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Abstract

We report the measurement of the differential cross section d2σ(Eν)/d cos(θµ)dPµ for inclu-
sive muon-neutrino charged-current scattering on argon. This measurement utilizes data from
6.4×1020 protons on target of exposure collected using the MicroBooNE liquid argon time pro-
jection chamber located along the Fermilab Booster Neutrino Beam with a mean neutrino energy
of approximately 0.8 GeV. The mapping from reconstructed kinematics to truth quantities, partic-
ularly from reconstructed to true neutrino energy, is validated within uncertainties by comparing
the distribution of reconstructed hadronic energy in data to that of the model prediction in differ-
ent muon scattering angle bins after applying a conditional constraint from the muon momentum
distribution in data. The success of this validation gives confidence that the missing energy in
the MicroBooNE detector is well-modeled within uncertainties in simulation, enabling the un-
folding to a three-dimensional measurement over muon momentum, muon scattering angle, and
neutrino energy. The unfolded measurement covers an extensive phase space, providing a wealth
of information useful for future liquid argon time projection chamber experiments measuring
neutrino oscillations. Comparisons against a number of commonly used model predictions are
included and their performance in different parts of the available phase-space is discussed.
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Precision modeling of neutrino-nucleus interactions is necessary to achieve the goals of fu-
ture accelerator neutrino oscillation experiments. Neutrino cross-section modeling is one of the
dominant sources of uncertainty in the current generation of oscillation experiments [1, 2] and
could in principle limit the search for leptonic charge-parity violation [3, 4]. In the energy range
of 0.1–5 GeV, the dominant modes of neutrino interactions, such as quasi-elastic (QE) scatter-
ing and resonance production, are difficult to model because of various nuclear effects. Typical
examples include nuclear ground state modeling, nucleon-nucleon correlations, and final state
interactions [5]. Efforts to simulate these interactions accurately would benefit from dedicated
measurements that probe the combined phase space of leptonic and hadronic kinematics. For
inclusive muon neutrino (νµ) charged current (CC) scattering, there are three degrees of freedom
determining the principle interaction kinematics: the scattering muon momentum (Pµ) and angle
(θµ) that are directly measured, and the neutrino energy (Eν) that is deduced with the measure-
ment of the hadronic energy. The accurate reconstruction of the neutrino energy is of particular
importance to upcoming precision long-baseline neutrino oscillation measurements [6, 7].

There have been continuous advancements in the field of inclusive and exclusive neutrino-
nucleus scattering (see Ref. [8, 9, 10, 11, 12, 13] among others for recent progress). Of particular
interest to the measurement presented in this article is a recent triple-differential cross section
measured on carbon at MINERνA, where the independent variables are the muon kinematics and
the total observed proton energy [14]. On an argon target, single- and double-differential νµ CC
inclusive cross sections have been reported [15, 16, 17, 18]. The measurement presented here ex-
pands upon the work measuring energy-dependent cross sections in Ref. [18]. Specifically, we re-
port the first measurement of the nominal-flux-averaged inclusive νµ CC double-differential cross
section on argon as a function of neutrino energy d2σ(Eν)/d cos(θµ)dPµ. Neutrino events are se-
lected using the νµ selection described in [19], with Eν ∈ [0.2, 4.0] GeV and Pµ ∈ [0, 2.5] GeV/c,
giving an overall selection efficiency of 68% and purity of 92%. The estimation of the neu-
trino energy uses measurements of the visible hadronic energy (Erec

had) and reconstructed muon
momentum (Prec

µ ). Thanks to high statistics in this sample and comprehensive coverage of the
three-dimensional phase space, we extend the validation procedure first presented in [18] from
single to multiple dimensions. The procedure works by comparing reconstructed distributions in
data with the corresponding model prediction through the use of χ2 goodness-of-fit test statistics
to demonstrate that the model uncertainties cover the difference between data and prediction.
The comparison over the hadronic energy distribution is enhanced by using the muon kinemat-
ics measurement as a constraint on the model prediction, providing a more stringent test that is
sensitive to the modeling of missing hadronic energy.

The MicroBooNE liquid argon time projeciton chamber (LArTPC) measures 2.56 m along the
drift direction, 10.36 m along the beam direction, and 2.32 m along the vertical direction. It has
an active mass of 85 tonnes of LAr and is capable of mm-level position resolution, as well as
calorimetry with MeV-level detection threshold [20]. Ionization electrons drift in a 273 V/cm
electric field towards an anode consisting of 3 detection planes of wires at 60◦ angles to each
other with a wire pitch of 3 mm. Thirty-two photomultiplier tubes (PMTs) are used to detect the
scintillation light from the interaction to provide a prompt timing signal. The Booster Neutrino
Beam (BNB) at Fermilab produces neutrinos at a target 470 m upstream of the MicroBooNE
detector, with 93.6% estimated to be νµ at a mean Eν of 0.8 GeV [21].

The event selection used in this analysis is the same as the νµ CC selection used in the Micro-
BooNE inclusive νe low-energy excess search [19], and was performed on a data set collected
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from 2016–2018 using an exposure of 6.4 × 1020 protons on target (POT), an order of magni-
tude larger than the single-differential energy-dependent cross section measurement presented
in [18]. The Wire-Cell reconstruction chain leverages the detector information through the use
of tomography, matching of TPC-charge clusters to PMT-light flashes, and trajectory fitting for
particle identification and cosmic-ray removal [22, 23]. Higher-level algorithms perform pattern
recognition, neutrino vertex identification, topology classification, and particle identification to
produce a particle flow within an event [24]. The boosted-decision-tree library XGBoost [25] is
then used to further reduce backgrounds to achieve the νµ CC selection.

Energy reconstruction is crucial for the extraction of energy-dependent cross sections [18] as
well as for the search for new physics beyond the Standard Model [19]. Generally, energy re-
construction is separated into the reconstruction of particle tracks and of electromagnetic (EM)
showers. By default, particle tracks have their energy estimated from their propagation length us-
ing a tabulation of the Bethe-Bloch formula from the NIST PSTAR database [26]. This method
is substituted with a calorimetry-based approach in cases where the range-based estimation is
poor, including short tracks (< 4 cm), tracks exiting the detector, tracks that frequently change
directions, and muon tracks with identified δ rays [24]. The calorimetry-based approach uses a re-
combination model [27] to convert the measured dQ/dx to the energy loss per unit length dE/dx,
which is then integrated. The estimation of EM shower energy also follows a calorimetry-based
approach, but uses the total measured charge and a different scale factor [28] that includes the
overall mean recombination effect as well as contributions for clustering efficiency and detec-
tion threshold. This scaling factor is validated through the reconstructed invariant mass of the
neutral pion [29]. Reconstructed muons, charged pions, and electron candidates have their mass
added to their energy reconstruction, and proton candidates are assigned an average binding en-
ergy of 8.6 MeV [30]. The reconstructed neutrino energy is constructed as the sum of the muon
and hadronic energies. Energy resolutions are estimated from Monte Carlo simulation [31].
For νµ CC events with their main TPC cluster fully contained within the fiducial volume (fully
contained events), the estimated kinematic resolutions are ≈10% on muon energy, ≈30–50% on
energy transfer, defined as Eν−Eµ, resulting from imperfect reconstruction and missing hadronic
energy Emissing

had , and ≈20% on Eν. The angular resolution reaches 5◦ in θµ at forward angles, but
is less accurate at backwards angles.

The neutrino flux prediction is derived from the MiniBooNE flux simulation [21] updated
to the MicroBooNE detector location, with muon neutrino flux prediction uncertainties rang-
ing from 5–15% over the flux range of ≈0.1–4.0 GeV. Neutrino-argon (ν-Ar) interactions are
modeled using GENIE v3.0.6 G18 10a 02 11a tuned to T2K data [31, 32], referred to as the
MicroBooNE model. In particular, hadronic interactions contributing to missing energy are con-
servatively estimated, with proton-to-neutron conversion and proton knockout having 50% and
20% uncertainties respectively [33]. The model also includes a conservative 50% uncertainty on
the 2p2h normalization. Overall, there is a ≈20% ν-Ar interaction uncertainty on the measure-
ment. Measurement uncertainties on flux, cross section, and secondary interactions of protons
and charged pions outside the target nucleus (0.6%, simulated with GEANT4 [34]) are each mod-
eled using a multisim technique to calculate a covariance matrix [35]. Additionally, uncertainties
are included for the model simulation statistics that are estimated using the Poisson likelihood
method [36] (10%), the modeling of “dirt” events originating outside the cryostat [19] (below
1%), the POT (2%) based on measurements of the originating proton flux [21], and the number
of target nuclei (1%). Plots showing the breakdown of total uncertainties by type and the total
fractional uncertainties can be found in the supplemental material [37].
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The detector response uncertainty considers the same effects as in previous work [38, 18] and
takes into account the impact of variations in TPC waveform, light yield and propagation, the
space charge effect, and ionization recombination [39, 40, 27]. A fixed set of MC interactions
are simulated multiple times, first using parameter central values (CV) and then individually
applying a 1σ variation to each parameter. To compensate for limited simulation statistics, re-
sampling of events is performed through a bootstrapping procedure, as discussed in Ref. [19].
For each parameter, we compute the average difference vector between the CV and 1σ variation,
V⃗nominal

D , as well as its estimated covariance MR. These are used to construct a normal distri-
bution of variations that is repeatedly sampled in the formation of the overall detector response
covariance matrix MD.

