

αℓm

R
Φℓm. (20)

From the boundary condition u′
ℓm = −rJ

(1)
ℓm at r = R and r = R+ h, we find at zeroth order in h/R

αℓm = −J
(1)
ℓm (R) +RJ

(1)
ℓm

′(R)

λ2
ℓ

. (21)

A. Hidden-Photon Signal

In terms of vector spherical harmonics, the hidden-photon effective current, given in Eq. (5), is written as
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JA′ = −
√

4π

3
εm2

A′

1∑
m=−1

Am(Y1m +Ψ1m)e−iωmt . (22)

Here ωm = mA′ −2πfdm, where fd is the frequency associated to the sidereal day,5 and the hidden-photon amplitudes
A′

m (for polarizations m = 0,±1) appearing in Eq. (22) are normalized via

1

2
m2

A′⟨|A′ |2⟩ = ρDM, (23)

where ρDM = 0.3GeV/cm
3
is the local dark-matter density. Extracting J

(1)
1m from Eq. (22), we find

BA′ =

√
4π

3

εm2
A′R

2−m2
A′R2

1∑
m=−1

AmΦ1me−iωmt. (24)

B. Axion Signal

For axion dark matter, the orientation of the effective current is determined by Earth’s dc magnetic field [see
Eq. (9)]. As in Ref. [28], we utilize the IGRF-13 model [62], which parameterizes Earth’s magnetic field B⊕ in terms
of a scalar potential V0, such that B⊕ = −∇V0, where V0 is expanded as

V0 =
∞∑
ℓ=1

ℓ∑
m=0

Rℓ+2

rℓ+1
(gℓm cos(mϕ) + hℓm sin(mϕ))Pm

ℓ (cos θ), (25)

where Pm
ℓ are the Schmidt-normalized associated Legendre polynomials. The Gauss coefficients gℓm and hℓm are

specified by the IGRF model at five-year intervals (see Tab. 2 of Ref. [62]). The last of these coefficients correspond
to the year 2020, with time derivatives provided for their subsequent evolution. In this work, we extrapolate the 2020
values (up to ℓ = 4) forward to July 23, 2022 using these time derivatives, and adopt the conventions gℓ,−m = (−1)mgℓm
to hℓ,−m = (−1)m+1hℓm to extend to negative m.

Once Earth’s dc field has been parametrized in this way, the effective current that axion dark matter of mass ma

and axion–photon coupling gaγ generates can be written as [28]

Ja = igaγa0ma

∑
ℓ,m

Cℓm

(
R

r

)ℓ+2

((ℓ+ 1)Yℓm −Ψℓm)e−imat, (26)

where a0 is the (complex) axion amplitude, normalized by 1
2m

2
a⟨|a0|2⟩ = ρDM, and

Cℓm = (−1)m
√

4π(2− δm0)

2ℓ+ 1

gℓm − ihℓm

2
. (27)

Now, by identifying J (1)(r) in Eq. (26), the magnetic-field signal from axion dark matter is found to be

Ba = −iga0maR
∑
ℓ,m

(ℓ+ 1)Cℓm

ℓ(ℓ+ 1)−m2
aR

2
Φℓme−imat. (28)

III. EXPERIMENTAL DETAILS

From 21 July 2022 to 24 July 2022, we conducted the first coordinated SNIPE Hunt science run. Measurements were
made with battery-operated magnetometers located at three sites which were chosen to have minimal magnetic-field

5 The appearance of fd here is due to the rotation of Earth. While the direction of the hidden photon is fixed in the inertial celestial
frame, our measurements are performed by magnetometers which are fixed to the rotating Earth. Transforming the hidden-photon
amplitude from the inertial to co-rotating frame, introduces an additional time dependence related to Earth’s rotational frequency.
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interference from power lines, traffic, and other anthropic sources. A block diagram of the experimental setup at an
individual station is shown in Fig. 1. The magnetometers were Vector Magnetoresistive (VMR) sensors manufactured
by Twinleaf LLC. The VMRs use three mutually perpendicular giant magnetoresitive (GMR) field sensors to measure

all three components of the magnetic field. The sensitivity of the GMR sensors is specified to be 300 pT/
√
Hz over a

frequency range of 0.1–100 Hz. In addition to the magnetic field, the VMR also has a three-axis gyroscope, a three-axis
accelerometer, a barometer, and a thermometer. The measurements from all of these sensors were recorded during
the course of the science run on a laptop computer which also provided power to the VMR via a USB connection. The
sample rate for the data acquisition was set to 160 samples/s. In order to limit the influence of magnetic noise from
the laptop on the VMR, the laptop was located in a camping tent 9–12 m from the sensor, depending on the station.
The laptops were powered by 50 A · hr powerbanks, which were swapped with fully charged powerbanks every 6–10
hours and recharged using a solar generator. Fig. 3 shows the operation times for the three stations.

