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1. Introduction

The electron-scattering experimental program at Jefferson laboratory aimed at investi-
gating nuclear short-range correlations [1–3], and the accelerator neutrino program, which
will culminate with the completion of DUNE [4], have been the springboard for significant
progress in theoretical calculations of lepton-nucleus scattering. Approaches based on em-
pirical effective nucleon-nucleon interactions [5–8] have been used to study inclusive and
semi-inclusive neutrino scattering data in a variety of kinematic setups [9–20]. Despite their
success, it is still imperative to attain a description of lepton-nucleus scattering from micro-
scopic nuclear dynamics, which assumes that the structure and electroweak properties of
atomic nuclei can be modeled in terms of nuclear potentials and consistent electroweak cur-
rents. These microscopic approaches allow one to quantify the theoretical uncertainties due
to both modeling nuclear dynamics and solving the many-body Schrödinger equation. This
aspect is critical for a meaningful comparison with electron-scattering data, and, perhaps
more importantly, to rigorously assess the error budget of neutrino-oscillation parameters.
Moreover, retaining nuclear correlations in the initial target state is important to explain the
observed abundances of neutron-proton correlated pairs with respect to the proton-proton
and neutron-neutron ones [21]. These experimental measurements can in turn shed light
on the behavior of nuclear forces at short distances, which plays an important role in the
equation of state of infinite nuclear matter at high density [22,23].

Variational Monte Carlo (VMC) and Green’s Function Monte Carlo (GFMC) methods
have proven to be extremely successful for computing the structure and electroweak transi-
tions of atomic nuclei taking as input highly-realistic nuclear Hamiltonians [24]. Over the
past decade, these methods have been employed to carry out microscopic calculations of the
electroweak response functions of light nuclei, fully retaining correlations and consistent
one- and two-body currents [25–28]. Computing the hadronic response tensor is a highly-
nontrivial task, as it involves transitions to the initial ground-state of the target to excited
states, both bound and in the continuum. The prohibitive difficulties involved in com-
puting all transitions mediated by the electroweak current operators are circumvented by
employing integral-transform techniques. Within this approach, the electroweak response
functions are inferred from their Laplace transforms, denoted as Euclidean responses,
that are estimated during the GFMC imaginary time propagation. Retrieving the energy
dependence of the response functions from their Euclidean counterparts is nontrivial. The
maximum entropy method [29,30] has been extensively employed to retrieve the energy
dependence of the electroweak response functions in the smooth quasi-elastic region. More
recently, inversion methods based on deep-neural networks have been proposed as viable
alternatives and seem to be more accurate especially in the low-energy transfer region [31].

One of the main limitations of the GFMC approach lies in the nonrelativistic formula-
tion of the many-body problem. Although the leading relativistic corrections are included
in the transition operators [32], the kinematics of the reaction is nonrelativistic, thereby
limiting the application of the GFMC to moderate values of the momentum transfer. This
restriction is particularly relevant when making predictions for inclusive neutrino-nucleus
cross sections since the incoming neutrino flux is not monochromatic and its tails extend to
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high energies. In Refs. [33,34] relativistic effects in GFMC calculations of lepton-nucleus
scattering are controlled by choosing a reference frame which minimizes nucleon momenta
and utilizing the so-called “two-fragment” model to include relativity in the kinematics of
the reaction.

On the other hand, alternative approaches based on the factorization of the nuclear
final state, such as the spectral function (SF) formalism [35], can reach larger energies
and momentum transfers, as they include relativistic effects in both the kinematics and in
the interaction vertex. In contrast with the GFMC, the SF approach can access exclusive
channels and larger nuclei. However, while based on a similar treatment of the initial target
state, factorizing the final state involves additional approximations, which are only valid at
large momentum transfer, whose validity can be tested against comparisons with GFMC
calculations [36,37].

In this work, we first review the GFMC and SF approaches to compute inclusive
lepton-nucleus scattering, placing particular emphasis on the role of relativistic effects and
two-body currents. We then compare the SF predictions for the neutrino-nucleus cross-
sections and compare with the MINERνA Medium Energy charge-current quasielastic
(CCQE)-like data [38]. Finally, we present unpublished GFMC calculations for the inclusive
electron-12C cross sections that include relativistic corrections.

2. Methodology

The lepton-nucleus differential cross section in the one-boson exchange approximation
can be written as (

dσ

dE′dΩ′

)
l
= Cl Ll

µνRµν , (1)

where l stands for either a charged lepton or neutrino, Cl is a coupling term, and E′ and
Ω′ are the energy and solid angle of the lepton in the final state. The leptonic tensor is
denoted by Ll

µν and is a function of the initial and final lepton four-momenta k and k′,
respectively. For small lepton energy the Coulomb distortion of the outgoing lepton in the
potential of the residual nucleus can be described multiplying the cross section by the Fermi
function F(Z, k′) with Z denoting the number of protons. The expression of this function
for charge-raising reactions is given in Ref. [32] and it is equal to one otherwise. For higher
energies, the correction is provided by the modified effective momentum approximation
as discussed in Ref. [39], where an effective momentum is utilized for the final lepton
correcting its value with the Coulomb energy evaluated at the center of the nucleus, and
modifying the phase space representing the density of final states accordingly. For the
comparisons with T2K and MINERνA data discussed in this review, the effect of Coulomb
corrections is negligible as discussed in Fig.9 of Ref. [40] and therefore they have not been
included.

In this review, we will consider electromagnetic and CC electroweak interactions.
In the first case, we have an electron in both the initial and final state, the prefactor
reads Ce− = αE/(Q4E′) where E is the energy of the initial lepton, α = 1/137 is the
electromagnetic fine structure constant, Q2 = q2 − ω2 is the four-momentum transfer and
the leptonic tensor is

Lµν =
1

EE′ (kµk′ν + k′µkν − gµν (k · k′ − m2
e )) , (2)

where me = 511 keV is the electron mass. Note that we adopted the convention h = c = 1.
For CC electroweak interactions, we have that a neutrino or anti-neutrino scatters off
the initial nucleus and in the final state the corresponding charge lepton is emitted. The
prefactor reads Cl = (GF cos θc)2/(4π)|k′|E′ with GF = 1.1803 × 10−5 [41] and cos θc =
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0.97425 [42]. The leptonic tensor has an additional term proportional to the Levi-Civita
tensor

Lµν =
1

EE′ (kµk′ν + k′µkν − gµν k · k′ ± ϵµρνσkρk′σ) , (3)

where the sign +(-) corresponds to a ν (ν̄) in the initial state.
The hadronic response tensor, Rµν, contains all the information on the structure of the

nuclear target and is defined as

Rµν = ∑
f
⟨Ψ0|J†

µ|Ψ f ⟩⟨Ψ f |Jν|Ψ0⟩δ(E0 + ω − E f ) , (4)

in terms of a sum over all transitions from the ground state |Ψ0⟩ with energy E0 to any final
state |Ψ f ⟩ with energy E f , including states with additional hadrons. The nuclear current
operator describing the interaction with the electroweak probe is denoted by Jµ.

2.1. Nuclear Hamiltonian and current operator

Microscopic nuclear methods are aimed at describing properties of nuclear systems as
they emerge from the individual interactions among the constituent protons and neutrons.
This endeavor is based on the tenet that the internal structure of atomic nuclei can be
described starting from a non-relativistic Hamiltonian of A point-like nucleons

H =
A

∑
i

p2
i

2mN
+

A

∑
i<j

vij +
A

∑
i<j<k

Vijk . (5)

In the above equation p and mN are the nucleon momentum and mass defined as the
average of the proton and neutron mass mN = (mp + mn)/2, while vij and Vijk are the two
(NN) and three-nucleon (3N) potentials respectively; four- and higher-body potentials are
assumed to be suppressed.

