Observation of four top quark production in proton-proton collisions at $\sqrt{s} = 13$ TeV

The CMS Collaboration*

Abstract

The observation of the production of four top quarks in proton-proton collisions is reported, based on a data sample collected by the CMS experiment at a center-of-mass energy of 13 TeV in 2016–2018 at the CERN LHC and corresponding to an integrated luminosity of 138 fb$^{-1}$. Events with two same-sign, three, or four charged leptons (electrons and muons) and additional jets are analyzed. Compared to previous results in these channels, updated identification techniques for charged leptons and jets originating from the hadronization of b quarks, as well as a revised multivariate analysis strategy to distinguish the signal process from the main backgrounds, lead to an improved expected signal significance of 4.9 standard deviations above the background-only hypothesis. Four top quark production is observed with a significance of 5.6 standard deviations, and its cross section is measured to be $17.7^{+3.7}_{-3.5}$ (stat)$^{+2.3}_{-1.9}$ (syst) fb, in agreement with the available standard model predictions.

Submitted to Physics Letters B
1 Introduction

Four top quark ($t\bar{t}$) production in proton-proton (pp) collisions is among the rarest standard model (SM) processes currently accessible at hadron colliders. While the production occurs predominantly through the strong interaction [1–3], nonnegligible contributions arise also from electroweak (EW) processes [4–6]. Example leading-order (LO) Feynman diagrams are shown in Fig. 1. The SM cross section is calculated at next-to-LO (NLO) in quantum chromodynamics (QCD) and EW theory, including soft-gluon emission corrections at next-to-leading logarithmic accuracy, to be $13.4^{+1.0}_{-1.8}$ fb at $\sqrt{s} = 13$ TeV [6]. The quoted uncertainty is from scale variations and the parton distribution functions (PDFs).

Due to EW contributions involving the exchange of a Higgs boson (H), as shown in Fig. 1 (right), the measurement of the $t\bar{t}t\bar{t}$ production cross section provides a way to measure the top quark Yukawa coupling [7, 8], complementary to its extraction from measurements of Higgs boson production in association with a top quark pair ($t\bar{t}$) [9] or $t\bar{t}$ cross section measurements [10, 11]. The $t\bar{t}t\bar{t}$ production process is also of interest as a probe for new physics. Many models of physics beyond the SM (BSM) introduce an extension of the Higgs sector, resulting in additional scalar particles that have Yukawa-like interactions with top quarks. Such new particles would enhance the $t\bar{t}t\bar{t}$ production cross section [12–15]. Supersymmetric extensions of the SM predict new heavy, strongly interacting particles that can decay to top quarks, leading to $t\bar{t}t\bar{t}$ production via intermediate supersymmetric particles [16–22]. Other BSM scenarios are predicted to affect $t\bar{t}t\bar{t}$ production as well [23–25], and model-independent evaluations of modifications to the SM in an effective field theory setup have shown the importance of $t\bar{t}t\bar{t}$ production measurements to constrain these [26–33].

The ATLAS [34] and CMS [35] Collaborations at the CERN LHC performed searches for $t\bar{t}t\bar{t}$ production using the pp collision data recorded between 2015 and 2018, corresponding to an integrated luminosity of about 140 fb$^{-1}$ and covering the decay channels with zero to four electrons and/or muons (in the following referred to as “leptons”) [36–45]. The dilepton channel is further divided into events where the charge of the two leptons has the same or opposite sign (in the following referred to as same- or opposite-sign lepton pairs, respectively). So far, these searches found evidence for $t\bar{t}t\bar{t}$ production with a significance of more than three standard deviations (SDs) from the background-only hypothesis [42–44]. However, the observation level of five SDs [46] was not reached. In both experiments, the $t\bar{t}t\bar{t}$ signal was measured with a significance larger than the expected one, and with a measured cross section higher than the SM prediction [42–44], indicating either statistical fluctuations or an enhancement caused by the presence of BSM physics. Thus, it is of crucial importance to further increase the sensitivity of the $t\bar{t}t\bar{t}$ measurements.

In this Letter, we present a search for $t\bar{t}t\bar{t}$ production in events with two same-sign, three, or four leptons, using pp collision data recorded by the CMS experiment in 2016–2018 and cor-
responding to an integrated luminosity of 138 fb$^{-1}$. This measurement supersedes the results from Ref. [41] that analyzed events with two same-sign or at least three leptons selected from the same data set and found 2.6 (2.7) SDs of observed (expected) significance for $t\bar{t}t\bar{t}$ production. Notable improvements, discussed later in this Letter, are achieved in the lepton identification and the tagging of jets originating from the hadronization of bottom (b) quarks, as well as from a revised analysis strategy for the discrimination between signal and background processes based on the application of machine learning techniques. The $t\bar{t}t\bar{t}$ production cross section $\sigma(t\bar{t}t\bar{t})$ is extracted with a profile likelihood fit to distributions that provide optimal signal-to-background discrimination. The backgrounds of $t\bar{t}$ production in association with a W or Z boson ($t\bar{t}W$ and $t\bar{t}Z$, respectively) are estimated with free normalization parameters in the fit. The aforementioned improvements increase the sensitivity of the analysis and allow for the observation of the $t\bar{t}t\bar{t}$ production process with a statistical significance above five SDs. When this Letter was in the final stages of preparation, the ATLAS Collaboration also reported the observation of $t\bar{t}t\bar{t}$ production [47] with an observed (expected) significance of 6.1 (4.3) SDs.

Tabulated results are provided in the HEPData record for this analysis [48].

2 The CMS detector and event reconstruction

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter, each composed of a barrel and two endcap sections. Forward calorimeters extend the pseudorapidity (η) coverage provided by the barrel and endcap detectors. Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [35].

Events of interest are selected using a two-tiered trigger system. The first level, composed of custom hardware processors, uses information from the calorimeters and muon detectors to select events at a rate of around 100 kHz within a fixed latency of about 4 μs [49]. The second level, known as the high-level trigger, consists of a farm of processors running a version of the full event reconstruction software optimized for fast processing, and reduces the event rate to around 1 kHz before data storage [50].

A global particle-flow (PF) algorithm [51] aims to reconstruct and identify each individual particle in an event, with an optimized combination of information from the various elements of the CMS detector. The primary vertex (PV) is taken to be the vertex corresponding to the hardest scattering in the event, as described in Section 9.4.1 of Ref. [52]. The energy of photons is obtained from the ECAL measurement. The energy of electrons is obtained from a combination of the electron momentum at the PV as determined by the tracker, the energy of the corresponding ECAL cluster, and the energy sum of all bremsstrahlung photons spatially compatible with originating from the electron track. The energy of muons is obtained from the curvature of the corresponding track. The energy of charged hadrons is determined from a combination of their momentum measured in the tracker and the matching calorimeter energy deposits, corrected for the response function of the calorimeters to hadronic showers. Finally, the energy of neutral hadrons is obtained from the corresponding corrected calorimeter energies.

Hadronic jets are clustered from the PF objects using the infrared- and collinear-safe anti-\textit{k}_T algorithm [53, 54] with a distance parameter of 0.4. Jet momentum is determined as the vectorial sum of all PF object momenta in the jet, and is found from simulation to be, on average, within
5–10% of the true momentum over the entire transverse momentum (p_T) spectrum and detector acceptance. Additional pp interactions within the same or nearby bunch crossings (pileup) can contribute additional tracks and calorimetric energy depositions, increasing the apparent jet momentum. To mitigate this effect, charged PF objects identified to be originating from pileup vertices are discarded and an offset correction is applied to correct for remaining contributions. Jet energy corrections are derived from simulation studies so that the average measured energy of jets becomes identical to that of particle-level jets. In situ measurements of the momentum balance in dijet, photon+jet, Z+jet, and multijet events are used to determine any residual differences between the jet energy scale (JES) in data and simulation, and appropriate corrections are made. The jet energy resolution (JER) amounts typically to 15–20% at 30 GeV, 10% at 100 GeV, and 5% at 1 TeV. A smearing procedure is applied to match the JER in simulation to that in data [55]. Additional selection criteria are applied to each jet to remove jets potentially dominated by instrumental effects or reconstruction failures. We retain jets for further analysis if they have $p_T > 25$ GeV and $|\eta| < 2.4$, and are separated by $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} > 0.4$ from any identified lepton, where $\Delta \eta$ and $\Delta \phi$ are the η and azimuthal angle differences between the jet and lepton directions.

The missing transverse momentum vector \vec{p}_T^{miss} is computed as the negative vector sum of the p_T of all the PF objects in an event, including unclustered energy from the PF objects not associated with any reconstructed lepton, photon, or jet [56]. Its magnitude is denoted as p_T^{miss}. The \vec{p}_T^{miss} is modified to account for corrections to the energy scale of the reconstructed jets in the event. Anomalous high-p_T^{miss} events can be due to a variety of reconstruction failures, detector malfunctions, or noncollision backgrounds. Such events are rejected by event filters that are designed to identify more than 85–90% of the spurious high-p_T^{miss} events with a mistagging rate less than 0.1% [56].

Jets originating from b quarks are identified with the DEEPJET algorithm [57–59], with three defined working points (WPs) labeled “loose”, “medium”, and “tight”. The loose WP has a selection efficiency for b quark jets of about 90%, and a misidentification rate for c quark (light-quark or gluon) jets of 49 (18)%). Similarly, the efficiencies for b quark, c quark, and light-quark or gluon jets are about 76, 17, and 3% for the medium WP, and 59, 3, and 0.3% for the tight WP. Compared to the DEEPCSV algorithm used in Ref. [41], the b quark jet selection efficiency at the same light-quark and gluon jet misidentification rate is 5–25% higher with the DEEPJET algorithm [59]. Unless specified otherwise, the term “b jets” is used to refer to jets that pass the loose WP requirements.