Because simulating events and propagating them through the detector is computationally ex-
pensive, there is a limited quantity of simulated events available. The large number of bins
involved in a three-dimensional analysis leads to a small number of events per bin, causing large
statistical fluctuations in V⃗nominal

D , and an over-estimation of the covariance in MR and MD. To ad-
dress this, a Gaussian Processes Regression (GPR) smoothing algorithm [41, 42, 43] is applied to
the distribution in V⃗nominal

D , smoothing the statistical fluctuations introduced by the bootstrapping
procedure. GPR uses a Bayesian approach to model the data with a joint Gaussian distribu-
tion and an uninformed prior. A smoothed posterior is computed from the simulated values of
V⃗nominal

D , as well as a kernel matrix ΣK that asserts our intuition of smoothness between nearby
bin centers x1, x2 through a radial basis kernel function K(x1, x2) = e−|(x⃗1−x⃗2)·s⃗|2/2. Based on re-
construction resolutions [24], length scales Li were chosen to be 0.1 in cos(θrec

µ ) and 20% for
each of Erec

ν and Prec
µ to calculate si = 1/Li. The supplemental material [37] provides additional

details on the implementation of GPR smoothing in this work. The central value and covariance
of the posterior prediction are used in place of the original V⃗nominal

D and MR. Because of GPR
smoothing, statistical fluctuations are controlled and become less impactful in MD, reducing the
overall detector response covariance by an order of magnitude to ≈20%. The validity of this
reduction is tested through the data/simulation goodness-of-fit (GoF) tests.

Since the MicroBooNE model is used to estimate the selection efficiency and unfold the re-
constructed variables, such as Erec

ν , to truth quantities, it is important to validate its accuracy.
If this model (including its uncertainties) is unable to describe the distribution in data, it may
introduce significant bias beyond the uncertainties into the extracted cross sections. Therefore,
a comprehensive set of data/simulation comparisons using the reconstructed kinematic variables
Prec
µ , cos(θrec

µ ), and Erec
had are investigated and discussed below, demonstrating the validity of the

model. Since Erec
had represents the reconstruction of the visible component of the energy trans-

fer, it is the ideal distribution to study in complement with the muon kinematics, which together
account for Eν.

Because some of the energy in the neutrino interaction may not be reconstructed (e.g. carried
away in undetected neutrons and particles below the detection threshold), the mapping from
reconstructed to true Eν needs special attention. This mapping is tested through the combination
of GoF tests over the muon kinematics and GoF tests over Erec

had, and the model is only considered
to be validated if all tests show χ2/ndf consistent within a 2σ level of agreement. These first tests
investigate the modeling of the muon kinematics as a prerequisite for their use as a constraint on
the Erec

had prediction, and are performed over the two-dimensional (2D) {Prec
µ , cos(θrec

µ )} distribution
and are shown in the supplemental material [37]. They give χ2/ndf of 105/144 and 103/144 for
the fully and partially contained events respectively, demonstrating that the model is able to
describe the distribution of muon kinematics seen in data well within the model uncertainties.
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Figure 1: Distribution of data and prediction over the 2D reconstructed binning of {Erec
had, cos(θrec

µ )} for fully contained
events (partially contained event distributions are shown in the supplemental material [37]). The MicroBooNE model

prediction, including before (red) and after (blue) applying the measurement of the data distribution over {Prec
µ , cos(θrec

µ )}
as a constraint, is compared to data.

Next, a GoF test is performed over the 2D {Erec
had, cos(θrec

µ )} distribution, shown in Fig. 1, and
is constrained by the muon kinematics measurement using the conditional constraint formal-
ism [44], described in more detail in the supplemental material [37]. It demonstrates a χ2/ndf
of 136/144 after applying the constraint, again indicating that the model describes the relation-
ship between {Prec

µ , cos(θrec
µ )} and {Erec

had, cos(θrec
µ )} in data within uncertainties. The constraint

highly suppresses the common uncertainties between these distributions, causing the posterior
prediction to have much lower uncertainties and leading to a more stringent examination of the
model. Through the demonstration of accurate muon kinematics modeling, combined with ac-
curate modeling of Erec

had in relation to {Prec
µ , cos(θrec

µ )}, the GoF tests validate the modeling of
the missing hadronic energy to describe the data within uncertainties. This builds confidence
that the use of the MicroBooNE model in unfolding does not introduce bias beyond the quoted
uncertainties.

To help demonstrate the sensitivity of this data-driven model validation approach, a series of
fake data studies are performed. One fake dataset is generated using the NuWro model prediction,
and others are generated by varying the reconstructed proton energy of events simulated using
the MicroBooNE model. Each fake data study compares the sensitivity in the GoF test χ2/ndf to
the corresponding level of bias in the unfolded measurement when compared to the underlying
truth. In all cases, the GoF tests demonstrate higher sensitivity to mismodeling than the extracted
measurements show bias from unfolding to the three-dimensional binning used in the analysis. In
each of these cases the bias on the unfolded measurement is within the total model uncertainties,
and furthermore is either within the cross section and statistical uncertainties or is detected by
the GoF test. See the the supplemental material [37] for details on the three-dimensional fake
data studies.
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Figure 2: Unfolded measurement of the inclusive νµ CC differential cross section on argon and NuWro prediction, chosen
for having the lowest χ2, are shown within each angle slice and with each Eν measurement overlaid and offset to visually
separate them. A comparison to the MicroBooNE model is given in the supplemental material [37]. The magnitude of
the offset δ, given in the same units as the cross section, 10−36cm2/GeV/Ar, is listed in the bottom right of each plot.
Uncertainties on the extracted cross section are shown through the shaded bands.

The three-dimensional cross section is extracted using the Wiener-SVD unfolding tech-
nique [45]. A regularization term is constructed from matrices that compute the third derivative
of the unfolded distribution with respect to each of Eν, cos(θµ), and Pµ by taking differences of
nearby bins, and are further combined in quadrature. The covariance matrix includes statistical
uncertainties, computed using the combined Neyman-Pearson method [46], as well as systematic
uncertainties for signal and background events. The bias introduced in unfolding and regulariza-
tion is captured in an additional smearing matrix AC that is applied to every theoretical prediction
reported in this work and included in the data release in the supplemental material [37].

The unfolded cross section consists of 138 bins spanning 4 Eν slices, 9 cos(θµ) slices, and
3–6 Pµ bins within each {Eν, cos(θµ)} slice based on the detector resolution and statistics avail-
able. The full differential cross section is shown in Fig. 2, where the 9 windows correspond to
increasingly forward-angle slices of cos(θµ). Within each window the Pµ distribution is plotted
for each of the four Eν slices, offset by an arbitrary shift (δ) for visual clarity. The data is plotted
against the NuWro 19.02.01 prediction [47], which among the considered generators has the
best agreement with the data, as measured by the χ2 listed in Table 1 and described in more detail
in the supplemental material [37].

Table 1 presents comparisons with model predictions for GENIE v2.12.10 [48] (GENIE v2),
the MicroBooNE model, GENIE v3.0.6 G18 10a 02 11a [49] (GENIE v3 untuned), GiBUU
2021 [50] (GiBUU), NEUT 5.4.0.1 [51] (NEUT), and NuWro 19.02.01 [47] (NuWro). A com-
parison of the underlying physics models in these event generators can be found in Ref. [52]. The
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Table 1: Comparisons between various models and the unfolded three-dimensional measurement.