The data were time stamped using the computer clocks, which were steered to GPS time using a receiver antenna and
synchronization software. To account for the software lag present in the timing calibration, the timing offset correction
was set prior to the science run using a time server from the National Institute for Standards and Technology. The
accuracy of the timing was tested in the laboratory by applying magnetic-field signals that were triggered by an
external GPS receiver before and after the science run. Based on these tests, we estimate the accuracy of the timing
to be ≲ 100 ms.

The location of the three stations is shown in Table I. The magnetometers were aligned so that the y axis of the
magnetometers was vertical, relative to local gravity, and the z axis of the detectors was pointing to true north as
determined by smart-phone compasses. We estimate the pointing accuracy of the detectors to be ≲ 1◦. An example
of one of the mounts used for the alignment of the magnetometers is shown in Fig. 2. The sensors and mounts were
covered with a plastic container that was secured to the ground to guard against rain.

Station Location Latitude Longitude Elevation

(deg) (deg) (meters)

Hayward Auburn State Recreation Area 39.1017 -120.924 355.0

Lewisburg Penn Roosevelt State Park 40.7404 -77.7113 692.2

Oberlin Findley State Park 41.1303 -82.2069 277.4

TABLE I. Locations of sensors used in the 2022 SNIPE hunt. The stations are referred to by the location of the home institution
for the groups in charge of each station.

3-Axis GMR
Magnetometer

9 – 12 m  

Camping Tent

Laptop
Computer

GPS 

Battery

FIG. 1. Block diagram of SNIPE station setup. A three-axis GMR magnetometer was connected via USB to a laptop located
9–12 m from the sensor. The data were recorded with a laptop and time stamped using the laptop computer time, which was
steered to GPS time using a GPS timing receiver. The laptop was powered with battery power banks that were swapped out
every 6–10 hours.

A. Noise Characteristics

For the three sites, we show in Fig. 4 the amplitude spectral density for the East-West and North-South components
of the magnetic field – the components relevant for this search. A couple of features are evident. The Hayward station
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FIG. 2. Mount for the detector. The pitch, roll, and yaw can be adjusted. A smart phone fits onto the table that holds the
sensor for alignment. The phone is removed during data collection. The mount was attached to the ground using heavy-duty
plastic tent screws.

07−22 00 07−22 12 07−23 00 07−23 12 07−24 00 07−24 12

Time, UTC

Hayward Lewisburg Oberlin

FIG. 3. Activity for the 2022 SNIPE science run. The horizontal bars indicate when the Hayward, Lewisburg, and Oberlin
stations were operational. Two subsets of the data were analyzed independently: Scan-1 covering the interval shown as the
light blue shaded region on the left, and Scan-2, the grey shaded region on the right.

had noticeably smaller power-line noise at 60 Hz than the Lewisburg and Oberlin stations. The Lewisburg station
had a significant 1/f pedestal in the 0.1 to 0.5 Hz band that was absent in the other two stations. Also, the Oberlin
station had narrow peaks at 0.25, 0.5, and 0.75 Hz suggesting a common origin as harmonics of some fundamental
frequency. As the local magnetic environments are distinct, this difference in noise profile between the stations is
expected even though we have not identified the origins of the particular features noted above. However, for the
three stations, the amplitude spectral density in most of the band of interest is flat and corresponds to approximately
300 pT/

√
Hz, the noise floor of the sensors.

In Fig. 5, we plot time series of the sensor temperature (shown as the blue dashed lines on the right), and of the
temperature-corrected measurements of the magnetic field covering the first ∼ 30 hours of the observing run. The
rows correspond to the different sites, and the columns to the North-South, East-West, and Vertical components of the
field. We apply the temperature correction purely for plotting purposes, as we noticed a temperature-dependent drift
in the sensor calibration at dc of up to 10 percent in the case of the Hayward station and about 2 percent for the other
two stations. However, in the analysis band – 0.5 to 5.0 Hz – we do not make any temperature correction. Instead,
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10−2

10−1

100

101
[n
T

H
z−

1
/
2
]

North-South East-West

Hayward

10−2

10−1

100

101

[n
T

H
z−

1
/
2
]

Lewisburg

1 10

Frequency [Hz]

10−2

10−1

100

101

[n
T

H
z−

1
/
2
]

1 10

Frequency [Hz]

Oberlin

FIG. 4. Amplitude spectral densities of the North-South and East-West components of the magnetic field measurements from
the three measurement sites. The shaded band 0.5–5.0 Hz shows the range of frequencies probed in this work. In this band,
the noise floor is limited by the instrumental sensitivity of ∼ 300 pT/

√
Hz.

as we discuss in Sec. IVC, we assign an uncertainty on the quoted HPDM and axion limits due to temperature drifts.