3 Simulated event samples

Simulated event samples of the signal and background processes are generated with Monte Carlo generators and used to determine the $tt\bar{t}$ signal acceptance, estimate most background contributions, and provide training data for the machine-learning discriminants. The $tt\bar{t}$ signal process is simulated at NLO in QCD with the MADGRAPH5_aMC@NLO v2.6.0 program [2, 60]. Background samples for $tt\bar{t}$ production in association with a gauge boson (W, Z, γ) or Higgs boson, single top quark production (s channel, Z boson associated, and WZ diboson associated), Z/γ^* production in association with jets (referred to as Z+jets), and $WZ, Z\gamma, WH, WH, ZH$ diboson production are simulated at NLO in QCD with MADGRAPH5_aMC@NLO as well. A simulation with MADGRAPH5_aMC@NLO at LO is performed for $tt\bar{t}$ production in association with two bosons, three top quark production ($tt\bar{t}q, tt\bar{t}q, tt\bar{t}W$, and $tt\bar{t}W$, labeled as ttt), single top quark production in association with a Higgs boson, and same-sign WW diboson production. The POWHEG v2 program [61–69] is used for the simulation of $tt\bar{t}$ production,
single top quark production (t channel and W boson associated), quark-antiquark-initiated ZZ and opposite-sign WW diboson production, and Higgs boson production via gluon and vector boson fusion at NLO in QCD. The gluon-gluon-initiated ZZ diboson production process is simulated with the MCFM v7.0.1 generator [70–72] at LO in QCD. The NNPDF3.1NNLO [73] PDFs are used in the matrix-element calculation of all processes. The simulation of parton showering, hadronization, and underlying event is performed with the PYTHIA v8.230 program [74] using the CP5 tune [75]. Double counting of partons generated with MADGRAPH5_aMC@NLO and PYTHIA is eliminated with the FxFx (MLM [77]) matching scheme for NLO (LO) samples. In POWHEG samples, the Higgs boson decay to four leptons is simulated with the JHU_GEN v5.2.5 program [78]. Pileup collisions are overlayed to each simulated event, and the generated distribution of the number of events per bunch crossing is matched to that observed in data. All simulated events are processed with a full simulation of the CMS detector based on the GEANT4 toolkit [79].

4 Lepton selection

Electrons are reconstructed via a combination of tracker and ECAL measurements [80, 81] in the range $|\eta| < 2.5$, and electrons in the barrel–endcap transition region $1.44 < |\eta| < 1.57$ are removed because of the not optimal electron reconstruction in this region. The curvature of the electron track is evaluated with three different methods to estimate the electron charge, and we require all three charge evaluations to agree for each selected electron, thereby reducing the background from charge mismeasurements (referred to as “charge misID”) by a factor of five with an efficiency of about 97% [82]. Muons are reconstructed in the range $|\eta| < 2.4$ by combining information from the tracker, the muon spectrometers, and the calorimeters in a global fit [83]. The charge mismeasurements of muons are negligible [84, 85].

We select electrons and muons with $p_T > 10 \text{ GeV}$ and require that they are compatible with originating from the PV and fulfill a loose set of identification (ID) criteria [80, 83]. The relative isolation I_{rel} of a lepton is defined as the scalar p_T sum of all particles within a certain distance ΔR around the lepton, divided by the lepton p_T. We use a p_T-dependent distance [86] of $\Delta R < 0.2$ for leptons with $p_T < 50 \text{ GeV}$, $\Delta R < 10 \text{ GeV} / p_T$ for $50 < p_T < 200 \text{ GeV}$, and $\Delta R < 0.05$ for $p_T > 200 \text{ GeV}$, and require all leptons to have $I_{\text{rel}} < 0.4$.

To distinguish leptons originating directly from the prompt decay of top quarks or massive bosons (prompt leptons) from both genuine leptons produced in hadron decays and photon conversions or jet constituents misidentified as leptons (nonprompt leptons), we employ gradient boosted decision trees (BDTs) trained with the XGBOOST program [87], following the methods developed for various CMS measurements and searches with multilepton signatures [9, 88–92]. Simulated $tt\bar{t}$, $t\bar{t}W$, $t\bar{t}Z$, $t\bar{t}H$, and tZq ($t\bar{t}$) samples are used to provide the prompt-lepton (nonprompt-lepton) training data. The input variables for the BDTs are the lepton p_T and $|\eta|$, isolation information, variables quantifying the consistency of the lepton track with the PV, and properties of the nearest jet defined as the jet that includes the PF particle corresponding to the reconstructed lepton. For electrons, the multivariate discriminant from Ref. [80] is used as additional input. For muons, an additional input is the segment compatibility defined in Ref. [83]. Besides the lepton p_T, the most important input variables are the ratio of the lepton p_T to the nearest jet p_T and the DEEPJET score of the nearest jet, and also the multivariate discriminant in the case of the electron BDT. A dedicated study of the BDT strategy applied here with the full list of input variables is presented in Ref. [93] for the case of muons.

We define two sets of lepton ID criteria labeled “loose” and “tight”. Electrons and muons...
pass the tight ID if their BDT discriminant value is above a certain threshold. The efficiencies of this selection are shown in Fig. 2, and compared to the efficiencies of the ID criteria used in Ref. [41]. To compensate for larger background contributions from nonprompt electrons compared to those from nonprompt muons, the threshold for tight electrons is set at a lower misidentification probability for nonprompt leptons, resulting also in a smaller prompt-lepton efficiency. The loose ID is defined by requiring leptons to either pass the tight ID or a set of requirements on the p_T ratio and the nearest jet $D_{\text{DEEP}}J$ score.

Figure 2: Efficiency of selecting prompt leptons as a function of the misidentification probability for nonprompt leptons evaluated in simulated $t\bar{t}$ events for the electron (red solid line) and muon (blue dashed line) ID BDT, shown for leptons with $10 < p_T < 25 \text{ GeV}$ (left) and $p_T > 25 \text{ GeV}$ (right). Indicated with filled markers are the efficiencies for the ID criteria applied in this measurement and with empty markers those for the ID criteria applied in Ref. [41], where red circles and blue squares are used for electron and muon criteria, respectively.

5 Event selection and search strategy

The analyzed event sample is collected with a combination of triggers that require the presence of one, two, or three leptons. Events must contain between two and four loose leptons, with $p_T > 25$ and 20 GeV for the highest p_T (leading) and second-highest p_T (subleading) lepton, and at least two jets, of which at least one is identified as b jet. Events with two (three and four) leptons are removed if any lepton pair has an invariant mass below 20 (12) GeV, to reduce backgrounds from leptonic decays of low-mass resonances. Signal regions (SRs) and control regions (CRs) are defined using events in which all leptons pass the tight ID criteria, whereas events with at least one loose but not tight lepton are used as a sideband for the nonprompt-lepton background estimation. In events with two leptons, the SRs and CRs additionally require both leptons to have the same sign, and events with opposite-sign leptons are used as a sideband for the estimation of the charge-misID background. In events with four leptons, we additionally require the sum of the lepton charges to be zero. For the SR and CR definitions, the number of jets and b jets (N_j and N_b), the scalar p_T sum of all jets (H_T), and the invariant mass $m(\ell\ell)$ of opposite-sign same-flavor (OSSF) lepton pairs are used. A schematic representation of the SR and CR definitions is shown in Fig. 3.

For the events with two same-sign leptons (2ℓ channel), the SR-2ℓ is defined by $N_j \geq 4$, $N_b \geq 2$, and $H_T > 280 \text{ GeV}$, and additionally either $N_j \geq 6$ or $N_b \geq 3$. The CR-2ℓ-45j2b, enriched in tFW production, comprises all events with $4 \leq N_j \leq 5$, $N_b = 2$, and $H_T > 280 \text{ GeV}$. The CR-2ℓ-23j1b, used to constrain both tFW production and nonprompt-lepton backgrounds, is
defined by all events with $H_T > 200$ GeV that fail exactly one of the requirements $N_j \geq 4$, $N_b \geq 2$, or $H_T > 280$ GeV.

The SR-3ℓ for events with three leptons (3ℓ channel) is defined by $N_j \geq 3$, $N_b \geq 2$, $H_T > 200$ GeV, and the requirement that there is no OSSF lepton pair with $|m(\ell\ell) - m_Z| < 15$ GeV (referred to as “Z candidate”). The last requirement, which uses the world-average Z boson mass [94], rejects events consistent with leptonically decaying Z bosons. The CR-3ℓ-2j1b, used to constrain nonprompt-lepton backgrounds, consists of events that pass the SR-3ℓ requirements except that they have $N_j = 2$ or $N_b = 1$. To constrain $t\bar{t}Z$ production, the CR-3ℓ-Z is defined by requiring $H_T > 200$ GeV, the presence of a Z candidate, and that at least one jet passes the medium DEEPJET WP.

No additional jet requirements are imposed on events with four leptons (4ℓ channel). Events that have no Z candidate form the SR-4ℓ, while events with exactly one Z candidate form the CR-4ℓ-Z enriched in $t\bar{t}Z$ production.

To enhance the separation of signal events and those from different background processes, we employ multiclassification BDTs trained with the TMVA program [95]. The BDTs provide output scores for three classes of events: the $t\bar{t}t\bar{t}$ signal, associated $t\bar{t}$ production with a heavy boson ($t\bar{t}Z$, $t\bar{t}W$, and $t\bar{t}H$, referred to as $t\bar{t}X$), and $t\bar{t}$ production, which is the dominant contribution to the nonprompt-lepton and charge-misID backgrounds. Simulated event samples of $t\bar{t}t\bar{t}$, $t\bar{t}Z$, $t\bar{t}W$, and $t\bar{t}H$ production are used in the training. Kinematic differences and different background compositions motivate separate BDT trainings per decay channel, but sufficient simulated events in the training samples are required as well. Since the size of the available 4ℓ samples is limited, we train one BDT for the combined 3ℓ+4ℓ channel and a second one for the 2ℓ channel.