Model Name χ2/ndf
GENIE v2 752.2/138

MicroBooNE model 329.3/138
GENIE v3 untuned 324.6/138

GiBUU 275.2/138
NEUT 244.3/138
NuWro 214.1/138
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Figure 3: Unfolded measurement of the inclusive νµ CC differential cross section on argon over a function of cos(θµ)
after integrating over Pµ and normalizing by the average ⟨Eν⟩ in each Eν bin. Goodness-of-fit χ2/ndf given with each
prediction for the corresponding angle slice. See supplemental material [37] for full table of χ2 values.

unfolded three-dimensional measurement is found to be in tension with all model CV predictions.
NEUT and NuWro show the best agreement, followed by GiBUU, broadly similar to the hierarchy
of agreement found previously in the single-differential analysis [18]. Owing to the improved
level of detail available across the three-dimensional phase space, the power of these results
in differentiating models is significantly improved compared to the previous single-differential
analysis.

To help visualize some of the notable model differences, the differential cross section over a
function of cos(θµ) and Eν, constructed by integrating over Pµ and normalizing by the average
neutrino energy ⟨Eν⟩, is plotted in Fig. 3. The subdivision by neutrino energy helps separate
model predictions, which often struggle to describe the data in certain energy slices or between
slices. Furthermore, it improves separation between the QE and pion production processes; the
QE fraction decreases from ≈75% in the lowest energy bin to ≈55% in the highest energy bin
as predicted by NuWro, shown in the supplemental material [37]. GiBUU yields the best result at
describing the data within the lowest two Eν slices with χ2/ndf of 36.0/28 and 48.7/35. However,
it struggles to describe the correlations between Eν slices. By comparison NuWro gives the best
prediction both overall and at the highest neutrino energy, where it has a χ2/ndf of 28.8/33.
There are larger ∆-resonance contributions in this high-Eν region where notable differences in
pion production modeling have been demonstrated [53], especially at low Q2 and forward lepton
angles. A full description of model performances across Eν slices is found in the supplemental
material [37].
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Looking forward, this measurement can be enhanced by using the increased statistics of the
full BNB dataset, as well as by combining MicroBooNE data from the BNB and the Neutrinos at
the Main Injector beamline [54] to further increase the statistics, while reducing the flux-related
uncertainties. Furthermore, measurements of the cross section in semi-inclusive and exclusive
channels will allow for investigation of the modeling of the hadronic final states.

In summary, we report the nominal-flux-averaged differential inclusive νµ CC cross section
on argon d2σ(Eν)/d cos(θµ)dPµ, using an exposure of 6.4 × 1020 POT of data from the Booster
Neutrino Beam at Fermilab. Comparisons with model predictions show the best agreement with
GiBUU at low energy and with NuWro at higher energies, particularly at forward muon scattering
angles. However, no model is able to describe the measurement within uncertainties across
all energy bins, demonstrating the power of measuring cross sections as a function of neutrino
energy. This work advances the field of cross section physics by providing the first measurement
over a complete three-dimensional kinematic phase space for inclusive νµ CC scattering on argon.
This allows for a better understanding of neutrino event generator performance across a broad
phase space.
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I. SMOOTHING OF DETECTOR SYSTEMATIC UNCERTAINTIES

This section provides a detailed description of how the Gaussian Processes Regression (GPR) smoothing algo-
rithm [1–3] is used to reduce the overestimation of detector systematic uncertainties that result from a limited
quantity of Monte Carlo (MC) simulation available. A bootstrapping procedure, discussed extensively in Ref. [4] and
briefly reviewed here, is used to estimate the uncertainty in the detector response.

This process involves comparing the distribution of events simulated using nominal detector response parameter
values to the distribution of events simulated using detector response parameter values under offsets constructed by
observing the difference between data and nominal MC prediction [5]. The dataset used in this comparison consists
of cosmic rays that cross either the anode or cathode plane to enable accurate reconstruction. These offsets are
treated as 1σ variations, and each pair of distributions, under nominal and offset detector response parameter values,

is referred to as one “universe”. The difference between the nominal and 1σ distributions is referred to as V⃗D, and

the average difference over all universes is referred to as V⃗ nominal
D . A covariance matrix MR is computed from the set

of all difference vectors V⃗D to represent the uncertainty in estimating V⃗ nominal
D . Since there is a limited quantity of

simulation available, there are statistical fluctuations present in the set of V⃗D, and therefore in the computation of
MR. This problem is amplified in multiple dimensions, where the large number of bins further restricts the number
of events per bin. The smoothing procedure aims to address the large statistical fluctuations present by describing

the set of V⃗D and corresponding MR with a smooth distribution.
In general, GPR aims to produce a smoothed prediction over a target set of points, x⃗a, by incorporating information

from measurements, y⃗b, at positions x⃗b. Note that the subscripts a and b are used to identify the distribution
being referenced, while i and j, shown later, are used to identify a particular bin within a distribution. GPR
begins with an uninformed prior of a joint normal distribution with a zero mean vector and an identity covariance
matrix, p(x⃗) = Nx⃗(⃗0, I), on the target distribution as well as the measured distribution. The measurement y⃗b
and corresponding covariance Σy are used in combination with a kernel matrix ΣK to generate an updated posterior
prediction p(x⃗a|x⃗b) with mean µ⃗a|b and covariance ΣT,a|b. The kernel matrix describes the level of correlation between
any two bins, and is computed using a kernel function K(x⃗i, x⃗j). By choosing a function that decays with distance,
the physical intuition of smoothness can be applied by treating nearby bins as highly correlated. The kernel matrix
is added to the measured covariance to form a total covariance ΣT :

ΣK;ij = K(x⃗i, x⃗j), (1)

ΣT = Σy +ΣK . (2)

From these, Bayes’ theorem is used to compute the posterior distribution:

p(x⃗a|x⃗b) = Nxa(µ⃗a|b,ΣT,a|b) (3)

where the mean and covariance are computed using:

µ⃗a|b = µ⃗a +ΣK,abΣ
−1
T,bb(y⃗b − µ⃗b), (4)

ΣT,a|b = ΣK,aa − ΣK,abΣ
−1
T,bbΣK,ba. (5)

Here µ⃗a and µ⃗b are the prior means at points x⃗a and x⃗b, respectively.
From Eq. (4), we can see that the difference between measured and predicted values, y⃗b − µ⃗b, is used to update

the mean prediction. However, measurements with large uncertainty will contribute less to the posterior distribution,
as the term Σ−1

T,bb will be suppressed. This mathematical framework used to compute the posterior distribution is
identical to that in Sec. II in the conditional constraint formalism. This work computes the posterior prediction

over the target distribution at the same bin centers as used in the measured distribution y⃗b = V⃗ nominal
D , i.e x⃗a = x⃗b.
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However, in principle the GPR technique can be used to obtain predictions using any set of points, not just at x⃗b.
The kernel function is computed using a radial basis function (RBF), which asserts the intuition of smoothness by
assigning a correlation that decays exponentially as the distance squared between bin centers increases:

K(x⃗i, x⃗j) = e−|(x⃗i−x⃗j)·s⃗|2/2, (6)

sk =
1

Lk
. (7)

The bin centers x⃗i and x⃗j are three-dimensional vectors describing their location within the kinematic phase space.
Here, Lk denotes a characteristic length scale for each dimension over which the points are sufficiently correlated.
The RBF kernel considers very close points to be highly correlated, and is strictly decreasing as a function of distance
between points as it exponentially decays towards zero, treating distant points as almost fully uncorrelated. This
causes nearby points to play a significant role in shaping the posterior prediction at a given location, while distant
points have almost no effect, as can be seen in Eq. (4), where ΣK acts on the measurement (y⃗b − µ⃗b).

In the reported work, the RBF kernel utilizes three characteristic length scales for the neutrino energy, muon
momentum, and muon forward angle axes. Based on the measured kinematic resolutions, length scales were chosen
to be 0.1 in cos(θrecµ ) and relative 20% for each of Erec

ν and P rec
µ , the latter achieved by using a length scale of ln(1.2)

and natural log values of Erec
ν and P rec

µ in x⃗i and x⃗j in Eq. (6). Given the length scales and measured data, Eq. (4)
and Eq. (5) therefore directly give us the mean and covariance of the smoothed posterior prediction. These become

the new values for V⃗ nominal
D and MR, and consequently reduce the detector uncertainty by a factor of twenty from

≈400% to ≈20%, reducing the overestimation of uncertainties from finite MC simulation statistics. The detector
response uncertainties computed with the use of smoothing in this three-dimensional measurement were compared to
counterparts on single-differential measurements [6], where statistical fluctuations are small and smoothing was not
used. In all cases, the detector response uncertainties in this three-dimensional analysis were found to be comparable or
larger than those counterparts, demonstrating that smoothing has not suppressed the uncertainty estimation beyond
what is achieved in a high statistics scenario. The impact of smoothing can be seen in Fig. 1, which also shows
the breakdown of uncertainties from each source over the 138 analysis bins in true space. To help understand the
overall magnitude of uncertainties across the truth phase space, Fig. 2 presents the total fractional uncertainty in each
analysis bin. Even after using GPR smoothing, detector response uncertainties are still the second largest source of
uncertainties in the analysis behind statistical uncertainties.
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FIG. 1. a) Comparison of the detector response diagonal uncertainties in the cases with and without the use of GPR smoothing,
demonstrating an order of magnitude reduction in detector response uncertainty estimation. b) Breakdown of total uncertainties
across the various statistical and systematic sources, including the use of GPR smoothing in the estimation of the detector
response uncertainty, plotted as a fraction of the total diagonal uncertainty in each bin.

