Observation of new structure in the J/ψJ/ψ mass spectrum in proton-proton collisions at $\sqrt{s} = 13$ TeV

The CMS Collaboration*

Abstract

A search is reported for near-threshold structures in the J/ψJ/ψ invariant mass spectrum produced in proton-proton collisions at $\sqrt{s} = 13$ TeV from data collected by the CMS experiment, corresponding to an integrated luminosity of 135 fb$^{-1}$. A new structure is observed with a significance above 5 standard deviations at a mass of 6552 ± 10 (stat) ± 12 (syst) MeV. Another structure with even higher significance is found at a mass of 6927 ± 9 (stat) ± 4 (syst) MeV, which is consistent with the $X(6900)$ resonance reported by the LHCb experiment and confirmed by the ATLAS experiment. Evidence for another new structure, with a local significance of 4.1 standard deviations, is found at a mass of 7287^{+20}_{-18} (stat) ± 5 (syst) MeV. The masses and significances are obtained in a model without considering possible quantum mechanical interference between the resonances. Incorporating this interference provides a better description of the mass spectrum between the resonances and shifts the measured masses by up to 150 MeV.

Submitted to Physical Review Letters
The prospect of exotic hadrons—states other than q\bar{q} or qq—dates back to Gell-Mann’s seminal 1964 paper [1]. However, interest, both theoretical and experimental, in exotics wavered for decades. The discovery of the charmonium-like X(3872) state by the Belle Collaboration in 2003 [2] propelled exotics from speculative chimeras to the frontier of hadronic physics [3]. While many tetraquark candidates containing heavy quarks (c, b) are now known, questions still abound, including which of these are truly exotic hadrons [3], and if they are bound states, what is their internal structure (e.g., molecules, bound states of diquarks, etc. [4–6]).

Beginning with the J/ψ discovery in 1974 [7, 8], heavy quarkonia brought clarity to the quark model. Similarly, exotic states composed entirely of heavy quarks may offer analogous insights. Exotic states decaying into the J/ψJ/ψ and YY channels are particularly promising experimentally because of the efficient triggering and reconstruction of muonic channels. The possibility of structure appearing in these channels is enhanced by an empirical pattern first observed with light mesons: the mass spectra of two vector states with the same isospin (e.g., φφ and ωφ) have near-threshold enhancements, whereas systems of two vector mesons of different isospin (e.g., φρ and ωρ) have no structure [9]. Such a behavior has been corroborated by the enhancements observed in J/ψω [10] and J/ψφ [11] spectra.

The first searches for all heavy quark states were in the all-bottom sector, and were inconclusive [12, 13]. In 2020, the LHCb Collaboration reported structure in the J/ψJ/ψ channel, which consisted of a broad enhancement just above the J/ψJ/ψ mass and a narrow peak designated as X(6900) [14]. The nature of the broad structure was uncertain, but the narrow one was interpreted to be an all-charm tetraquark state [15–22]. Considerations of such states date back to 1976 [23, 24] and have recently become the object of renewed interest [25–35]. However, non-tetraquark interpretations of this new structure have also been proposed [36–38].

Here we report on the J/ψJ/ψ invariant mass spectrum from proton-proton (pp) collisions as recorded with the CMS detector, where the J/ψ mesons are reconstructed from μ⁺μ⁻ pairs. The data sample corresponds to an integrated luminosity of 135 fb⁻¹ [39–41] at a center-of-mass energy of 13 TeV.

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter, each composed of a barrel and two endcap sections. Muons are detected in gas-ionization chambers embedded in the steel flux-return yoke outside the solenoid. A more detailed description of the CMS detector can be found in Ref. [42].

Several Monte Carlo (MC) samples are used to model the detector mass resolution and efficiency of signals. As simulations of tetraquarks states are not available and the analysis is independent of signal kinematic details, we use the production of other particles to simulate the signal, with the masses defined appropriately. We use J/ψ = 0⁺ mesons for a variety of masses decaying to J/ψJ/ψ as the signal, and simulate their production via gluon-gluon interactions. We model signal particles by \(\chi_0(1P) \) production using the PYTHIA event generator (version 8.230) [43]. As an alternate production model, signal is also simulated by generating a sample with ’Higgs bosons’ decaying to ZZ(∗), where the Z(∗) is redefined as a J/ψ, using the JHUGEN event generator (version 7.40) [44, 45]. To understand the detector mass resolution, the samples are generated with a negligible natural width.

Background events, i.e., selected events that are not from a resonant decay to two J/ψ candidates, are expected to be dominated by two genuine J/ψ decays arising either from a single parton-parton collision, i.e., nonresonant single-parton scattering (NRSPS) or a pair of parton-
parton interactions in a single pp collision, i.e., double-parton scattering (DPS). The NRSPS contribution is expected to dominate the DPS contribution near the J/ψ/J/ψ threshold, with the DPS contribution dominating at masses above 11 GeV. To simulate these backgrounds we use the PYTHIA generator. The next-to-leading order CASCADE generator [46] and the next-to-next-to-leading order HELAC-ONIA generator [47–50] are also used to simulate alternative NRSPS shapes for the estimation of the systematic uncertainty in the background. Direct production, as well as feed-down processes where J/ψ mesons arise as decay products, are included. Feed-down processes from double-charmonium resonances [38] are generated using the PYTHIA generator separately. Generated events are processed through the full CMS detector simulation, which utilizes the GEANT4 toolkit [51].