Between hours ∼ 13 and 20 of the time series, we observe increased fluctuations in the North and East components
of the Lewisburg data – fluctuations which were not present in the other stations. This interval coincides with an
overnight thunderstorm, during which mechanical agitation of the sensor or lightning occurring nearby may have led
to the fluctuations. However, in the temporal window between hours ∼ 25 and 32 (shown enclosed in the red dashed
boxes of Fig. 5), we notice features which are clearly correlated across all three stations, and which we believe are due
to a geomagnetic storm associated with the eruption of sunspot AR3060. This produced a C5-class solar flare and a
coronal mass ejection directed toward Earth [63, 64]. The storm led to the modulation of Earth’s magnetic field which
we detected. Including data from this window in the the analysis presented below led to noticeable non-gaussianities
in the test statistic used for setting limits on the HPDM and axion parameters. For this reason, we excluded the
time interval containing the geomagnetic storm in the analysis and instead separate the data into two independently
analyzed measurement periods: Scan-1 and Scan-2. These time periods are shown as shaded regions in Fig. 3.

IV. DATA ANALYSIS

In this section, we outline how the SNIPE Hunt data is analyzed to search for both a hidden-photon dark-matter
(HPDM) and axion dark-matter signal.

A. Hidden-Photon Analysis

We begin with the HPDM signal. Our analysis follows a similar (but simplified) methodology to that described
in Ref. [27]. In this search, our data consist of six time series, corresponding to the south-directed and east-directed
magnetic field components measured at each of the three SNIPE Hunt measurement locations: Bθ(Ω1, tj), Bϕ(Ω1, tj),
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FIG. 5. Time series of magnetic fields made at the Hayward, Lewisburg, and Oberlin measurement stations. The North-South,
East-West, and Vertical (normal to Earth’s surface) directions are shown. Scan-1 begins at time t = 0, and covers the first
24 hours of the data shown. The red dashed boxes correspond to the occurrence of a geomagnetic storm. During that time,
we noticed correlated low-frequency oscillations in all three stations. Data from this period were not included in Scan-1, as
discussed in the main text. The blue dashed line shows the sensor temperature measured at the different locations.

Bθ(Ω2, tj), Bϕ(Ω2, tj), Bθ(Ω3, tj), and Bϕ(Ω3, tj).
6 We model these time series as being given by (the real part of)

the signal in Eq. (24) plus Gaussian white noise. Our goal is then to extract a bound on ε. As the exact amplitudes
A′

m are unknown, we utilize a Bayesian framework and treat these as nuisance parameters. We also take a Gaussian
distribution for them,7 normalized by Eq. (23).

The signal in Eq. (24) indicates that all relevant information is contained at the frequencies fA′ and fA′ ± fd. Thus

we Fourier transform the six time series Bα(Ωi), and construct an 18-dimensional data vector8 X⃗ which contains all

information which may be relevant to setting a bound at fA′ . Namely, X⃗ consists of the six values B̃α

(
Ωi, fA′ − f̂d

)
,

followed by the six values B̃α (Ωi, fA′), followed by the six values B̃α

(
Ωi, fA′ + f̂d

)
. In our analysis, we compute

bounds only at discrete Fourier transform (DFT) frequencies fA′ = n/T (where T is the total duration of the time

window in consideration). Note that fd may not generically be a DFT frequency, and so we have instead used f̂d, which

we define as the nearest DFT frequency to fd. With these choices, X⃗ can be computed via a fast Fourier transform

(FFT). (This allows us to compute X⃗ at all frequencies simultaneously, and perform the subsequent analysis for all

frequencies in parallel.) The first step of our analysis is to characterize the statistics of X⃗, namely its expectation and
variance.

First, let us compute the expectation of X⃗. As mentioned above, we model our measurements as being Gaussian

noise on top of the signal in Eq. (24). Since the expectation of the noise vanishes, the expectation of X⃗ simply comes
from Fourier transforming Eq. (24) and assembling its relevant components into a vector. To remove the normalization

6 Here Ωi = (θi, ϕi) denotes the geographic coordinates of each station. Note that while ϕi is exactly the longitude of each station, the

latitude of each station is given by π
2
− θi. Likewise, ϕ̂ points east, while θ̂ points south.

7 A′ can be written as a sum of several independent plane wave solutions of different velocities vn ∼ O(vDM). These have corresponding
frequencies fn ∼ fA′

(
1 +O(v2DM)

)
. On timescales longer than τcoh ∼ 2π/(fA′v2DM), the value of A′ is thus a sum of many contributions

with random phases. By the central limit theorem, it is thus distributed as a Gaussian variable.
8 We use x⃗ to denote a vector x with 18 components (or six components in Sec. IVB), and y to indicate a vector y with three components.



