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We present an algorithm to compute correlation functions for systems with the quantum numbers
of many identical mesons from lattice quantum chromodynamics (QCD). The algorithm is numeri-
cally stable and allows for the computation of n-pion correlation functions for n ∈ {1, . . . , N} using
a single N ×N matrix decomposition, improving on previous algorithms. We apply the algorithm
to calculations of correlation functions with up to 6144 charged pions using two ensembles of gauge
field configurations generated with quark masses corresponding to a pion mass mπ = 170 MeV and
spacetime volumes of (4.43 × 8.8) fm4 and (5.83 × 11.6) fm4. We also discuss statistical techniques
for the analysis of such systems, in which the correlation functions vary over many orders of magni-
tude. In particular, we observe that the many-pion correlation functions are well approximated by
log-normal distributions, allowing the extraction of the energies of these systems. Using these ener-
gies, the large-isospin-density, zero-baryon-density region of the QCD phase diagram is explored. A
peak is observed in the energy density at an isospin chemical potential µI ∼ 1.5mπ, signalling the
transition into a Bose-Einstein condensed phase. The isentropic speed of sound, cs, in the medium
is seen to exceed the ideal-gas (conformal) limit (c2s ≤ 1/3) over a wide range of chemical potential
before falling towards the asymptotic expectation at µI ∼ 15mπ. These, and other thermodynamic
observables, indicate that the isospin chemical potential must be large for the system to be well
described by an ideal gas or perturbative QCD.

I. INTRODUCTION

Describing strongly-interacting dense matter is a cen-
tral challenge for nuclear physics. Whilst the strong
interactions are governed by quantum chromodynamics
(QCD), the many-body nature of these interactions in
dense environments such as neutron stars, supernovae,
and binary mergers makes the task of predicting the be-
havior of these systems exceedingly difficult. Numerical
studies at non-zero baryon density or chemical poten-
tial using lattice QCD (LQCD) are frustrated by a sign
problem that prohibits efficient stochastic evaluations of
the integrals that define physical observables. Conse-
quently, most studies of the neutron star equation of state
(EoS), for example, use effective models or interpolate
between limited phenomenological inputs at small values
of the chemical potential, and limits from perturbative
QCD (pQCD) at asymptotically large chemical poten-
tial. In contrast, systems with non-zero isospin chemical
potential (in which up and down quarks have opposite
values of their chemical potentials), denoted by µI , are
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amenable to LQCD calculations [1–13]. Pure isospin-
chemical-potential systems are not directly relevant to
neutron stars and other known astrophysical objects as
they have non-zero values of both baryon- and isospin-
chemical potential.1 Nonetheless, these systems can pro-
vide an interesting testing ground for effective models
and asymptotic pQCD expectations and hence it is in-
teresting to seek first-principles QCD predictions.
LQCD studies at non-zero isospin chemical poten-

tial and zero baryon chemical potential have been per-
formed by adding an explicit chemical potential term
µI(ūγ0u− d̄γ0d) (where u and d are quark fields, γ0 is a
Dirac matrix and µI quantifies the size of the chemical-
potential) to the QCD action [1–10]. Additionally, a
canonical approach to isospin chemical potential is en-
abled by studies of systems of fixed isospin charge (fixed
numbers of charged pions) in a finite box [11–13]; these
systems are characterized by large isospin density, and
hence probe the large isospin-chemical-potential, zero
baryon-chemical-potential, region of the QCD phase di-
agram. Two transitions are expected at zero temper-

1 The possibility of pion stars has also been conjectured [14].
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ature as µI increases: a first-order phase transition at
|µI | = mπ from a weakly-interacting pion gas to a Bose-
Einstein condensate (BEC) phase, and a crossover at
larger µI from the BEC phase to a deconfined super-
conducting Bardeen-Cooper-Schrieffer (BCS) phase [15];
see Ref. [16] for a review. Previous work on QCD at non-
zero isospin chemical potential using both approaches has
found evidence for the BEC transition, but did not defini-
tively probe the BCS phase or the onset of pQCD.

In this work, we study systems with the quantum num-
bers of n identical charged pions with zero total three-
momentum. Such systems have been investigated in pre-
vious work [11–13, 17–20] for n ≤ 72 [13]. In order to
extend those calculations, we develop an algorithm that
allows efficient computation of correlation functions for
larger n and numerically investigate n ≤ 6144 systems.
The algorithm is built upon properties of the symmetric
group and importantly can be implemented without the
extreme numerical-precision requirements of existing ap-
proaches. While the algorithm is specific to the highly
symmetric systems that are considered, symmetry-group-
based generalizations may be appropriate for efficiently
performing the Wick contractions for other multi-hadron
systems such as nuclei.

The LQCD two-point correlation functions used to ac-
cess these n-pion systems rapidly decay as the separation
of the points increases. This presents numerical chal-
lenges in the calculation and analysis of the correlation
functions investigated in this work. The correlation func-
tions not only vary by many orders of magnitude across
the lattice extent, but even at the same site they fluctuate
by orders of magnitude between configurations. Conse-
quently, any attainable statistical sample of a many-pion
correlation function will be far from the realm of valid-
ity of the Central Limit Theorem (CLT), and the statis-
tical estimators used in most LQCD calculations, such
as the sample mean and standard deviation, will not be
meaningful. The distributions of many-particle correla-
tion functions that are positive-definite on all field con-
figurations in a range of contexts have been found to
be approximately log-normal [21–24] and that behavior
is also found for the many-pion systems studied here.
Therefore, to extract physical quantities from the LQCD
calculations, we perform an analysis that is based on
the empirically-motivated assumption of log-normality.
LQCD investigations of nuclei and other many-body sys-
tems encounter similar, but not identical, statistical chal-
lenges [25–31] and some of the techniques explored here
may have more general applicability.

Given these techniques and improvements, this work
provides new insights into properties of matter at sig-
nificantly larger isospin densities than previously stud-
ied. In particular, we find that the isentropic speed of
sound, cs, exceeds the conformal limit of c2s ≤ 1/3 over a
wide range of isospin chemical potential. The results also
demonstrate the regime of validity of pQCD in describ-
ing isospin-chemical-potential matter is bounded below
by µI ∼ 15mπ.

The structure of this paper is as follows. In Sec. II, a
new algorithm for computing many-pion correlation func-
tions that forms the basis of this work is introduced.
In Sec. III, the details of the LQCD calculations that
are performed and the basic properties of the resulting
correlation functions are presented. Section IV presents
an analysis of the statistical properties of these correla-
tion functions and introduces the tools with which their
distributions are analysed under the assumption of log-
normality to extract physical information about these
systems. The physical quantities that are determined
from these correlation functions relate to large isospin
chemical potential and are discussed in Sec. V. A brief
summary is given in Sec. VI. Additional details of nu-
merical tests of the algorithms and data presentations
used herein, and investigations of the inclusion of higher
cumulants in the analysis, are presented in the Appen-
dices.