The variables used in the BDT training are listed in Table 1. The 3ℓ+4ℓ channels have at most one hadronically decaying top quark and thus we use more observables related to the reconstruction of W bosons and top quarks from leptons and p_T^{miss}, while the 2ℓ channel has two hadronically decaying top quarks and we use specific observables targeting the reconstruction of both. The modeling of each input variable in the simulated samples is validated in data. The BDT scores can be interpreted as measures of how likely an event is to originate from the corresponding classes, and good agreement between simulation and data is found for the shapes of their distributions in the CRs.

Events selected in the SRs are further split according to the class that yields the highest BDT score, resulting in “$t\bar{t}t\bar{t}$-like”, “$t\bar{t}X$-like”, and “$t\bar{t}$-like” SR classes. These SR classes, together with the CRs, are separate inputs to the fit for the cross section extraction. Due to the low number of events, the $t\bar{t}$ class is added to the $t\bar{t}$ class in SR-4ℓ.

Figure 3: Schematic representation of the event selection and categorization.

Table 1: List of the input variables to the event multiclassification BDTs. The last two columns indicate the importance rank of the observables in the 2ℓ and $3\ell+4\ell$ BDT trainings, respectively, and a dash indicates that the observable is not used in that training. The m_{T2} variable, defined in Refs. [96, 97], is constructed from p_T^{miss} and two four-momenta of the particles or particle systems specified in the table.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>2ℓ</th>
<th>$3\ell+4\ell$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\max_2 \text{DJ}$</td>
<td>Second-highest DEEPJET score of any jet</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$\max_3 \text{DJ}$</td>
<td>Third-highest DEEPJET score of any jet</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>$\max_4 \text{DJ}$</td>
<td>Fourth-highest DEEPJET score of any jet</td>
<td>29</td>
<td>—</td>
</tr>
<tr>
<td>$\text{DJ}(j_1)$</td>
<td>DEEPJET score of leading jet</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>$\text{DJ}(j_2)$</td>
<td>DEEPJET score of subleading jet</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>$\text{DJ}(j_3)$</td>
<td>DEEPJET score of jet with third-highest p_T</td>
<td>16</td>
<td>18</td>
</tr>
<tr>
<td>$\text{DJ}(j_4)$</td>
<td>DEEPJET score of jet with fourth-highest p_T</td>
<td>—</td>
<td>22</td>
</tr>
<tr>
<td>$\Delta R(\ell_1, \ell_2)$</td>
<td>ΔR between leading and subleading lepton</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>$\Delta \phi(\ell_1, \ell_2)$</td>
<td>$\Delta \phi$ between leading and subleading lepton</td>
<td>5</td>
<td>—</td>
</tr>
<tr>
<td>$\min \Delta R(b, b)$</td>
<td>Smallest ΔR between any two b jets</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>$\min \Delta R(\ell, b)$</td>
<td>Smallest ΔR between any lepton and b jet</td>
<td>6</td>
<td>—</td>
</tr>
<tr>
<td>$\min_2 \Delta R(\ell, b)$</td>
<td>Second-smallest ΔR between any lepton and b jet</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>$m(t_1)$</td>
<td>Invariant mass of any three jets, of which one is identified as b jet, that is closest to the top quark mass</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>$m(W_1)$</td>
<td>Invariant mass of any two jets used for $m(t_1)$ that is closest to the W boson mass</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>$m(t_2)$</td>
<td>Invariant mass of any three jets, of which one is identified as b jet and none of which is used for $m(t_1)$, that is closest to the top quark mass</td>
<td>23</td>
<td>—</td>
</tr>
<tr>
<td>$m(W_2)$</td>
<td>Invariant mass of any two jets used for $m(t_2)$ that is closest to the W boson mass</td>
<td>28</td>
<td>—</td>
</tr>
<tr>
<td>H_T</td>
<td>Scalar p_T sum of all jets</td>
<td>14</td>
<td>8</td>
</tr>
<tr>
<td>p_T^{miss}</td>
<td>Missing transverse momentum</td>
<td>20</td>
<td>13</td>
</tr>
<tr>
<td>N_j</td>
<td>Number of jets</td>
<td>24</td>
<td>23</td>
</tr>
<tr>
<td>N_{b}^{tight}</td>
<td>Number of jets passing the tight DEEPJET WP</td>
<td>27</td>
<td>24</td>
</tr>
<tr>
<td>N_{b}^{medium}</td>
<td>Number of jets passing the medium DEEPJET WP</td>
<td>30</td>
<td>—</td>
</tr>
<tr>
<td>$p_T(\ell_1)$</td>
<td>Highest p_T of any lepton</td>
<td>19</td>
<td>14</td>
</tr>
<tr>
<td>$p_T(\ell_2)$</td>
<td>Second-highest p_T of any lepton</td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>$p_T(\ell_3)$</td>
<td>Third-highest p_T of any lepton</td>
<td>—</td>
<td>9</td>
</tr>
<tr>
<td>$p_T(j_1)$</td>
<td>Highest p_T of any jet</td>
<td>18</td>
<td>12</td>
</tr>
<tr>
<td>$p_T(j_2)$</td>
<td>Second-highest p_T of any jet</td>
<td>22</td>
<td>—</td>
</tr>
<tr>
<td>$p_T(j_3)$</td>
<td>Third-highest p_T of any jet</td>
<td>—</td>
<td>10</td>
</tr>
<tr>
<td>$p_T(j_4)$</td>
<td>Fourth-highest p_T of any jet</td>
<td>11</td>
<td>—</td>
</tr>
<tr>
<td>$p_T(j_5)$</td>
<td>Fifth-highest p_T of any jet</td>
<td>13</td>
<td>21</td>
</tr>
<tr>
<td>$m_T(\ell_1)$</td>
<td>Transverse mass of leading lepton and p_T^{miss}</td>
<td>17</td>
<td>19</td>
</tr>
<tr>
<td>$m_T(\ell_2)$</td>
<td>Transverse mass of subleading lepton and p_T^{miss}</td>
<td>21</td>
<td>16</td>
</tr>
<tr>
<td>$m_{T2}(\ell)$</td>
<td>m_{T2} variable constructed from leading and subleading leptons</td>
<td>—</td>
<td>20</td>
</tr>
<tr>
<td>$m_{T2}(b)$</td>
<td>m_{T2} variable constructed from leading and subleading b jets</td>
<td>25</td>
<td>—</td>
</tr>
<tr>
<td>$m_{T2}(\ell+b)$</td>
<td>m_{T2} variable constructed from two lepton+jet systems built with leading two leptons and leading two b jets</td>
<td>26</td>
<td>—</td>
</tr>
</tbody>
</table>
The approach followed here is different from the BDT approach of Ref. [41] in several aspects. We train separate BDTs for the 2\ell and 3\ell+4\ell channels, with an extended set of input variables separately optimized for the two channels. Especially the usage of \textsc{DeepJet} discriminants of several jets and \Delta R information between leptons and b jets, which were not used in Ref. [41], improves the sensitivity of our BDTs, as indicated by the high importance ranking of these observables shown in Table 1. The performance also benefits from looser requirements in the initial event selection, allowing an improvement of the BDTs with respect to the sensitivity achieved by a series of tight one-dimensional selections. Finally, the setup as a multiclassifier that simultaneously separates two characteristically different background classes facilitates a good separation of processes, and the use of all output classes in the fit improves the constraints on the main background contributions.

6 Background estimation

Background contributions to the SRs are categorized into processes in which all selected leptons are prompt (prompt background) and processes with at least one nonprompt lepton (non-prompt background). In the 2\ell channel, we additionally separate prompt-background contributions from the charge-misID backgrounds. Prompt backgrounds are estimated from the simulated samples described in Section 3, while nonprompt and charge-misID backgrounds are estimated from sideband samples in data. All predictions from simulation are normalized according to the measured integrated luminosity and state-of-the-art cross section predictions.

Prompt-background contributions with top quarks are grouped into t\bar{t}X, ttt, and other associated top quark production processes labeled “other t”. Contributions from t\bar{t} production, including t\bar{t}b\bar{b} and other contributions with additional jets, do not contribute to the prompt background as they either need to have a charge-misID lepton or an additional nonprompt lepton to pass the event selection. Instead, these processes are the dominant contributions to the nonprompt and charge-misID backgrounds. Prompt-background contributions without top quarks are mainly due to the production of two or three heavy vector bosons, grouped together as “VV(V)”, where the leptons are from leptonic boson decays and the jets originate mostly from additional QCD radiation. Contributions with photon conversions, both in processes with top quarks and only vector bosons, are grouped together as “X\gamma”.

The t\bar{t}W background is relevant in the 2\ell and 3\ell channels, t\bar{t}Z in the 3\ell and 4\ell channels with smaller contributions in the 2\ell channel, and t\bar{t}H in all channels. The t\bar{t}W prediction is normalized to a cross section of 722 ± 74 fb [98], t\bar{t}Z to 859 ± 80 fb [99], and t\bar{t}H to 504 ± 39 fb [99]. The quoted uncertainties are from scale variations and PDF uncertainties evaluated in the SM cross section calculations, and are different from the normalization uncertainties we consider in our measurement and discuss in Section 7. The contribution from ttt production to the SR tttt classes is predicted to be less than 9% of the tttt yield, but can be important since the kinematic properties are similar to the tttt signal process. We normalize the ttt contribution to a cross section of 2.0 ± 0.3 fb, calculated at NLO in QCD and including LO EW corrections [100]. The contributions in other t are small, with the largest remaining contribution being tZq production, normalized to a cross section of 94.2 ± 3.1 fb for simulated events with m(\ell\ell) > 30 GeV [101]. We show the ttt and other t contributions separately in the figures for the SR tttt classes, but merge ttt into other t in all other cases.