Events of interest are selected using a two-tiered trigger system [52]. The first level (L1), composed of custom hardware processors, uses information from the calorimeters and muon detectors to select events. The second level, known as the high-level trigger (HLT), consists of a farm of processors running a faster version of the full event reconstruction software, which reduces the event rate to around 1 kHz. The data collected in 2016 correspond to an integrated luminosity of 36.3 fb$^{-1}$ and were obtained with an L1 trigger that required at least three muon candidates. The HLT required that the pseudorapidity of each muon satisfies $|\eta| < 2.5$, and a pair of oppositely charged muon candidates with an invariant mass between 2.95 and 3.25 GeV, a distance of closest approach between the two muons less than 0.5 cm, and a fit to a common vertex with a χ^2 probability greater than 0.5%. The data collected in 2017–2018 correspond to an integrated luminosity of 98.6 fb$^{-1}$ and utilized an L1 trigger requiring at least three muons with the highest and second-highest transverse momentum (p_T) muons having $p_T > 5$ and 3 GeV, respectively, and at least one oppositely charged pair of muons with invariant mass below 9 GeV. The HLT criteria replicated those of 2016 with the additional requirement that the two muons with invariant mass between 2.95 and 3.25 GeV each have $p_T > 3.5$ GeV.

The offline selection criteria were finalized before unblinding the signal region (defined as invariant mass below 7.8 GeV) and are based in part on an examination of data collected in 2011 and 2012. It requires at least four muons, each of them having $p_T > 2$ GeV, $|\eta| < 2.4$, and satisfying the “soft muon identification” requirements [53]. Pairs of oppositely charged muons are used to form J/ψ candidates, and these are required to have $p_T > 3.5$ GeV. To confirm the HLT requirement, each muon pair is fit to a vertex, requiring a fit probability greater than 0.5%. Combinations of four muons from two J/ψ candidates are fit to a common vertex, which must have a fit probability greater than 0.5%. A mass constrained vertex fit is applied to the oppositely-charged muon pairs, in which the muon pair’s mass is constrained to the known J/ψ mass $m_{J/\psi}$ [54], and the probability is required to be greater than 0.1%. The two constrained J/ψ candidates are then fit to a common vertex and its fit probability must exceed 0.1%. An event may have multiple J/ψ-pair candidates. If both charge permutations of the same four muons have masses within three standard deviations (3σ) of the known J/ψ mass, we select the pairing that minimizes $(\Delta m_1/\sigma_{m_1})^2 + (\Delta m_2/\sigma_{m_2})^2$, where Δm is the difference between the reconstructed dimuon mass and the J/ψ mass and σ_{m} is the calculated uncertainty of the reconstructed dimuon mass (affects 0.2% of events). All J/ψ/J/ψ candidates are kept if they arise from more than four muons (affects 0.2% of events).

The J/ψ/J/ψ invariant mass spectrum of the 8651 selected candidate pairs below 9 GeV is shown in Fig. 1. To better constrain the smooth background continuum, the full analysis range extends up to masses of 15 GeV (the corresponding mass spectrum is shown in Fig. A.1 of Appendix A).

Using an unbinned extended likelihood method, we fit the data from the threshold, $2m_{J/\psi}$, to 15 GeV. Signals are represented by relativistic S-wave Breit–Wigner (BW) functions [54, 56, 57]
Figure 1: The J/ψ/ψ' invariant mass spectrum in the range up to 9 GeV, with fits consisting of three signal functions (BW$_1$, BW$_2$ and BW$_3$) and a background model (see text). The left plot shows the fit without interference. The right plot shows the fit that includes interference, where “Interfering BWs” refers to the total contribution of all the interfering amplitudes, and their cross-terms. For clarity, only the sum of the three background components (NRSPS+DPS+BW$_0$) is shown on the plots. The lower portion of the plots shows the pulls, i.e., the number of standard deviations (statistical uncertainties only) that the binned data differ from the fit.

convolved with resolution functions, which are sums of two Gaussian functions with the same mean value. The detector mass resolution varies from about 10 MeV at a mass of 6500 MeV to 18 MeV at 7300 MeV. The BW functions are not modified by acceptance or efficiency corrections because these vary only slowly, by less than 1.3% over the natural width of the $X(6900)$.

The NRSPS and DPS backgrounds are parameterizations of distributions of the corresponding simulated events. The NRSPS component includes an exponential function where one of its parameters is a free parameter in the fit. The effect of feed-down from heavier mass states such as the $\psi(2S)$ is accounted for as a systematic uncertainty. Combinatorial backgrounds arise when one or more muon candidates are not from a J/ψ meson decay, and from hadrons that are misidentified as a muon or misreconstructed. The shapes of combinatorial backgrounds are well modeled by the NRSPS + DPS parameterizations, and the residual effects are accounted for in the systematic uncertainties.

Aside from the NRSPS and DPS background components, a component to model a threshold enhancement is included, as was done in Ref. [14]. This excess may be due to a resonance, but other processes could be responsible: coupled-channel interactions [58], triangle singularities [59], Pomeron exchange [36], or simply an inadequate NRSPS model. This region may also include feed-down from potential higher mass tetraquarks that are only partially reconstructed. Because of these uncertainties, we regard this enhancement as an additional background component, and model it with a BW function (BW$_0$) with free mass and width, which provides a good ad hoc description of this feature.