Phenomenological NN interactions have been traditionally constructed by including
the long-range one-pion exchange interaction, while different schemes are implemented
to account for intermediate and short range effects, including multiple-pion-exchange,
contact terms, heavy-meson-exchange, or excitation of nucleons into virtual ∆-isobars. As
an example, the highly-accurate Argonne v18 (AV18) potential [43], involves a number of
parameters that are determined by fitting deuteron properties and the large database of NN
scattering data at laboratory energies up to pion production threshold. The AV18 potential
is written as

vij =
18

∑
p=1

vp(rij)O
p
ij . (6)

The first 14 spin-isospin operators are charge independent

O1−14
ij = [1, σi · σj, Sij, L · S, L2, L2(σi · σj), (L · S)2]]× [1, τi · τj] , (7)

where σi are Pauli matrices that operate over the spin of nucleons, Sij = 3(r̂ij · σi)(r̂ij ·
σj) − σi · σj is the tensor operator, Lij =

1
2i (ri − rj) × (∇i −∇j) is the relative angular

momentum of the pair ij and S = 1
2 (∇i +∇j) is the total spin. The remaining operators

include three charge-dependent terms and one charge-symmetry breaking contribution

O15−17
ij = [1, σi · σj, Sij]× Tij ,

O18
ij = τz

i + τz
j , (8)

where Tij = 3τz
i τz

j − τi · τj is the isotensor operator.
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Phenomenological 3N interactions, consistent with the NN ones, are generally ex-
pressed as a sum of a two-pion-exchange P-wave term, a two-pion-exchange S-wave
contribution, a three-pion-exchange contribution, plus a contact interaction. Their inclusion
is essential for reproducing the energy spectrum of atomic nuclei and saturation properties
of infinite nucleonic matter. For instance, the Illinois-7 3N force [44], when used together
with AV18, can reproduce the spectrum of nuclei up to 12C with percent-level accuracy —-
see Fig. 2 discussed in Sec. 3.

The past two decades have witnessed the tremendous development and success of
chiral Effective Field Theory [45–56] (χEFTs). This formalism exploits the broken chiral
symmetry pattern of QCD, the fundamental theory of strong interactions, to construct an
effective Hamiltonian organized in powers the ratio between the pion mass, mπ , or a typical
nucleon momentum, Q, and the scale of chiral symmetry breaking, Λχ ∼ 1 GeV. Over the
years, NN interactions have been developed up to N5LO in the chiral expansion [57–59],
with a full systematic error analysis currently underway [60]. On the other hand, chiral 3N
forces have been fully derived at N3LO, while only contact terms at N4LO have so far been
included [61].

In analogy with the nuclear Hamiltonian, the nuclear current operator Jµ, which
couples the nucleus to the external electroweak probe, can be written as a sum of both one
and two-body contributions

Jµ
A(q) = ∑

i
jµ
i (q) + ∑

ij
jµ
ij(q) + ... (9)

where higher order terms, involving three nucleons or more, are found to be small [62]
and generally neglected.

The one-body electromagnetic current is given by

jµ
EM(q) = jµ

γ,S(q) + jµγ,z(q) , (10)

where the first term is the isoscalar contribution and the second one is the isovector. The
isoscalar component reads

jµ
γ,S(q) =

GS
E + τGS

M
2(1 + Q2/4m2

N)
γµ + i

σµνqν

4mN

GS
M − GS

E
1 + Q2/4m2

N
. (11)

The isoscalar and isovector component of electric and magnetic form factors are written in
terms of the proton and neutron ones as

GS
E,M = Gp

E,M + Gn
E,M, GV

E,M = Gp
E,M − Gn

E,M . (12)

The isovector contribution to the current operator jµ
γ,z is obtained by replacing GS

E,M →
GV

E,Mτz in Eq. (11).
The one-body charge and current operator employed in the GFMC are obtained from

the nonrelativistic reduction of the covariant operator of Eq. (11) including all the terms up
to 1/m2

N . This expansion leads to the following expressions for isoscalar charge, transverse
(⊥) and longitudinal (∥) to q components of the current operator

j0γ,S =
GS

E

2
√

1 + Q2/4m2
N

− i
2GS

M − GS
E

8m2
N

q · (σσσ × p)

j⊥γ,S =
GS

E
2mN

p⊥ − i
GS

M
4mN

(q × σσσ)

j∥γ,S =
ω

|q| j0γ,S . (13)
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Note that the last relation has been obtained from the conserved vector current (CVC)
relation [63], e.g. ω J0(ω, q)− q · J(ω, q) = 0. The CC electroweak interactions of a neutrino
or anti-neutrino with the hadronic target are written as the sum of a vector and axial term

jµ
CC(q) =jµV,±(q) + jµ

A,±(q)

. (14)

The CVC hypothesis allows one to write jµ
V,±(q) in terms of the isovector term where τz

is replaced by the isospin raising-lowering operator τ± = (τi,x ± τi,y)/2. The relativistic
expression of the axial one-body current operator reads

jµ
A,± = −γµγ5GAτ± − qµγ5

GP
mN

τ± . (15)

Based on Partially Conserved Axial Current (PCAC) arguments, the pseudo-scalar form
factor is written in terms of the axial one

GP =
2m2

N
(m2

π + Q2)
GA . (16)

Most neutrino-nucleus scattering calculations are carried out employing a dipole parame-
terization for the axial form factor, which is given by

GA =
gA

(1 + Q2/Λ2
A)

2
, (17)

where the nucleon axial-vector coupling constant is taken to be gA = 1.2694 [64] and
the axial mass is taken as ΛA = 1.049 GeV [65]. More recently, a model-independent z
expansion has been introduced to parameterize the axial form factor

GA(Q2) =
∞

∑
j=0

aj z(Q2)j ≈
jmax

∑
j=0

aj z(Q2)j . (18)

In the last equation, z is an analytic function of Q2 for Q2 = −t > −tc

z(Q2) =

√
tc + Q2 −√

tc − t0√
tc + Q2 +

√
tc − t0

, (19)

where tc is the location of the t-channel cut [66–68] and t0 is an arbitrary parameter. The
coefficients aj include nucleon structure information and jmax is a truncation parameter
required to make the number of expansion parameters finite. The coefficients of this
expansion are determined by fitting either neutrino-deuteron scattering data [69] or Lattice-
QCD nucleon axial-current matrix elements at several discrete values of Q2 [70–72]. The
results of these different determinations of the axial form factors are displayed in Fig. 1.
While an agreement between different LQCD calculations is clearly visible, the LQCD axial
form factor results are 2-3σ larger than the results of Ref. [69] for Q2 ≳ 0.3 GeV2. The
impact of these tensions in the Q2 dependence of the axial form factor on neutrino-nucleus
cross-section predictions has been discussed in Ref. [73,74] and recently in [37,75].

For the CC processes, we report the nonrelativistic reduction of the charge and axial
current operators [77] (for brevity we neglect order 1/m2

N terms)

j0A,± = − GA
2mN

τ±σ · (q + p) , jA,± = − GA
2mN

στ± . (20)
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Figure 1. The blue band in the top panel displays the nucleon axial form factor determined using
fits to neutrino-deuteron scattering data with the model-independent z expansion from Ref. [69]
(D2 Meyer et al.). LQCD results are shown for comparison from Ref. [70] (LQCD Bali et al., green),
Ref. [71] (LQCD Park et al., red) and Ref. [72] (LQCD Djukanovic et al., purple). Bands show combined
statistical and systematic uncertainties in all cases. A dipole parameterization with ΛA = 1.0 GeV
and a 1.4% uncertainty [76] is also shown for comparison (black). The lower panel shows the absolute
value of the difference between D2 Meyer et al. and LQCD Bali et al. results divided by their
uncertainties added in quadrature; very similar results are obtained using the other LQCD results.
Figure from Ref. [37].

and the pseudoscalar contribution

jµ
PS,± =

GA

m2
π + Q2

τ±qµσ · q . (21)

The current conservation relation can be rewritten as

∇ · JEM + i[H, J0
EM] = 0 . (22)

It requires the introduction of a two-body current operator in Jµ
EM and links the diver-

gence of this operator to the commutator of the charge operator with the nucleon-nucleon
interaction.