II. VALIDATION OF OVERALL MODEL

To ensure that the unfolded cross sections are not biased beyond the estimated uncertainties, it is important to
demonstrate that the MicroBooNE model prediction and uncertainties cover the distribution seen in data. This
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FIG. 2. Total uncertainty as a fraction of the predicted cross section from the MicroBooNE model in the corresponding bin.
The four sub-figures each present a different Eν slice. The total uncertainty comes from the square root of the covariance
matrix diagonal entries. Analysis bin number overlaid on top of each bin near the bottom.

ensures that the MicroBooNE model is a reliable estimate of the response matrix used in unfolding. We use a
validation procedure to evaluate the signal and background model prediction (P )’s capability to describe the data
measurement (M) within P ’s uncertainty through a χ2 goodness-of-fit (GoF) test, based on the test statistic:

χ2 = (M − P )
T × C−1

full (M,P )× (M − P ) , (8)

where the covariance matrix C−1
full is the full covariance matrix including both statistical and systematic uncertainties.

To validate the model across the full three-dimensional phase space {Eν , Pµ, cos(θµ)}, it is important to maintain a
nonzero efficiency. The selection efficiency across the phase space is shown in Fig. 3. For a given bin in truth variables,
the selection efficiency is computed as the ratio of selected to total events with truth kinematics corresponding to that
bin.

The GoF test evaluates the null hypothesis that the overall model prediction, including uncertainties, is able to cover
the distribution seen in data. Note that here by model we refer to the central value along with its uncertainties. This
evaluation can be narrowed to a specific portion of modeling by using the conditional covariance matrix formalism [7],
which uses Bayes’ theorem similar to how it is used in Sec. I. Let µ and Σ represent the central value and covariance
predicted by the model over two channels U and V, with corresponding data measurement n:

Σ =

(
ΣUU ΣUV

ΣV U ΣV V

)
. (9)

For example, the U channel could represent the distribution of events over Erec
had, while the V channel could represent

the distribution of events over P rec
µ . Then we can derive the posterior prediction on U given the constraints on V :

µU,constrained = µU +ΣUV ×
(
ΣV V

)−1 ×
(
nV − µV

)
,

ΣUU,constrained = ΣUU − ΣUV ×
(
ΣV V

)−1 × ΣV U . (10)
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FIG. 3. Selection efficiency for simulated events over {Pµ, cos(θµ)} within each Eν slice. Bin edges are indicated by black lines.
Bins containing under 5 events in truth are not drawn because of their low statistics.

Following the example distributions chosen above, the muon momentum measurement would be used as a constraint on
the hadronic energy prediction, updating the model prediction on hadronic energy to exclude regions in disagreement
with the measurement over muon momentum. A GoF test can be performed on V first, and then performed on U
while using the data distribution on V as a constraint. This allows for examination of the modeling of the correlated
predictions over U and V .
In particular, this allows us to evaluate the GoF of the distribution over {Erec

had, cos(θ
rec
µ )} using {P rec

µ , cos(θrecµ )}
as a constraint. Note that since the inclusive νµ CC channel is described by three degrees of freedom, it is not
possible to form independent three-dimensional channels U and V , and so no three-dimensional constrained GoF test
can be performed. Therefore, the two-dimensional channels used provide the best test of the kinematic phase space.
There are key features of the conditional constraint procedure and corresponding validation tests over distributions of
hadronic energy that are worth mentioning in detail. First, the posterior model prediction on U given the constraint
on V will have greatly reduced uncertainties. This is because the model predictions and their uncertainties over
various kinematic distributions are correlated, so that restricting the allowed phase space of model parameters to fit
the data on V also constrains the model prediction on U . As a result, the common systematic uncertainties between
U and V are greatly reduced for the posterior prediction on V .

This results in a validation test that is more sensitive to mismodeling than the overall unfolded measurement, which
uses the default MicroBooNE model without application of the conditional constraint procedure during the unfolding.
For example, large correlated neutrino flux uncertainties can hide issues in the modeling of missing hadronic energy.
A basic GoF test may not detect this mismodeling, but the unfolded measurement may still be affected. However,
through the conditional covariance formalism, correlated neutrino flux uncertainties between the muon kinematics
and hadronic energy are removed, allowing the mismodeling to be detected by the constrained GoF test. This fact is
demonstrated through fake data studies in section III, where model validation tests on fake data are able to detect
significant mismodeling before the bias introduced is larger than the uncertainties on the unfolded measurement.

In the case of the model validation of the hadronic energy prediction, the use of the muon kinematics measurement as
a constraint allows for validation of the correlations between the muon kinematics and hadronic energy modeling. This
is particularly important because it creates a GoF test on the constrained model prediction over the {Erec

had, cos(θ
rec
µ )}

distribution that is sensitive to the modeling of missing energy, allowing for the mapping from energy transfer ν to
Erec

had to be validated. This point can be seen intuitively in two ways.

First, through conservation of energy the sensitivity to the modeling of Emissing
had can be seen:

Eν = Eµ + Erec
had + Emissing

had . (11)

Erec
had is directly measured, Eµ is determined through the measurement of P rec

µ , and the distribution over Eν is
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controlled by the flux prediction, which is constrained by the muon kinematics measurements. This leaves Emissing
had as

the only undetermined quantity, meaning that the constrained GoF test is sensitive to its mismodeling.
Second, the model predictions over Emissing

had , Erec
had, and P rec

µ are correlated as a result of simulating the underlying
neutrino interaction channels such as quasi-elastic (QE), resonance (RES), and deep inelastic scattering (DIS). Addi-
tionally, the {P rec

µ , cos(θrecµ )} measurement constrains the space of model variations across the interaction channels,
creating an effect similar to re-weighting the hadronic system using the muon kinematics as a sideband. Furthermore,
the model predictions over interaction channels each vary as a function of the muon scattering angle θrecµ , forming
detailed sets of predictions in two dimensions. This allows the constrained GoF test in two dimensions to perform a
detailed examination of the model performance, going beyond the level of validation possible in one dimension. As
a result, the constrained GoF test over {Erec

had, cos(θ
rec
µ )} tests the modeling of correlations between the kinematic

distributions, making it sensitive to the modeling of Emissing
had .

Data /ndf= 104.88/1442χ
Pred no constraint

 (GeV)had
recE

 0.5 1.00

500

1000

1500

2000
 < -0.50µθ-1.00 < cos

0.5 1.00

500

1000

1500  < 0.45µθ0.27 < cos

 0.5 1.00

200

400

600

800

1000

1200  < 0.86µθ0.76 < cos

 0.5 1.0  

0.5 1.00

500

1000

1500

2000
 < 0.00µθ-0.50 < cos

0.5 1.0  0

500

1000

1500  < 0.62µθ0.45 < cos

0.5 1.0
0

200

400

600

800

1000

1200  < 0.94µθ0.86 < cos

 0.5 1.0  

0.5 1.00

500

1000

1500

2000
 < 0.27µθ0.00 < cos

0.5 1.00

500

1000

1500  < 0.76µθ0.62 < cos

0.5 1.0
0

200

400

600

800

1000

1200  < 1.00µθ0.94 < cos

 0.5 1.0

E
ve

n
t 

C
o

u
n

t

MicroBooNE 6.4× 1020 POT

E
v e
n
t
C
ou

n
t

P rec
µ (GeV/c)

(a) (b)

Data /ndf= 96.78/1442χ
Pred no constraint

/ndf= 103.03/1442χ
Pred w/ constraint

 (GeV)had
recE

 0.5 1.0  0

500

1000

1500

2000  < -0.50µθ-1.00 < cos

0.5 1.00

1000

2000

3000

4000
 < 0.45µθ0.27 < cos

 0.5 1.00

1000

2000

3000

4000  < 0.86µθ0.76 < cos

 0.5 1.0  

0.5 1.00

500

1000

1500

2000  < 0.00µθ-0.50 < cos

0.5 1.0  0

1000

2000

3000

4000
 < 0.62µθ0.45 < cos

0.5 1.0
0

1000

2000

3000

4000  < 0.94µθ0.86 < cos

 0.5 1.0  

0.5 1.00

500

1000

1500

2000  < 0.27µθ0.00 < cos

0.5 1.00

1000

2000

3000

4000
 < 0.76µθ0.62 < cos

0.5 1.0
0

1000

2000

3000

4000  < 1.00µθ0.94 < cos

 0.5 1.0

E
ve

n
t 

C
o

u
n

t

MicroBooNE 6.4× 1020 POT

P rec
µ (GeV/c)

FIG. 4. Comparison between data and prediction over the muon kinematic distribution {P rec
µ , cos(θrecµ )} for fully contained

events in (a) and partially contained events in (b). The fully contained distribution is used as a constraint on the model
prediction for the partially constrained distribution following Eq. 10. The statistical and systematic uncertainties of the data
and simulation are included in the uncertainty bands shown with the model prediction.