The main background contributions in the VV(V) group are WZ production in the 2\ell and 3\ell channels, and ZZ production in the 4\ell channel. The number of additional jets in the predicted WZ and ZZ samples is known to be underestimated [9, 89, 102] and thus studied in two data validation regions. A sample of WZ candidate events in data is selected by requiring three
leptons, one Z candidate, a three-lepton invariant mass $m(\ell\ell\ell)$ with $|m(\ell\ell\ell) - m_Z| > 15$ GeV, $p_T^{miss} > 30$ GeV, and no b jets. More than 70% of the selected events originate from WZ production, with smaller contributions from nonprompt leptons and ZZ production. A sample of ZZ candidate events in data is selected by requiring four leptons that form two Z candidates, and contributions from other processes to this selection are found to be negligible. A disagreement between data and prediction is observed in the jet multiplicity distribution in both samples, and scale factors are derived per N_ℓ bin that increase the contribution of WZ (ZZ) production at higher jet multiplicities by factors of up to 2.7 (1.8).

The contributions from the dominant prompt-background processes are treated separately in the fit. Effective constraints are obtained from the inclusion of the SR $t\bar{t}X$ classes, as well as the CR-$3\ell-Z$ and CR-$4\ell-Z$, in the cross section extraction. Distributions of the BDT score $t\bar{t}X$ in the SR $t\bar{t}X$ classes are shown in Fig. 4 for the $\mu\mu$ category of SR-2ℓ, SR-3ℓ, and SR-4ℓ. Jet and b jet multiplicity distributions in the CR-$3\ell-Z$ and CR-$4\ell-Z$ are shown in Fig. 5. Due to the high purity of these regions in $t\bar{t}W$ and $t\bar{t}Z$ production, we can extract normalization parameters for these processes from the fit without prior constraints.

Nonprompt-background contributions are estimated with a “tight-to-loose” ratio method [103]. The probabilities for a loose lepton to also pass the tight ID are measured, separately for electrons and muons, as functions of p_T and $|\eta|$ in a data sample enriched in events composed uniquely of jets produced through the strong interaction, which is rich in nonprompt leptons. The measured probability is then applied to data events in a sideband of the SRs and CRs where one or more of the selected leptons fail the tight ID while passing the loose ID. The method is validated in simulation both with $t\bar{t}$ and $Z+\text{jets}$ production events, separately for nonprompt electrons and muons, as well as in comparison of data and predicted background yields in CR-$2\ell-23j1b$, CR-$2\ell-45j2b$, and CR-$3\ell-2j1b$. In all cases, an agreement of better than 30% is found in the most relevant kinematic distributions, and we assign 30% as a normalization uncertainty to the nonprompt background. The agreement in three different selections enriched in nonprompt-lepton backgrounds is shown in Fig. 6.

To determine the charge-misID background, the electron charge-misID probability is determined in simulated $Z+\text{jets}$ samples and parameterized as a function of p_T and $|\eta|$. This proba-
Figure 5: Comparison of the number of observed (points) and predicted (colored histograms) events in the number of jets distribution in CR-3ℓ-Z (left), and in the number of b jets distribution in CR-3ℓ-Z (middle) and CR-4ℓ-Z (right). The vertical bars on the points represent the statistical uncertainties in the data, and the hatched bands the total uncertainty in the predictions. The signal and background yields are shown with their best fit normalizations from the simultaneous fit to the data (“postfit”).

Figure 6: Comparison of the number of observed (points) and predicted (colored histograms) events in the BDT score t\text{f} in the combined CR-2ℓ-23j1b and CR-2ℓ-45j2b (left), in the event yields with negative and positive sum of lepton charges in CR-3ℓ-2j1b (middle), and in the number of jets distribution in the t\text{f} class of the combined SR-2ℓ and SR-3ℓ (right). The vertical bars on the points represent the statistical uncertainties in the data, and the hatched bands the total uncertainty in the predictions. The signal and background yields are shown with their best fit normalizations from the simultaneous fit to the data (“postfit”).

Probability is applied as a scale factor to sideband events in data (i.e., with opposite-sign instead of same-sign leptons) to obtain a prediction of the charge-misID background in the SR-2ℓ. A validation region (its sideband) is defined by requiring exactly two tight same-sign (opposite-sign) electrons that form a Z candidate. To evaluate a possible mismodeling of the charge-misID probability in simulation, we evaluate the ratio of the sideband yields to the validation region yields both in simulation and data, and derive correction factors to the charge-misID probability from the data-to-simulation differences in this ratio. The correction factors are evaluated separately for each year of data taking and integrated over electron p_T and |\eta|. After applying the scale and correction factors to the sideband event yields, the agreement with the validation region yields is better than 15% across all relevant kinematic distributions.
7 Systematic uncertainties

Several sources of systematic uncertainty affect the acceptance and reconstruction efficiency in simulation, the background event yields, and the distributions of the observables used for the signal extraction. Experimental uncertainties in the integrated luminosity, lepton selection efficiency, trigger efficiency, JES, b-tagging efficiency, and nonprompt-background estimation are considered with several sources each, of which some are correlated and others uncorrelated between the years of data taking. Only the experimental uncertainties from JER and unclustered p_T^{miss} contributions are fully uncorrelated between the data-taking years. Uncertainties in the simulated pileup distribution, background normalization, and shapes of the fitted observables estimated from simulation are fully correlated between the data-taking years.

The measured integrated luminosity values for the three data-taking years have uncertainties between 1.2 and 2.5% [104–106], while the overall uncertainty for the combined data set is 1.6%, affecting both the background predictions from simulation and the measurement of the $t\bar{t}$ cross section. To evaluate the uncertainty in the distribution of pileup events in simulation, we vary the total pp inelastic cross section by ±4.6%.

The efficiency of the tight ID selection of electrons and muons is measured in data and simulation with the “tag-and-probe” method in $Z \rightarrow \ell^+\ell^-$ events [107]. Per-lepton correction factors are derived and applied to simulated events, and statistical and systematic uncertainties are considered. The trigger efficiency is measured by selecting events with two or three leptons in an unbiased data sample, collected with triggers on p_T^{miss} or hadronic activity, and corrections are derived to match the efficiency in simulation to that observed in data. A systematic uncertainty of 3% is assigned to simulated event yields to cover residual differences, and additionally the statistical uncertainties in the measurement are considered. Special correction factors are applied for a gradual shift in the timing of the ECAL inputs to the first-level trigger, which caused a specific trigger inefficiency during the 2016 and 2017 data-taking periods [49].

The JES and JER uncertainties are taken into account by applying variations to the energy of the reconstructed jets in simulated events, considering various uncertainty sources split between detector regions and data-taking years [55]. The JES variations, as well as an additional variation to account for uncertainty contributions from unclustered PF particles [56], are also propagated to the p_T^{miss}. Corrections are applied to simulated events to match the shape of the DETERMINANT discriminant in simulation to that in data, and uncertainties in the correction factors are evaluated separately for heavy- and light-flavor or gluon jets [57].

Uncertainties in the background predictions include normalization uncertainties of 7.7% for $t\bar{t}H$ [99], 6.2% for WZ [108], 20% for ttt [100], 20% for other t [92], 6% for VV(V) [109, 110], and 5% for $X\gamma$ [111], as well as statistical uncertainties in the N_j scale factors applied to the WZ and ZZ backgrounds. The normalization of the $t\bar{t}Z$ and $t\bar{t}W$ background contributions are not constrained a priori but treated as free parameters in the fit. For the nonprompt-background prediction, the statistical uncertainties in the measured tight-to-loose ratio and the sideband region yields are considered, as well as an overall normalization uncertainty. Normalization uncertainties in the nonprompt and charge-misID backgrounds are assigned based on the observed agreement in the validation tests discussed in Section 6. For the nonprompt background, the uncertainty of 30% is applied separately for nonprompt electrons and muons, and split into two components of 20% each that are either fully correlated or uncorrelated between the data-taking years, to account both for possible systematic effects in the method itself and for potential year-to-year differences. For the charge-misID background, the statistical uncertainty in the event yields in the sideband regions and a normalization uncertainty of 15% are considered.
Various modeling uncertainties are considered for the signal predictions as well as for all simulated background predictions. The choice of the renormalization and factorization scales in the matrix-element calculations are assessed by individual and simultaneous variations up and down by a factor of 2 (excluding the two extreme variations) [112], and evaluating the envelope of the six obtained variations in the fitted distributions separately for each process. The limited knowledge of the proton PDFs is taken into account using NNPDF replicas [73] and applying the procedure described in Ref. [113], resulting in 100 individual variations that are evaluated simultaneously for all processes. For the choice of the renormalization scale for QCD emissions in initial-state (final-state) radiation in the parton shower simulation, individual variations by a factor of 2 up and down are considered, separately (simultaneously) for the considered processes. The variations associated with the modeling uncertainties generally affect the overall normalization, the simulated acceptance, and the shapes of the fitted distributions. Since background normalization uncertainties are assigned separately and no such uncertainty is required when measuring the cross section of the signal process, we remove the impact on the overall normalization of each process before any selection from these variations.

Additional uncertainties are considered to account for a possible mismodeling in the jet multiplicity in ttX production processes. Motivated by dedicated studies of the cross section ratio of tt production in association with additional b jets and light-flavor or gluon jets [114] that find an underprediction of additional b jets in simulated event samples, we assign a conservative uncertainty of 40% as additional normalization uncertainty to the contributions of ttW, ttZ, and ttH production with at least one additional b jet at the particle level, uncorrelated between these processes. Dedicated theoretical studies have evaluated the possible mismodeling in the number of additional jets in ttW production [98], and we apply a corresponding additional uncertainty that reweights the Nj distribution in ttW production with an increase of up to 55% in 2ℓ events with seven or more jets.