We begin with a background-only fit (NRSPS + DPS + BW$_0$) and then add signal contributions one at a time to the fit. A signal BW is kept as long as its local significance exceeds 3σ, with the local significance calculated from the difference in log-likelihood between including and not including the component, and only accounting for statistical uncertainties. Three resonance structures, labeled BW$_1$, BW$_2$, and BW$_3$ in order of increasing mass, are found to be statistically significant. The local significance of these peaks, calculated from the log-likelihood differences between the full fit and the fit with the BW of interest removed, are 6.5σ, 9.4σ, and 4.1σ, respectively. Figure 1 (left) shows this fit, with numerical results in Table 1. The BW widths are
Table 1: Summary of the fit results for the J/ψ invariant mass distribution. The mass m and natural width Γ for both the no-interference model and the interference model, and the signal yields N for the no-interference model, are given for the three signal structures. The dual uncertainties are the statistical followed by the systematic components, and single uncertainties are only statistical.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No-interference</td>
<td>6552 ± 10 ± 12</td>
<td>6927 ± 9 ± 4</td>
<td>7287±20±18</td>
</tr>
<tr>
<td>Γ [MeV]</td>
<td>124⁺32⁻26 ±33</td>
<td>122⁺24⁻21 ±18</td>
<td>95⁺59⁻40 ±19</td>
</tr>
<tr>
<td>N</td>
<td>470⁺120⁻110</td>
<td>492⁻73</td>
<td>156⁺64⁻51</td>
</tr>
<tr>
<td>Interference</td>
<td>6638⁺43⁻16</td>
<td>6847⁺44⁻18</td>
<td>7134⁺48⁻19</td>
</tr>
<tr>
<td>Γ [MeV]</td>
<td>440⁺230⁻110</td>
<td>191⁻49⁻25</td>
<td>97⁺40⁺29</td>
</tr>
<tr>
<td>N</td>
<td>492⁺78⁻73</td>
<td>73⁻51</td>
<td>156⁺41⁻15</td>
</tr>
</tbody>
</table>

We quantify the goodness of fit by the probability of the fit’s χ² (over the full mass range with the bin size of Fig. 1) and the number of degrees of freedom. Because the signal region is only a small fraction of the fit range, the impact of deviations from the model in this region is diluted. As an alternative, we also compute a probability using only the bins below 7.8 GeV, which we refer to as the signal-region χ² probability.

The full χ² fit probability is 98%. However, the dips in the data around 6750 and 7150 MeV are poorly described: the signal-region χ² probability is 9%. Agreement may be improved by introducing interference, as was done by LHCb [14].

Our construction of interference models is based on the three structures found in the no-interference fit. We consider interference between pairs of (“two-way”), or all three (“three-way”), components. The three-way interference is implemented with a term proportional to |r₁ exp(ϕ₁)BW₁ + BW₂ + r₃ exp(ϕ₃)BW₃|², where r₁,3 and ϕ₁,3 are the relative magnitudes and phases of BW₁,3 with respect to BW₂ [54]. We choose this model that shows a signal-region χ² probability of 65%—whereas all two-way models are below 30%.

The three-way interference fit is shown in Fig. 1 (right), and the fit parameters are listed in Table 1. In contrast, the interference model utilized by LHCb [14] consisted of a BW for the X(6900) signal plus an auxiliary BW that interfered with the NRSPS background (Model II). This model by itself (without including interference between resonances) does not fit as well and adding this interference to the three-way interference does not improve upon the three-way interference fit.

The interference fit assumes that the unknown J/ψ quantum numbers of these states are identical, and they are formed from a coherent production process. Other models may also be able to describe the dips. For example, inspired by predictions of dense spectroscopy of tetra-charm states [15–21], representing individual peaks by multiple overlapping narrow resonances could provide good fits by enabling the BW functions to fall more deeply into the dips. Because of these uncertainties we adopt the no-interference case as our main result.

Systematic uncertainties for masses and widths are determined by varying aspects of, and inputs to, the fits. For a given source, the largest deviation from a parameter’s nominal value is taken as its systematic uncertainty. The sources of systematic uncertainty that have been considered are: different BW shapes (P- and D-wave, and alternative values for the “interaction radius” in the Blatt–Weisskopf barrier factor [56, 57]); alternative DPS parameterizations, such
as those obtained by mixing data events (artificial J/ψJ/ψ mass spectrum formed by two J/ψs from different events); NRSPS parameterizations from different simulations (CASCADE and HELAC-ONIA) or floating otherwise fixed parameters individually; momentum scale (based on the shift in the unconstrained fitted J/ψ meson mass from the world average value [54]); detector mass resolution (slightly different resolution models based on the PYTHIA or JHUGEN generators); combinatorial background shape (the result of altering the parameterization of the combinatorial background); efficiency corrections (the difference between not applying and applying efficiency corrections based on the PYTHIA or JHUGEN generator); and the effects of including various feed-down components from hypothetical heavier tetraquarks [38].

The effects of feed-down components in the interference model can produce asymmetric uncertainties, so an asymmetric uncertainty is assigned for this source. For other sources, symmetric uncertainties are assigned. The principal systematic effects are summarized in Table 2. The total uncertainties are their sum in quadrature and also appear in Table 1. Including feed-down in the fit affects signal structures, especially for the BW1, because of their overlap in the J/ψJ/ψ mass distribution. Compared to the no-interference model, the greater complexity and increased parameter correlations of the interference model results in larger systematic uncertainties.

Table 2: Dominant contributions to the systematic uncertainties in masses and widths, in MeV, for the two fits. The “Total uncertainty” is the quadratic sum of all individual components, including the unlisted non-dominant contributions.