For the electromagnetic case, however, gauge invariance actually puts constraints on
these form factors by linking the divergence of the two-body currents to the commutator of
the charge op- erator with the nucleon-nucleon interaction

Within χEFT one can exploit the gauge invariance of the theory and construct nuclear
current operators that are fully consistent with the nuclear potentials, at each order of the
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chiral expansion. The derivation of χEFT two-body electroweak currents has been the
subject of extensive study carried out by different groups [78–84].

The majority of the results that will be presented in this review has been obtained
utilizing semi-phenomenological currents that are consistent with the AV18 potential. The
isoscalar and isovector components of the two-body electromagnetic current operator
consist of “model-independent” and “model-dependent term” terms. The former are
obtained from the NN interaction, and by construction satisfy current conservation. They
consists of the one-pion and one-rho exchange current operator — their expressions are
well known and reported in Refs. [35,85,86] both in their relativistic and non relativistic
formulation.
The transverse components of the two-body currents cannot be directly linked to the nuclear
Hamiltonian. The isovector current is associated with the exchange of a pion followed by
the excitation of a ∆-resonance in the intermediate state. The isoscalar contribution includes
the ρπγ transition whose couplings are extracted from the widths of the radiative decay
ρ → πγ and the Q2 dependence of the electromagnetic transition form factor is modeled
assuming vector-meson dominance [87,88].

3. Quantum Monte Carlo Approaches

Solving the Schrödinger equation for the nuclear Hamiltonian defined in Eq. (5) entails
nontrivial difficulties, owing to the nonperturbative nature and strong spin-isospin depen-
dence of realistic nuclear forces. The VMC method is routinely employed to approximately
find the ground-state solution of the quantum many-body problem for nuclei with up to
A = 12 nucleons [24]. Within this approach, the true ground state Ψ0 is approximated by
a variational state ΨV , which is defined in terms of a set of variational parameters. The
optimal values of the latter are found exploiting the variational principle, i.e. by minimizing
the variational energy

EV =
⟨ΨV |H|ΨV⟩
⟨ΨV |ΨV⟩

≥ E0 . (23)

The form of the variational state is taken to be

ΨV = F|Φ⟩, (24)

where F is a permutation-invariant correlation operator of a Jastrow, and the anti-symmetric
|Φ⟩ controls the quantum numbers and the long-range behavior of the wave function. The
correlation operator explicitly includes correlations between pairs and triplets of nucleons

F =
(
S ∏

i<j<k
(1 + Fijk)

)(
S ∏

i<j
Fij

)
, (25)

where S is the symmetrization operator, which is required to ensure the anti-symmetry of
ΨV since, in general, neither the two-body correlations, Fij, nor the three-body ones, Fijk,
commute. The structure of the spin-dependent nuclear correlation operators reflects the
one of the NN potential of Eq. (6)

Fij =
6

∑
p=1

up(rij)O
p
ij , (26)

where the first six operators of Eq. (7) are O1−6
ij = [1, σi · σj, Sij, ]× [1, τi · τj]. More sophis-

ticated correlation operators that explicitly include spin-orbit correlations have been used
in the cluster variational Monte Carlo calculations of Ref. [89]. However, the computational
cost of these additional terms is significant, while the the gain in the variational energy is
relatively small [90].
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The GFMC evolves the variational state in imaginary time to filter out the excited state
components, so that

|Ψ0⟩ = lim
τ→∞

|Ψ(τ)⟩ = lim
τ→∞

exp[−(H − E0) τ] |ΨT⟩ , (27)

The above imaginary-time evolution is carried out as a series of many small steps ∆τ using
an exact two-body short-time propagator [91]. At each step, the GFMC retains all of the
spin-isospin components of the nuclear wave function and can take as input the most
realistic local interactions. The results for the ground state energies of nuclei up to 12C
has been computed with 1% accuracy within GFMC using the semi-phenomenological
AV18+IL7 potentials in Ref. [24] and they are displayed in Fig. 2. Note that a plot with
a comparable degree of accuracy has been also obtained using as input the ∆-full χEFT
nuclear forces that are local in coordinate space [92,93].

Figure 2. Energies of light nuclear ground and excited states from a particular parameterization of
Eq. (5) computed using Green’s Function Monte Carlo (GFMC) techniques. Figure from [24].

Since all the spin-isospin degrees of freedom are retained, the GFMC suffers from an
exponential scaling with the number of nucleons, which currently limits its applicability
to light nuclei, up to 12C. The Auxiliary Field Diffusion Monte Carlo can reach larger
nuclear systems by representing the spin-isospin degrees of freedom in terms of products
of single-particle states, thereby reducing the computational cost from exponential to
polynomial in A [24,94]. However, the use of Hubbard-Stratonovich transformations in the
AFDMC imaginary-time propagation prevents the AFDMC from treating highly-realistic
NN potentials that include an isospin-dependent spin-orbit term.

3.1. Green’s Function Monte Carlo calculations of electroweak responses

GFMC techniques go beyond just the calculation of ground state energies and wave
functions. Dynamical properties of the nucleus can be extracted by reducing the sum over
final states in Eq. (4) to the expectation value of a kernel operator evaluated in the ground
state. More specifically, we consider the Euclidean response function

Eαβ(q, τ) =
∫

dωK(τ, ω)Rαβ(q, ω)

= ∑
f
⟨Ψ0|J†

α(q)|Ψ f ⟩K(τ, E f − E0)⟨Ψ f |Jβ(q)|Ψ0⟩ ,
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where K(τ, ω) is a yet to be specified kernel. Using a completeness relation amongst the
final states this can be simplified to

Eαβ(q, τ) = ∑
f
⟨Ψ0|J†

α(q)K(τ, H − E0)Jβ(q)|Ψ0⟩ , (28)

so that the problem involves only the ground state. Choosing an appropriate kernel function
allows one to solve for the Euclidean response using ab initio methods. In particular, a
Laplace kernel has been adopted with GFMC techniques yielding the following expression
for the inelastic contribution to the response function is

Eαβ(q, τ) =
∫ ∞

0
dωRαβe−ωτ = ⟨Ψ0|J†

α(q)e
−(H−E0)τ Jβ(q)|Ψ0⟩ . (29)

In the electromagnetic case, only the longitudinal (RL = R00) and transverse (RT = Rxx +
Ryy) responses contribute. In the longitudinal case, we remove the elastic contribution, in
which the final state is simply the recoiling ground state, by defining

E00(q, τ) =
∫ ∞

ω+
el

dωR00e−ωτ = ⟨Ψ0|J†
0 (q)e

−(H−E0)τ J0(q)|Ψ0⟩ − |F0(q)|2e−ωelτ , (30)

In the above equation, ωel = q2/2MA, with MA being the mass of the nucleus, is the energy
of the recoiling ground state and the elastic form factor is defined as F0(q) = ⟨Ψ0|J0(q)|Ψ0⟩.

The calculation of the imaginary-time correlation operator in the right hand side of
Eq. (30) follows the same methodology applied to project out the exact ground state of
H from a trial wave function in Eq. (27). First, an unconstrained imaginary-time propa-
gation of the state |Ψ0⟩ is performed and stored. Then, the states Jα(q)|Ψ0⟩ are evolved
in imaginary time following the path previously saved. For a complete discussion of the
methods see Refs. [27,95,96]. To retrieve the energy dependence of the response functions
Bayesian techniques, most notably maximum-entropy (MaxEnt), have been developed
specifically for this type of problem [95] and successfully exploited to obtain the smooth
quasi-elastic responses [27,96]. However, MaxEnt struggles to reconstruct the narrow peaks
corresponding to low-energy transitions. In particular, understanding the low-lying nuclear
transitions is necessary to properly describe the longitudinal electromagnetic responses of
12C in the low-energy transfer. The results of Ref. [27] have been obtained by subtracting
the contribution of these excited states by defining

Ē00(q, τ) = E00(q, τ)− ∑
f

∣∣∣⟨Ψ f |J0(q)|Ψ0⟩
∣∣∣2e−(E f −E0)τ , (31)

where the sum only includes the 2+, 0+2 , and 4+. final states. The experimental energies
and longitudinal transition form factors from Refs. [97,98] are used.