II. MANY-PION CORRELATION FUNCTIONS

In order to extract physics from LQCD calculations,
suitable correlation functions must be constructed and
evaluated. In the context of this work, the correlation
functions of interest are those that access states with a
large z-component of isospin, Iz, with vanishing total
three-momentum. Specifically, we consider correlation
functions of the form

Cn(t) =

〈(∑
x

π−(x, 0)

)n n∏
i=1

π+(yi, t)

〉
, (1)

where n = Iz labels the minimum number of charged
pions required to form the state, and yi are (possibly
distinct) spatial lattice sites (the dependence of Cn(t)
on these coordinates is suppressed since it does not af-
fect the spectrum of states that propagate over a Eu-
clidean time-separation, t). Here, π−(x, t) = π+(x, t)† =
−d(x, t)γ5u(x, t), so the sink interpolating field at t = 0
projects the system to zero total three-momentum by
forcing each du pair to zero three-momentum.
For large n, the correlation functions in Eq. (1) in-

volve many quark fields, and, after integration over the
fermion degrees of freedom, produce a factorially large
set of Wick contractions that must be evaluated and av-
eraged over an ensemble of gluon field configurations. For
example, for the largest isospin-charge that we consider
in this work, the required number of Wick contractions
is (6144!)2 ∼ O(1040000). A naive approach to the evalu-
ation of Eq. (1) is therefore impractical for all but small
n, and more efficient methods are required. As Eq. (1)
provides a prototypical (and particularly simple) exam-
ple of a many-body system, significant effort has been
devoted to developing such algorithms. In Refs. [11, 17],
a method based on the expansion of determinants was in-
troduced and used to study n ≤ 12 pion systems. A more
powerful recursive algorithm was introduced in Ref. [18]
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and further developed in Ref. [13], allowing n ≤ 72 pion
systems to be studied. While these methods were signifi-
cant steps forward in the study of many-hadron systems
in LQCD, they suffer from numerical instabilities when n
becomes large and their scaling with n makes it imprac-
tical to study still larger values of n.
Here, we introduce a new algorithm based on the rep-

resentation theory of the symmetric group and formalize
a relation introduced in Ref. [20]. In this section, we
show the algorithm is numerically stable and more effi-
cient than previous algorithms and consider some gener-
alizations of the approach. The improved efficiency and
stability make it possible to increase the isospin charge
that is studied by multiple orders of magnitude over pre-
vious work.

A. Symmetric polynomial algorithm

As in Refs. [11, 17], a zero-momentum pion block can
be defined as

Π(i,α)(j,β)(x,y; t)

=
∑
k,γ,z

S(i,α)(k,γ)(x, 0; z, t)S
†
(k,γ)(j,β)(y, 0; z, t) , (2)

where S(x; y) is a quark propagator from x = (x, tx) to
y = (y, ty). Here, {α, β, γ} and {i, j, k} indicate spin and
color indices respectively, while x,y, and z ∈ Λ3 indicate
spatial positions selected from a set of lattice sites Λ3

which can be the entire spatial lattice geometry or some
subset.2 This object is a matrix in its Ns spin, Nc color,
and NΛ = dim(Λ3) spatial indices

By combining spin, color, and spatial index labels, the
pion block can be recast as a time-dependent N × N
matrix, Π(t), where N = NcNsNΛ. Since the manipu-
lations below will be independent of the temporal coor-
dinate, the time-dependence of Π(t) will be suppressed.
Let x⃗ = {x1, . . . , xN} denote the set of eigenvalues of Π.
As we will show in Sec. II E, the correlation function in
Eq. (1) can be written for 1 ≤ n ≤ N as

Cn(t) = n!En(x⃗), (3)

where En(x⃗) is a homogeneous, degree-n, symmetric
polynomial over the eigenvalues:

En(x⃗) ≡ En({x1, . . . , xN}) ≡
N∑

i1<···<in

xi1 . . . xin , (4)

where the indices ik range from 1 to N . For example,
E2({x1, x2, x3}) = x1x2 + x1x3 + x2x3 and the spe-

cial cases E1({x1, . . . , xN}) =
∑N

i=1 xi = Tr(Π) and

2 Note that the summed spatial location z in Eq. (2) can in prin-
ciple range over a different set of spatial sites than the external
sites x and y.

EN ({x1, . . . , xN}) = ∏N
i=1 xi = Det(Π) reduce to known

results.
Although Eq. (3) is conceptually simple (and was writ-

ten down in Ref. [20]), directly computing the
(
N
n

)
terms

in the sum in Eq. (4) is computationally intractable for
even moderate N and n. However, En(x1, . . . xN ) can be
computed using the following recursive relation3:

Ek({x1, . . . , xM}) = xMEk−1({x1, . . . xM−1})
+ Ek({x1, . . . , xM−1}),

(5)

where Ek(x1, . . . xM ) = 0 if M < k. By either recur-
sively computing En and caching the result, or building a
lookup table, the computational effort needed to compute
the correlation function from the eigenvalues is reduced
to O(N2). In practice, this computation is effectively of
negligible cost since obtaining the eigendecomposition of
Π is an O(N3) operation that dominates the cost of ob-
taining the correlation function from a given set of quark
propagators.

B. Generalizations

Although the method as described is particular to sys-
tems of positively (or negatively) charged pions, it can
be readily generalized to any type of meson correlation
function whose contractions do not admit disconnected
diagrams by changing the construction of the pion block,
Eq. (2). For instance, in order to compute a maximal
isospin many-kaon correlation function, the pion block Π
would be replaced by the kaon block defined by

κ(i,α)(j,β)(x,y, t)

=
∑
k,γ,z

Su;(i,α)(k,γ)(x, 0; z, t)S
†
s;(k,γ)(j,β)(y, 0; z, t), (6)

where Su refers to the light quark propagator and Ss

refers to the strange quark propagator. Additionally,
the methods in Ref. [12] can be used to evaluate multi-
species correlation functions, such as mixed systems of
pions and kaons or systems of pions wherein some pions
have nonzero momentum. Similarly, the method can also
be applied to baryons in Nc = 2 QCD [33, 34].

C. Calculation of eigenvalues

Since the pion block Π(t) = SS† in Eq. (2) is explic-
itly Hermitian and positive-definite, its eigenvalues are
equal to its singular values and can be computed using a

3 This recursive relation can be seen directly from Eq. (4) or as a
specific case of the more general methods in Ref. [32] for com-
puting Schur polynomials.
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singular-value decomposition (SVD). Moreover, its eigen-
values are by definition the squares of the singular values
of the (spin-colour-spatial) matrix S, so the eigenvalues
of Π may be computed via a singular value decomposition
of S directly without explicitly forming Π. Determining
the eigenvalues of Π this way is both more efficient and
more numerically stable; the condition number of S is
approximately the square root of that of Π, and hence
this is the approach that we use throughout this work.