10

from the amplitudes A′
m, let us define

cm =

√
2πfA′A′

m√
ρDM

. (29)

These now have
∑

m⟨|cm|2⟩ = 1. In the case c± = 0, (the real part of) Eq. (24) takes the simple form

B0(Ω, t) = − 2πfA′R

2− (2πfA′R)2
ε
√
2ρDM sin θ · Re

[
c0e

−2πifA′ t
]
ϕ̂, (30)

and the only nonzero components of ⟨X⃗⟩ are

⟨X8⟩0 = B̃0,ϕ(Ω1, fA′) = − 2πfA′R

2− (2πfA′R)2
c∗0εT

√
ρDM

2
sin θ1 ≡ c∗0εµ0,8 (31)

⟨X10⟩0 = B̃0,ϕ(Ω2, fA′) = − 2πfA′R

2− (2πfA′R)2
c∗0εT

√
ρDM

2
sin θ2 ≡ c∗0εµ0,10 (32)

⟨X12⟩0 = B̃0,ϕ(Ω3, fA′) = − 2πfA′R

2− (2πfA′R)2
c∗0εT

√
ρDM

2
sin θ3 ≡ c∗0εµ0,12, (33)

On the other hand if c0 = c− = 0, then the signal becomes

B+(Ω, t) =
2πfA′R

2− (2πfA′R)2
ε
√
ρDM · Re

[
c+

(
iθ̂ − cos θϕ̂

)
e−2πi(fA′−fd)t+iϕ

]
, (34)

and so the expectation of X⃗ is

⟨X⃗⟩+ ≈ − πfA′R

2− (2πfA′R)2
c∗+ε∆t

√
ρDM



ie−iϕ1Q(fd − f̂d)

cos θ1e
−iϕ1Q(fd − f̂d)

ie−iϕ2Q(fd − f̂d)

cos θ2e
−iϕ2Q(fd − f̂d)

ie−iϕ3Q(fd − f̂d)

cos θ3e
−iϕ3Q(fd − f̂d)

ie−iϕ1Q(fd)
cos θ1e

−iϕ1Q(fd)
ie−iϕ2Q(fd)

cos θ2e
−iϕ2Q(fd)

ie−iϕ3Q(fd)
cos θ3e

−iϕ3Q(fd)

ie−iϕ1Q(fd + f̂d)

cos θ1e
−iϕ1Q(fd + f̂d)

ie−iϕ2Q(fd + f̂d)

cos θ2e
−iϕ2Q(fd + f̂d)

ie−iϕ3Q(fd + f̂d)

cos θ3e
−iϕ3Q(fd + f̂d)



≡ c∗+εµ⃗+, (35)

where

Q(f) =
1− e−2πifT

1− e−2πif∆t
, (36)

and ∆t = (1/160) s is the time resolution. Note that, in principle, Eq. (35) should have an additional term proportional

to c+, which contains factors of Q(2fA′−fd−f̂d), Q(2fA′−fd), and Q(2fA′−fd+f̂d). Since fd ≪ fA′ and Q(f) ∼ 1/f ,
these will all be significantly smaller than the Q factors appearing in Eq. (35). Thus we are safe to neglect this

additional term. Similarly, ⟨X⃗⟩− ≡ c∗−εµ⃗− can be computed (for the case when c0 = c+ = 0). Then generically, the

full expectation of X⃗ is

⟨X⃗⟩ = ε(c∗+µ⃗+ + c∗0µ⃗0 + c∗−µ⃗−). (37)
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Now that we have computed the expectation of X⃗, let us consider its variance. In this analysis, we consider the
frequency range 0.5Hz ≤ fA′ ≤ 5Hz, over which the noise is roughly frequency independent [see Fig. (4)]. Therefore,

we may consider each instance of X⃗ for different frequencies as independent realizations of the noise, and use these

to estimate the noise. In particular, we can compute the covariance matrix for X⃗ as

Σij ≡ ⟨XiX
∗
j ⟩ =

1

N

N∑
k=1

Xi(fk)Xj(fk)
∗, (38)

where fk indexes the DFT frequencies between 0.5Hz and 5Hz (for k = 1, . . . , N ∼ 105).9

Now that we understand the statistics of X⃗, we can write down its likelihood

− lnL
(
ε, c|X⃗

)
=

(
X⃗ − ε

∑
m

c∗mµ⃗m

)†

Σ−1

(
X⃗ − ε

∑
m

c∗mµ⃗m

)
. (39)

From this likelihood, the computation of the bound on ε proceeds as in Sec. VD of Ref. [27], but we reproduce it here
for completeness. Let us write Σ = LL† and then define

Y⃗ = L−1X⃗, (40)

ν⃗m = L−1µ⃗m. (41)

If we let N be the 18× 3 matrix whose columns are ν⃗m, then Eq. (39) becomes

− lnL
(
ε, c|Y⃗

)
=
∣∣∣Y⃗ − εNc∗

∣∣∣2 . (42)

Now if we perform a singular value decomposition N = USV † (where U is a 18×3 matrix with orthonormal columns,
S is a 3× 3 diagonal matrix, and V is a 3× 3 unitary matrix) and further define

d = V †c∗, (43)