Furthermore, understanding this region is also crucial to detect supernova neutrinos
as well as to describe the low-energy tail contribution of the neutrino flux in accelerator
experiments. To this aim, in Ref. [31] an exploratory study has been carried out to develop
physics-informed artificial neural network architectures suitable for approximating the
inverse of the Laplace transform, utilizing simulated, albeit realistic, electromagnetic
response functions. The training has been performed using pairs of physically meaningful
responses and their Laplace transform. There are two data sets of response functions,
characterized by either one or two distinct peaks in the energy-transfer domain. The left
panel of Figure 3 displays a subset of the two-peaks training data. A detailed comparison of
the reconstruction results obtained for both the one- and two-peak data sets demonstrates
that the physics-informed artificial neural network outperforms MaxEnt in both the low-
energy transfer and the quasi-elastic regions — an illustrative example of this trend is
shown in the right panel of Figure 3. Work is currently underway to extend the study of
Ref. [31] to real GFMC data and to perform error propagation.
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FIG. 6: Comparison between the Phys-NN and MaxEnt reconstructions for the one-peak dataset. The top row
displays the response functions and the bottom row the corresponding Euclidean responses.

FIG. 7: Same as Fig. 6 for the two-peaks dataset.

possible to the original ones, we observe a much smaller

spread of 1�R2
R and SR values compared with MaxEnt.

This behavior, which is exhibited across the one-peak,
two-peak, and combined datasets, provides additional
support for Phys-NN’s reconstruction performance.

Because the historic MaxEnt algorithm is based on �2
E

minimization, the resulting distributions of �2
E for both

the one-peak dataset and the two-peak dataset are nar-
row and centered on one. The spread associated with
the Phys-NN results is larger. To investigate correlations

between �2
E and SR, in Fig. 5 we show scatter plots for

the one-peak and two-peak datasets. Some correlation is
visible in the Phys-NN results, displayed in the top two
panels, especially for the two-peak dataset. Conversely,

the MaxEnt scatter plots show no correlation between

�2
E and SR, since the �2

E values are relatively constant

around one, even for widely di↵erent SR. The correla-

tions between �2
E and 1�R2

R exhibit an almost identical
pattern and are thus not included here.

Direct comparison of Phys-NN and MaxEnt outputs
is presented in Fig. 6, where we display the Phys-NN
best (left panels), average (central panels), and worst
(right panels) reconstructed response functions, accord-
ing to the SR values of the Phys-NN results, and the
corresponding Euclidean responses from the one-peak
dataset. Here, the training is performed on the com-
bined dataset, to better test whether Phys-NN is able
to learn how to simultaneously reconstruct one-peak and

8

FIG. 6: Comparison between the Phys-NN and MaxEnt reconstructions for the one-peak dataset. The top row
displays the response functions and the bottom row the corresponding Euclidean responses.

FIG. 7: Same as Fig. 6 for the two-peaks dataset.

possible to the original ones, we observe a much smaller

spread of 1�R2
R and SR values compared with MaxEnt.

This behavior, which is exhibited across the one-peak,
two-peak, and combined datasets, provides additional
support for Phys-NN’s reconstruction performance.

Because the historic MaxEnt algorithm is based on �2
E

minimization, the resulting distributions of �2
E for both

the one-peak dataset and the two-peak dataset are nar-
row and centered on one. The spread associated with
the Phys-NN results is larger. To investigate correlations

between �2
E and SR, in Fig. 5 we show scatter plots for

the one-peak and two-peak datasets. Some correlation is
visible in the Phys-NN results, displayed in the top two
panels, especially for the two-peak dataset. Conversely,

the MaxEnt scatter plots show no correlation between

�2
E and SR, since the �2

E values are relatively constant

around one, even for widely di↵erent SR. The correla-

tions between �2
E and 1�R2

R exhibit an almost identical
pattern and are thus not included here.

Direct comparison of Phys-NN and MaxEnt outputs
is presented in Fig. 6, where we display the Phys-NN
best (left panels), average (central panels), and worst
(right panels) reconstructed response functions, accord-
ing to the SR values of the Phys-NN results, and the
corresponding Euclidean responses from the one-peak
dataset. Here, the training is performed on the com-
bined dataset, to better test whether Phys-NN is able
to learn how to simultaneously reconstruct one-peak and

Figure 3. Left Panel: Training data examples of response functions characterized by an elastic narrow
peak in addition to the quasi-elastic peak [31]. Right Panel: Comparison between the Phys-NN and
MaxEnt reconstructions for the one-peak data set, adapted from Ref. [31].

3.1.1. Relativistic Corrections

One of the limitations of the GFMC approach to describe nuclear reactions is the
nonrelativistic formulation of the many-body problem. Although the leading relativistic
corrections are typically included in the transition operators [32], the kinematics of the
reaction is treated as nonrelativistic, and an expansion of fully relativistic currents in p/m
is made. The explicit expression of the one-body current operators adopted in the GFMC
calculation are reported in Sec. 2.1. Thereby the application of these methods is limited to
moderate values of the momentum transfer.

In a number of works [33,34,99–103], a method was proposed to extend the applica-
bility of manifestly nonrelativistic hyperspherical-harmonics and Quantum Monte Carlo
(QMC) methods to higher momentum transfer values than typically possible. This method
reduces relativistic effects by performing the calculations in a reference frame that mini-
mizes nucleon momenta. The reference frame that achieves this goal for kinematics close
to the quasi-elastic peak is the active nucleon Breit frame (ANB). The ANB is defined
as the reference frame moving along the direction of the momentum transfer q where
PANB

i = −AqANB/2, with PANB
i the momentum of the initial nucleus in the ANB. Indeed,

if one assumes that the bulk of the momentum is transferred to a single nucleon, in the
ANB this nucleon has initial momentum k ≈ PANB

0 /A = −qANB/2. The corresponding
final-state nucleon has momentum k + qANB = qANB/2. Hence in the ANB the magnitude
of both the initial and final-state nucleon momentum is minimal. Additionally, the energy
transfer at the quasi-elastic peak is zero in the ANB frame, implying that qANB is also
minimal at the quasi-elastic peak compared to other frames.

Within a non-relativistic calculation, the nuclear response can be computed in different
reference frames by evaluating Eq.(4) at the momentum transfer in the reference frame
specified by q f r, and by taking into account the kinetic energy of initial- and final-state
systems in the energy balance. Thus the energy-conserving delta function δ(E0 − ω − E f )

is evaluated with ω = ω f r, and E0 − E f = −(P f r
f )2/(2MA) + (P f r

0 )2/(2MA), leading to an
energy-shift of the response.

The dependence on the reference frame used for calculations can be evaluated by
performing a Lorentz boost of the response back to the LAB frame. At momentum transfers
larger than 500 MeV one starts to see differences between calculations performed in different
reference frames [33,34,99], indicating that relativistic effects become important.

This frame dependence in the region of the quasi-elastic peak can be significantly
reduced by including the assumption of single nucleon knockout in the energy balance.
In order to achieve this, one can use the so-called two-fragment model, where a breakup
into two fragments, the nucleon and residual system is assumed. Following the arguments
of Refs. [33,99], the approach consists of evaluating the nuclear response at an energy
p2

rel/(2µ) with prel the magnitude of the relative momentum of the two fragments and µ
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the reduced mass. The energy of the final-state system can be written in a relativistic way
as

ω + E0 = E f =
√

m2 + (prel + (µ/M)P f )2

+
√

M2 + (prel − (µ/m)P f )2 ; (32)

where P f = P0 +q is center-of-mass momentum. Under the assumption that prel is directed
along q one can solve Eq. (32) for prel .