8 Results

The measured cross sections of the tt̅tt signal process and the tt̅W and tt̅Z background processes are extracted from a simultaneous binned profile likelihood fit to the data in the SRs and CRs [115, 116]. A binned likelihood function \(L(r, \theta) \) is constructed as the product of the Poisson probabilities to obtain the observed yields given the predicted signal and background estimates in each bin, and includes all sources of systematic uncertainty as nuisance parameters. The set \(r \) denotes the signal strength modifiers that scale the normalizations of the predicted tt̅tt, tt̅W, and tt̅Z estimates, and the set \(\theta \) denotes the nuisance parameters. Statistical uncertainties in the predicted yields are implemented through a single nuisance parameter in each bin for all processes [117, 118]. The fitted distributions are the BDT scores in the SR classes, the BDT score tt in CR-2ℓ-23j1b and CR-2ℓ-45j2b, the Nj distribution in CR-3ℓ-Z and CR-4ℓ-Z, and the event yields with positive or negative sum of lepton charges in CR-3ℓ-2j1b. In SR-2ℓ, the tt̅tt and tt̅X classes are also split according to the lepton flavors to achieve a better separation of the nonprompt, charge-misID, and Xγ backgrounds. In Fig. 7, the yields in the SR tt̅tt classes after the fit are shown. A comparison of the yields before and after the fit is given in Table 2.

The test statistic \(q(r) = -2 \ln \frac{L(r, \hat{\theta})}{L(\hat{r}, \hat{\theta})} \) is constructed from the sets \(\hat{r} \) and \(\hat{\theta} \) that simultaneously maximize \(L \), and using the set \(\hat{\theta} \), that maximizes \(L \) for a fixed set \(r \). We employ a calculation that simplifies \(q(r) \) using an asymptotic approximation [115, 116]. The observed (expected) statistical significance of the tt̅tt signal is found to be 5.6 (4.9) SDs from the background-only hypothesis. The results when fitting each channel on its own are summarized in Fig. 8, with the largest sensitivity provided by the 2ℓ channel. This constitutes an observation of tt̅tt pro-
The measurement of \(\sigma(\ttbar\ttbar) \) production is measured to be

\[
\sigma(\ttbar\ttbar) = 17.7^{+3.7}_{-3.5} \text{ (stat)} ^{+2.3}_{-1.9} \text{ (syst) fb} = 17.7^{+4.4}_{-4.0} \text{ fb}.
\]

This result is in agreement with the SM prediction of \(13.4^{+1.0}_{-1.8} \text{ fb} \) at the level of 1.0 SDs, when taking uncertainties of both prediction and measurement into account.

The measurement of \(\sigma(\ttbar\ttbar) \) is limited by the statistical uncertainty in the SR event yields. The largest systematic uncertainties arise from the \textsc{DeepJet} correction factors and JES. The largest uncertainty sources related to background modeling and simulation are the additional jets and b jets in tW production, the impact of the tZ normalization, and the modeling of the \ttbar signal process. The values of the nuisance parameters associated with additional jets or b jets in tFX production after the fit are close to zero. The 20 leading nuisance parameters in the fit are shown in Fig. 9.
Table 2: Number of predicted and observed events in the SR-2ℓ and SR-3ℓ \(t\bar{t}t\bar{t} \) classes, both before the fit to the data (“prefit”) and with their best fit normalizations (“postfit”). The uncertainties in the predicted number of events include both the statistical and systematic components. The uncertainties in the total number of predicted background and background plus signal events are also given. A dash indicates that the corresponding background does not contribute.

<table>
<thead>
<tr>
<th>Process</th>
<th>SR-2ℓ (t\bar{t}t\bar{t}) class</th>
<th>SR-3ℓ (t\bar{t}t\bar{t}) class</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prefit</td>
<td>Postfit</td>
</tr>
<tr>
<td>(t\bar{t}t\bar{t})</td>
<td>35.85 ± 0.36</td>
<td>46.5 ± 1.8</td>
</tr>
<tr>
<td>(tt)</td>
<td>3.05 ± 0.10</td>
<td>2.98 ± 0.13</td>
</tr>
<tr>
<td>(t\bar{t}W)</td>
<td>40.8 ± 2.0</td>
<td>52.7 ± 2.1</td>
</tr>
<tr>
<td>(t\bar{t}Z)</td>
<td>14.31 ± 0.45</td>
<td>15.95 ± 0.56</td>
</tr>
<tr>
<td>(t\bar{t}H)</td>
<td>24.28 ± 0.97</td>
<td>23.29 ± 0.95</td>
</tr>
<tr>
<td>Other (t)</td>
<td>7.06 ± 0.26</td>
<td>6.86 ± 0.29</td>
</tr>
<tr>
<td>(WZ)</td>
<td>1.27 ± 0.50</td>
<td>1.19 ± 0.52</td>
</tr>
<tr>
<td>(VV(V))</td>
<td>0.38 ± 0.09</td>
<td>0.35 ± 0.06</td>
</tr>
<tr>
<td>(X_\gamma)</td>
<td>15.0 ± 1.1</td>
<td>14.0 ± 1.0</td>
</tr>
<tr>
<td>Charge misID</td>
<td>8.24 ± 0.21</td>
<td>8.29 ± 0.21</td>
</tr>
<tr>
<td>Nonprompt e</td>
<td>32.1 ± 2.5</td>
<td>37.8 ± 1.1</td>
</tr>
<tr>
<td>Nonprompt (\mu)</td>
<td>10.7 ± 2.1</td>
<td>12.6 ± 0.67</td>
</tr>
<tr>
<td>Total background</td>
<td>157.2 ± 4.1</td>
<td>175.9 ± 3.0</td>
</tr>
<tr>
<td>Total prediction</td>
<td>193.1 ± 4.2</td>
<td>222.5 ± 3.5</td>
</tr>
<tr>
<td>Data</td>
<td>232</td>
<td>135</td>
</tr>
</tbody>
</table>

Figure 8: Comparison of fit results in the channels individually and in their combination. The left panel shows the values of the measured cross section relative to the SM prediction from Ref. [6], where the displayed uncertainty does not include the uncertainty in the SM prediction. The right panel shows the expected and observed significance, with the printed values rounded to the first decimal.
The cross sections of the t\(\bar{t}\)W and t\(\bar{t}\)Z backgrounds are found to be

\[
\sigma(t\bar{t}W) = 990 \pm 58 \text{ (stat)} \pm 79 \text{ (syst)} \text{ fb} = 990 \pm 98 \text{ fb},
\]

\[
\sigma(t\bar{t}Z) = 945 \pm 43 \text{ (stat)} \pm 69 \text{ (syst)} \text{ fb} = 945 \pm 81 \text{ fb}.
\]

The t\(\bar{t}\)W cross section result is larger than the SM prediction of 722 ± 74 fb [98] at the level of 2.2 SDs, and also larger by more than 1.0 SDs than the central value 868 ± 40 (stat) ± 51 (syst) fb from the dedicated CMS cross section measurement based on the same data set using same-sign 2\(\ell\) and 3\(\ell\) events [119]. The measured t\(\bar{t}\)Z cross section is in agreement with the SM prediction of 859 ± 80 fb [99] at the level of 0.8 SDs, and also in good agreement with the dedicated CMS cross section measurement of 950 ± 50 (stat) ± 60 (syst) fb based on a partial data set of 77.5 fb\(^{-1}\) using 3\(\ell\) and 4\(\ell\) events [102].
9 Summary

A measurement of the production of four top quarks ($t\bar{t}t\bar{t}$) in proton-proton collisions at $\sqrt{s} = 13$ TeV has been presented, using events with two same-sign, three, and four charged leptons (electrons and muons) and additional jets from a data set corresponding to an integrated luminosity of 138 fb$^{-1}$ recorded with the CMS detector at the LHC. Multivariate discriminants are employed in the identification of prompt leptons and jets originating from the decay of b hadrons, and to distinguish between selected events from the $t\bar{t}t\bar{t}$ signal and the main background contributions. A profile likelihood fit is performed to the data in signal and control regions for the extraction of the $t\bar{t}t\bar{t}$ cross section.

The improvements in object identification and analysis strategy bring the sensitivity of the analysis to the observation level, with an observed (expected) significance of the $t\bar{t}t\bar{t}$ signal above the background-only hypothesis of 5.6 (4.9) standard deviations. The signal cross section is measured to be $\sigma(t\bar{t}t\bar{t}) = 17.7^{+3.7}_{-3.5} \text{(stat)}^{+2.3}_{-1.9} \text{(syst)}$ fb, in agreement with the available standard model predictions. This result marks a significant milestone in the top quark physics program of the LHC.