Z = U†Y⃗ , (44)

then the likelihood in Eq. (42) can be reduced to

− lnL (ε,d|Z) = |Z − εSd|2 . (45)

As mentioned earlier, the polarization amplitudes cm, and thus also the parameters dm, are nuisance parameters
over which we need to marginalize. We take them to have a Gaussian likelihood

L(d) = exp(−3|d|2). (46)

Marginalizing over d, the likelihood Eq. (45) reduces to

L (ε|Z) ∝
∏
m

1

3 + ε2s2m
exp

(
− 3|zm|2
3 + ε2s2m

)
, (47)

where zm are the components of Z and sm are the diagonal entries of S [see Appendix D1 of Ref. [27] for a derivation
of Eq. (47)]. In order to turn this into a posterior on ε, we must assume some prior. We take a Jeffreys prior

p(ε) ∝
√∑

m

4ε2s4m
(3 + ε2s2m)2

; (48)

again see Appendix D1 of Ref. [27]. The posterior for ε is thus

p(ε|Z) = N
√∑

m

4ε2s4m
(3 + ε2s2m)2

∏
m

1

3 + ε2s2m
exp

(
− 3|zm|2
3 + ε2s2m

)
, (49)

9 Note that since the first six elements, the middle six elements, and the final six elements of X⃗ correspond to different frequencies, then
covariances between elements from these different groups should vanish, i.e. Σ should be block diagonal. Moreover, the three diagonal
blocks should be identical, since they correspond to the same averages in Eq. (38) (only with the frequency fk shifted by f̂d). Thus it
suffices to only compute Σij for 7 ≤ i, j ≤ 12.
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where N must be calculated to normalize the integral of p(ε|Z) to 1. We then set a 95% credible upper limit ε̂ by
solving ∫ ε̂

0

dε p(ε|Z) = 0.95. (50)

By performing this analysis at all DFT frequencies between 0.5Hz and 5Hz, we arrive at a bound over a range of
HPDM masses. Fig. (6) shows the results of our analysis for both Scan-1 and Scan-2.
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FIG. 6. 95% credible upper limit on ε, the HPDM kinetic-mixing parameter. The top figure shows the results for Scan-1, and
the bottom figure shows the results for Scan-2. The orange traces on both plots are smoothed versions of the limits obtained
by averaging over 100 adjacent frequency bins.

Following the methodology in Sec. VI of Ref. [27], we evaluate our data at each frequency for evidence of a significant
dark-matter candidate. From Eq. (45), we see that under the null hypothesis of no dark matter signal (ε = 0), the
vector Z should be distributed as a multivariate Gaussian of mean zero. Specifically, the statistic

Q = 2
∑
m

|zm|2 (51)

should follow a χ2-squared distribution with six degrees of freedom. We may therefore compute the corresponding
local p-value

p0 = 1− Fχ2(6)(Q), (52)

where Fχ2(ν) denotes the cumulative distribution function for a χ2-distribution with ν degrees of freedom. Fig. (7)
shows the local p-values at each frequency fA′ for both Scan-1 and Scan-2. We consider there to be evidence for a DM
candidate at a given frequency (with 95% global significance) if its local p-value is below the threshold pcrit defined
by

(1− pcrit)
N = 0.95. (53)
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This threshold is shown as a dotted line in Fig. (7). Scan-1 exhibits seven frequency bins which cross the threshold.
Four of these are clustered around 0.5Hz, while the other three are clustered around 0.75Hz. Scan-2, likewise, exhibits
three candidate frequencies clustered around 0.5Hz, and one at 0.75Hz. We expect these candidates are associated
with the narrow peaks observed in the Oberlin station data. We have re-performed our analysis using only the
Hayward and Lewisburg data, and find that these peaks do not cross the threshold for significance in either scan when
restricting to these two stations [see Fig. (8)]. Since dark matter should be present in all locations at all times, this
strongly suggests that these signal candidates do not correspond to dark matter. Moreover, we note that the width
of a dark-matter signal is given by fav

2
DM, where vDM is the dark matter velocity dispersion. Since the frequency

bin size for our analysis is roughly 10−5 Hz, these signal candidates have widths of roughly 10−5fa, corresponding
to a large velocity dispersion of vDM ∼ 1000 km/s (which is far above the escape velocity of the Milky Way). We
therefore rule out these dark-matter candidates and conclude that our analysis finds no evidence for HPDM in the
0.5Hz ≤ fA′ ≤ 5Hz range.
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FIG. 7. The local p0-values for each of the N = 414572 frequency bins analyzed in the Scan-1, shown in the top (blue) figure,
and each of the N = 340291 bins searched in Scan-2, shown in the lower (grey) figure. The threshold value for declaring a
dark-matter candidate at 95% global confidence is shown by the dotted line (after accounting for the trials factor given by the
multiplicity of frequencies searched; see Eq. 53). The left panels show p0 as a function of frequency with candidates having
p-values below the threshold. The right panels show histograms of p0 for the two different scans and candidates as outliers to
the right of the threshold.