In Refs. [33,99] it is indeed found that the frame dependence for electroweak scattering
is strongly reduced when including the two-fragment model to determine the energy.
Moreover the resulting LAB frame responses are practically identical to the response
obtained in the ANB when the fragment model is not included [34].

Calculations of the nuclear response in the ANB can be used to extend the applicability
of GFMC responses to larger momentum transfer. In Ref. [33] an improved description of
(e, e′) data for scattering off 4He was obtained at large momentum transfer with GFMC
responses computed in the ANB. Recently this approach was applied to GFMC calculations
of flux-folded charged-current neutrino scattering off 12C [34].

4. Extended Factorization Scheme

At large values of the momentum transfer, (|q| ≳ 400 MeV), the Impulse Approxi-
mation (IA) can be applied in which the lepton-nucleus scattering is approximated as an
incoherent sum of scatterings with individual nucleons, and the struck nucleon system is
decoupled from the rest of the final state spectator system.

4.1. One Body Currents

We begin with retaining only one body current terms and factorize the final state
according to

|Ψ f ⟩ = |p′⟩ ⊗ |ΨA−1
f , pA−1⟩ , (33)

where |p′⟩ is the final state nucleon produced at the vertex, assumed to be in a plane wave
state and on-shell, and |ΨA−1

f , pA−1⟩ describes the residual system, carrying momentum
pA−1. Inserting this factorization ansatz as well as a single-nucleon completeness relation
gives the matrix element of the one body current operator as

⟨Ψ f |jµ|Ψ0⟩ → ∑
k
[⟨ΨA−1

f | ⊗ ⟨k|]|Ψ0⟩⟨p|∑
i

jµ
i |k⟩ , (34)

where p = q + k. This first piece of the matrix element explicitly does not depend on the
momentum transfer and so can be computed using techniques in nuclear many body theory.
The second piece can be straightforwardly computed once the currents jµi are specified
as the single nucleon states are just free Dirac spinors. It is important to point out that
factorization allows for an account of relativistic effect by adopting Dirac quadri-spinors for
the description of the struck particles in the initial and final states and the current operator
of Eq. (11). These effects become extremely important at large values of q and ω where a
non-relativistic calculation is no longer reliable. Substituting the last equation into Eq. (4),
and exploiting momentum conservation at the single nucleon vertex, allows us to rewrite
the incoherent contribution to the one body hadron tensor as

Rµν
1b (q, ω) =

∫ d3k
(2π)3 dEPh(k, E)

m2
N

e(k)e(k + q)
× ∑

i
⟨k|jµ†

i |k + q⟩⟨k + q|jνi |k⟩

× δ(ω̃ + e(k)− e(p)) ,

(35)

where e(k) =
√

m2
N + k2. The factors mN/e(k) and mN/e(k + q) are included to account

for the covariant normalization of the four spinors in the matrix elements of the relativistic
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current. The energy transfer has been replaced by ω̃ = ω − mN + E − e(k) to account
for scattering off of a bound nucleon. Finally, the calculation of the one-nucleon spectral
function Ph(k, E) provides the probability of removing a nucleon with momentum k and
leaving the residual nucleus with an excitation energy E; its derivation will be discussed in
Sec. 5.

4.2. Two Body Currents

To describe amplitudes including two nucleon currents, the factorization ansatz of
Eq. (33) can be generalized as

|Ψ f ⟩ → |pp′⟩a ⊗ |ΨA−2
f ⟩ . (36)

where |p p′⟩a = |p p′⟩ − |p′ p⟩ is the anti-symmetrized state of two-plane waves with
momentum p and p′. Following the work presented in Refs. [35,104,105], the pure two-
body current component of the response tensor can be written as

Rµν
2b (q, ω) =

V
2

∫
dE

d3k
(2π)3

d3k′

(2π)3
d3 p
(2π)3

m4
N

e(k)e(k′)e(p)e(p′)

× Ph(k, k′, E)∑
ij
⟨k k′|jµ

ij
†|p p′⟩a⟨p p′|jν

ij|k k′⟩δ(ω − E + 2mN − e(p)− e(p′)) . (37)

In the above equation, the normalization volume for the nuclear wave functions V = ρ/A
with ρ = 3π2k3

F/2 depends on the Fermi momentum of the nucleus, which for 12C is
taken to be kF = 225 MeV. In previous calculations of the above two-body hadron tensor
the two-nucleon spectral function Ph(k, k′, E) has been approximated as a product of two
one-nucleon spectral functions (see 5 for a more detailed discussion). This is correct in the
limit of infinite nuclear matter limit where the two-nucleon momentum distribution can be
split according to

n(k, k′) = n(k)n(k′) +O(1/A) . (38)

Going beyond this approximation for medium mass nuclei involves the full calculation of
the two-nucleon spectral function including all correlations and will be discussed further
in Sec. 5. The two body current operator in Eq. (37) is given by a sum of four distinct
contributions, namely the pion in flight, seagull, pion-pole, and ∆ excitations

jµ = (jµpif) + (jµ
sea) + (jµ

pole) + (jµ∆) (39)

and dubbed as Meson Exchange Currents (MEC). Detailed expressions for each term in
Eq. (39) can be found in Refs. [35,106]. Below, we only report the two-body current terms
involving a ∆-resonance in the intermediate state, as we find them to be the dominant
contribution. Because of the purely transverse nature of this current, the form of its vector
component is not subject to current-conservation constraints and its expression is largely
model dependent, as discussed in Sec. 2.1. The current operator can be written as [106,107]:

(jµ∆)CC =
3
2

fπNN f ∗

m2
π

{[(
− 2

3
τ
(2)
± +

(τ(1) × τ(2))±
3

)
FπNN(k′π)FπN∆(k′π)(jµ

a )(1)

−
(2

3
τ
(2)
± +

(τ(1) × τ(2))±
3

)
FπNN(k′π)FπN∆(k′π)(jµb )(1)

]
Π(k′π)(2) + (1 ↔ 2)

}
,

(40)
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where k′ and p′ are the initial and final momentum of the second nucleon, respectively,
while k′π = p′ − k′ is the momentum of the π exchanged in the two depicted diagrams of
Fig. 4, f ∗=2.14, and

Π(kπ) =
γ5/kπ

k2
π − m2

π
, (41)

FπN∆(kπ) =
Λ2

πN∆
Λ2

πN∆ − k2
π

, (42)

FπNN(kπ) =
Λ2

π − m2
π

Λ2
π − k2

π
, (43)

with ΛπN∆ = 1150 MeV and Λπ = 1300 MeV. In Eq. (40), jµ
a and jµ

b denote the N → ∆
transition vertices of diagram (a) and (b) of Fig. 4, respectively. The expression of jµ

a is given
by

jµ
a = (jµa )V + (jµa )A ,

(jµ
a )V = (k′π)

αGαβ(p∆)
[ CV

3
mN

(
gβµ

/q − qβγµ
)
+

CV
4

m2
N

(
gβµq · p∆ − qβ pµ

∆

)
+

CV
5

m2
N

(
gβµq · k − qβkµ + CV

6 gβµ
)]

γ5 ,

(jµa )A = (k′π)
αGαβ(p∆)

[ CA
3

mN

(
gβµ

/q − qβγµ
)
+

CA
4

m2
N

(
gβµq · p∆ − qβ pµ

∆

)
+ CA

5 gβµ +
CA

6
m2

N
qµqα

]
,

(44)

where k is the momentum of the initial nucleon which absorbs the incoming momentum q̃
and p∆ = q̃ + k, yielding p0