Figure 4 demonstrates model validation over the muon kinematic distribution {P rec
µ , cos(θrecµ )}, and Fig. 5 demon-

strates model validation over {Erec
had, cos(θ

rec
µ )}. In all cases, the model validation tests find that the model prediction

contains enough uncertainties to describe the distribution seen in data, with χ2/ndf values less than 1. If any corre-
sponding p-values are outside 2σ, the MicroBooNE model is determined to fail model validation, requiring the model
to be sufficienctly expanded before proceeding with unfolding. By contrast, since the MicroBooNE model passed all
model validation tests, it can confidently be used in unfolding.

III. FAKE DATA STUDIES

Fake data studies are used to verify the sensitivity of the data-driven model validation. In the previous analysis [8],
fake data studies were performed on single-dimensional distributions. In this analysis, additional fake data studies
are performed featuring an unfolding to the three-dimensional analysis binning. For each fake data study, we examine
whether the MicroBooNE model is able to describe the distribution of fully contained events, partially contained
events, and the joint distribution of fully contained and partially contained events. For a fake data study to pass
validation, the p-value for an associated GoF test must be more extreme than the p-value of the corresponding
extracted cross section, demonstrating that we are able to detect the mismodeling at a higher significance than is
found in the unfolded measurement. This ensures that if such a mismodeling were present in the data to a degree
that would significantly bias the unfolded measurement, we would have previously detected it in the model validation
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FIG. 5. Comparison between data and prediction over the 2D distribution {Erec
had, cos(θ

rec
µ )} for (a) fully contained events, (b)

partially contained events, and (c) both, with the fully contained distribution to the left of the partially contained distribution
within each subplot. The red (blue) band gives the uncertainty before (after) applying the 2D {P rec

µ , cos(θrecµ )} distribution as
a constraint on the model prediction following Eq. 10. The statistical and systematic uncertainties of the data and simulation
are included in the uncertainty bands shown with the model prediction.

tests.

Because these fake data studies only feature differences in cross section modeling (and event generation in the case
of NuWro), we compliment the suite of tests performed using all uncertainties, which parallel those in the previous
section, with a parallel series of tests that only use cross section and statistical uncertainties. This provides the
strictest criteria for a fake data study to pass model validation, as each distribution is evaluated both under the
narrow set of uncertainties that pertain to the variations induced, as well as the full set of uncertainties that provide
a direct counterpart to the model validation tests on data. Since model validation is only considered to pass if all
tests pass, the presentation of distributions is limited to only those demonstrating the largest mismodeling for each
fake data study.

The NuWro 19.02.01 model provides an independent alternative cross section prediction to the one provided by
GENIE v3.0.6 in the MicroBooNE model. To test this prediction, a NuWro dataset corresponding to 6.1× 1020 POT
of data is simulated and used in a fake data study. Model validation tests are performed on the joint distribution
of partially and fully contained events, shown in Fig. 6, and the distribution of partially contained events, shown in
Fig. 7, both including a version containing all uncertainties and a version containing only cross section and statistical
uncertainties. The model performance is observed over the {Ehad, cos(θµ)} distribution before and after applying the
fake data {Pµ, cos(θµ)} distribution as a constraint.

With only cross section and statistical uncertainties, the constrained model validation test detects the mismodeling
with a χ2/ndf of 375.51/288 and corresponding p-value of 0.0004. If this level of disagreement (above 2σ) were found
in real data, the model would have to be expanded before confidently being used in unfolding. An example of this
procedure in practice can be found in [9] that investigated in detail the hadronic final state. In the case of this NuWro
fake data study, unfolding is still performed to investigate the degree of bias introduced, which yields a χ2/ndf of
147.9/138 and corresponding p-value of 0.267 when compared to the statistically independent NuWro model truth
prediction. This demonstrates the improved sensitivity of the constrained GoF test, which detects the mismodeling
beyond 3σ, while the unfolded measurement remains well under 2σ. Using all model uncertainties, GoF tests do not
detect mismodeling and yield a χ2/ndf of 125.18/144 and corresponding p-value of 0.87, and the bias in the unfolded
measurement is within uncertainties with a χ2/ndf of 95.4/138 and corresponding p-value of 0.998.

One potential source of mismodeling is the distribution of energy transfer into its visible and missing components.
To examine the impact of mismodeling in this mapping on the unfolded measurement, a series of fake data studies
are performed by varying the reconstructed proton energy on a per-event basis. This is conducted in 5% increments,
from 70% scaling, representing an excess of missing energy, to 130% scaling, representing a deficit of missing energy
compared to the MicroBooNE model prediction. Like with the NuWro fake data study, GoF tests and unfolded cross
sections are computed both using the full uncertainties in the model and using only cross section and statistical
uncertainties.

The mismodeling detected in GoF tests, performed on the partially contained {Ehad, cos(θµ)} distribution under
constraint by the {Pµ, cos(θµ)} distribution, as well as the bias in the extracted cross section, can be found in Table I.
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Data /ndf= 211.99/2882χ
Pred no constraint
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FIG. 6. Comparison of the joint distribution of partially contained and partially contained events between NuWro fake data
and model and prediction using (a) cross section and statistical uncertainties and (b) all uncertainties over the 2D distribu-
tion {Erec

had, cos(θ
rec
µ )}. Within each angle slice, the fully contained event distribution is shown on the left and the partially

contained event distribution is shown on the right. The red (blue) band gives the uncertainty before (after) applying the 2D
{P rec

µ , cos(θrecµ )} distribution as a constraint on the model prediction following Eq. 10. The statistical and systematic uncer-
tainties of the data and simulation are included in the uncertainty bands shown with the model prediction.
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FIG. 7. Comparison on the distribution of partially contained events between NuWro fake data and model and prediction using
(a) cross section and statistical uncertainties and (b) all uncertainties over the 2D distribution {Erec

had, cos(θ
rec
µ )}. The red (blue)

band gives the uncertainty before (after) applying the 2D {P rec
µ , cos(θrecµ )} distribution as a constraint on the model prediction

following Eq. 10. The statistical and systematic uncertainties of the data and simulation are included in the uncertainty bands
shown with the model prediction.
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TABLE I. Model validation goodness-of-fit (GoF) tests compared against bias in extracted cross section measurements using
the 138 analysis bins of the 3D measurement. Fake data sets are used, consisting of simulation from the MicroBooNE model

under various proton energy scalings from 70% to 130%. GoF tests are performed on the partially contained {Erec
had, cos(θ

rec
µ )}

distribution, using the {P rec
µ , cos(θrecµ )} distribution as a constraint.

Cross Section & Stat Unc. Cross Section & Stat Unc. All Uncertainties All Uncertainties
Ep Scaling GoF χ2 (p-value) Cross Section Bias χ2 (p-value) GoF χ2 (p-value) Cross Section Bias χ2 (p-value)

(%) 144 DoF 138 DoF 144 DoF 138 DoF
70 554.6 (2× 10−49) 240.7 (1.4× 10−7) 216.4 (9.5× 10−5) 126.3 (0.753)
75 365.9 (3× 10−21) 162.1 (0.08) 147.7 (0.40) 85.5 (1)
80 225.4 (1.7× 10−5) 104.5 (0.985) 95.8 (0.999) 55.5 (1)
85 123.6 (0.89) 60.1 (1) 55.8 (1) 32.6 (1)
90 58.1 (1) 27.4 (1) 29.0 (1) 14.8 (1)
95 17.0 (1) 7.2 (1) 9.2 (1) 3.7 (1)
105 18.7 (1) 7.5 (1) 11.0 (1) 3.8 (1)
110 48.3 (1) 26.8 (1) 26.1 (1) 14.0 (1)
115 96.9 (0.999) 62.3 (1) 52.6 (1) 32.3 (1)
120 152.7 (0.29) 104.3 (0.985) 82.7 (1) 53.7 (1)
125 217.4 (8× 10−5) 159.2 (0.105) 114.3 (0.967) 81.4 (1)
130 289.5 (9× 10−12) 229.6 (1.6× 10−6) 151.4 (0.321) 115.6 (0.917)
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FIG. 8. Comparison between GoF test results and extracted cross section bias for various proton energy scalings, using (a)
cross section and statistical uncertainties only, and (b) all uncertainties.