B. Axion Analysis

Now we move to the analysis for an axion dark-matter signal. This analysis proceeds similarly to the HPDM analysis,

but is slightly simpler. As in the HPDM analysis, we construct a data vector X⃗ consisting of Fourier transforms of
the measured magnetic field at each location. Since the axion signal in Eq. (28) contains no fd dependence, however,

the only relevant information is contained at frequency fa. Therefore in this analysis, we only take X⃗ to be a six-
dimensional vector, consisting of the measurements: B̃θ(Ω1, fa), B̃ϕ(Ω1, fa), B̃θ(Ω2, fa), B̃ϕ(Ω2, fa), B̃θ(Ω3, fa), and
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FIG. 8. The local p0-values for each frequency bin when only data from the Hayward and Lewisburg stations are considered.
No beyond-threshold candidates appear in common in both Scan-1 and Scan-2. Also, the peaks at 0.50 and 0.75 Hz evident
in Fig. (7) are not present in this subset of stations. This indicates that those candidates were due to artefacts in the Oberlin
data.

B̃ϕ(Ω3, fa). The expectation of X⃗ is now given by

⟨X⃗⟩ = ic∗gaγRT

√
ρDM

2

∑
ℓm

(ℓ+ 1)Cℓm

ℓ(ℓ+ 1)− (2πfaR)2



Φθ
ℓm(Ω1)

Φϕ
ℓm(Ω1)

Φθ
ℓm(Ω2)

Φϕ
ℓm(Ω2)

Φθ
ℓm(Ω3)

Φϕ
ℓm(Ω3)

 ≡ c∗gaγ µ⃗, (54)

where Φθ
ℓm and Φϕ

ℓm denote the θ̂-component and ϕ̂-components of the VSH Φℓm, and

c =

√
2πfaa0√
ρDM

. (55)

The covariance matrix Σ of X⃗ can again be determined by averaging over independent frequencies, as in Eq. (37)

[except that Σ will now be a 6× 6 matrix]. If we define Y⃗ and ν⃗ as in Eqs. (40) and (41) [without the m index], and
further define

s = |ν⃗|, (56)

z =
ν⃗†Y⃗
s

, (57)

we can write the likelihood function for the axion signal as

− lnL(gaγ , c|z) = |z − gaγc
∗s|2 . (58)

Again marginalizing over c (which we take to have a Gaussian distribution with ⟨|c|2⟩ = 1), and utilizing a Jeffreys
prior for gaγ , we arrive at the posterior distribution

p(gaγ |z) =
|z|2

1− e−|z|2 · 2gaγs
2

(1 + g2aγs
2)2

exp

(
− |z|2
1 + g2aγs

2

)
. (59)

Note that Eq. (59) is properly normalized, which is possible because its integral over gaγγ can be taken analytically.
The 95% credible limit ĝaγ can then be defined, as in Eq. (50). In this case, we can solve for it analytically to find

ĝaγ =
1

s

√
− |z|2
log
(
0.95 + 0.05e−|z|2) − 1. (60)

Fig. (9) shows the resulting limit as a function of frequency, for both Scan-1 and Scan-2. Note that the lower edge of
the limit appears as a smooth curve. This is due to the fact that ĝaγ → 4.36/s in the limit z → 0. Therefore, even
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FIG. 9. 95% CL upper limit on gaγγ for Scan-1 and Scan-2. The orange traces on both plots show smoothed versions of the
limits obtained by averaging over 100 adjacent frequency bins.

when the measured data at a particular frequency becomes arbitrarily small (compared to the estimated noise level),
the limit on gaγ asymptotes to a finite floor.10

As in the HPDM case, we evaluate our data at each frequency in order to determine whether there is evidence for a
significant DM signal. We may compute the local p-value at a particular frequency under the null hypothesis (gaγγ=0)
as

p0 = 1− Fχ2(2)(2|z|2). (61)

(The χ2-distribution only has two degrees of freedom now, since the likelihood in Eq. (58) only has one z variable.)
Fig. (10) shows these p-values as a function of frequency for both Scan-1 and Scan-2, along with the threshold value
pcrit, as defined in Eq. (53). Neither scan shows any significant signal candidates, and so we again conclude that our
data contains no evidence for axion dark matter in the 0.5Hz ≤ fa ≤ 5Hz range.

C. Error Budget

The results of this science run and analysis are summarized in Figs. 6 and 9. They show upper limits on ε, the
HPDM kinetic mixing parameter, and on gaγ , the axion–photon coupling constant, respectively. Below, we discuss

10 This floor exhibits a slight frequency dependence because of the fa-dependence in Eq. (54).
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FIG. 10. The local p0-values for each of the N = 414572 frequency bins analyzed in Scan-1 (top), and each of the N = 340291
frequency bins searched in Scan-2 (bottom). pcrit, the threshold value for declaring a candidate signal at 95% confidence is
shown as the dotted line on each of the plots. The right panel shows a histogram of all the p0-values for each scan. Signal
candidates would appear as outliers to the right of the threshold.

the impact of uncertainties in the signal model and experimental conditions on the quoted limits.