∆ = e(k) + ω̃. We introduced q̃ = (ω̃, q) to account for the fact
that the initial nucleons are off-shell. A similar definition can be written down for jµ

b ; more
details are reported in Ref. [35,108]. For CV

3 we adopted the model of Ref. [109], yielding

CV
3 =

2.13
(1 − q2/M2

V)
2

1
1 − q2/(4M2

V)
, (45)

with MV = 0.84 GeV. Following the discussion of Ref. [106], we neglected the terms CV
4

and CV
5 which are expected to be suppressed by O(k/mN), while CV

6 = 0 by conservation
of the vector current. However, it is worth mentioning that including these terms in the
current operator would not pose any conceptual difficulty. To be consistent, in the axial
part we only retain the leading contribution of Eq. (44), which is the term proportional to
CA

5 defined as [110]

CA
5 =

1.2
(1 − q2/MA∆)2 × 1

(1 − q2/(3MA∆))2 , (46)

with MA∆ = 1.05 GeV.
The Rarita-Schwinger propagator

Gαβ(p∆) =
Pαβ(p∆)

p2
∆ − M2

∆
, (47)
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is proportional to the spin 3/2 projection operator Pαβ(p∆). In order to account for the
possible decay of the ∆ into a physical πN, we replace M∆ → M∆ − iΓ(p∆)/2 [85,111]
where the last term is the energy dependent decay width given by

Γ(p∆) =
(4 fπN∆)

2

12πm2
π

|d|3√
s
(mN + Ed)R(r2) . (48)

In the above equation, (4 fπN∆)
2/(4π) = 0.38, s = p2

∆ is the invariant mass, d is the decay
three-momentum in the πN center of mass frame, such that

|d|2 =
1
4s

[s − (mN + mπ)
2][s − (mN − mπ)

2] , (49)

and Ed =
√

m2
N + d2 is the associated energy. The additional factor

R(r2) =

(
Λ2

R
Λ2

R − r2

)
, (50)

depending on the πN three-momentum r, with r2 = (Ed −
√

m2
π + d2)2 − 4d2 and Λ2

R =
0.95 m2

N , is introduced to improve the description of the experimental phase-shift δ33 [85].
The medium effects on the ∆ propagator are accounted for by modifying the decay width
as

Γ∆(p∆) → Γ∆(p∆)− 2Im[U∆(p∆, ρ = ρ0)], (51)

where U∆ is a density dependent potential obtained from a Bruckner-Hartree-Fock calcula-
tion using a coupled-channel NN ⊕ N∆ ⊕ πNN model [112–115] and we fixed the density
at the nuclear saturation value ρ0 =0.16 fm3. For a detailed analysis of medium effects in
the MEC contribution for electron-nucleus scattering see Ref. [108]. One key point to be

k k0

p0p

p�

q

k0⇡

p0p

k0⇡q
p�

k k0

(a) (b)

Figure 4. Feynman diagrams describing the first two contributions to the two-body currents associ-
ated with ∆-excitation processes. Solid, thick green, and dashed lines correspond to nucleons, deltas,
pions, respectively. The wavy line represents the vector boson.

made from the point of inclusive and even semi-exclusive observables is that the one and
two body currents contribute coherently, i.e. that their interference terms are non zero. The
interference between one and two body currents leading to two-nucleon emission has been
found to be small [104], but the same interference also contributes to single nucleon final
states [116,117]. The impact of the latter interference in the SF formalism remains to be
studied.
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5. Spectral Function

In the factorization scheme of Sec. 4, the spectral function is the central object contain-
ing all the dynamical information about the nucleus. The spectral function of a nucleon
with isospin τk = p, n and momentum k can be written as

Pτk (k, E) = ∑
n
|⟨Ψ0|[|k⟩ ⊗ |ΨA−1

n ⟩]|2δ(E + E0 − EA−1
n ) . (52)

where E is the excitation energy of the remnant, |k⟩ is the single-nucleon state, |Ψ0⟩ is
the ground state of the Hamiltonian in Eq. (5) with energy E0, while |ΨA−1

n ⟩ and EA−1
n

are the energy eigenstates and eigenvalues of the remnant nucleus with (A − 1) particles.
The momentum distribution of the initial nucleon is obtained by integrating the spectral
function over E

nτk (k) =
∫

dEPτk (k, E) , (53)

and the proton and neutron spectral functions are normalized so that

∫
dE

d3k
(2π)3 Pp(k, E) = Z ,∫

dE
d3k

(2π)3 Pn(k, E) = A − Z . (54)

We can rewrite the spectral function as a sum of a mean field (MF) and a correlation (corr)
term. The MF piece contains the shell structure with nucleons occupying orbitals obeying
the Pauli principle and contributes to the low k and E region. On the other hand, the
correlation term comes from pairs and triplets of interacting nucleons with low center of
mass momentum but large relative momentum above k f . A large body of experimental
evidence from (e, e′p) data has shown that the correlation piece leads to a depletion of the
single nucleon strength in the MF region by approximately 20% and is essentially nucleus
independent [3,21,118–121].

Many calculations of the spectral function for finite nuclei are available from a com-
bination of fits to (e, e′p) cross sections and theoretical calculations. The spectral function
of Benhar et al. obtains the mean field piece from fits to exclusive electron scattering data,
and computes the correlation piece from CBF theory for nuclear matter [122,123]. The local
density approximation (LDA) is used to extrapolate the correlation piece to finite nuclei by
convoluting the correlation component of the nuclear spectral function Pcorr

NM with density
profile of the nucleus ρA(R) [124], it reads

Pcorr
CBF(k, E) =

∫
d3R ρA(R)Pcorr

NM (k, E; ρA(R)) . (55)

In addition to the CBF, the spectral function of nuclear matter and finite nuclei has been
computed within the Self Consistent Green’s Function approach. The latter is a so-called
ab initio method method that starts from a nuclear Hamiltonian such as Eq.(5) with NNLO
chiral interactions[125,126]. The SCGF method involves an iterative calculation of the
Green’s function’s imaginary component, which is directly related to the one-body spectral
function. This technique can be extended to open shell nuclei and has a polynomial scaling
with the number of particles, making it feasible for systems with up to A = 100 [127].
Both CBF and SCGF spectral functions have been used to compute inclusive electron and
neutrino scattering cross sections, and have been shown to provide good agreement with
electron data when final state interactions are taken into account [128]. Even though the two
spectral functions are obtained from different nuclear interactions, these calculations show
that the two many-body approaches produce similar results for inclusive cross sections.
Exclusive predictions will most likely be necessary to distinguish the two models.

In this work we focus on a novel Quantum Monte Carlo (QMC) calculation of the one-
and two-body spectral function for 12C. We begin with the MF piece of the one body SF for
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the τk = p case. The MF contribution is obtained by considering only bound A − 1 states of
the remnant nucleus

PMF
p (k, E) = ∑

n
|⟨Ψ0|[|k⟩ ⊗ |ΨA−1

n ⟩]|2

× δ
(

E − BA
0 + BA−1

n − k2

2mA−1

)
, (56)

where BA
0 and BA−1

n are the binding energies of the initial and the bound A − 1 spectator
nucleus with mass mA−1. The momentum-space overlaps Ψ0|[|k⟩ ⊗ |ΨA−1

n ⟩ pertaining to
the p-shell contributions are computed by Fourier transforming the variational Monte
Carlo (VMC) radial overlaps for the transitions [129,130]:

12C(0+) →11 B(3/2−) + p
12C(0+) →11 B(1/2−) + p
12C(0+) →11 B(3/2−)∗ + p .

The calculation of the s-shell mean-field contribution involves non trivial difficulties for the
VMC method, as it would require to evaluate the spectroscopic overlaps for the transitions
to all the possible excited states of 11B with JP = (1/2+). To overcome this limitation,
we used the VMC overlap associated with the 4He(0+) → 3H(1/2+) + p transition and
applied minimal changes to the quenching factor which is needed to reproduce the integral
of the momentum distribution up to kF = 1.15 fm−1. More details about the adopted
procedure are discussed in Ref. [131].

