
The breakdown of Lieb-Robinson bounds in local, non-Hermitian quantum systems opens up
the possibility for a rich landscape of quantum many-body phenomenology. We elucidate this by
studying information scrambling and quantum chaos in non-Hermitian variants of paradigmatic lo-
cal quantum spin-chain models. We utilize a mixture of exact diagonalization and tensor network
techniques for our numerical results and focus on three dynamical quantities: (i) out-of-time-ordered
correlators (OTOCs), (ii) operator entanglement of the dynamics, and (iii) entanglement growth fol-
lowing a quench from product initial states. We show that while OTOCs fail to capture information
scrambling in a simple, local, non-Hermitian transverse-field Ising model, the closely related operator
entanglement is a robust measure of dynamical properties of interest. Moreover, we show that the
short-time growth of operator entanglement can generically detect “entanglement phase transitions”
in these systems while its long-time average is shown to be a reliable indicator of quantum chaos and
entanglement phases. This allows us to extend operator entanglement based diagnostics from previ-
ous works on closed and open quantum systems, to the new arena of monitored quantum dynamics.
Finally, we remark on the efficacy of these dynamical quantities in detecting integrability/chaos in
the presence of continuous monitoring.

I. INTRODUCTION

While simply an application of standard quantum me-
chanics, non-Hermitian physics remains relatively un-
derstudied, offering an exciting frontier beyond tradi-
tional quantum theory investigations [1]. As an exam-
ple, measurement-induced phase transitions in a con-
tinuously monitored system – which can be described
by an effective non-Hermitian Hamiltonian under cer-
tain assumptions – have been a topic of great interest
recently [2–9]. These phenomena have inspired the re-
examination of several fundamental results in quantum
many-body theory, for example, gap closing across a
quantum phase transition [10], classification of topo-
logical phases [11], bulk-boundary correspondence [12],
and many-body localization [13, 14], among others. In
a similar spirit, it is worth revisiting the interplay of
non-Hermitian physics and quantum chaos, which has
a long and rich history [15–19]; the reader is redi-
rected to Refs. [20, 21] for recent reviews on quan-
tum chaos and thermalization. In particular, we would
like to focus on local non-Hermitian Hamiltonians and
their quantum chaotic properties (as opposed to that
of non-Hermitian random matrix ensembles which are
highly nonlocal). Building upon the standard random
matrix theory classification of Hamiltonians [22], non-
Hermitian Hamiltonians are now described by a more
general universality class [23–25]. Moreover, complex
spacing ratios [25] were recently introduced to dis-
tinguish the spectral statistics of integrable-vs-chaotic
non-Hermitian systems. This allows for generalizing
the famous level-spacing statistics criteria used to dis-

∗ Equal contribution.

tinguish (Hermitian) integrable and chaotic Hamilto-
nian systems [26]. The usual orthogonality of (non-
degenerate) Hamiltonian eigenstates is now replaced
by a biorthogonality relation [27]. These distinctions
in the non-Hermitian case require a reinvestigation of
conventional wisdom in quantum many-body systems,
especially in the presence of open-system effects, see
e.g., Refs. [28, 29] for some recent works.

A key nontrivial aspect of non-Hermitian Hamiltonians
is that the Lieb-Robinson (LR) bound [30–32] can, in
general, break down for these systems [10, 33], leading
to nonlocal growth of operators under local Hamilto-
nians. LR bounds determine a finite speed of opera-
tor growth in non-relativistic quantum systems (with a
tensor product structure), evolving under local Hamil-
tonians [30]. The bounds have proven to be funda-
mental in proving a number of key results in quantum
many-body theory such as the exponential decay of
correlations [31, 34], the Lieb-Schultz-Mattis theorem
in higher dimensions [35, 36], and generation of cor-
relations and topological order [32]. While there are
a plethora of ways in which LR bounds influence the
landscape of many-body phenomenology, our focus is
on their interplay with quantum chaos as traditionally
quantified in Hermitian Hamiltonian systems [26].

The primary focus of this work is on quantum lattice
models, though the results easily generalize to broader
settings. Since local, non-Hermitian lattice models
generically violate the LR bound, a natural question
that arises is whether these systems can host a no-
tion of “strong” quantum chaos [37]. In this regard, we
construct two non-Hermitian extensions of the trans-
verse field Ising model, one with an added local imag-
inary magnetic field (equivalent to weak measurement
with postselection), and one where non-Hermiticity

ar
X

iv
:2

30
5.