<table>
<thead>
<tr>
<th>Fit</th>
<th>Dominant sources</th>
<th>M_{BW_1}</th>
<th>M_{BW_2}</th>
<th>M_{BW_3}</th>
<th>Γ_{BW_1}</th>
<th>Γ_{BW_2}</th>
<th>Γ_{BW_3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>No-interference</td>
<td>Signal shape</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>10</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>NRSPS shape</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>18</td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Feed-down</td>
<td>11</td>
<td>1</td>
<td>1</td>
<td>25</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Total uncertainty</td>
<td>12</td>
<td>4</td>
<td>5</td>
<td>33</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td>Interference</td>
<td>Signal shape</td>
<td>7</td>
<td>12</td>
<td>7</td>
<td>56</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>DPS shape</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>18</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>NRSPS shape</td>
<td>9</td>
<td>14</td>
<td>13</td>
<td>85</td>
<td>9</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Mass resolution</td>
<td>8</td>
<td>4</td>
<td>1</td>
<td>24</td>
<td>7</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Combinatorial bkg.</td>
<td>7</td>
<td>2</td>
<td><1</td>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Feed-down</td>
<td>+0</td>
<td>+44</td>
<td>+38</td>
<td>+0</td>
<td>+19</td>
<td>+12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>−27</td>
<td>−0</td>
<td>−0</td>
<td>−210</td>
<td>−0</td>
<td>−0</td>
</tr>
<tr>
<td></td>
<td>Total uncertainty</td>
<td>+16</td>
<td>+48</td>
<td>+41</td>
<td>+110</td>
<td>+25</td>
<td>+29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>−31</td>
<td>−20</td>
<td>−15</td>
<td>−240</td>
<td>−17</td>
<td>−26</td>
</tr>
</tbody>
</table>

The impact of systematic uncertainties on the significances of the structures was checked in the no-interference fit model by using discrete sets of individual alternative hypotheses and recomputing the significances. The only appreciable reduction is for BW1, where the significance is reduced from 6.5 to 5.7σ.

The BW2 parameters are within 2σ, when comparing the analogous no-interference or interference models, of the X(6900) values reported by LHCb. For their Model I, consisting of a BW for the X(6900) signal plus two auxiliary threshold BWs, they reported an X(6900) mass of 6905 ± 11 ± 7 MeV with a natural width of 80 ± 19 ± 33 MeV, and 6886 ± 11 ± 11 MeV and 168 ± 33 ± 69 MeV for Model II [14]. However, because the two experiments use different fit models, quantitative comparisons between them may be distorted, and thus we also fit our data with the two LHCb models. Neither LHCb model provides a good description of the CMS data, but nevertheless our X(6900) parameters are again compatible. More information about these comparisons, including where some small discrepancies are present, is summarized in
Appendix B.

Our measured masses appear compatible with recent calculations of the $cc\bar{c}\bar{c}$ spectrum [21, 60], which would indicate that these three structures may be a family of radial excitations of the same J^{PC}. This is the case for both no-interference and interference masses, albeit for different theoretical models.

In summary, the $J/\psi J/\psi$ invariant mass spectrum has been presented. The data were collected with the CMS detector from pp collisions at $\sqrt{s} = 13$ TeV and correspond to an integrated luminosity of 135 fb$^{-1}$. Two new structures, tentatively named $X(6600)$ and $X(7300)$, are found with masses of 6552 ± 10 (stat) ± 12 (syst) MeV and 7287^{+20}_{-18} (stat) ± 5 (syst) MeV, and the $X(6900)$ structure observed by LHCb is confirmed with a mass of 6927 ± 9 (stat) ± 4 (syst) MeV. The local significances of these peaks are, for increasing mass, 6.5, 9.4, and 4.1 standard deviations. These results are from a fit that does not include interference effects. Adding interference terms between the three signals results in better agreement to the data in the regions between the resonances and results in shifts of the resonance parameters. Numeric results are provided in the HEPData record [61].

As this Letter was being finalized the ATLAS Collaboration released a paper [62] confirming the $X(6900)$ structure in the $J/\psi J/\psi$ spectrum, and also reported near-threshold excesses, including a possible feature in the $\psi(2S)/J/\psi$ channel.

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid and other centers for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC, the CMS detector, and the supporting computing infrastructure provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES and BNSF (Bulgaria); CERN; CAS, MoST, NSFC, Nanjing Normal University research start-up funding project, Tsinghua University Initiative Scientific Research and Dushi Programs, and Natural Science Foundation of China under Grants 11975010,12075123,12061141002 (China); Minciencias (Colombia); MSES and CSF (Croatia); RIF (Cyprus); SENESCYT (Ecuador); MoER, ERC PUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRI (Greece); NKFHIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MES and NSC (Poland); FCT (Portugal); MESTD (Serbia); MCIN/AEI and PCTI (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); MHESI and NSTDA (Thailand); TUBITAK and TENMAK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).
References

A Fit projections in full range

The $J/\psi J/\psi$ invariant mass spectrum for the full range of the fit is shown in Fig. A.1 for the no-interference and the interference models.

Figure A.1: The $J/\psi J/\psi$ invariant mass spectrum with the no-interference fit (upper) and the interference fit (lower) in the full fit range (see text for model details). The “Interference BWs” curve is the total contribution of all the interference amplitudes and their cross terms. The lower portion of the plots shows the pulls, i.e., the number of standard deviations (statistical uncertainties only) that the binned data differ from the fit.

B Fitting with the LHCb models

In order to make a direct comparison to the results from the LHCb Collaboration [14] we also used their two principal models (I and II) to fit the CMS data. The details are provided here.

Model I consists of two auxiliary relativistic Breit–Wigner (BW) functions below the $X(6900)$ BW. The parameter values for these two BWs are not reported in Ref. [14], but the second auxiliary BW is in the same mass region as the CMS “BW1” and so we extend this labeling to the LHCb models.

The Model I fit is shown in Fig. B.1 (upper), with numerical results listed in Table B.1. The fit quality is poor with a signal-region χ^2 probability of 0.9%. The no-interference fit using the CMS model with three structures—and roughly the same number of $J/\psi J/\psi$ candidates after the final selection as LHCb—has a signal-region χ^2 probability of 9%.