Notably, computing the eigenvalues of Π in this man-
ner is quite specific to the case of zero-momentum pions –
in generalizations to blocks of non-zero momentum or for
blocks built from non-degenerate quark-anti-quark pairs,
the corresponding block object, e.g., κ in Eq. (6), will not
have a positive definite (or even real) spectrum. In these
cases, an alternative eigendecomposition method such as
the QR algorithm must be used to determine the input
to the symmetric-polynomial algorithm. Care must be
taken in such scenarios to ensure numerical accuracy as
non-Hermitian eigendecompositions are less numerically
stable than SVD; it is likely that for non-positive-definite
blocks, higher precision arithmetic would be needed in
all stages beginning with the formation of the block and
possibly even in the linear solve needed to obtain the
propagators.

D. Comparison to existing methods

The LQCD correlation functions that result from ap-
plying the symmetric polynomial algorithm are identical
to those calculated using other methods [11, 12, 17, 18].
The only differences are in decreased computational com-
plexity and improved numeric stability. Improvements
in computational complexity result from the ability to
compute all N possible pion correlation functions from
an N × N pion block with only a single O(N3) matrix
operation to find the eigenvalues; other methods require
separate O(N3) operations for each number of pions, re-
sulting in an overall O(N4) cost for computing the full
set of Cn for n ∈ {1, . . . , N}.4
The numerical stability of our method is also signifi-

cantly improved – other methods require high-precision
arithmetic in order to counteract catastrophic cancella-
tions between terms. Provided that the eigenvalues x⃗
are positive in Eq. (3), there is no possibility for cancel-
lation, and hence high-precision arithmetic is not needed
at any point in the calculation. Indeed, we have checked
our method against other methods for small systems and
found that our double-precision results match those of
other methods that required the use of higher-precision
floating-point numbers.

4 Here, we assume that each matrix operation (e.g., matrix multi-
plication, SVD) takes O(N3) floating-point operations, which is
the case for the implementations used in this work.

E. Proof

In order to prove Eq. (3), we start from the result of
Ref. [11] which expresses the correlation function as5

Cn =
1

(N − n)!
ϵα1...αnξ1...ξN−nϵβ1...βnξ1...ξN−n

Πβ1
α1

. . .Πβn
αn

,

(7)
where Greek indices αi, βi, ξi indicate combined spin-
color-spatial indices. This can be simplified using the
identity

ϵα1...αnξ1...ξmϵβ1...βnξ1...ξm = m!
∑
σ∈Sn

ϵ(σ)δ
ασ(1)

β1
. . . δ

ασ(n)

βn
,

(8)
where the summation runs over the permutations σ of the
symmetric group Sn and ϵ(σ) is the sign of the particular
permutation. This gives

Cn =
∑
σ∈Sn

ϵ(σ)Π
ασ(1)
α1 . . .Π

ασ(n)
αn . (9)

Each summand in Eq. (9) can be written as a product
of traces of powers of the pion block Π, with the compo-
sition of these traces determined by the conjugacy class
of σ. More concretely, if λ(σ) = (λ1, . . . , λq) denotes
the partition associated to the conjugacy class of σ (so
σ has cycles of length λ1, . . . , λq), then Eq. (9) may be
rewritten as

Cn =
∑
σ∈Sn

ϵ(σ)

q∏
i=1

Tr(Πλi). (10)

The traces can each be written in terms of sums of powers
of the elements of the set of eigenvalues x⃗ = {x1, . . . xN}
of Π so

Cn =
∑
σ∈Sn

ϵ(σ)Pλ(σ)(x⃗), (11)

where Pλ(x⃗) is a power-sum symmetric polynomial

Pλ(x⃗) =

q∏
i=1

(xλi
1 + · · ·+ xλi

N ). (12)

We can simplify Eq. (11) by changing from the ba-
sis of symmetric polynomials Pλ(x⃗) into the basis of
Schur polynomials, Sλ(x⃗) (not to be confused with the
quark propagator), using the Frobenius Character For-
mula [35][36, p. 49]

Pλ(x⃗) =
∑
λ′

χλ′(Cλ)Sλ′(x⃗), (13)

5 The expression here is generalized from the N = 12 case shown
in Ref. [11] and differs in normalization by a factor of 1/(N−n)!.
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FIG. 1. Correlation functions for n ∈ {1000, 2000, 4000,
6144} on a single configuration from the A ensemble.

where χλ′(Cλ) is the character for the irreducible repre-
sentation of the symmetric group associated to the parti-
tion λ′ applied to the conjugacy class Cλ of the partition
λ.

Three additional facts from representation theory are
needed to complete the proof; firstly that S(1,...,1)(x⃗) =
En(x⃗); secondly, that the character of the n-partition
(1, . . . , 1) is the sign function, χ(1,...,1) = ϵ; and finally,
that the orthogonality relation for characters

1

n!

∑
σ∈Sn

χλ(σ)χλ′(σ) = δλ,λ′ (14)

holds (here the bar indicates complex conjugation) [35,
36].

Using these facts, Eq. (3) follows through a straight-
forward computation:

Cn =
∑
σ∈Sn

ϵ(σ)Pλ(σ)(x⃗)

=
∑
σ∈Sn

∑
λ′

ϵ(σ)χλ′(σ)Sλ′(x⃗)

=
∑
λ′

Sλ′(x⃗)
∑
σ∈Sn

χ(1,...,1)(σ)χλ′(σ)

= n!S(1,...,1)(x⃗)

= n!En(x⃗) . (15)

III. NUMERICAL RESULTS

A. Lattice Details

All of the calculations in this work were performed
on two ensembles, referred to as ensemble A and en-
semble B, of gauge field configurations generated with

Wilson-clover fermions and a tree-level tadpole-improved
Symanzik gauge action, the parameters of which are sum-
marized in Table I. On both ensembles, measurements
were separated by 10 hybrid Monte-Carlo trajectories;
further details regarding these configurations are given
in Ref. [37]. Using these ensembles, we computed sets of
smeared-source, smeared-sink propagators from a regular
sparse grid on a single timeslice, Λ3 = {x | xi mod s =
0 ∀i} with s = 6 on ensemble A and s = 8 on ensemble
B, both corresponding to NΛ = 512. The source and sink
smearings were gauge-covariant Gaussian smearing with
35 steps with width parameter 3.0 [38]. These propaga-
tors are sparsened [39] in that the output was only stored
on a sparse sub-lattice of the original lattice geometry. In
this case, the same sparsening factors were used as in the
choice of source locations. Due to the sparsening, the di-
mensionality of the generalized spin-color-spatial matrix
is N = 4×3×512 = 6144, enabling correlation functions
up to n = 6144 to be computed.
Except where otherwise stated, all of the calculations

described below were performed at double precision. Cal-
culations in double-double and triple-double precision
show agreement with these to at least 1 part in 105, as
discussed in Appendix A.