1. Signal model uncertainty

The signals in Eqs. (24) and (28) assume a simplified model of Earth and the ionosphere, where both are treated
as spherical perfect conductors. In Ref. [26], it is argued that this model holds to a high degree of accuracy in
the frequency range relevant to this work. In particular, both Earth’s crust [65] and the ionosphere [66, 67] achieve
conductivities of at least 10−4 S/m at certain depths/heights, which translate to skin depths of ∼ 50 km for frequencies
f ∼ 1Hz. Given that the only relevant length scale appearing in Eqs. (24) and (28) is the radius of Earth R ∼ 6000 km,
finite-conductivity effects only modify the geometry of the system at the percent level. In the absence of resonances,
we conclude that the signal should also only be affected at the percent level.

Close examination of Eqs. (24) and (28), however, reveals that our model predicts resonances in the signal at

mR =
√
ℓ(ℓ+ 1) (for ℓ = 1 in the HPDM case, and ℓ ≥ 1 in the axion case). These are the well-studied Schumann

resonances of the Earth-ionosphere cavity [61, 68]. Our simplified spherical model predicts the first of these resonances
to occur at ∼ 10Hz, but the central frequency of this resonance has been measured to be ∼ 8Hz [61], indicating that
our spherical model does not accurately account for environmental effects on the Schumann resonances. Moreover,
since the signal nominally diverges at the Schumann resonances, small deviations in their central frequency can have
a large impact on the predicted signal. For this reason, we limit our analysis to f ≤ 5Hz, in order to remain below
the measured Schumann resonances.

We note that the measured width of the Schumann resonances can, however, be quite large at certain times. In the
summer, during the day, the first Schumann resonance can reach widths as large as ∼ 4Hz [68]. The upper end of our
frequency range may therefore be mildly affected by the first Schumann resonance for certain portions of the runtime.
Such an effect would result in a slight enhancement of the signal, beyond what our model predicted. Therefore our
exclusion limits are still conservative. In principle, the effect of the Schumann resonances may, however, invalidate our
signal-candidate rejection procedure. This is because environmental effects could influence each station differently,
meaning we cannot accurately characterize the spatial dependence of a true signal. To this point, we simply note that
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our only signal candidates presented at the end of Sec. IVA were at f ∼ 0.5, 0.75Hz, and so are too low frequency to
be affected by the Schumann resonances. We therefore conclude that both our exclusion analysis and our candidate
rejection are robust to signal-model uncertainties.

2. Sensor orientation

As discussed in section III, we orient the magnetometers at each site such that the N-S, and E-W axes of each
sensor lie in a horizontal plane with North indicating True (i.e., geographic) north, and the Normal (Up-Down) axis
lies in the direction of the local force of gravity. We are able to achieve this orientation with repeatability ≲ 1◦. By
adjusting the orientation of the sensor in the analysis, we estimate that the impact of such an orientation error is to
change the ε and gaγ upper limits by ≲ 1%.

3. Calibration drift

A temperature-dependent sensor calibration will lead to systematic errors in magnetic-field measurements. As
shown in Fig. 5, we observed that the temperature swing over the course of a day at the Hayward station was
significantly greater than that in the Oberlin and Lewisburg stations. In that period, we recorded changes in the dc
magnetic-field readings that tracked the sensor temperature of up to 10% for the Hayward station, and less than 3%
for the Oberlin and Lewisburg stations. In the the 0.5–5.0 Hz band, we estimate the impact of a drifting calibration
on the upper limits of ε and gaγ by running analyses where we scale the sensor readings by up to 10 percent of their
values. We then determined the resulting limits, concluding that a drifting calibration of the magnitude we observed
would change the limits on ε and gaγ by ≲ 3%.

4. Timing synchronization

As discussed in Sec. III, the magnetic-field measurements were digitized at 160 samples per second. An on-sensor
real-time clock ensured sample-to-sample timing to better than 1 ppm and a GPS-referenced computer clock provided
the absolute time reference for the time stamps. The absolute timing accuracy between sensors was limited to
∼ 100ms due to latencies in the steering of the DAQ clock to GPS. This can be significantly improved. However,
such an accuracy was adequate for an analysis covering the 0.5 to 5 Hz window. We estimate the systematic on the
derived limits due to this error to be neglible.

V. FUTURE DIRECTIONS

The current experiment is limited by the sensitivity of the magnetometers, rather than by the geomagnetic noise,
and our model only accurately describes signals at frequencies below ≈ 5 Hz. In the next generation of the experiment,
we plan to use more sensitive magnetometers to reach the limit imposed by geomagnetic noise. In addition, we propose
to employ a novel experimental geometry to avoid model uncertainties in interpretation of our data.