Model II has, aside from the signal BW, a single auxiliary BW (here labeled as ‘BW1’), which
Figure B.1: The \(J/\psi \) invariant mass spectrum with fits using LHCb models [14]: Model I (no-interference) (upper) and Model II (interference) (lower). Model details are given in the text. The “Interfering components” is the total contribution of BW\(_1\), NRSPS, and their interference. The lower portion of the plots shows the pulls between the binned data and the fit.

Table B.1: Summary of results for the two LHCb fit models from LHCb and CMS: the mass \(m \) and natural width \(\Gamma \), in MeV, are given for the principal structures (the Breit–Wigner function at the threshold is not included in Model I), and LHCb values not reported in Ref. [14] are marked as “—”. Single uncertainties are statistical only.

<table>
<thead>
<tr>
<th>Exp.</th>
<th>Fit</th>
<th>(M_{BW_1})</th>
<th>(\Gamma_{BW_1})</th>
<th>(M_{X(6900)})</th>
<th>(\Gamma_{X(6900)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>LHCb [14]</td>
<td>Model I</td>
<td>—</td>
<td>—</td>
<td>6905 ± 11 ± 7</td>
<td>80 ± 19 ± 33</td>
</tr>
<tr>
<td>CMS</td>
<td>Model I</td>
<td>6550 ± 10</td>
<td>112 ± 27</td>
<td>6927 ± 10</td>
<td>117 ± 24</td>
</tr>
<tr>
<td>LHCb [14]</td>
<td>Model II</td>
<td>6741 ± 6</td>
<td>288 ± 16</td>
<td>6886 ± 11 ± 11</td>
<td>168 ± 33 ± 69</td>
</tr>
<tr>
<td>CMS</td>
<td>Model II</td>
<td>6736 ± 38</td>
<td>439 ± 65</td>
<td>6918 ± 10</td>
<td>187 ± 40</td>
</tr>
</tbody>
</table>
interferes with the NRSPS background. This interference was introduced to better model the
dip around 6750 MeV. Our fit results for Model II are shown in Fig. B.1 (lower) and Table B.1.
The 6750 MeV dip is now well described: the pulls in Fig. B.1 (lower) are well behaved in the
vicinity of the $X(6900)$ peak. However, systematic deviations are evident elsewhere in the
pulls, and the signal-region χ^2 probability of 0.8% for this fit is actually lower than for Model I.
C The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
A. Hayrapetyan, A. Tumasyan

Institut für Hochenergiephysik, Vienna, Austria

Universität Antwerpen, Antwerpen, Belgium
M.R. Darwish, T. Janssen, P. Van Mechelen

Vrije Universiteit Brussel, Brussel, Belgium

Université Libre de Bruxelles, Bruxelles, Belgium

Ghent University, Gent, Belgium

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
G.A. Alves, E. Coelho, C. Hensel, T. Menezes De Oliveira, A. Moraes, P. Rebelo Teles, M. Soeiro

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

Universidade Estadual Paulista, Universidade Federal do ABC, São Paulo, Brazil

Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria
A. Aleksandrov, G. Antchev, R. Hadjiiska, P. Iaydziej, M. Misheva, M. Shopova, G. Sultanov

University of Sofia, Sofia, Bulgaria
A. Dimitrov, T. Ivanov, L. Litov, B. Pavlov, P. Petkov, A. Petrov, E. Shumka
Instituto De Alta Investigación, Universidad de Tarapacá, Casilla 7 D, Arica, Chile
S. Keshri, S. Thakur

Beihang University, Beijing, China
T. Cheng, Q. Guo, T. Javaid, M. Mittal, L. Yuan

Department of Physics, Tsinghua University, Beijing, China

Institute of High Energy Physics, Beijing, China

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
A. Agapitos, Y. Ban, A. Levin, C. Li, Q. Li, X. Lyu, Y. Mao, S.J. Qian, X. Sun, D. Wang, H. Yang, C. Zhou

Sun Yat-Sen University, Guangzhou, China
Z. You

University of Science and Technology of China, Hefei, China
N. Lu

Institute of Modern Physics and Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) - Fudan University, Shanghai, China
X. Gao, D. Leggat, H. Okawa, Y. Zhang

Zhejiang University, Hangzhou, Zhejiang, China
Z. Lin, C. Lu, M. Xiao

Universidad de Los Andes, Bogota, Colombia
C. Avila, D.A. Barbosa Trujillo, A. Cabrera, C. Florez, J. Fraga, J.A. Reyes Vega

Universidad de Antioquia, Medellin, Colombia
J. Mejia Guisao, F. Ramirez, M. Rodriguez, J.D. Ruiz Alvarez

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
D. Giljanovic, N. Godinovic, D. Lelas, A. Sculac

University of Split, Faculty of Science, Split, Croatia
M. Kovac, T. Sculac

Institute Rudjer Boskovic, Zagreb, Croatia
P. Bargassa, V. Brigljevic, B.K. Chitroda, D. Ferencek, S. Mishra, A. Starodumov, T. Susa

University of Cyprus, Nicosia, Cyprus

Charles University, Prague, Czech Republic
M. Finger, M. Finger Jr., A. Kveton

Escuela Politecnica Nacional, Quito, Ecuador
E. Ayala
Universidad San Francisco de Quito, Quito, Ecuador
E. Carrera Jarrín

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
A.A. Abdelalim, E. Salama

Center for High Energy Physics (CHEP-FU), Fayoum University, El-Fayoum, Egypt
M. Abdullah Al-Mashad, M.A. Mahmoud

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia

Department of Physics, University of Helsinki, Helsinki, Finland
H. Kirschenmann, K. Osterberg, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland

Lappeenranta-Lahti University of Technology, Lappeenranta, Finland
P. Luukka, H. Petrow, T. Tuuva

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France

Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France

Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France

Institut de Physique des 2 Infinis de Lyon (IP2I), Villeurbanne, France

Georgian Technical University, Tbilisi, Georgia
I. Lomidze, T. Toriaishvili, Z. Tsamalaidze

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
V. Botta, L. Feld, K. Klein, M. Lipinski, D. Meuser, A. Pauls, N. Röwert
National and Kapodistrian University of Athens, Athens, Greece

National Technical University of Athens, Athens, Greece
G. Bakas, T. Chatzistavrou, G. Karapostoli, K. Kousouris, I. Papakrivopoulos, E. Siamarkou, G. Tsipolitis, A. Zacharopoulou

University of Ioάnnina, Ioάnnina, Greece

MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary

Wigner Research Centre for Physics, Budapest, Hungary
M. Bartók, C. Hajdu, D. Horvath, F. Sikler, V. Veszpremi

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
G. Bencze, S. Czellar, J. Karancsi, J. Molnar, Z. Szillasi

Institute of Physics, University of Debrecen, Debrecen, Hungary
P. Raics, B. Ujvari, G. Zilizi

Karoly Robert Campus, MATE Institute of Technology, Gyongyos, Hungary
T. Csorgo, F. Nemes, T. Novak

Panjab University, Chandigarh, India

University of Delhi, Delhi, India
A. Ahmed, A. Bhardwaj, A. Chhetri, B.C. Choudhary, A. Kumar, M. Naimuddin, K. Ranjan, S. Saumya

Saha Institute of Nuclear Physics, HBNI, Kolkata, India

Indian Institute of Technology Madras, Madras, India

Tata Institute of Fundamental Research-A, Mumbai, India
T. Aziz, I. Das, S. Dugad, M. Kumar, G.B. Mohanty, P. Suryadevara

Tata Institute of Fundamental Research-B, Mumbai, India
A. Bala, S. Banerjee, R.M. Chatterjee, M. Guchait, S. Karmakar, S. Kumar, G. Majumder, K. Mazumdar, S. Mukherjee, A. Thachayath

National Institute of Science Education and Research, An OCC of Homi Bhabha National
Institute, Bhubaneswar, Odisha, India
S. Bahinipati45, A.K. Das, C. Kar5, D. Maity46, P. Mal5, T. Mishra5, V.K. Muraleedharan Nair Bindhu46, K. Naskar46, A. Nayak46, P. Sadangi, P. Saha5, S.K. Swain, S. Varghese46, D. Vats46

Indian Institute of Science Education and Research (IISER), Pune, India
A. Alpana, S. Dube, B. Kansal5, A. Laha, A. Rastogi, S. Sharma

Isfahan University of Technology, Isfahan, Iran
H. Bakhshiansohi47, E. Khazaie48, M. Zeinali49

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
S. Chenarani, S.M. Etesami, G. Ramirez-Sanchez4, D. Vats, M. Mohammadi Najafabadi

University College Dublin, Dublin, Ireland
M. Grunewald

INFIN Sezione di Baria, Universit\`a di Barib, Politecnico di Baric, Bari, Italy
M. Abbresciaa,b,c,16, R. Alya,c,16, A. Colaleoa, D. Creanzaa,c,16, B. D'Anziia,b, N. De Filippisa,c,16, M. De Palmaa,b, A. Di Florioa,c,16, W. Elmetenaweea,b,16, L. Fiorea, G. Iasellia,c,16, G. Maggia,15, M. Maggia, I. Margjekaa,b, V. Mastrapasquaa,b, S. Mya,b, S. Nuzzoa,b,15, A. Pellecchiaa,b, A. Pomplinia,b, G. Pugliesea,c,16, R. Radognaa, G. Ramirez-Sancheza,c,16, D. Ramosa, A. Ranieria, L. Silvestrisa,17, F.M. Simonea,b,15, Ú. Sözbilira,16, A. Stamerraa,16, R. Vendittia,16, P. Verwilligena,16, A. Zazaa,b,16

INFIN Sezione di Bolognaa, Universit\`a di Bolognab, Bologna, Italy
G. Abbiendia, C. Battilanaa,b,17, D. Bonacorsia,b,17, L. Borgonovia,16, R. Campaninia,b,16, P. Capiluppia,b,17, A. Castroa,b,17, F.R. Cavalloa,17, M. Cuffiania,b,17, G.M. Dallavallea,16, T. Diotalevia,b,17, F. Fabbria, A. Fanfania,b,17, D. Fasanellaa,b,17, P. Giacomellia,16, L. Giommia,b,17, C. Grandia, L. Guiduccia,b,17, S. Lo Meoa,15, L. Lunertia,b,16, S. Marcellinia, G. Masettia, F.L. Navarraa,b,16, A. Perrottaa,16, F. Primaveraa,b,16, A.M. Rossia,b,17, T. Ravellia,b,17

INFIN Sezione di Cataniaa, Universit\`a di Cataniab, Catania, Italy
S. Costaa,b,52, A. Di Mattiaa,52, R. Potenzaa,b,52, A. Tricomia,b,52, C. Tuvea,b,15

INFIN Sezione di Firenzea, Universit\`a di Firenzeb, Firenze, Italy
G. Barbaglia,18, G. Bardellia,b,18, B. Camaiania,b,18, A. Cassesea,18, R. Ceccarellia,18, V. Ciullia,b,18, C. Civininia,b,18, R. D’Alessandroa,b,18, E. Focardia,b,18, G. Latinoa,b,18, P. Lenzaa,b,18, M. Lizzioa,b,18, M. Meschinia,18, S. Paolettia,18, A. Papanastassioua,b, G. Sguazzonia,18, L. Viliania,18