The correlation contribution to the SF is given by

Pcorr
p (k, E) = ∑

n

∫ d3k′

(2π)3 |⟨Ψ0|[|k⟩ |k′⟩ |ΨA−2
n ⟩]|2

× δ(E + E0 − e(k′)− EA−2
n )

= Np ∑
τk′=p,n

∫ d3k′

(2π)3

[
np,τk′ (k, k′)

× δ
(

E − B0 − e(k′) + B̄A−2 −
(k + k′)2

2mA−2

)]
, (57)

to derive the last expression, we used a completeness relation and assumed that the
(A − 2)-nucleon binding energy is narrowly distributed around a central value B̄A−2.
The mass of the recoiling A − 2 system is denoted by mA−2 and Np is an appropriate
normalization factor. We started from the VMC two-nucleon momentum distribution
nτk ,τk′ (k, k′) of Ref. [132], but in order to isolate the contribution of short-range correlated
nucleons we performed cuts in the relative momentum of the pairs, requiring that the
overall normalization and shape of the one-nucleon momentum distributions are correctly
recovered. Below in Fig. 5 we show the 12C single nucleon momentum distribution derived
using the above procedure. Figure 5 shows the effect of the different prescriptions for
calculating the s-wave overlaps, with the above prescription resulting in an increased
normalization of the SF compared to the harmonic oscillator and Wood-Saxon potentials.
In Fig. 6 we directly compare the QMC and CBF 12C spectral functions by comparing their
one dimensional momentum and removal energy distributions. While the two SF have
very similar removal energy distributions, their momentum distributions show distinct
behavior at small and large nucleon momenta. Although these discrepancies only cause
minor variations in the inclusive cross section, it is anticipated that they will be more
significant in exclusive cross sections where the outgoing nucleon is measured. This will be
explored in future studies.
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Figure 5. 12C Single proton QMC spectral function (blue points). The solid orange line shows the
sum of the p-wave overlaps between the 12C and 11B+p QMC wave functions. The momentum
distributions obtained by adding to the p-wave overlaps the different prescription for the s-wave con-
tribution are displayed by the green dashed line (harmonic oscillator), dotted red line (Wood-Saxon)
and dash-dotted purple line (s-wave overlaps between 4He and the 3H+p QMC wave functions). The
high momentum contributions of long- and short-range correlations are not visible on this linear scale

For the contribution of multi-nucleon currents to the cross section, a two nucleon spec-
tral function is needed. As mentioned previously, in infinite nuclear matter a factorization
of the two nucleon momentum distribution into the product of two single nucleon momen-
tum distributions can be made. This factorization assumes no long-range correlations are
present and throws away correlations between the two struck particles. We go beyond this
approximation by explicitly by using the two-nucleon spectral momentum distribution to
build the two-nucleon spectral function. We include only the mean field contribution, e.g.
we neglect contributions where more than two nucleons are emitted which reads

PMF
τk ,τ′k

(k, k′, E) = nτk ,τk′ (k, k′)

× δ
(

E − B0 + B̄A−2 −
K2

2mA−2

)
, (58)

where K = k + k′ is the total momentum of the pair.

6. GFMC and SF Comparisons

Recently the authors of Ref. [37] computed flux folded differential cross sections for
MiniBooNE and T2K experiments [133,134] using the QMC spectral function outlined
above. Under control systematics for the calculation of the two-body contribution is
required for disentangling the effect of the axial form factor. The QMC spectral function
can be directly compared with GFMC predictions because it is derived from the same
underlying Hamiltonian, and currents. Comparisons with experiments have shown that
the predictions are consistent with the data and show tension between the results obtained
adopting the LQCD and phenomenological form factors displayed in Fig. 1 [75]. Results
for selected angular bins for T2K kinematics are shown in Fig. 7. The shown uncertainty
bands propagate the uncertainty on the axial nucleon form-factor derived using the z-
expansion where the different coefficients have been fitted to deuterium bubble chamber
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Figure 6. Comparison of nucleon momentum distribution (left) and removal energy distribution
(right) in 12C using QMC techniques (solid cyan) vs. CBF theory (dashed red).

data of Ref. [69]. In the case of the GFMC, the uncertainty coming from the inversion of
Euclidean responses is also included. Both approaches provide a similar description of the
data, albeit the contribution of two-body currents peaks is shifted in the two approaches.
This can be ascribed to different motivations. Firstly, the SF results include explicitly
the contribution of ∆-excitations in the two-nucleon knockout process, leading to a peak
at smaller lepton momenta, while the GFMC results use a static ∆ treatment. Secondly,
the GFMC results also account for the interference between the two-body and one-body
currents, which would lead to an enhancement also in the vicinity of the quasi-elastic peak.
Such an enhancement is clearly seen in Fig. 7, and in the electromagnetic and electroweak
responses [135,136]. While these observations support the one- and two-body current
interference, it is impossible to disentangle this contribution directly in the GFMC results.
The calculations in nuclear matter and relativistic mean field calculations of Refs. [116,117]
also find that the transverse enhancement observed in electron scattering is primarily due
to the constructive interference between one- and two-body currents, leading to single-
nucleon knockout final states.

Recently [34], relativistic corrections to GFMC calculations for flux-averaged neutrino
cross sections has been determined using the method described in Sec. 3.1.1. The influence
on T2K results shown in Fig. 7, is small and generally falls within the uncertainty bands
due to the axial form factor. For MINERνA data [38] taken with the medium-energy NuMI
beam, which peaks at around 6 GeV [137], relativistic corrections are crucial. The charged-
current flux-averaged cross section is presented in terms of muon momentum parallel and
perpendicular to the beam direction

p∥ = |pµ| cos θµ, (59)

and
p⊥ = |pµ| sin θµ =

√
p2

µ − p2
∥, (60)

respectively.
In this comparison, the routinely used dipole parameterization of the axial form

factor with ΛA = 1.03 GeV has been used. For the GFMC results, the error band includes
statistical errors combined with the error from the inversion of Euclidean responses. The SF
results do not include an error estimate. Relativistic corrections are included in the GFMC
results by performing the calculation in the active-nucleon Breit frame (ANB) as discussed
in Sec. 3.1.1. The incorporation of relativistic effects leads to a nearly halved cross section
for low-p∥, with the discrepancy gradually decreasing as p∥ increases. We observe that the
momentum transfer is constrained such that q > p⊥, and smaller p∥ bins generally permit
higher energy and consequently larger q contributions at small p⊥, thus explaining this
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Figure 7. Comparison with T2K data, adapted from Ref. [37]. Breakdown into one- and two-body
current contributions of the νµ flux-averaged differential cross sections for T2K: 1b and 2b denotes
one- and two-body current contributions while 12b denotes the total sum of these contributions. The
top panel shows QMC SF predictions in three bins of cos θµ with the one-body contributions in orange,
two-body contributions in red, and the total in blue. The lower panel shows GFMC predictions
with the same breakdown between one- and two-body current contributions, although the two-body
results include interference effects only in the GFMC case. The D2 Meyer et al. z expansion results for
FA are used in both cases [69].

behavior. The emergence of high-p⊥ (i.e., high-q) tails can be understood as the response’s
narrowing in terms of energy transfer compared to nonrelativistic outcomes, resulting in
strength redistribution within the available phase space at large-q.
Given the inclusion of large q values in the MINERνA calculations and the substantial
impact of relativistic corrections, a consistency check is warranted. In Ref. [34], the GFMC
results for MINERνA kinematics obtained including only the one-body current contribution
have been compared to other approaches that are either manifestly relativistic [138] or
include relativistic corrections [13,139–141] and found to agree with the theoretical curves.
Here, Fig. 8 compares the GFMC results to the SF calculations including both the one-
and two-body contributions in Fig. 8. The agreement between the one-body contribution
in the GFMC and SF approaches is evident when the former are computed in the ANB.
The total increase of the cross section due to two-body contributions is twice as large in
the SF calculations compared to the GFMC. This difference can be attributed to the same
motivations discussed for the T2K results.