The partially contained distribution is highlighted because it is found to be more sensitive to mismodeling than
other distributions in these specific fake data studies. In the case of cross section and statistical uncertainties, the
constrained GoF tests detect the mismodeling at -20% proton energy with a χ2/ndf of 225.4/144 and corresponding
p-value of 1.7× 10−5 and at +25% proton energy with a χ2/ndf of 217.4/144 and corresponding p-value of 8× 10−5.
Meanwhile, the respective extracted cross sections both demonstrate lower χ2/ndf ratios and corresponding p-values
within 2σ. When all uncertainties are included, the constrained GoF tests begin to detect mismodeling at -25% and
+30%, while the extracted cross section remains within uncertainties with corresponding p-values below 2σ across
the full range of proton energy scalings. Furthermore, Fig. 8 contains the same information as Table I and visually
shows that the GoF tests contain larger χ2/ndf values and statistical significances than the corresponding extracted
cross section for all proton energy scalings under both uncertainty treatments.

IV. FORMATION OF MASTER EQUATION TO UNFOLD THREE-DIMENSIONAL CROSS SECTIONS

In this section we provide the exact mathematical derivation for the cross section unfolding procedure in multiple
dimensions. The derivation for the cross section unfolding in the case of one dimension is given in the supplemental
material of the previous work [8]. The process of extracting information about the truth content of the measurement
bins, given the observed measurements, is referred to as “unfolding.” For a typical data unfolding problem, the
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formation of the master equation

M = R · S (12)

is crucial. Here M is the measurable quantity (typically a vector) in the reconstructed kinematics variable space. S
is the physics quantity (typically also a vector) to be extracted in the true kinematic variable space, which is the goal
of the unfolding procedure. Then the response matrix R, which is assumed to be known, connects the unknown S
with the actual measurement M , and can be determined from theoretical modeling or simulation. As discussed in
Sec. II, in this work the estimation of R through the use of the MicroBooNE model is extensively validated. This gives
confidence that the unfolding performed based on this estimation of R will not introduce bias beyond the uncertainty
shown on the measurement.

In this section, we describe the exact formalism to form the master equation (Eq. 12) for the extraction of the
three-dimensional cross section on neutrino energy Eν and two kinematic variables K and P . M represents the
measured number of events as a function of the reconstructed neutrino energy Erec

ν and kinematic variables Krec and
P rec:

M (Erec
ν ,Krec, P rec) = N · T ·

∫ ∫ ∫
F (Eν) ·

d2σ (Eν ,K, P )

dKdP
·D · ϵ · dEν · dK · dP +B (Erec

ν ,Krec, P rec) , (13)

where N and T represent the integrated protons on target (POT) and the number of target nucleons respectively.

F (Eν) is the muon neutrino flux as a function of true neutrino energy Eν . The differential cross section
d2σ(Eν ,K,P )

dKdP is a
function of true energy Eν , K and P . The detector response matrix D [or D (Eν , E

rec
ν ,K,Krec, P, P rec)] is a function

of Eν , E
rec
ν , K, Krec, P , and P rec, and represents smearing of the neutrino energy reconstruction. The selection

efficiency ϵ [or ϵ (Eν ,K,Krec, P, P rec)] is a function of Eν , K, Krec, P , and P rec. The last term, B (Erec
ν ,Krec, P rec)

represents the estimation of backgrounds as a function of Erec
ν , Krec, P rec, and also depends on N , T , F , σ, and the

selection strategy.
We can rewrite Eq. (13) in a matrix format:

Mijk =
∑
lmn

S̃ijklmn +Bijk, (14)

where i, j, k are bin indices in Erec
ν ,Krec, and P rec, respectively. Similarly, l,m, n are bin indices in true spaces of

Eν ,K, and P . S̃ijklmn is the truth signal corresponding to bin lmn and reconstructed in bin ijk.

S̃ijklmn =
N · T ·

∫
lmn

F (Eν l) · d2σ(Eν l,Km,Pn)
dKmdPn

·D · ϵ · dEν l · dKm · dPn

N · T ·
∫
lmn

F (Eν l) · d2σ(Eν l,Km,Pn)
dKmdPn

· dEν l · dKm · dPn

·
(
N · T ·

∫
lmn

F (Eν l) · dEν l · dKm · dPn

)

·
∫
lmn

F (Eν l) · d2σ(Eν l,Km,Pn)
dKmdPn

· dEν l · dKm · dPn∫
lmn

F (Eν l) · dEν l · dKm · dPn

= ∆ijklmn · Flmn · Slmn, (15)

with

∆ijklmn ≡
N · T ·

∫
lmn

F (Eν l) · d2σ(Eν l,Km,Pn)
dKmdPn

·D · ϵ · dEν l · dKm · dPn

N · T ·
∫
lmn

F (Eν) · d2σ(Eν l,Km,Pn)
dKmdPn

· dEν · dKm · dPn

(16)

being the smearing matrix that can be directly extracted from the simulation:

∆ijklmn =
Selected no. of events in reco. bin (i, j, k) from true bin (l,m, n) after event weights

Generated no. of events in true bin (l,m, n) after event weights
, (17)

which is also used to estimate the impact of various systematic uncertainties (e.g. neutrino flux, neutrino-argon
interaction cross section, and detector systematics). Here F represents the nominal (or central value) estimation of
the νµ neutrino flux. Furthermore,

Flmn ≡ N · T ·
∫
lmn

F (Eν l) · dEν l · dKm · dPn

= N · T ·
(∫

l

F (Eν l) · dEν l

)
·∆Km ·∆Pn (18)



10

is a constant that can be calculated externally knowing the nominal νµ neutrino flux, the m-th bin width ∆Km and
the n-th bin width ∆Pn. Finally, the targeted signal to be unfolded is defined as:

Sj ≡
∫
lmn

F (Eν l) · d2σ(Eν l,Km,Pn)
dKmdPn

· dEν l · dKm · dPn∫
lmn

F (Eν l) · dEν l · dKm · dPn

=

〈
d2σ (Eν,l,Km, Pn)

dKmdPn

〉
, (19)

and is the flux-averaged three-dimensional cross section of true neutrino energy bin l, true K bin m and true P bin
n that we pursue in the unfolding procedure. Mapping Rijklmn = ∆ijklmn · Flmn to Eq. (14), we have

Mijk −Bijk =
∑
lmn

Rijklmn · Slmn. (20)

One can concatenate the three indices, and remap ijk and lmn to i and j, respectively. As a result, we have

Mi −Bi =
∑
j

Rij · Sj , (21)

which is essentially the master equation in Eq. (12).

V. CROSS SECTION RESULT DATA RELEASE

The data are compared against each model prediction within individual Eν slices, with χ2 values shown in Table II
and Table III. The extracted νµ CC differential inclusive scattering cross section per argon nucleus as a function of neu-
trino energy, d2σ(Eν)/d cos(θµ)dPµ, is provided in the included root file microboone cc inclusive cross section.root
and text file microboone cc inclusive cross section.txt, and in Table IV. The bin ranges over Eν , cos(θµ), and Pµ

are also included. The nominal BNB flux is available in the supplemental material of Ref. [10]. The covariance matrix
and additional smearing matrix are provided in the included text files microboone cc inclusive cov matrix.txt and
microboone cc inclusive additional smearing matrix.txt, respectively. The covariance matrix is also shown
in Fig. 9, consisting of both statistical and systematic uncertainties and given in units of (10−36 cm2/GeV/Ar)2.
The additional smearing is a result of the regularization in the data unfolding procedure, and should be applied to
model predictions when comparing to these cross-section results. Figure 10 shows the three-dimensional cross section
measurement plotted against the MicroBooNE model prediction. Figure 11 shows the data over the two-dimensional
distribution of {Eν , cos(θµ)}, plotted against the NuWro model prediction, with a breakdown of the predicted contri-
butions from different interaction channels. This distribution is constructed from the three-dimensional measurement
by integrating over Pµ and normalizing by the average neutrino energy ⟨Eν⟩.
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TABLE II. Comparisons between various models and the unfolded three-dimensional measurement within each Eν slice.