B. Single-configuration correlation functions

In order to compute the pion correlation functions on
each configuration, we first assembled the propagators
into the spin-color-spatial matrix S, and then performed
a SVD of S as described in Sec. II C. We then combined
the eigenvalues to form the pion correlation functions
Cn for n ∈ {1, . . . , 6144} using the method described
in Sec. II A. Examples of the resulting correlation func-
tions on a single configuration from the A ensemble are
shown in Fig. 1. Notable here is the large variation in the
scale of the correlation functions. For example, C6144(t)
shown in Fig. 1 ranges over more than 105 orders of mag-
nitude. Even on an individual timeslice, the correlation
functions corresponding to a given number of pions evalu-
ated on different configurations can vary by many orders
of magnitude. This can be seen in Fig. 2, where we show
histograms of the logarithms of correlation functions for
a few adjacent timeslices for all 201 configurations of the
A ensemble for n ∈ {500, 4500}. Although the intra-
timeslice variation seen in Fig. 2 is small compared the
inter-timeslice variation, it is still large enough to require
special techniques to be used in analysing the correlation
functions, as we will discuss in Sec. IV. Similar distribu-
tions are seen on the B ensemble.

C. Distribution of eigenvalues

While the eigenvalues of the pion block, x⃗, are not
themselves physical, they are still of interest since they
directly determine the correlation functions via Eq. (3).
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Label Nconf β CSW amud ams L3 × T a (fm) Mπ (MeV) MπL
A 201 6.3 1.20537 -0.2416 -0.2050 483 × 96 0.091(1) 166(2) 3.7
B 322 6.3 1.20537 -0.2416 -0.2050 643 × 128 0.091(1) 172(6) 5.08

TABLE I. Parameters of the gauge-field configurations used in this work. The first column lists the label used to refer to the
ensemble, Nconf is the number of configurations, and β and CSW refer to the gauge coupling and clover coefficient, respectively.
The lattice spacing a is determined in Ref. [37], while the lattice geometries are defined by the the spatial and temporal extents,
L and T , respectively. The bare light (mud) and strange (ms) quark masses are given in lattice units and Mπ is the pion mass
determined in Ref. [37].
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FIG. 2. Histograms of the logarithms of correlation functions
for n ∈ {500, 4500} at t/a ∈ {15, 16, 17, 18} computed on the
A ensemble.
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FIG. 3. Logarithms of eigenvalues xn for n ∈
{1000, 2000, 4000, 6000} as a function of timeslice on a single
configuration from the A ensemble. Eigenvalues were com-
puted using double-double precision.

Values of xn for various choices of n on a single configu-
ration of the A ensemble over the full temporal extent of
the lattice geometry are shown in Fig. 3 (the B ensemble
shows similar behavior). Interestingly, the behaviour of

each of the eigenvalues appears quite similar to that of an
(ensemble-averaged) correlation function, exhibiting an
exponential decay for moderate t. This behaviour is not
physical as the eigenvalues are single-configuration quan-
tities, however the exponential decay of the eigenvalues
does have physical implications. In particular, suppose
that the exponential behaviour in Fig. 3 were exact, so
the kth eigenvalue xk has the time dependence

xk(t) = Ak

[
e−αkt + e−αk(T−t)

]
, (16)

where Ak and αk are constants. Then, combining these
eigenvalues into a function C̃n(t) via Eq. (3), and taking
the limit T → ∞ for simplicity, yields

C̃n(t) = n!
∑

k1<···<kn

Ak1 . . . Akne
−(αk1

+···+αkn )t. (17)

In this representation, C̃n(t) naturally behaves as a sum
of exponentials, from which we can read off the energies

Ẽk1,...,kn
= αk1

+ · · ·+ αkn
; {ki} distinct. (18)

This formula also describes the possible energies of an n-
particle system of non-interacting fermions with single-
particle energies {αk}. In an imprecise way, the rate of
exponential decay for the eigenvalue xk(t) can be inter-
preted as corresponding to the kth-lowest single-particle
energy for a pion in a volume (aL)3. Note that this corre-
spondence is not exact – the quantity xk(t) is computed
only on a single configuration, and the validity of Eq. (16)
for describing xk(t) is empirical with no theoretical jus-
tification.

IV. ANALYZING MANY-PION SYSTEMS

A. Central limit theorem-based methods

Typical methods for analysing correlation functions in

LQCD begin by collecting Nconf samples, C
[Ui]
n (t), on

independent6 gauge-field configurations, U1, . . . , UNconf
,

6 Throughout this work, we assume that the samples are suffi-
ciently decorrelated to be effectively independent. Autocorrela-
tions are seen to be small for the pion mass.
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and computing the sample mean

C̄n(t) =
1

Nconf

Nconf∑
i=1

C [Ui]
n (t), (19)

along with the sample variance

∆C2
n(t) =

1

Nconf − 1

Nconf∑
i=1

[
C [Ui]

n (t)− C̄n(t)
]2

. (20)

As Nconf → ∞, the CLT applies and we may treat C̄n

as a Gaussian random variable with standard deviation√
∆C2

n/Nconf. Performing correlated fits then allows the
extraction of energies and other physical parameters of
interest. In principle, these methods could be applied to
correlation functions of the many-pion systems consid-
ered here. However, in practice the large range of scales
involved in a many-pion correlation function makes anal-
yses based on the CLT effectively impossible. In particu-
lar, as discussed above, the correlation functions on a par-
ticular timeslice can vary by many orders of magnitude,
typically resulting in a single gauge configuration domi-
nating the sample mean, Eq. (19), far from the regime of
applicability of the CLT.7

This argument can be made more precise. Suppose

that that correlation functions C
[U ]
n (t) were log-normally

distributed across gauge configurations, i.e., for a given

choice of n and t, logC
[U ]
n (t) ∼ N (µn, σ

2
n) is a normal

distribution for some µn, σn (empirically, we observe that
the sampled correlation functions are consistent with this
assumption, as will be discussed below). Then using
Eq. (19), the expectation values ⟨C̄n(t)⟩ and ⟨C̄2

n(t)⟩ over
the set of all ensembles can be determined to be

⟨C̄n(t)⟩ = exp

(
µn +

σ2
n

2

)
, (21)

⟨C̄2
n(t)⟩ =

1

Nconf
⟨C̄n(t)⟩2 eσ

2
n . (22)

In order to satisfy the requirement for the CLT, it is nec-

essary at a minimum that ⟨C̄2
n⟩ − ⟨C̄n⟩2 ≲ ⟨C̄n⟩2, which

implies that Nconf ≳ N
(min)
conf (n) = eσ

2
n/2. In Fig. 4, we

show an estimate of N
(min)
conf (n) using

µn =
1

Nconf

Nconf∑
i=1

logC [Ui]
n (t) (23)

and

σ2
n =

1

Nconf − 1

Nconf∑
i=1

(
logC [Ui]

n (t)− µn

)2
. (24)

7 In particular, this excludes the standard method of fitting the
correlation function to a linear combination of exponential func-
tions, as that method relies on the validity of the CLT.
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FIG. 4. Estimate of the logarithm of the number of samples
needed for the CLT to apply to correlation function Cn(t) as
a function of n. The uncertainty band indicates the standard
deviation over bootstrap samples (see Sec. IVC).