INFIN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi, S. Bianco, S. Meola53, D. Piccolo

INFIN Sezione di Genovaa, Universit\`a di Genovab, Genova, Italy
P. Chatagnona, F. Ferroa,18, E. Robuttia,18, S. Tosia,b,18

INFIN Sezione di Milano-Bicoccaa, Universit\`a di Milano-Bicoccab, Milano, Italy
A. Benagliaa,19, G. Boldrinia,19, F. Brivioa,19, F. Cetorellia,19, F. De Guioa,b,19, M.E. Dinardoa,b,19, P. Dinia,b,19, S. Gennaia,19, A. Ghezzia,b,19, P. Govonia,b,19, L. Guzzia,19, M.T. Lucchinia,b,19, M. Malbertia,19, S. Malvezzia,19, A. Massironia,19, D. Menascea,19, L. Moronia,b,19, M. Paganonia,b,19, D. Pedrinia,19, B.S. Pinolinia,19, S. Ragazzia,b,19, N. Redaellia,19, T. Tabarelli de Fatisa,b,19, D. Zuoloa,19
INFN Sezione di Napoli, Università di Napoli 'Federico II', Napoli, Italy; Università della Basilicata, Potenza, Italy; Università G. Marconi, Roma, Italy
S. Buontempo, A. Cagnotta, F. Carnevali, N. Cavallo, A. De Iorio, F. Fabozzi, A.O.M. Iorio, L. Lista, P. Paolucci, B. Rossi, C. Sciaccia

INFN Sezione di Padova, Università di Padova, Padova, Italy; Università di Trento, Trento, Italy

INFN Sezione di Pavia, Università di Pavia, Pavia, Italy
S. Abu Zeid, C. Aimé, A. Braghieri, S. Calzaferri, D. Fiorina, P. Montagna, V. Re, C. Riccardi, P. Salvini, I. Vai, P. Vitulo

INFN Sezione di Perugia, Università di Perugia, Perugia, Italy

INFN Sezione di Pisa, Università di Pisa, Scuola Normale Superiore di Pisa, Pisa, Italy; Università di Siena, Siena, Italy

INFN Sezione di Roma, Sapienza Università di Roma, Roma, Italy

INFN Sezione di Torino, Università di Torino, Torino, Italy; Università del Piemonte Orientale, Novara, Italy

INFN Sezione di Trieste, Università di Trieste, Trieste, Italy
National Central University, Chung-Li, Taiwan
C. Adloff, C.M. Kuo, W. Lin, P.K. Rout, P.C. Tiwari, S.S. Yu

National Taiwan University (NTU), Taipei, Taiwan

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
C. Asawatangtrakuldee, N. Srimanobhas, V. Wachirapusanand

Çukurova University, Physics Department, Science and Art Faculty, Adana, Turkey

Middle East Technical University, Physics Department, Ankara, Turkey
K. Ocalan, M. Yalvac

Bogazici University, Istanbul, Turkey
B. Akgun, I.O. Atakisi, E. Gülmez, M. Kaya, O. Kaya, S. Tekten

Istanbul Technical University, Istanbul, Turkey
A. Cakir, K. Cankocak, Y. Komurcu, S. Sen

Istanbul University, Istanbul, Turkey

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkiv, Ukraine
A. Boyaryntsev, B. Grynyov

National Science Centre, Kharkiv Institute of Physics and Technology, Kharkiv, Ukraine
L. Levcuk

University of Bristol, Bristol, United Kingdom

Imperial College, London, United Kingdom
Northwestern University, Evanston, Illinois, USA

University of Notre Dame, Notre Dame, Indiana, USA

The Ohio State University, Columbus, Ohio, USA
A. Basnet, B. Bylsma, M. Carrigan, L.S. Durkin, C. Hill, M. Joyce, A. Lesauvage, M. Nunez Ornelas, K. Wei, B.L. Winer, B. R. Yates

Princeton University, Princeton, New Jersey, USA

University of Puerto Rico, Mayaguez, Puerto Rico, USA
S. Malik

Purdue University, West Lafayette, Indiana, USA

Purdue University Northwest, Hammond, Indiana, USA
J. Dolen, N. Parashar, A. Pathak