Model Name Total [0.2, 0.705]GeV [0.705, 1.05]GeV [1.05, 1.57]GeV [1.57, 4.0]GeV
χ2/ndf χ2/ndf χ2/ndf χ2/ndf χ2/ndf

GENIE v2 752.2/138 69.3/28 61.3/35 63.0/42 34.9/33
MicroBooNE model 329.3/138 88.0/28 77.7/35 43.5/42 31.1/33
GENIE v3 untuned 324.6/138 101.2/28 85.2/35 50.2/42 36.4/33
GiBUU 275.2/138 36.0/28 48.7/35 53.8/42 29.6/33
NEUT 244.3/138 65.3/28 58.7/35 40.8/42 37.0/33
NuWro 214.1/138 60.8/28 65.8/35 40.3/42 28.8/33

TABLE III. Comparisons between various models and the unfolded three-dimensional measurement within each Eν slice after
integrating over the Pµ dimension.

Model Name Total [0.2, 0.705]GeV [0.705, 1.05]GeV [1.05, 1.57]GeV [1.57, 4.0]GeV
χ2/ndf χ2/ndf χ2/ndf χ2/ndf χ2/ndf

GENIE v2 125.5/36 12.5/9 16.6/9 20.7/9 12.7/9
MicroBooNE model 87.0/36 36.5/9 34.8/9 12.3/9 12.2/9
GENIE v3 untuned 99.9/36 57.3/9 55.0/9 28.1/9 14.0/9
GiBUU 95.5/36 11.4/9 13.0/9 14.6/9 10.3/9
NEUT 70.5/36 32.5/9 28.4/9 6.8/9 16.4/9
NuWro 75.6/36 30.1/9 36.6/9 16.6/9 11.9/9

TABLE IV: νµ CC inclusive differential cross section per argon atom in each neutrino energy bin with total statistical plus
systematic uncertainty. The total uncertainty comes from the square root of the covariance matrix diagonal entries.

Bin Number Eν Range cos(θµ) Range Pµ Range σMC σData Total Uncertainty
[GeV] [GeV] [10−36 cm2/GeV/Ar] [10−36 cm2/GeV/Ar] [10−36 cm2/Ar]