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid and other centres for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC, the CMS detector, and the supporting computing infrastructure provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES and BNSF (Bulgaria); CERN; CAS, MoST, and NSFC (China); MINCIENCIAS (Colombia); MSES and CSF (Croatia); RIF (Cyprus); SENESCYT (Ecuador); MoER, ERC PUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRI (Greece); NKFH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSI and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MES and NSC (Poland); FCT (Portugal); MESTD (Serbia); MCIN/AEI and PCTI (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); MDES and NSTDA (Thailand); TUBITAK and TENEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

Individuals have received support from the Marie-Curie programme and the European Research Council and Horizon 2020 Grant, contract Nos. 675440, 724704, 752730, 758316, 765710, 824093, 884104, and COST Action CA16108 (European Union); the Leventis Foundation; the Alfred P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the “Excellence of Science – EOS” – be.h project n. 30820817; the Beijing Municipal Science & Technology Commission, No. Z191100007219010; the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Hellenic Foundation for Research and Innovation (HFRI), Project Number 2288
(Greece); the Deutsche Forschungsgemeinschaft (DFG), under Germany’s Excellence Strategy – EXC 2121 “Quantum Universe” – 390833306, and under project number 400140256 - GRK2497; the Hungarian Academy of Sciences, the New National Excellence Program - ÚNKP, the NKFIH research grants K 124845, K 124850, K 128713, K 128786, K 129058, K 131991, K 133046, K 138136, K 143460, K 143477, 2020-2.2.1-ED-2021-00181, and TKP2021-NKTA-64 (Hungary); the Council of Science and Industrial Research, India; the Latvian Council of Science; the Ministry of Education and Science, project no. 2022/WK/14, and the National Science Center, contracts Opus 2021/41/B/ST2/01369 and 2021/43/B/ST2/01552 (Poland); the Fundação para a Ciência e a Tecnologia, grant CEECIND/01334/2018 (Portugal); the National Priorities Research Program by Qatar National Research Fund; MCIN/AEI/10.13039/501100011033, ERDF “a way of making Europe”, and the Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia María de Maeztu, grant MDM-2017-0765 and Programa Severo Ochoa del Principado de Asturias (Spain); the Chulalongkorn Academic into Its 2nd Century Project Advancement Project, and the National Science, Research and Innovation Fund via the Program Management Unit for Human Resources & Institutional Development, Research and Innovation, grant B05F650021 (Thailand); the Kavli Foundation; the Nvidia Corporation; the SuperMicro Corporation; the Welch Foundation, contract C-1845; and the Weston Havens Foundation (USA).
References

References

A Prefit distributions

Figure A.1: Comparison of the number of observed (points) and predicted (colored histograms) events in the BDT score $t\bar{t}X$ in the $t\bar{t}X$ classes of SR-2ℓ in the $\mu\mu$ category (left), of SR-3ℓ (middle), and of SR-4ℓ (right). The vertical bars on the points represent the statistical uncertainties in the data, and the hatched bands the total uncertainty in the predictions. The signal and background yields are shown before the fit to the data (“prefit”).

Figure A.2: Comparison of the number of observed (points) and predicted (colored histograms) events in the number of jets distribution in CR-3ℓ-Z (left), and in the number of b jets distribution in CR-3ℓ-Z (middle) and CR-4ℓ-Z (right). The vertical bars on the points represent the statistical uncertainties in the data, and the hatched bands the total uncertainty in the predictions. The signal and background yields are shown before the fit to the data (“prefit”).
Figure A.3: Comparison of the number of observed (points) and predicted (colored histograms) events in the BDT score $t\bar{t}$ in the combined CR-2ℓ-23j1b and CR-2ℓ-45j2b (left), in the event yields with negative and positive sum of lepton charges in CR-3ℓ-2j1b (middle), and in the number of jets distribution in the $t\bar{t}$ class of the combined SR-2ℓ and SR-3ℓ (right). The vertical bars on the points represent the statistical uncertainties in the data, and the hatched bands the total uncertainty in the predictions. The signal and background yields are shown before the fit to the data (“prefit”).
Figure A.4: Comparison of the number of observed (points) and predicted (colored histograms) events in the BDT score $t\bar{t}t\bar{t}$ in the $t\bar{t}t\bar{t}$ classes of SR-2ℓ, shown for the ee (upper left), $e\mu$ (upper middle), and $\mu\mu$ (upper right) categories, of SR-3ℓ (lower left) and of SR-4ℓ (lower right). The vertical bars on the points represent the statistical uncertainties in the data, and the hatched bands the total uncertainty in the predictions. The signal and background yields are shown before the fit to the data (“prefit”).
B The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
A. Hayrapetyan, A. Tumasyan

Institut für Hochenergiephysik, Vienna, Austria

Universiteit Antwerpen, Antwerpen, Belgium
M.R. Darwish, T. Janssen, P. Van Mechelen

Vrije Universiteit Brussel, Brussel, Belgium

Université Libre de Bruxelles, Bruxelles, Belgium

Ghent University, Ghent, Belgium

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
G.A. Alves, E. Coelho, C. Hensel, T. Menezes De Oliveira, A. Moraes, P. Rebello Teles, M. Soeiro

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

Universidade Estadual Paulista, Universidade Federal do ABC, São Paulo, Brazil

Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria
A. Aleksandrov, G. Antchev, R. Hadjiiska, P. Iaydjiev, M. Misheva, M. Shopova, G. Sultanov

University of Sofia, Sofia, Bulgaria
A. Dimitrov, T. Ivanov, L. Litov, B. Pavlov, P. Petkov, A. Petrov, E. Shumka
Instituto De Alta Investigación, Universidad de Tarapacá, Casilla 7 D, Arica, Chile
S. Keshri, S. Thakur

Beihang University, Beijing, China
T. Cheng, Q. Guo, T. Javaid, M. Mittal, L. Yuan

Department of Physics, Tsinghua University, Beijing, China
G. Bauer, Z. Hu, K. Yi, L. Yuan

Institute of High Energy Physics, Beijing, China

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
A. Agapitos, Y. Ban, A. Levin, C. Li, Q. Li, X. Lyu, Y. Mao, S.J. Qian, X. Sun, D. Wang, H. Yang, C. Zhou

Sun Yat-Sen University, Guangzhou, China
Z. You

University of Science and Technology of China, Hefei, China
N. Lu

Institute of Modern Physics and Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) - Fudan University, Shanghai, China
D. Leggat, H. Okawa, Y. Zhang

Zhejiang University, Hangzhou, Zhejiang, China
Z. Lin, C. Lu, M. Xiao

Universidad de Los Andes, Bogota, Colombia
C. Avila, D.A. Barbosa Trujillo, A. Cabrera, C. Florez, J. Fraga, J.A. Reyes Vega

Universidad de Antioquia, Medellin, Colombia
J. Mejia Guisao, F. Ramirez, M. Rodriguez, J.D. Ruiz Alvarez

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
D. Giljanovic, N. Godinovic, D. Lelas, A. Sculac

University of Split, Faculty of Science, Split, Croatia
M. Kovac, T. Sculac

Institute Rudjer Boskovic, Zagreb, Croatia
P. Bargassa, V. Brigljevic, B.K. Chitroda, D. Ferencek, S. Mishra, A. Starodumov, T. Susa

University of Cyprus, Nicosia, Cyprus

Charles University, Prague, Czech Republic
M. Finger, M. Finger Jr., A. Kveton

Escuela Politecnica Nacional, Quito, Ecuador
E. Ayala
Universidad San Francisco de Quito, Quito, Ecuador
E. Carrera Jarrín

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
A.A. Abdelalim, E. Salama

Center for High Energy Physics (CHEP-FU), Fayoum University, El-Fayoum, Egypt
A. Lotfy, M.A. Mahmoud

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia

Department of Physics, University of Helsinki, Helsinki, Finland
H. Kirschenmann, K. Osterberg, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland

Lappeenranta-Lahti University of Technology, Lappeenranta, Finland
P. Luukka, H. Petrow, T. Tuuva

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France

Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France

Université de Strasbourg, CNRS/INPC UMR 7178, Strasbourg, France

Institut de Physique des 2 Infinis de Lyon (IP2I), Villeurbanne, France

Georgian Technical University, Tbilisi, Georgia
G. Adamov, I. Lomidze, Z. Tsalamaidze

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
V. Botta, L. Feld, K. Klein, M. Lipinski, D. Meuser, A. Pauls, N. Röwert, M. Teroerde

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
C. Dziwok, G. Flügger, W. Haj Ahmad, T. Kress, A. Nowack, O. Pooth, A. Stahl, T. Ziemons, A. Zotz

Deutsches Elektronen-Synchrotron, Hamburg, Germany

University of Hamburg, Hamburg, Germany

Karlsruher Institut fuer Technologie, Karlsruhe, Germany

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi,
Greece
G. Anagnostou, P. Assiouras, G. Daskalakis, A. Kyriakis, A. Papadopoulos, A. Stakia

National and Kapodistrian University of Athens, Athens, Greece

National Technical University of Athens, Athens, Greece
G. Bakas, T. Chatzistavrou, G. Karapostoli, K. Kousouris, I. Papakrivopoulos, E. Siamarkou, G. Tsipolitis, A. Zacharopoulou

University of Ioánna, Ioánina, Greece

MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary

Wigner Research Centre for Physics, Budapest, Hungary
M. Bartók, C. Hajdu, D. Horváth, F. Sikler, V. Veszprémi

Faculty of Informatics, University of Debrecen, Debrecen, Hungary
P. Raics, B. Ujvari, G. Zilizi

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
G. Bencze, S. Czellar, J. Karancsi, J. Molnar, Z. Szillasi

Karoly Robert Campus, MATE Institute of Technology, Gyongyos, Hungary
T. Csorgo, F. Nemes, T. Novak

Panjab University, Chandigarh, India

University of Delhi, Delhi, India
A. Ahmed, A. Bhardwaj, A. Chhetri, B.C. Choudhary, A. Kumar, M. Naimuddin, K. Ranjan, S. Saumya

Saha Institute of Nuclear Physics, HBNI, Kolkata, India

Indian Institute of Technology Madras, Madras, India

Tata Institute of Fundamental Research-A, Mumbai, India
T. Aziz, I. Das, S. Dugad, M. Kumar, G.B. Mohanty, P. Suryadevara

Tata Institute of Fundamental Research-B, Mumbai, India
A. Bala, S. Banerjee, R.M. Chatterjee, M. Guchait, S. Karmakar, S. Kumar,
G. Majumder, K. Mazumdar, S. Mukherjee, A. Thachayath