As can be seen, N
(min)
conf (n) grows rapidly and already for

n ∼ 100 is an unrealistically large number of configura-
tions is needed, effectively ruling out the use of standard
statistical methods for n ≳ 100 pion systems. Note that

the value of N
(min)
conf (n) will depend on the choice of quark

masses and physical volume.

B. Log normality

Since CLT-based methods such as the sample mean
are not applicable for many-pion correlation functions at
the statistical precision achieved in this work, we need
to use a different method of analysis. A path forward is
provided by the data which, from a cursory inspection of
the distributions in Fig. 2, appears to be approximately
log-normal, as mentioned above. This observation can
be also be seen qualitatively in Fig. 5, which shows the

observed quantiles of logC
[Ui]
n (t) on the A ensemble for

particular choices of n and t against the expected quan-
tiles for a normal distribution, showing the approximate
log-normality of the samples. Quantile-quantile plots for
other choices of n and t show similar behavior on both
ensembles. To verify this observation of log-normality,
we employ the Shapiro-Wilk test [40], which is designed
to assess whether a given set of samples, in this case the
logarithms of the correlation functions, have a distribu-
tion consistent with a normal distribution. The resulting
p-values for the tests for different n and t are shown in
Fig. 6 for the A ensemble (similar behavior is seen for
the B ensemble). With the exception of the (n < 5)-pion
systems, none of the correlation function distributions in
this study have a p-value less than 0.1, indicating that
we do not observe violations of log-normality on these
samples. Since we cannot detect statistical violations of
log-normality, we conclude that any bias induced by the
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FIG. 5. Quantile-quantile plot for the distribution of
logC6000(t = 18a) on the A ensemble. Each point represents
a different configuration Ui, with the vertical position indi-
cating the z-score (number of standard deviations from the

mean) of logC
[Ui]
6000(t = 18a), while the horizontal position of

the point indicates the theoretical z-score for the correspond-
ing quantile of a normal distribution. The red line indicates
the theoretical expectation for a normal distribution.

assumption of log-normality is likely subdominant to the
statistical uncertainties of our estimates. This is not en-
tirely unexpected – log normal random variables often
appear when taking products of many non-negative ran-
dom variables (particular projections of propagators in
this case), and it has been previously hypothesized that
log-normality may play a role in QCD correlation func-
tions [21–24].

Under the assumption that correlation functions are

drawn from a log-normal distribution, i.e., logC
[U ]
n ∼

N (µn, σ
2
n), we can obtain a lower-variance estimator by

determining the parameters µn and σ2
n via Eqs. (23) and

(24) and then using the analytic form for ⟨Cn⟩ given
in Eq. (21) to estimate the original correlation function.
Should violations of log-normality be observed at higher
statistical precision, it would be possible to systemati-
cally improve this method through the inclusion of higher
cumulants, as discussed in Appendix B.

C. Log-normal Analysis

In order to extract energies from the computed cor-
relation functions, we first produce a set of 200 boot-
strap samples [41], and then compute the mean µn(t)

and standard deviation σn(t) of logC
[U ]
n (t) on each boot-

strap sample. We then combine these quantities to form
bootstrap estimates of

Cn(t) = exp

(
µn(t) +

σn(t)
2

2

)
, (25)
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FIG. 6. The Shapiro-Wilk test p-values as a function of n at
timeslices t/a ∈ {10, 15, 20} for the A ensemble. A value of
p ≲ 0.1 (gray band) indicates a violation of log-normality of
the correlation-function distribution across configurations.

and the effective energy defined by

E
(n)
eff (t) = log

Cn(t)

Cn(t− 1)

= µn(t)− µn(t− 1) +
σ2
n(t)

2
− σ2

n(t− 1)

2
,

(26)

which asymptotes to the ground-state energy for asymp-
totic t and lattice temporal extent. Examples of the
effective energies are shown in Fig. 7. The uncertain-
ties are quantified using the the standard deviation over
bootstrap samples. All uncertainties on LQCD quanti-
ties shown below indicate the standard deviation over the
bootstrap samples.
As can be seen from the effective energy functions, the

correlation functions are contaminated by both excited
states at early times and by thermal effects near the
middle of the lattice temporal extent. Determining the
ground-state energy for each n from these signals is chal-
lenging because the excited-state and thermal effects are
not small and there are significant statistical fluctuations
within the time range in which the signal is consistent
with a constant. In order to take a conservative approach
to energy extraction, on each bootstrap sample, we take
the effective mass from a single timeslice drawn from the
uniform distribution over t/a ∈ [10, 20] ∪ [76, 86]. This
encompasses a variety of different fitting choices and en-
sures that the energy uncertainty represents an envelope
over different fit procedures as well as statistical fluctu-
ations. Figure 7 shows the resulting fitted values and
uncertainties for three different values of n for the A en-
semble. We find that the uncertainty band on the fitted
energy is compatible with the distribution of the effec-
tive energies within the region of the fit.8 The correlation

8 Here we refer to a set of data points xi with associated uncer-
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FIG. 7. Effective energy functions calculated for
n ∈ {4000, 5000, 6000} on the A ensemble. The vertical ex-
tents of the shaded bands indicate the extracted fit energies,
while the histograms in the right panel show the distributions
of the energies across bootstrap samples. The vertical black
dashed lines indicates the timeslices included in the procedure
used to extract the energy, as discussed in the main text.
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FIG. 8. Energies of the multi-pion systems as a function of n
on both the A (483×96) and B (643×128) ensembles, labeled
“LQCD A” and “LQCD B”, respectively. The shaded bands
represent the uncertainty as calculated from the variance over
the bootstrap results.

functions on ensemble B have a larger temporal extent, so
fits are performed in the interval t/a ∈ [10, 25]∪[103, 118];
the fits to extract the energies display similar behavior
as on ensemble A. The n dependence of the extracted
energies En on both ensembles is shown in Fig. 8. There
are strong correlations between correlation functions for
different n that will be exploited below.

tainties σi as compatible with a fit xfit with uncertainty σfit if
the average of (xi − xfit)

2/(σ2
i + σ2

fit) is ≲ 1.

10−2 10−1 100 101 102

ρI/m
3
π

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

µ
I
/m

π

LQCD A

LQCD B

χPT

SB

FIG. 9. The isospin chemical potential of the many-pion sys-
tems studied in this work as a function of the isospin den-
sity for both ensemble A and ensemble B. Error bands are
obtained from the standard deviation over bootstrap sam-
ples. For comparison, the expectations from χPT and Stefan-
Boltzmann (SB) limit as blue-dashed and orange-dotted lines,
respectively.