Lastly, we note that the GFMC nonrelativistic calculations exhibit better conformity
with experimental data compared to those incorporating relativistic effects. However,
considering the energy distribution of the medium-energy NuMI beam in the MINERνA
experiment, it is expected that contributions beyond quasi-elastic scattering are significant,
even when events with detectable mesons are excluded from the experimental analysis.
Specifically, there are instances where pions produced at the interaction vertex are either
absorbed or remain undetected. Thus, theoretical calculations that neglect pion-production
mechanisms should yield results lower than experimental data. This aligns with the case
where relativistic effects are considered, while their omission leads to un-physically large
cross sections.

In this review, we also consider inclusive electron scattering data on 12C in Fig. 9 which
allows one to disentangle the different energy regions more clearly. The two kinematics
under consideration have been deliberately selected to include only responses with q < 700
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Figure 8. Comparison with MINERvA Medium Energy CCQE-like data on CH. Cross section per
nucleon is measured double differential against pT (momentum transverse to beam direction) in
bins of p|| (momentum parallel to beam direction). Top panels show QMC SF prediction broken
down into one-body (red) and one+two-body (blue) in different bins of p||. Bottom panels show
GFMC predictions again broken down into one- and one+two-body results, with response functions
computed in the LAB frame (dashed lines) and ANB frame (solid line). This thickness of the ANB
curves corresponds to the error from the inversion procedure.

MeV. These specific values align with the range for which the GFMC responses have already
been computed. Similarly to the neutrino case, in the GFMC calculations two-body currents
provide an enhancement in the quasi-elastic region. A comparison between LAB frame
results using purely relativistic kinematics (depicted by the blue dotted curve) and the ANB
curve (solid blue) reveals important insights. Relativistic corrections cause a shift of the
peak towards smaller ω values, a reduction in width, and an increase in the height of the
quasi-elastic peak. The one-body contribution computed in the ANB frame, displayed by
solid red line, agrees fairly well with the SF one-body contribution displayed in the upper
panels. Overall agreement with the data improves by including relativistic corrections to the
GFMC results. However, it is worth noting that the absence of π-production contributions
makes it difficult to draw definitive conclusions without considering that term.

The static treatment of the ∆ propagator restricts the significance of two-body cur-
rents in the "dip" region, located between the quasi-elastic and pion-production peaks.
Incorporating explicit dynamical degrees of freedom in GFMC calculations is more chal-
lenging, particularly in terms of evaluating the Euclidean responses while fixing the current
operator’s dependence at multiple values of ω.

The total QMC SF results encompass the incoherent sum of one-nucleon and two-
nucleon contributions. We include in the calculation the effect of final state interactions
by convoluting the computed cross sections with a folding function which both shifts and
redistributes strength from the peak to the tails [142]. Two-body currents give a minor
enhancement in the quasi-elastic peak region, but a strong enhancement in the "dip" region.
Additionally, we include CBF SF results for the one-body cross section for comparison,
which show similar trends to the QMC one-body cross section as expected. However, the
QMC SF result notably under-predicts the data in the region of the quasi-elastic peak at
Ebeam = 620, MeV. Investigating the interference between one and two-body currents and
its impact on these results will be a subject of future investigation.
As a general remark, one can choose to apply either the GFMC or the spectral function
approach depending on the kinematics and process under investigation. The selection
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depends on the specific requirements of the study. However, it is important to ensure that
the results obtained from both methods are consistent in the transition regions where both
approaches are expected to work.

Figure 9. Inclusive electron scattering comparisons at two different kinematics. Left: Ebeam =

620 MeV, θe′ = 60◦. Right: Ebeam = 730 MeV, θe′ = 37.1◦. Data is from Refs. [143–145]. Upper panels
are for SF with QMC (CBF) one body in solid (dashed) red, QMC two-body in orange, and QMC
one+two-body in blue. GFMC predictions are in the lower panel with dashed lines corresponding to
response functions computed in the LAB frame, and solid for response functions in the ANB frame.
Error bars on GFMC calculations include only errors from the inversion of the Euclidean response
function, but neglect uncertainty due to interpolation of the responses as discussed in the text.

7. Conclusion

Neutrino oscillation experiments cover a broad range of energies, from a few MeV to
tens of GeV, where different reaction mechanisms involving various degrees of freedom
(nucleons, pions, quarks, etc.) are active. Microscopic approaches such as Green’s Function
Monte Carlo (GFMC) and Coupled Cluster have been successful in describing lepton-
nucleus cross-sections in the MeV energy region [146–148]. However, to address the higher
energies relevant for DUNE and include explicit pion degrees of freedom, different methods
relying on a factorization of the hadronic final state, such as the Spectral Function (SF), the
Short Time Approximation [149,150], and the Relativistic Mean Field approach [12,138],
have proven successful in reproducing electron scattering data for different kinematics.

Providing a realistic estimate of the theoretical uncertainty of the prediction in the
neutrino-nucleus cross-section, which must be propagated in the extraction of neutrino
oscillation parameters, requires assessing the error associated with the input used in
the calculations and with the many-body method used. In this review, we highlight
that different choices can be made to define the nuclear forces adopted to describe the
wave function of the target and remnant nucleus, either using semi-phenomenological
approaches or chiral effective field theories. Following the choice of the nuclear forces,
different current operators can also be constructed. Another source of uncertainty is
connected to the form factors entering these currents. In Ref. [37] a study of the dependence
of the neutrino-nucleus cross section results from the axial form factor adopted in the one-
body current operator has been carried out using the GFMC and the SF approaches and a
tension between the results obtained the LQCD and phenomenological form factors has
been observed. The results of Ref. [37] indicate that, while significant progress has been
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made in the determination of the axial and vector form factors entering in the one-body
current operator, more work will be required in the future for the determination of the form
factors entering the two-body currents, particularly for those contributions with ∆-degrees
of freedom.

A two-fold strategy can be employed to comprehend the error associated with using a
factorization scheme in the spectral function approach and nonrelativistic kinematics in
GFMC. Firstly, relativistic corrections can be incorporated by working in a reference frame
that minimizes them in the GFMC responses [34,146]. Secondly, Quantum Monte Carlo
(QMC) techniques can be used to derive one- and two-nucleon spectral functions. Compar-
ing the results obtained from these two approaches can help estimate the error associated
with the many-body method. Numerous studies have investigated this comparison. In
this review, we present unpublished results that demonstrate electron-carbon cross-section
comparisons and neutrino-nucleus cross-sections for the MINERνA experiment. In the
comparison with MINERνA Medium Energy CCQE-like data, the effect of relativistic
corrections to the GFMC results are substantial, yielding a quenching of the results up to
50% of the initial strength. We observe a reasonable agreement between the GFMC and
QMC SF results. For the electron scattering cross section, we also analyzed the dependence
of the results from the many-body method adopted to derive the spectral function, in
particular, we compared the QMC and Correlated Basis Function results and found a very
good agreement between them. Looking at fixed energy beam allows one to better separate
the contribution of the different reaction mechanisms. In this case, the difference between
the two-body contributions obtained within the two approaches is apparent and it has to
be attributed to the different treatment of the ∆-propagator in the GFMC and the lack of
one- and two-body current interference in the SF approach. The inclusion of relativistic
corrections in the GFMC results leads to better agreement with data. As there is a large
amount of electron scattering data in the region of 300 < q < 700 MeV, future studies that
directly compare the GFMC results with differential electron scattering data for carbon can
be performed. A robust method for estimation of the uncertainty able to account for all
the different aspect of the calculation is required to match the unprecedented accuracy of
neutrino experiments, some preliminary steps toward this direction have been discussed in
this review using the GFMC and SF methods.
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