National Institute of Science Education and Research, An OCC of Homi Bhabha National Institute, Bhubaneswar, Odisha, India

Indian Institute of Science Education and Research (IISER), Pune, India
A. Alpana, S. Dube, B. Kansal, A. Laha, A. Rastogi, S. Sharma

Isfahan University of Technology, Isfahan, Iran
H. Bakhshiansohi, S.M. Etesami, M. Khakzad, M. Mohammadi Najafabadi

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
S. Chenarani, H. Bakhshiansohi, A. Alpana, Indian Institute of Science Education and Research (IISER), Pune, India

University College Dublin, Dublin, Ireland
M. Grunewald

INFN Sezione di Bari, Università di Bari, Politecnico di Bari, Bari, Italy

INFN Sezione di Bologna, Università di Bologna, Bologna, Italy

INFN Sezione di Catania, Università di Catania, Catania, Italy
S. Costa, A. Di Mattia, R. Potenza, A. Tricomi, C. Tuve

INFN Sezione di Firenze, Università di Firenze, Firenze, Italy

INFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi, S. Bianco, S. Meola, D. Piccolo

INFN Sezione di Genova, Università di Genova, Genova, Italy
P. Chatagnon, F. Ferro, E. Robutti, S. Tosi

INFN Sezione di Milano-Bicocca, Università di Milano-Bicocca, Milano, Italy
M.T. Lucchinia,b, M. Malbertia, S. Malvezzia, A. Massironia, D. Menascea, L. Moronia, M. Paganonia,b, D. Pedrinia, B.S. Pinolinia, S. Ragazzia,b, N. Redaellia, T. Tabarelli de Fatisa,b, D. Zuoloa

INFN Sezione di Napoli, Università di Napoli ‘Federico II’b, Napoli, Italy; Università della Basilicata$,^c$ Potenza, Italy; Università G. Marconid, Roma, Italy
S. Buontempoa, A. Cagnottaa,b, F. Carnevalia,b, N. Cavalloa,c, A. De Iorioa,b, F. Fabozzia,c, A.O.M. Iorioa,b, L. Listaa,b,51, P. Paoluccia,50, B. Rossia, C. Sciacciaa,b

INFN Sezione di Padova, Università di Padovab, Padova, Italy; Università di Trentoc, Trento, Italy
R. Ardinoa, P. Azzia, N. Bacchettaa,52, D. Biselloa,b, P. Bortignona, A. Bragagnoloa,b, R. Carlina,b, P. Checchiaa, T. Dorigoa, F. Gasparinia,b, U. Gasparinia,b, G. Govia, G. Grossoa, L. Layera,53, E. Lusiania, M. Margonia,b, A.T. Meneguzzoa,b, M. Migliorinia,b, J. Pazzinia,b, P. Ronchesea,b, R. Rossina,b, G. Stronga, M. Tosia,b, A. Triossia,b, S. Venturaa, H. Yaraka,b, M. Zanettia,b, P. Zottoa,b, A. Zucchettaa,b, G. Zumerlea

INFN Sezione di Paviaa, Università di Paviab, Pavia, Italy
S. Abu Zeida,17, C. Aimea,b, A. Braghieria, S. Calzaferria,b, D. Fiorinaa,b, P. Montagnaa,b, V. Rea, C. Riccardia,b, P. Salvinia, I. Vaia,b, P. Vituloa

INFN Sezione di Perugiaa, Università di Perugiab, Perugia, Italy
S. Ajmaa,c, P. Asenova,54, G.M. Bileia, D. Ciangottinia,b, L. Fanòa,b, M. Magherinia,b, G. Mantovania,b, V. Mariania,b, M. Menichellia, F. Moscatellia,54, A. Piccinellia,b, M. Presillaa,b, A. Rossia,b, A. Santochiaa,b, D. Spigaa, T. Tedeschic

INFN Sezione di Pisaa, Università di Pisab, Scuola Normale Superiore di Pisaa, Pisa, Italy; Università di Sienaa, Siena, Italy
P. Azzurria, G. Baglisia, R. Bhattacharyaa, L. Bianchinia,b, T. Boccalia, E. Bossinia, D. Bruschinia,c, R. Castaldia, M.A. Cioccia,b, M. Cipriania,b, V. D’Amantea, R. Dell’Orsoa,b, S. Donatoa, A. Giassia, F. Ligabuea,c, D. Matos Figueiredoa, A. Messineoa,b, M. Musicha,b, F. Pallàa, S. Parolàa, A. Rizzua,b, G. Rolandia,c, S. Roy Chowdhurya, T. Sarkara, A. Scribanoa, P. Spagnoloa, T. Tcheninia,b, G. Tonellia,b, N. Turinia,d, A. Venturia, P.G. Verdinia

INFN Sezione di Roma, Sapienza Università di Romaa, Roma, Italy
P. Barriaa, M. Campanaa,b, F. Cavallaria, L. Cunqueiro Mendeza,b, D. Del Rea,b, E. Di Marcoa, M. Diemoza, F. Erricoa,b, E. Longoa,b, P. Meridiania, J. Mijuskovica,b, G. Organtinia,b, F. Pandolfia, R. Paramattia,b, C. Quarantaa,b, S. Rahatloua,b, C. Rovellia, F. Santanastasioa,b, L. Soffia, R. Tramontanoa,b

INFN Sezione di Torino, Università di Torinob, Torino, Italy; Università del Piemonte Orientalec, Novara, Italy
N. Amapanea,b, R. Arcidiaconoa,c, S. Argiroa,b, M. Arneodoa,c, N. Bartosika, R. Bellana,b, A. Belloraa,b, C. Biinoa, N. Cartigliaa, M. Costaa,b, R. Covarellia,b, N. Demariaa, L. Fincoa, M. Grippia,b, B. Kiania,b, F. Leggera, F. Luongoa,b, C. Mariottia, S. Masellia, A. Meccaa,b, E. Migliorea,b, M. Montenoa, R. Mulargiaa, M.M. Obertinoa,b, G. Ortonaa, L. Pachera,b, N. Pastronea, M. Pelliccionia, M. Ruspaa,c, F. Sivieroa, V. Solaa,b, A. Solanoa,b, D. Soldia,b
A. Staianoa, C. Tarriconea,b, M. Tornagoa,b, D. Trocinoa, G. Umorea,b, E. Vlasova,b

\textbf{INFN Sezione di Trieste}, Università di Triesteb, Trieste, Italy
S. Belfortea, V. Candelisea,b, M. Casarsaa, F. Cossuttia, K. De Leoa,b, G. Della Riccaa,b

\textbf{Kyungpook National University}, Daegu, Korea
S. Dograa, J. Hong, C. Huha, B. Kima, D.H. Kima, J. Kim, H. Lee, S.W. Leea, C.S. Moona, Y.D. Oha, S.I. Paka, M.S. Ryua, S. Sekmena, Y.C. Yanga

\textbf{Chonnam National University, Institute for Universe and ElementaryParticles}, Kwangju, Korea
G. Baka, P. Gwaka, H. Kima, D.H. Moona

\textbf{Hanyang University, Seoul, Korea}
E. Asilara, D. Kima, T.J. Kima, J.A. Merlin, J. Parka

\textbf{Korea University, Seoul, Korea}
S. Choia, S. Han, B. Honga, K. Lee, K.S. Leea, S. Leea, J. Park, S.K. Park, J. Yooa

\textbf{Kyunghee University, Department of Physics, Seoul, Korea}
J. Goha

\textbf{Sejong University, Seoul, Korea}
H. S. Kima, Y. Kim, S. Lee

\textbf{Seoul National University, Seoul, Korea}
J. Almond, J.H. Bhyun, J. Choia, W. Juna, J. Kimb, J.S. Kim, S. Kob, H. Kwonb, H. Leeb, J. Leeb, J. Leeb, S. Lee, B.H. Ohb, S.B. Ohb, H. Seob, U.K. Yang, I. Yoonb

\textbf{University of Seoul, Seoul, Korea}
W. Janga, D.Y. Kang, Y. Kanga, S. Kima, B. Ko, J.S.H. Leea, Y. Leea, I.C. Parka, Y. Roh, Watson, I.J.a, S. Yanga

\textbf{Yonsei University, Department of Physics, Seoul, Korea}
S. Haa, H.D. Yooa

\textbf{Sungkyunkwan University, Suwon, Korea}
M. Choia, M.R. Kima, H. Lee, Y. Leea, I. Yua

\textbf{College of Engineering and Technology, American University of the Middle East (AUM), Dasman, Kuwait}
T. Beyrouthy, Y. Maghrbia

\textbf{Riga Technical University, Riga, Latvia}
K. Dreimanisa, A. Gailea, G. Pikurs, A. Potrebkoa, M. Seidela, V. Veckalnsa

\textbf{University of Latvia (LU), Riga, Latvia}
N.R. Strautnieksa

\textbf{Vilnius University, Vilnius, Lithuania}
M. Ambrozasa, A. Juodagalvisa, A. Rinkeviciusa, G. Tamulaitisa

\textbf{National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia}
N. Bin Norjoharuddeena, I. Yusufa, Z. Zolkapli

\textbf{Universidad de Sonora (UNISON), Hermosillo, Mexico}
Brunel University, Uxbridge, United Kingdom
K. Coldham, J.E. Cole, A. Khan, P. Kyberd, I.D. Reid

Baylor University, Waco, Texas, USA

Catholic University of America, Washington, DC, USA

The University of Alabama, Tuscaloosa, Alabama, USA
R. Chudasama, S.I. Cooper, S.V. Gleyzer, C.U. Perez, P. Rumerio, E. Usai, C. West, R. Yi