V. LARGE ISOSPIN CHEMICAL POTENTIAL

The isospin chemical potential of a system with a z-
component of isospin Iz = n and volume V is defined
as

µI(n) =
dEn

dn

∣∣∣∣
V=const

. (27)

Given a set of energies {En} for n-π+ systems in a fixed
volume V , the isospin chemical potential µI(ρn) at den-
sity ρI = ρn = n/V can be estimated via a finite-
difference approximation9

µI(ρn) =
En+1 − En−1

2
. (28)

Using the bootstrap values of En determined above, the
resulting isospin chemical potentials on the two ensem-
bles are shown as a function of the isospin density in
Fig. 9.10 The dependence of the extracted chemical po-
tential on the chosen temporal separation is shown in
Fig. 10; the correlations between energies for neighbour-
ing values of n result in the chemical potential being de-
termined orders of magnitude more precisely than the in-
dividual energies. Notably, the results from both ensem-
bles are consistent within uncertainties. Similar agree-
ment is found in all of the observables shown below, in-
dicating that finite-volume and finite-temperature effects

9 Higher-order stencils for the finite difference lead to results that
are indistinguishable within the uncertainties.

10 In Fig. 9 and all further figures, only values up to n = 6000 are
shown due to the large uncertainties for n > 6000.
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FIG. 10. The effective chemical-potential function µ
(n)
I (t) =

(E
(n+1)
eff (t) − E

(n−1)
eff (t))/2 as a function of the temporal sep-

aration used for n ∈ {4000, 5000, 6000} on the A ensemble.
The vertical extent of the shaded bands indicates the uncer-
tainty in the chemical potential, and the histograms in the
right panel show the distributions of the bootstrap samples.
The black dashed vertical lines indicate the temporal extent
included within the procedure used to determine µI , as dis-
cussed in the main text.

are small and both lattice calculations are near the ther-
modynamic limit.

These results are compared with two predictions in
Fig. 9. First, a result derived from leading order chiral
perturbation theory (χPT) [15, 42] is that11

ρI =
1

2
f2
πµI

(
1− m4

π

µ4
I

)
. (29)

This relation is expected to be valid for low density sys-
tems in which the pions are weakly interacting but will
break down as the isospin density or chemical potential
becomes large compared to the chiral symmetry breaking
scale. The second model is that of a relativistic fermion
gas in the Stefan-Boltzmann (SB) limit, in which

µI =

(
48π2ρI
NfNc

)1/3

, (30)

where Nc × Nf degrees of freedom are assumed with
Nf = 2 and Nc = 3. Notably, the Stefan-Boltzmann
prediction does not have any free parameters, so the qual-
itative agreement between the LQCD data and the pre-
diction in Eq. (30) is somewhat remarkable and is quite
suggestive as to the nature of the high-density state.

In Fig. 11, we show the energy density ϵn = En/L
3 as a

function of the corresponding isospin chemical potential,

11 Here, we use the convention in which the pion decay constant is
fπ ∼ 132MeV at the physical values of the quark masses, as in
Ref [11].

normalized to the Stefan-Boltzmann expectation. In this
and subsequent figures, we show an interpolation of the
O(6000) discrete LQCD data points for each ensemble,
using the approach presented in Appendix C to produce
a region that represents the horizontal and vertical un-
certainties in the data. For large µI , the energy density
is expected to match that of a Nf = 2, Nc = 3 flavor
fermion gas, namely

ϵSB =
NfNc

4π2

(µI

2

)4
. (31)

For comparison, we also show predictions from χPT [15,
42] and one-loop perturbative QCD [43]. Notably, these
predictions agree qualitatively with the LQCD results in
their respective regions of validity, namely small µI for
χPT and large µI for perturbative QCD.12 For very large
µI , there is a slight discrepancy between the LQCD re-
sults on ensemble A and the perturbative QCD expec-
tation; however, given that the systematic uncertainties
from discretization effects are not controlled in this study,
it is unclear whether the LQCD results at the largest
µI are reliable. On dimensional grounds, lattice arti-
facts are expected to be suppressed by powers of the
quark chemical potential, µIa/2, which reaches 0.7 for
the largest isospin chemical potential that is considered.
Excited-state contamination is also not well controlled
in the energy fits. Further exploration with calcula-
tions at a smaller lattice spacing, larger temporal ex-
tents, and higher statistical precision is needed to inves-
tigate these effects. Nonetheless, viewed globally, the
LQCD data agree qualitatively with both low- and high-
density expectations, smoothly interpolating between the
two regimes.
From the chemical potential and energy density, ad-

ditional thermodynamic quantities characterizing high-
isospin-density matter can be computed. A particularly
important example is the speed of sound defined as (using
units where the speed of light is c = 1)

c2s =
dp

dϵ
=

n

µI

dµI

dn
=

n

dE/dn

d2E

dn2

≈ 2n
En+1 − 2En + En−1

En+1 − En−1
,

(32)

where p is the pressure.13 This governs isentropic prop-
agation of sound waves through the medium (the isen-
tropic condition is appropriate since our calculations cor-
respond to a temperature that is close to zero, T ∼ 23
MeV and 17 MeV for ensembles A and B, respectively).

12 Predictions for thermodynamic quantities at nonzero isospin
chemical potential can also be made in the Nambu–Jona-Lasinio
model [44–46] whose parameters can be tuned in such a way that
its predictions agree with χPT and LQCD in the low µI region,
as shown in Refs. [16, 47–49].

13 The vacuum-subtracted pressure, p, is computed by numerically

integrating the relation dp
dn

= n
V

dµI
dn

.
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FIG. 11. The ratio of the energy density of the many-pion
systems to the Stefan-Boltzmann prediction, Eq. (31), for the
A and B lattice ensembles. The blue (A) and red (B) shaded
regions represent interpolations of the LQCD results and their
uncertainties as discussed in Appendix C. Also shown are ex-
pectations from chiral perturbation theory (blue dashed line)
and perturbative QCD at next-to-leading order (NLO) [43]
(orange hatched region). The uncertainties on the perturba-
tive QCD result are obtained by varying the renormalization
scale Λ between µI/4 and µI .

The speed of sound is shown as a function of the isospin
chemical potential in units of the pion mass in Fig. 12
where it is seen to exceed the ideal gas limit. As for
the energy density, close agreement is seen between the
results from the two lattice ensembles. A similar result
has been found in Ref. [10]; however a larger range of
µI/mπ is accessible in the current work. In particular,
c2s exceeds 1/3 for 1.5 ≲ µI/mπ ≲ 14, rising to a maxi-
mum of c2s,max ∼ 0.6 at µI ∼ 2mπ before decreasing back
to the ideal-gas limit for large µI . A maximum speed
of sound above the ideal-gas limit at intermediate values
of chemical potential is also seen in two-color QCD [50]
and quarkyonic models [51], but is in contradiction to
the predictions of leading-order chiral perturbation the-
ory in which cs rises monotonically to 1. This behavior
is indicative of additional degrees of freedom other than
in-vacuum pions becoming excited in the medium. From
the numerical results herein, it remains an open ques-
tion as to whether the speed of sound approaches the
free gas limit from below (as expected from perturbation
theory [43]) or from above (as expected from resummed
perturbation theory [52] or from the inclusion of power
corrections [53]).