Rice University, Houston, Texas, USA

University of Rochester, Rochester, New York, USA

The Rockefeller University, New York, New York, USA
K. Goulianos

Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA

University of Tennessee, Knoxville, Tennessee, USA
Also at Universidade Estadual de Campinas, Campinas, Brazil
6 Also at Federal University of Rio Grande do Sul, Porto Alegre, Brazil
7 Also at UFMS, Nova Andradina, Brazil
8 Also at Henan Normal University, Xinxiang, China
9 Now at Nanjing Normal University Department of Physics, Nanjing, China
10 Also at Sun Yat-Sen University, Guangzhou, China
11 Now at The University of Iowa, Iowa City, Iowa, USA
12 Also at University of Chinese Academy of Sciences, Beijing, China
13 Also at University of Chinese Academy of Sciences, Beijing, China
14 Also at Université Libre de Bruxelles, Bruxelles, Belgium
15 Also at an institute or an international laboratory covered by a cooperation agreement with CERN
16 Also at Helwan University, Cairo, Egypt
17 Now at Zewail City of Science and Technology, Zewail, Egypt
18 Also at British University in Egypt, Cairo, Egypt
19 Now at Ain Shams University, Cairo, Egypt
20 Also at Birla Institute of Technology, Mesra, Mesra, India
21 Also at Purdue University, West Lafayette, Indiana, USA
22 Also at Université de Haute Alsace, Mulhouse, France
23 Also at Department of Physics, Tsinghua University, Beijing, China
24 Also at Tbilisi State University, Tbilisi, Georgia
25 Also at The University of the State of Amazonas, Manaus, Brazil
26 Also at Erzincan Binali Yildirim University, Erzincan, Turkey
27 Also at University of Hamburg, Hamburg, Germany
28 Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
29 Also at Isfahan University of Technology, Isfahan, Iran
30 Also at Bergische University Wuppertal (BUW), Wuppertal, Germany
31 Also at Brandenburg University of Technology, Cottbus, Germany
32 Also at Forschungszentrum Jülich, Juelich, Germany
33 Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
34 Also at Physics Department, Faculty of Science, Assiut University, Assiut, Egypt
35 Also at Wigner Research Centre for Physics, Budapest, Hungary
36 Also at Institute of Physics, University of Debrecen, Debrecen, Hungary
37 Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
38 Now at Universitatea Babes-Bolyai - Facultatea de Fizica, Cluj-Napoca, Romania
39 Also at Faculty of Informatics, University of Debrecen, Debrecen, Hungary
40 Also at Punjab Agricultural University, Ludhiana, India
41 Also at UPES - University of Petroleum and Energy Studies, Dehradun, India
42 Also at University of Visva-Bharati, Santiniketan, India
43 Also at University of Hyderabad, Hyderabad, India
44 Also at Indian Institute of Science (IISc), Bangalore, India
45 Also at IIT Bhubaneswar, Bhubaneswar, India
46 Also at Institute of Physics, Bhubaneswar, India
47 Also at Deutsches Elektronen-Synchrotron, Hamburg, Germany
48 Also at Department of Physics, Isfahan University of Technology, Isfahan, Iran
49 Also at Sharif University of Technology, Tehran, Iran
50 Also at Department of Physics, University of Science and Technology of Mazandaran, Behshahr, Iran
51 Also at Italian National Agency for New Technologies, Energy and Sustainable Economic
Development, Bologna, Italy

52 Also at Centro Siciliano di Fisica Nucleare e di Struttura Della Materia, Catania, Italy
53 Also at Università degli Studi Guglielmo Marconi, Roma, Italy
54 Also at Scuola Superiore Meridionale, Università di Napoli ‘Federico II’, Napoli, Italy
55 Also at Fermi National Accelerator Laboratory, Batavia, Illinois, USA
56 Also at Università di Napoli ‘Federico II’, Napoli, Italy
57 Also at Consiglio Nazionale delle Ricerche - Istituto Officina dei Materiali, Perugia, Italy
58 Also at Riga Technical University, Riga, Latvia
59 Also at Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
60 Also at Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico
61 Also at Trincomalee Campus, Eastern University, Sri Lanka, Nilaveli, Sri Lanka
62 Also at INFN Sezione di Pavia, Università di Pavia, Pavia, Italy
63 Also at National and Kapodistrian University of Athens, Athens, Greece
64 Also at Ecole Polytechnique Fédérale Lausanne, Lausanne, Switzerland
65 Also at University of Vienna Faculty of Computer Science, Vienna, Austria
66 Also at Universität Zürich, Zurich, Switzerland
67 Also at Stefan Meyer Institute for Subatomic Physics, Vienna, Austria
68 Also at Laboratoire d’Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-le-Vieux, France
69 Also at Near East University, Research Center of Experimental Health Science, Mersin, Turkey
70 Also at Konya Technical University, Konya, Turkey
71 Also at Izmır Bakircay University, İzmir, Turkey
72 Also at Adiyaman University, Adiyaman, Turkey
73 Also at Necmettin Erbakan University, Konya, Turkey
74 Also at Bozok Universitetesi Rektörlüğü, Yozgat, Turkey
75 Also at Marmara University, Istanbul, Turkey
76 Also at Milli Savunma University, Istanbul, Turkey
77 Also at Kafkas University, Kars, Turkey
78 Also at Hacettepe University, Ankara, Turkey
79 Also at Istanbul University - Cerrahpasa, Faculty of Engineering, Istanbul, Turkey
80 Also at Yıldız Technical University, Istanbul, Turkey
81 Also at Vrije Universiteit Brussel, Brussel, Belgium
82 Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
83 Also at University of Bristol, Bristol, United Kingdom
84 Also at IPPP Durham University, Durham, United Kingdom
85 Also at Monash University, Faculty of Science, Clayton, Australia
86 Now at an institute or an international laboratory covered by a cooperation agreement with CERN
87 Also at Università di Torino, Torino, Italy
88 Also at Bethel University, St. Paul, Minnesota, USA
89 Also at Karamanoğlu Mehmetbey University, Karaman, Turkey
90 Also at California Institute of Technology, Pasadena, California, USA
91 Also at United States Naval Academy, Annapolis, Maryland, USA
92 Also at Bingol University, Bingol, Turkey
93 Also at Georgian Technical University, Tbilisi, Georgia
94 Also at Sinop University, Sinop, Turkey
Also at Erciyes University, Kayseri, Turkey
Also at Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), Bucharest, Romania
Also at Texas A&M University at Qatar, Doha, Qatar
Also at Kyungpook National University, Daegu, Korea
Also at another institute or international laboratory covered by a cooperation agreement with CERN
Also at Universiteit Antwerpen, Antwerpen, Belgium
Also at Yerevan Physics Institute, Yerevan, Armenia
Also at Northeastern University, Boston, Massachusetts, USA
Also at Imperial College, London, United Kingdom
Also at Institute of Nuclear Physics of the Uzbekistan Academy of Sciences, Tashkent, Uzbekistan