Boston University, Boston, Massachusetts, USA

Brown University, Providence, Rhode Island, USA

University of California, Davis, California, USA

University of California, Los Angeles, California, USA
M. Bachtis, R. Cousins, A. Datta, J. Hauser, M. Ignatenko, M.A. Iqbal, T. Lam, E. Manca, W.A. Nash, D. Saltzberg, B. Stone, V. Valuev

University of California, Riverside, Riverside, California, USA
R. Clare, M. Gordon, G. Hanson, W. Si, S. Wimpenny

University of California, San Diego, La Jolla, California, USA

University of California, Santa Barbara - Department of Physics, Santa Barbara, California, USA
A. Barzdutks, L. Brennan, C. Campagnari, G. Collura, A. Dorsett, J. Incandela
Science, Technology and Maritime Transport, Alexandria, Egypt

4 Also at Ghent University, Ghent, Belgium
5 Also at Universidade Estadual de Campinas, Campinas, Brazil
6 Also at Federal University of Rio Grande do Sul, Porto Alegre, Brazil
7 Also at UFMS, Nova Andradina, Brazil
8 Also at Nanjing Normal University Department of Physics, Nanjing, China
9 Now at Henan Normal University, Xinxiang, China
10 Now at The University of Iowa, Iowa City, Iowa, USA
11 Also at University of Chinese Academy of Sciences, Beijing, China
12 Also at University of Chinese Academy of Sciences, Beijing, China
13 Also at an institute or an international laboratory covered by a cooperation agreement with CERN
14 Also at Helwan University, Cairo, Egypt
15 Now at Zewail City of Science and Technology, Zewail, Egypt
16 Also at British University in Egypt, Cairo, Egypt
17 Now at Ain Shams University, Cairo, Egypt
18 Also at Birla Institute of Technology, Mesra, Mesra, India
19 Also at Purdue University, West Lafayette, Indiana, USA
20 Also at Université de Haute Alsace, Mulhouse, France
21 Also at Department of Physics, Tsinghua University, Beijing, China
22 Also at The University of the State of Amazonas, Manaus, Brazil
23 Also at Erzincan Binali Yıldırım University, Erzincan, Turkey
24 Also at University of Hamburg, Hamburg, Germany
25 Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
26 Also at Isfahan University of Technology, Isfahan, Iran
27 Also at Bergische University Wuppertal (BUW), Wuppertal, Germany
28 Also at Brandenburg University of Technology, Cottbus, Germany
29 Also at Forschungszentrum Jülich, Juelich, Germany
30 Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
31 Also at Physics Department, Faculty of Science, Assiut University, Assiut, Egypt
32 Also at Wigner Research Centre for Physics, Budapest, Hungary
33 Also at Institute of Physics, University of Debrecen, Debrecen, Hungary
34 Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
35 Now at Universitatea Babes-Bolyai - Facultatea de Fizica, Cluj-Napoca, Romania
36 Also at Faculty of Informatics, University of Debrecen, Debrecen, Hungary
37 Also at Punjab Agricultural University, Ludhiana, India
38 Also at UPES - University of Petroleum and Energy Studies, Dehradun, India
39 Also at University of Visva-Bharati, Santiniketan, India
40 Also at University of Hyderabad, Hyderabad, India
41 Also at Indian Institute of Science (IISc), Bangalore, India
42 Also at IIT Bhubaneswar, Bhubaneswar, India
43 Also at Institute of Physics, Bhubaneswar, India
44 Also at Deutsches Elektronen-Synchrotron, Hamburg, Germany
45 Also at Department of Physics, Isfahan University of Technology, Isfahan, Iran
46 Also at Sharif University of Technology, Tehran, Iran
47 Also at Department of Physics, University of Science and Technology of Mazandaran, Behshahr, Iran
48 Also at Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Bologna, Italy
<table>
<thead>
<tr>
<th>Page</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>49</td>
<td>Also at Centro Siciliano di Fisica Nucleare e di Struttura Della Materia, Catania, Italy</td>
</tr>
<tr>
<td>50</td>
<td>Also at Università degli Studi Guglielmo Marconi, Roma, Italy</td>
</tr>
<tr>
<td>51</td>
<td>Also at Scuola Superiore Meridionale, Università di Napoli ‘Federico II’, Napoli, Italy</td>
</tr>
<tr>
<td>52</td>
<td>Also at Fermi National Accelerator Laboratory, Batavia, Illinois, USA</td>
</tr>
<tr>
<td>53</td>
<td>Also at Università di Napoli ‘Federico II’, Napoli, Italy</td>
</tr>
<tr>
<td>54</td>
<td>Also at Consiglio Nazionale delle Ricerche - Istituto Officina dei Materiali, Perugia, Italy</td>
</tr>
<tr>
<td>55</td>
<td>Also at Riga Technical University, Riga, Latvia</td>
</tr>
<tr>
<td>56</td>
<td>Also at Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia</td>
</tr>
<tr>
<td>57</td>
<td>Also at Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico</td>
</tr>
<tr>
<td>58</td>
<td>Also at Trincomalee Campus, Eastern University, Sri Lanka, Nilaveli, Sri Lanka</td>
</tr>
<tr>
<td>59</td>
<td>Also at INFN Sezione di Pavia, Università di Pavia, Pavia, Italy</td>
</tr>
<tr>
<td>60</td>
<td>Also at National and Kapodistrian University of Athens, Athens, Greece</td>
</tr>
<tr>
<td>61</td>
<td>Also at Ecole Polytechnique Fédérale Lausanne, Lausanne, Switzerland</td>
</tr>
<tr>
<td>62</td>
<td>Also at University of Vienna Faculty of Computer Science, Vienna, Austria</td>
</tr>
<tr>
<td>63</td>
<td>Also at Universität Zürich, Zurich, Switzerland</td>
</tr>
<tr>
<td>64</td>
<td>Also at Stefan Meyer Institute for Subatomic Physics, Vienna, Austria</td>
</tr>
<tr>
<td>65</td>
<td>Also at Laboratoire d’Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-le-Vieux, France</td>
</tr>
<tr>
<td>66</td>
<td>Also at Near East University, Research Center of Experimental Health Science, Mersin, Turkey</td>
</tr>
<tr>
<td>67</td>
<td>Also at Konya Technical University, Konya, Turkey</td>
</tr>
<tr>
<td>68</td>
<td>Also at Izmir Bakircay University, Izmir, Turkey</td>
</tr>
<tr>
<td>69</td>
<td>Also at Adiyaman University, Adiyaman, Turkey</td>
</tr>
<tr>
<td>70</td>
<td>Also at Necmettin Erbakan University, Konya, Turkey</td>
</tr>
<tr>
<td>71</td>
<td>Also at Bozok Universitetası Rektörlüğü, Yozgat, Turkey</td>
</tr>
<tr>
<td>72</td>
<td>Also at Marmara University, Istanbul, Turkey</td>
</tr>
<tr>
<td>73</td>
<td>Also at Milli Savunma University, Istanbul, Turkey</td>
</tr>
<tr>
<td>74</td>
<td>Also at Kafkas University, Kars, Turkey</td>
</tr>
<tr>
<td>75</td>
<td>Also at Hacettepe University, Ankara, Turkey</td>
</tr>
<tr>
<td>76</td>
<td>Also at Istanbul University - Cerrahpasa, Faculty of Engineering, Istanbul, Turkey</td>
</tr>
<tr>
<td>77</td>
<td>Also at Yıldız Technical University, İstanbul, Turkey</td>
</tr>
<tr>
<td>78</td>
<td>Also at Vrije Universiteit Brussel, Brussel, Belgium</td>
</tr>
<tr>
<td>79</td>
<td>Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom</td>
</tr>
<tr>
<td>80</td>
<td>Also at University of Bristol, Bristol, United Kingdom</td>
</tr>
<tr>
<td>81</td>
<td>Also at IPPP Durham University, Durham, United Kingdom</td>
</tr>
<tr>
<td>82</td>
<td>Also at Monash University, Faculty of Science, Clayton, Australia</td>
</tr>
<tr>
<td>83</td>
<td>Now at an institute or an international laboratory covered by a cooperation agreement with CERN</td>
</tr>
<tr>
<td>84</td>
<td>Also at Università di Torino, Torino, Italy</td>
</tr>
<tr>
<td>85</td>
<td>Also at Bethel University, St. Paul, Minnesota, USA</td>
</tr>
<tr>
<td>86</td>
<td>Also at Karamanoğlu Mehmetbey University, Karaman, Turkey</td>
</tr>
<tr>
<td>87</td>
<td>Also at California Institute of Technology, Pasadena, California, USA</td>
</tr>
<tr>
<td>88</td>
<td>Also at United States Naval Academy, Annapolis, Maryland, USA</td>
</tr>
<tr>
<td>89</td>
<td>Also at Bingol University, Bingol, Turkey</td>
</tr>
<tr>
<td>90</td>
<td>Also at Georgian Technical University, Tbilisi, Georgia</td>
</tr>
<tr>
<td>91</td>
<td>Also at Sinop University, Sinop, Turkey</td>
</tr>
<tr>
<td>92</td>
<td>Also at Erciyes University, Kayseri, Turkey</td>
</tr>
</tbody>
</table>
Also at Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), Bucharest, Romania
Also at Texas A&M University at Qatar, Doha, Qatar
Also at Kyungpook National University, Daegu, Korea
Also at another institute or international laboratory covered by a cooperation agreement with CERN
Also at Universiteit Antwerpen, Antwerpen, Belgium
Also at Northeastern University, Boston, Massachusetts, USA
Also at Imperial College, London, United Kingdom
Now at Yerevan Physics Institute, Yerevan, Armenia
Also at Institute of Nuclear Physics of the Uzbekistan Academy of Sciences, Tashkent, Uzbekistan