Two additional quantities that provide information
about the nature of high-isospin-density matter are the
polytropic index [54] and the trace anomaly [55] defined
by

γ =
ϵ

p
c2s, (33)

∆ =
1

3
− p

ϵ
, (34)
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FIG. 12. The squared speed of sound computed as in Eq. (32)
as a function of the isospin chemical potential on ensemble A
(blue) and ensemble B (red). The expectations in perturba-
tive QCD (orange hatched region), chiral perturbation theory
(blue dashed curve) and the Stefan-Boltzmann limit (orange
dotted line) are shown for comparison.

respectively. The behavior of these two quantities is
shown in Figs. 13 and 14 and compared to the expec-
tations of a free gas, χPT and pQCD in each case. As
for cs, the behaviour of γ and ∆ is similar to that seen in
Ref. [10], but the current work extends the range of chem-
ical potential significantly which reveals additional inter-
esting features. In Ref. [54], it is suggested that the point
at which the polytropic index decreases below 1.75 is a
sign of quark degrees of freedom at large baryon chemical
potential, i.e., the BCS state. In the case of isospin chem-
ical potential, γ decreases to this value at µI ∼ 1.5mπ,
corresponding approximately to the position of the peak
seen in the normalized energy density (Fig. 11). The
trace anomaly is clearly seen to be negative at interme-
diate µI in Fig. 14, as is suggested to be consistent with
neutron star observations in Ref. [55]. As for the quanti-
ties above, the results from the two lattice ensembles are
in agreement for both the trace anomaly and the poly-
tropic index. A robust conclusion from the study of these
transport quantities is that large isospin chemical poten-
tial is needed before the expected asymptotic behavior
sets in. At least for the case of isospin chemical poten-
tial, the use of pQCD to describe the behavior seen in
the LQCD calculations requires µI ≳ 10mπ ∼ 2 GeV at
a minimum.

VI. SUMMARY AND OUTLOOK

In this work, a new, more efficient method of com-
puting maximal-isospin, multi-pion correlation functions
is presented. Using this method, we have calculated
all n-π+ correlation functions for n ≤ 6144, extending
such calculations of many-pion systems into regions of
larger isospin chemical potential than have been previ-
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FIG. 13. The polytropic index, γ, as a function of the isospin
chemical potential on the A(B) ensemble is shown as the
blue(red) region. The expectations in perturbative QCD (or-
ange hatched region), chiral perturbation theory (blue dashed
curve) and the Stefan-Boltzmann limit (orange dotted line)
are shown for comparison. In addition, the bound at γ = 1.75
below which the medium is expected to correspond to quark
degrees of freedom [54] is indicated as the green horizontal
line.
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FIG. 14. The normalized trace anomaly, ∆, as a function
of the isospin chemical potential on the A(B) ensemble is
shown as the blue(red) region. This quantity is bounded as
−2/3 < ∆ < 1/3 by causality. The expectations in perturba-
tive QCD (orange hatched region), chiral perturbation theory
(blue dashed curve) and the Stefan-Boltzmann limit (orange
dotted line) are shown for comparison.

ously achieved. Exploring such high-density and high-
energy correlation functions presents its own suite of chal-
lenges owing to the range of numerical scales spanned
by the correlation functions. Even on the same times-
lice, correlation functions can vary by many orders of
magnitude across configurations, leading to an effective
breakdown of the applicability of the Central Limit The-
orem. The analysis presented here overcomes this by
making the empirically-driven assumption that the dis-

tributions of correlation functions across gauge configu-
rations are log-normal, which allows the incorporation of
more information about the LQCD data than just the
sample mean and variance of the correlation functions.
With this assumption, it becomes possible to extract en-
ergies and chemical potentials from the LQCD correla-
tion functions, which smoothly interpolate between the-
oretical predictions from chiral perturbation theory and
perturbative QCD for low- and high-isospin density sys-
tems, respectively. The speed of sound computed in this
medium exceeds the ideal gas limit over a large range
of µI , reaching a maximum of c2s ∼ 0.6 at µI/mπ ∼ 2.
This result is in agreement with the results of Ref. [10]
but extends over a larger range of chemical potential,
lower temperatures, and to a finer discretization scale.
The isospin chemical potential is implemented through
the grand canonical partition function in Ref. [10] and
therefore the systematic uncertainties in that calculation
are very different from those in this work, making the
broad agreement seen more significant. The speed of
sound and other properties of the medium indicate that
the asymptotic agreement with perturbative QCD ex-
pectations requires large values of the isospin chemical
potential, µI ≳ 2 GeV.
In this exploratory study, calculations have been per-

formed at only a single set of quark masses and lattice
spacing. The results show qualitative agreement with
expectations, but understanding this system at a more
precise level will require the use of additional ensembles
with multiple lattice spacings, quark masses, and with
other spatial and temporal extents in order to properly
quantify the effects of these parameters on the calcula-
tion. Lattice cutoff effects are of particular concern since
the maximum chemical potential reached in the calcula-
tions presented here comes close to the lattice cutoff scale
used in this work.
Beyond systems of many pions, the methods devel-

oped here could also be used in applications to other
systems of mesons, including systems of kaons and/or
pions, and systems with non-zero momentum. The con-
cepts of symmetry and representation theory explored
here to construct the algorithm for many-pion contrac-
tions can potentially be applied more broadly to bary-
onic systems. In addition, the success of log-normality
in enabling analysis of many-pion systems points to the
general observation that there is more information in the
distributions of correlation functions than just their cen-
tral values [21–31, 56, 57], and using this information can
allow the extraction of physical results even when the dis-
tributions of correlation functions are far from the regime
of applicability of the Central Limit Theorem.
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Appendix A: Numerical precision tests