At frequencies ≳ 5 Hz, the DM-induced magnetic field signal becomes sensitive to the details of Earth’s atmosphere,
which would require more careful modelling than that needed for the lower-frequency analysis presented in this paper.
In order to be sensitive to higher-mass ALPs and hidden photons, we are investigating the prospect of measuring
spatial derivatives of the magnetic field. By measuring components of the magnetic field across multiple stations which
are positioned ≲ 1 km from one another, it is possible to compute the numerical derivatives of B, and particularly
components of ∇ × B. In the envisioned measurement scheme, we do not expect to have significant local electric
currents, so the modified Ampère–Maxwell law describing the sought-after effect of DM fields is

∇×B − ∂tE = Jeff , (62)

where Jeff encapsulates the effect of the dark matter [see Eqs. (5) and (9)]. Since E is negligible in directions tangent
to the ground, a measurement of ∇×B in a tangent direction gives a direct measurement of the dark matter, which
is insensitive to the atmospheric boundary conditions. Moreover, we expect this scheme to reduce sensitivity to
geomagnetic noise, as physical geomagnetic fields in the lower atmosphere should have (∇×B)∥ = J∥ = 0. However,
it is important to note that, unlike the low-frequency measurements whose signal is enhanced by the full radius
of Earth, the effective enhancement here would only be the separation between stations. SNIPE Hunt is currently
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carrying out an investigation of the expected background and signal, while simultaneously taking steps to perform a
search based on this new methodology.

VI. CONCLUSIONS

In this work, we reported on a search for axion and hidden-photon dark matter using a network of unshielded
vector magnetoresistive (VMR) magnetometers located in relatively quiet magnetic environments, in wilderness areas
far from anthropogenic magnetic noise. The magnetic signal pattern targeted by our search could, in principle, be
generated by the interaction of axion or hidden photon dark matter with Earth, which can act as a transducer to
convert the dark matter into oscillating magnetic fields as described in Refs. [26–28]. Analysis of the data acquired
over the course of approximately three days in July 2022 revealed no evidence of a persistent oscillating magnetic
field matching the expected characteristics of a dark-matter-induced signal. Consequently, we set upper limits on the
kinetic-mixing parameter ε for hidden-photon dark matter and on the axion–photon coupling constant gaγ .
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FIG. 11. Constraints on the hidden-photon kinetic-mixing parameter ε as a function of hidden-photon mass mA′ . The plot was
created based on Refs. [69] and [47] and includes the SuperMAG limit [26, 27] and the recent measurement using a network
of magnetometers in meter-scale shielded rooms [70], which we denote the “Synchronized Quantum Sensor Network” (SQSN).
The results reported in Refs. [26, 27, 70] are the only other laboratory measurements in this mass range. In additional to
the laboratory constraints, the plot also shows various astrophysical bounds, including the geomagnetic limit obtained from
satellite measurements of the Earth’s magnetic field [71], the hidden-photon limits from magnetic-field measurements in Jupiter’s
magnetosphere [72], limits from cold gas clouds at the Milky Way center [73], heating of the ionized interstellar medium in the
galaxy from hidden photons [74], and the limit on heating/cooling due to DM in the Leo T dwarf galaxy [75]. Cosmological
bounds on hidden photons from COBE/FIRAS data estimated from potential hidden-photon interactions with plasmas in the
universe are from Refs. [46, 76, 77]. Finally, the figure also displays cosmological/astrophysical bounds on hidden photons from
He II reionization [78].

Figure 11 displays constraints on ε as a function of hidden-photon mass mA′ obtained in our experiment as well as
those from other experiments [27, 70], derived from planetary science [71, 72], and based on astrophysical observations
[46, 73–78]. We note that, in the studied frequency range, the results of the SNIPE Hunt experiment are the most
stringent experimental bounds, and can be regarded as complementary to the more severe observational constraints.
Fig. 12 shows bounds on the axion–photon coupling constant parameter gaγ as a function of axion mass ma.
We are actively pursuing further measurements based on this concept, but instead using induction-coil magnetome-

ters [85–87]. We anticipate an improvement in sensitivity to dark-matter-induced magnetic signals of several orders
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FIG. 12. Constraints on the axion–photon coupling constant parameter gaγ as a function of axion mass ma. The plot was
created based on Ref. [69], and includes the relevant experimental bounds based on the SuperMAG analysis [28] in maroon and
the CAST result [79] in grey. Additionally, the plot displays astrophysical limits on the axion–photon interaction, represented in
various shades of green, including (Diffuse SNe) [80], (Hydra A) [81], (Super star clusters) [82], M87 [83], and (H1821+643) [84].

of magnitude. Furthermore, as discussed in Sec. V, we will use local multi-sensor arrays to measure the curl of the
local magnetic field at the various sites and thereby extend the frequency range probed up to about a kHz.
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