0 [0.2, 0.705] [-1, -0.5] [0, 0.18] 0.079 0.071 0.023
1 [0.2, 0.7] [-1, -0.5] [0.18, 0.3] 0.16 0.24 0.022
2 [0.2, 0.7] [-1, -0.5] [0.3, 2.5] 0.0012 0.00064 0.0012
3 [0.2, 0.7] [-0.5, 0] [0, 0.18] 0.077 0.073 0.017
4 [0.2, 0.7] [-0.5, 0] [0.18, 0.3] 0.21 0.27 0.020
5 [0.2, 0.7] [-0.5, 0] [0.3, 2.5] 0.0066 0.0094 0.0010
6 [0.2, 0.7] [0, 0.27] [0, 0.18] 0.091 0.086 0.022
7 [0.2, 0.7] [0, 0.27] [0.18, 0.3] 0.23 0.32 0.035
8 [0.2, 0.7] [0, 0.27] [0.3, 0.45] 0.19 0.25 0.031
9 [0.2, 0.7] [0, 0.27] [0.45, 2.5] 0.0015 0.0019 0.0022
10 [0.2, 0.7] [0.27, 0.45] [0, 0.3] 0.14 0.17 0.026
11 [0.2, 0.7] [0.27, 0.45] [0.3, 0.45] 0.27 0.43 0.046
12 [0.2, 0.7] [0.27, 0.45] [0.45, 2.5] 0.0069 0.010 0.0039
13 [0.2, 0.7] [0.45, 0.62] [0, 0.3] 0.14 0.16 0.029
14 [0.2, 0.7] [0.45, 0.62] [0.3, 0.45] 0.31 0.38 0.050
15 [0.2, 0.7] [0.45, 0.62] [0.45, 2.5] 0.0050 0.011 0.0049
16 [0.2, 0.7] [0.62, 0.76] [0, 0.3] 0.10 0.13 0.031
17 [0.2, 0.7] [0.62, 0.76] [0.3, 0.45] 0.26 0.41 0.055
18 [0.2, 0.7] [0.62, 0.76] [0.45, 2.5] 0.019 0.040 0.0055
19 [0.2, 0.7] [0.76, 0.86] [0, 0.3] 0.11 0.11 0.031
20 [0.2, 0.7] [0.76, 0.86] [0.3, 0.45] 0.28 0.37 0.052
21 [0.2, 0.7] [0.76, 0.86] [0.45, 2.5] 0.012 0.017 0.0051
22 [0.2, 0.7] [0.86, 0.94] [0, 0.3] 0.081 0.10 0.024
23 [0.2, 0.7] [0.86, 0.94] [0.3, 0.45] 0.18 0.24 0.041
24 [0.2, 0.7] [0.86, 0.94] [0.45, 2.5] 0.024 0.050 0.0060
25 [0.2, 0.7] [0.94, 1] [0, 0.3] 0.069 0.060 0.034
26 [0.2, 0.7] [0.94, 1] [0.3, 0.45] 0.14 0.092 0.045
27 [0.2, 0.7] [0.94, 1] [0.45, 2.5] 0.018 0.034 0.0055
28 [0.7, 1.1] [-1, -0.5] [0, 0.18] 0.039 0.056 0.021
29 [0.7, 1.1] [-1, -0.5] [0.18, 0.3] 0.13 0.13 0.029
30 [0.7, 1.1] [-1, -0.5] [0.3, 2.5] 0.0064 0.0085 0.0026
31 [0.7, 1.1] [-0.5, 0] [0, 0.18] 0.035 0.039 0.018
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32 [0.7, 1.1] [-0.5, 0] [0.18, 0.3] 0.16 0.25 0.027
33 [0.7, 1.1] [-0.5, 0] [0.3, 0.45] 0.23 0.31 0.036
34 [0.7, 1.1] [-0.5, 0] [0.45, 2.5] 0.0031 0.0058 0.0018
35 [0.7, 1.1] [0, 0.27] [0, 0.18] 0.026 0.0053 0.021
36 [0.7, 1.1] [0, 0.27] [0.18, 0.3] 0.18 0.29 0.035
37 [0.7, 1.1] [0, 0.27] [0.3, 0.45] 0.34 0.43 0.055
38 [0.7, 1.1] [0, 0.27] [0.45, 2.5] 0.015 0.013 0.0050
39 [0.7, 1.1] [0.27, 0.45] [0, 0.3] 0.10 0.14 0.026
40 [0.7, 1.1] [0.27, 0.45] [0.3, 0.45] 0.37 0.43 0.050
41 [0.7, 1.1] [0.27, 0.45] [0.45, 2.5] 0.038 0.046 0.0089
42 [0.7, 1.1] [0.45, 0.62] [0, 0.3] 0.11 0.12 0.030
43 [0.7, 1.1] [0.45, 0.62] [0.3, 0.45] 0.41 0.53 0.060
44 [0.7, 1.1] [0.45, 0.62] [0.45, 2.5] 0.092 0.11 0.012
45 [0.7, 1.1] [0.62, 0.76] [0, 0.3] 0.11 0.17 0.032
46 [0.7, 1.1] [0.62, 0.76] [0.3, 0.45] 0.52 0.63 0.072
47 [0.7, 1.1] [0.62, 0.76] [0.45, 0.61] 0.77 0.81 0.096
48 [0.7, 1.1] [0.62, 0.76] [0.61, 0.77] 0.70 0.88 0.10
49 [0.7, 1.1] [0.62, 0.76] [0.77, 2.5] 0.018 0.021 0.0082
50 [0.7, 1.1] [0.76, 0.86] [0, 0.3] 0.047 0.065 0.022
51 [0.7, 1.1] [0.76, 0.86] [0.3, 0.45] 0.51 0.64 0.073
52 [0.7, 1.1] [0.76, 0.86] [0.45, 0.61] 0.95 1.1 0.095
53 [0.7, 1.1] [0.76, 0.86] [0.61, 0.77] 1.2 1.5 0.13
54 [0.7, 1.1] [0.76, 0.86] [0.77, 2.5] 0.054 0.070 0.015
55 [0.7, 1.1] [0.86, 0.94] [0, 0.3] 0.053 0.097 0.025
56 [0.7, 1.1] [0.86, 0.94] [0.3, 0.45] 0.37 0.47 0.060
57 [0.7, 1.1] [0.86, 0.94] [0.45, 0.61] 0.96 0.89 0.10
58 [0.7, 1.1] [0.86, 0.94] [0.61, 0.77] 1.3 1.4 0.13
59 [0.7, 1.1] [0.86, 0.94] [0.77, 2.5] 0.082 0.12 0.020
60 [0.7, 1.1] [0.94, 1] [0, 0.45] 0.095 0.16 0.035
61 [0.7, 1.1] [0.94, 1] [0.45, 0.77] 0.56 0.76 0.10
62 [0.7, 1.1] [0.94, 1] [0.77, 2.5] 0.10 0.19 0.020
63 [1.1, 1.6] [-1, -0.5] [0, 0.18] 0.030 0.044 0.023
64 [1.1, 1.6] [-1, -0.5] [0.18, 0.3] 0.10 0.11 0.023
65 [1.1, 1.6] [-1, -0.5] [0.3, 2.5] 0.0031 0.0025 0.0019
66 [1.1, 1.6] [-0.5, 0] [0, 0.18] 0.046 0.057 0.017
67 [1.1, 1.6] [-0.5, 0] [0.18, 0.3] 0.10 0.090 0.025
68 [1.1, 1.6] [-0.5, 0] [0.3, 0.45] 0.14 0.13 0.032
69 [1.1, 1.6] [-0.5, 0] [0.45, 2.5] 0.0047 0.0043 0.0023
70 [1.1, 1.6] [0, 0.27] [0, 0.18] 0.033 0.021 0.021
71 [1.1, 1.6] [0, 0.27] [0.18, 0.3] 0.12 0.22 0.036
72 [1.1, 1.6] [0, 0.27] [0.3, 0.45] 0.19 0.26 0.046
73 [1.1, 1.6] [0, 0.27] [0.45, 2.5] 0.025 0.034 0.0060
74 [1.1, 1.6] [0.27, 0.45] [0, 0.3] 0.075 0.094 0.024
75 [1.1, 1.6] [0.27, 0.45] [0.3, 0.45] 0.19 0.21 0.045
76 [1.1, 1.6] [0.27, 0.45] [0.45, 2.5] 0.053 0.070 0.0099
77 [1.1, 1.6] [0.45, 0.62] [0, 0.3] 0.076 0.060 0.027
78 [1.1, 1.6] [0.45, 0.62] [0.3, 0.45] 0.27 0.29 0.048
79 [1.1, 1.6] [0.45, 0.62] [0.45, 0.61] 0.35 0.43 0.064
80 [1.1, 1.6] [0.45, 0.62] [0.61, 0.77] 0.45 0.60 0.097
81 [1.1, 1.6] [0.45, 0.62] [0.77, 2.5] 0.032 0.036 0.013
82 [1.1, 1.6] [0.62, 0.76] [0, 0.3] 0.076 0.10 0.025
83 [1.1, 1.6] [0.62, 0.76] [0.3, 0.45] 0.28 0.29 0.045
84 [1.1, 1.6] [0.62, 0.76] [0.45, 0.61] 0.53 0.62 0.060
85 [1.1, 1.6] [0.62, 0.76] [0.61, 0.77] 0.84 0.98 0.096
86 [1.1, 1.6] [0.62, 0.76] [0.77, 0.97] 0.58 0.64 0.072
87 [1.1, 1.6] [0.62, 0.76] [0.97, 2.5] 0.030 0.042 0.016
88 [1.1, 1.6] [0.76, 0.86] [0, 0.3] 0.037 0.044 0.030
89 [1.1, 1.6] [0.76, 0.86] [0.3, 0.45] 0.23 0.16 0.067
90 [1.1, 1.6] [0.76, 0.86] [0.45, 0.61] 0.57 0.66 0.083
91 [1.1, 1.6] [0.76, 0.86] [0.61, 0.77] 1.1 1.4 0.13
92 [1.1, 1.6] [0.76, 0.86] [0.77, 0.97] 1.1 1.3 0.13
93 [1.1, 1.6] [0.76, 0.86] [0.97, 2.5] 0.14 0.17 0.031
94 [1.1, 1.6] [0.86, 0.94] [0, 0.3] 0.056 0.092 0.024
95 [1.1, 1.6] [0.86, 0.94] [0.3, 0.45] 0.19 0.22 0.048
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96 [1.1, 1.6] [0.86, 0.94] [0.45, 0.77] 0.75 0.74 0.10
97 [1.1, 1.6] [0.86, 0.94] [0.77, 0.97] 1.8 1.9 0.18
98 [1.1, 1.6] [0.86, 0.94] [0.97, 1.3] 1.4 1.6 0.17
99 [1.1, 1.6] [0.86, 0.94] [1.3, 2.5] 0.075 0.074 0.022
100 [1.1, 1.6] [0.94, 1] [0, 0.45] 0.068 0.058 0.039
101 [1.1, 1.6] [0.94, 1] [0.45, 0.77] 0.53 0.48 0.082
102 [1.1, 1.6] [0.94, 1] [0.77, 0.97] 1.5 1.5 0.17
103 [1.1, 1.6] [0.94, 1] [0.97, 1.3] 2.0 2.4 0.20
104 [1.1, 1.6] [0.94, 1] [1.3, 2.5] 0.17 0.23 0.034
105 [1.6, 4] [-1, -0.5] [0, 0.18] 0.053 0.068 0.049
106 [1.6, 4] [-1, -0.5] [0.18, 0.3] 0.053 0.083 0.045
107 [1.6, 4] [-1, -0.5] [0.3, 2.5] 0.0035 0.0055 0.0019
108 [1.6, 4] [-0.5, 0] [0, 0.18] 0.044 0.029 0.036
109 [1.6, 4] [-0.5, 0] [0.18, 0.3] 0.063 -0.012 0.046
110 [1.6, 4] [-0.5, 0] [0.3, 0.45] 0.094 0.033 0.041
111 [1.6, 4] [-0.5, 0] [0.45, 2.5] 0.0027 0.0079 0.0043
112 [1.6, 4] [0, 0.27] [0, 0.3] 0.058 -0.0092 0.039
113 [1.6, 4] [0, 0.27] [0.3, 0.45] 0.16 0.12 0.048
114 [1.6, 4] [0, 0.27] [0.45, 2.5] 0.017 0.00036 0.011
115 [1.6, 4] [0.27, 0.45] [0, 0.3] 0.059 -0.034 0.051
116 [1.6, 4] [0.27, 0.45] [0.3, 0.45] 0.15 0.072 0.049
117 [1.6, 4] [0.27, 0.45] [0.45, 2.5] 0.042 0.025 0.017
118 [1.6, 4] [0.45, 0.62] [0, 0.3] 0.085 0.029 0.042
119 [1.6, 4] [0.45, 0.62] [0.3, 0.45] 0.26 0.19 0.057
120 [1.6, 4] [0.45, 0.62] [0.45, 0.77] 0.31 0.27 0.076
121 [1.6, 4] [0.45, 0.62] [0.77, 2.5] 0.052 0.058 0.032
122 [1.6, 4] [0.62, 0.76] [0, 0.3] 0.067 0.088 0.048
123 [1.6, 4] [0.62, 0.76] [0.3, 0.45] 0.26 0.28 0.071
124 [1.6, 4] [0.62, 0.76] [0.45, 0.77] 0.43 0.42 0.083
125 [1.6, 4] [0.62, 0.76] [0.77, 2.5] 0.17 0.15 0.044
126 [1.6, 4] [0.76, 0.86] [0, 0.45] 0.11 0.16 0.050
127 [1.6, 4] [0.76, 0.86] [0.45, 0.77] 0.49 0.46 0.095
128 [1.6, 4] [0.76, 0.86] [0.77, 2.5] 0.40 0.35 0.069
129 [1.6, 4] [0.86, 0.94] [0, 0.45] 0.079 0.16 0.058
130 [1.6, 4] [0.86, 0.94] [0.45, 0.77] 0.52 0.44 0.11
131 [1.6, 4] [0.86, 0.94] [0.77, 1.3] 1.3 1.1 0.18
132 [1.6, 4] [0.86, 0.94] [1.3, 2.5] 0.88 1.0 0.15
133 [1.6, 4] [0.94, 1] [0, 0.77] 0.16 0.089 0.073
134 [1.6, 4] [0.94, 1] [0.77, 0.97] 0.91 0.75 0.17
135 [1.6, 4] [0.94, 1] [0.97, 1.3] 1.8 1.6 0.40
136 [1.6, 4] [0.94, 1] [1.3, 1.6] 3.6 3.1 0.55
137 [1.6, 4] [0.94, 1] [1.6, 2.5] 1.5 1.3 0.23
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