In order to ensure that double precision floating-point
numbers are sufficient for the calculation of the many-
pion correlation functions, we performed several checks
comparing quantities computed using double precision
to the same quantities computed using higher-precision
floating-point numbers. These checks are presented for
the A ensemble, but similar conclusions can be drawn
for the numerical stability of the calculations on the B
ensemble.
As a first check, we compared our method against

other methods using 12 × 12 pion blocks using prop-
agators from a single point source. In particular, we
implemented three pre-existing algorithms for compar-
ison: naive Wick contractions, direct computation of the
traces using Eq. (10), and the recursive method described
in Ref. [18]. We found agreement between all methods
within numerical precision, provided that high-precision
floating-point numbers were used in the other methods
(our method gave indistinguishable results at double pre-
cision as at higher-precision).
Next, we turned to the evaluation of correlation func-

tions from the 6144 × 6144 pion block. The primary
area of numerical concern is in the computation of
the eigenvalues of the pion block, since round-off er-
ror in the SVD computation could reduce the accu-
racy of the smallest singular values, which could in
turn render the correlation function computations in-
accurate. In order to test the accuracy of the SVD
at double precision, we performed single-configuration
tests at higher precision. For the high-precision SVDs,
we used GenericLinearAlgebra.jl [65] combined with
MultiFloats.jl [66] using 2 and 3 double-precision
floats to emulate higher-precision floating-point numbers.
We observed no difference in results at double precision
between the 2- and 3-double precision SVDs, indicating
that double-double precision is sufficient for the calcula-
tions in this work. The relative differences between the
double-precision and double-double precision results for
the eigenvalues, xn, are shown in Fig. 15, while the rela-
tive differences for the correlation functions are shown in
Fig. 16. Notably, the relative errors on some of the indi-
vidual eigenvalues are large, reaching O(10%), but these
large errors do not propagate through to the correlation
functions, which all have relative errors under 1 part in
105.

Appendix B: Cumulant expansion

The method of cumulants relies on the fact that for
any random variable X with finite moments, one may
expand

log ⟨eX⟩ =
∞∑

n=1

κn

n!
, (B1)

http://iaifi.org/
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FIG. 15. Relative errors on the eigenvalues of the pion block
from finite precision in the SVD on the A ensemble. Errors

are computed via ϵ = (xi − x
(true)
i )/x

(true)
i , where x

(true)
i is

the double-double precision result.
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FIG. 16. Precision errors on the logarithm of the correlation
functions from finite precision in the SVD on the A ensemble.
Details are as in Fig. 15.

where κn are the cumulants, or connected correlation
functions, of X, with the first few given by

κ1 = µ = ⟨X⟩ , (B2)

κ2 = ⟨(X − µ)2⟩ , (B3)

κ3 = ⟨(X − µ)3⟩ , (B4)

κ4 = ⟨(X − µ)4⟩ − 3 ⟨(X − µ)2⟩2 . (B5)

Applying this method to the problem at hand, the cor-
relation function Cn can be estimated by first estimating
the first Nκ cumulants κ1, . . . , κNκ

of logCn, and then
combining these estimates using Eq. (B1) to obtain an
estimate of Cn. For the case of Nκ = 2, this reduces ex-
actly to the assumption of log-normality as discussed in
Sec. IVB, but for higher Nκ, the use of cumulants pro-
vides a systematically-improvable method for estimating
the correlation functions.
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FIG. 17. Cumulant corrected correlation function for
n = 6000 and for three different cumulant truncations on the
A ensemble.

A qualitative picture of the effects of truncating the cu-
mulant expansion can be seen in Fig. 17, where we show
the value of the correlation function obtained after trun-
cating at the first, second, and third order. The effect
of the second-order cumulant (i.e., the variance) is small,
but significant; meanwhile the third-order truncation is
consistent with the second-order truncation but with sig-
nificantly larger statistical uncertainties. The results are
shown for the A ensemble, but similar behavior is seen on
the B ensemble. As has been noted in Ref. [23], the cu-
mulant expansion exhibits a bias-variance trade-off, with
higher-order expansions being less biased but more noisy.
In practice this means that higher-order cumulants do
not improve the analysis at the current level of statistics,
which is also consistent with the fact that we have been
unable to detect statistical violations of log-normality.

Appendix C: Details of data presentation

The results shown in Figs. 11, 12, 13, and 14 arise
from O(6000) densely packed points with uncertainties
on both their x and y positions. This presents a chal-
lenge for accurately representing the data; this appendix
contains details of the procedure used to generate these
plots. This procedure applies to any set of ordered
data points (xi, yi) along with associated uncertainties
(dxi, dyi). The algorithm is intended to create an enve-
lope over the associated uncertainty ellipses defined by

xi(θ) = xi + dxi cos θ, (C1)

yi(θ) = yi + dyi sin θ, (C2)

where θ ∈ [0, 2π). Note that here the x and y uncer-
tainties are treated as uncorrelated. The envelope of
these ellipses is captured by sampling points along the
ellipses and using linear interpolation to extend between
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the points. The exact procedure is most succinctly de-
scribed via code, which is presented here in python using
NumPy [62]:

import numpy as np

def interpolate_fill_lines(x, y, *, xerr , yerr):

thetas = np.linspace(0, 2 * np.pi , num =128)

x_plt = np.concatenate (([x[0] - xerr [0]], x, \

[x[-1] + xerr [-1]]), axis=-1)

y_max = np.min(y - yerr) * np.ones_like(x_plt)

y_min = np.max(y + yerr) * np.ones_like(x_plt)

for theta in thetas:

x1 = x + xerr * np.cos(theta)

y1 = y + yerr * np.sin(theta)

y_theta = np.interp(x_plot , x1 , y1)

y_max = np.maximum(y_max , y_theta)

y_min = np.minimum(y_min , y_theta)

return x_plt , y_min , y_max

The inputs x and y are both NumPy arrays containing the
central values, while xerr and yerr indicate their respec-
tive uncertainties. The array x is assumed to be mono-
tonically increasing. The outputs of the function are a set
of points (x, ymin, ymax), with ymin indicating the lower
boundary of the error band and ymax indicating the up-
per boundary.

A qualitative picture of how the error bands gener-
ated from this procedure compared to the original data
is shown in Fig. 18 using the same data from ensemble A

as in Fig. 11. The blue crosses represent the original data,
while the red lines indicate the upper and lower bounds
of the uncertainty region displayed in Fig. 11 and can
be seen to tightly wrap the x and y uncertainties of the
original data.

100 101

µI/mπ

100

101

ε/
ε S

B

Uncertainty band

LQCD A

FIG. 18. Comparison between the data points from the A
ensemble used to generate Fig. 11 and the uncertainty bands
generated as discussed in Appendix C. The horizontal and
vertical extents of the blue crosses indicate the x and y un-
certainties, respectively.
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A. Vuorinen Nature Phys. 16 no. 9, (2020) 907–910,
arXiv:1903.09121 [astro-ph.HE].

[55] Y. Fujimoto, K. Fukushima, L. D. McLerran, and
M. Praszalowicz Phys. Rev. Lett. 129 no. 25, (2022)
252702, arXiv:2207.06753 [nucl-th].

[56] C. Yunus and W. Detmold Phys. Lett. B 840 (2023)
137890, arXiv:2210.15789 [hep-lat].

[57] C. Yunus and W. Detmold arXiv:2304.03820

[hep-lat].
[58] F. T. Winter, M. A. Clark, R. G. Edwards, and B. Joó
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