12
05

4v
3 

 [q
ua

nt
-p

h]
  1

6 
O

ct
 2

02
3

 Scrambling and operator entanglement in local non-Hermitian quantum 
systems

Brian Barch,1, ∗ Namit Anand,2, 3, ∗ Jeffrey Marshall,2, 4 Eleanor Rieffel,2 and Paolo Zanardi1
1Department of Physics and Astronomy, and Center for Quantum Information Science and Technology,

University of Southern California, Los Angeles, California 90089-0484, USA
2Quantum Artificial I ntelligence L aboratory (QuAIL),

NASA Ames Research Center, Moffett F ield, C A, 9 4035, USA
3KBR, Inc., 601 Jefferson S t., H ouston, T X 7 7002, USA

4USRA Research Institute for Advanced Computer Science (RIACS), Mountain View, CA, 94043, USA

(Dated: October 18, 2023)

FERMILAB-PUB-23-270-SQMS-V (accepted) 
DOI:10.1103/PhysRevB.108.134305



2

acts via similarity transform, and thus preserves the
spectrum. The latter model is a nontrivial quantum
chaotic Hamiltonian: a locally interacting spin chain,
whose spectrum is chaotic while its eigenstates can
transition from volume-law to area-law by controlling
the measurement rate (see Fig. 2). As a result, for this
model, the spectral quantities always satisfy chaotic
features while eigenstate properties do not. A Her-
mitian lattice model with a “chaotic spectrum” and
“integrable eigenstates” was previously introduced by
a subset of the authors in a recent work [38]; however
in the current model, the nontriviality originates from
continuous monitoring rather than by construction.

The chaoticity of these non-Hermitian TFIMs is
studied as a function of system size and degree of
nonhermiticity, using out-of-time-ordered correlators
(OTOCs) and operator entanglement of the time evo-
lution operator. To the best of our knowledge, a con-
sistent way to define time evolution of operators (i.e.,
the Heisenberg picture) is nonexistent (it is easy to
show that it has inconsistencies with the Schrodinger
picture). As a result, when studying the OTOC, we in-
troduce a new definition that focuses on the evolution
of states instead. Similarly, an alternative based on a
slightly modified Heisenberg evolution is described in
the Appendix. We find the operator entanglement to
be a more robust measure of chaoticity than OTOCs
as we will detail in Section IV. In particular, we show
that the growth with system size of the operator en-
tanglement long-time average (LTA) can distinguish
chaotic and integrable non-Hermitian models, and an-
alytically derive approximation to the LTA that cap-
tures this scaling behavior. For the first of the two
non-Hermitian TFIMs, we find a non-monotonic rela-
tionship between measurement strength and operator
entanglement LTA, which we study in terms of the
Hamiltonian’s now complex spectrum.

II. BACKGROUND

A. Out-of-time-ordered correlators

Let H ∼= Cd be a finite, d-dimensional Hilbert space
and L(H) denote the space of linear operators on H.
We will endow H with a tensor product/lattice struc-
ture, e.g., H ∼=

(
C2
)⊗L with L the system size and

d = 2L. For quantum evolution generated by a Hamil-
tonian, scrambling can be quantified by considering
two, typically local, operators V,W ∈ L(H). Let
Wt ≡ U†

tWUt denote the time evolution generated by
the dynamical unitary, Ut ≡ e−iHt in the Heisenberg
picture. We consider the norm of the commutator be-
tween the static operator V and the dynamical one,
Wt, i.e., [39–42]

CV,W (t) ≡ 1

2d
∥[Wt, V ]∥22

=
1

2d
Tr
[
[Wt, V ]

†
[Wt, V ]

]
=

1

d

[
∥VWt∥22 − ReTr

[
W †

t V
†WtV

]] (1)

where ∥X∥22 ≡ Tr
[
X†X

]
is the Hilbert-Schmidt oper-

ator norm. If V,W are further assumed to be unitary,
then the expression above can be simplified to,

CV,W (t) = 1− 1

d
ReTr

[
W †

t V
†WtV

]
. (2)

The quantity,

FV,W (t) ≡ 1

d
ReTr

[
W †

t V
†WtV

]
is the so-called four-point out-of-time-ordered correla-
tor (OTOC) [39–42]. Note that the norm of the com-
mutator and the OTOC introduced here are both de-
fined for the infinite-temperature case, which will be
our focus. Moreover, since CV,W (t) and FV,W (t) are
related to each other via a simple affine relation, we
will interchangeably refer to them as the OTOC.

OTOCs have been applied to study a variety of many-
body phenomena, ranging from quantum phase tran-
sitions [43, 44] to many-body localization [45–49].
Moreover, connections with dynamical quantities have
also been discovered such as the Loschmidt Echo
[50], operator entanglement and local entropy pro-
duction [51, 52], quantum coherence [53], quasiprob-
abilities [49], entropic uncertainty relations [54], and
even information-theoretic hardness of learning quan-
tum dynamical features, see, e.g., Ref. [55].

OTOCs have, by now, also been measured in a num-
ber of state-of-the-art experimental setups, e.g., us-
ing superconducting qubits [56, 57], nuclear mag-
netic resonance [58–61], and ion-trap quantum simula-
tors [62, 63], among others [64, 65].

We briefly summarize the key results relating averaged
OTOCs to dynamical quantities such as operator en-
tanglement and entangling power. The bulk of these
results were obtained in Ref. [51], which was then gen-
eralized to open quantum systems [52], finite temper-
ature [38], and general observable algebras for closed
[66] and open systems [67]. Given a bipartite Hilbert
space, HAB = HA ⊗HB

∼= CdA ⊗ CdB , let U(HA) de-
note the unitary group over HA (similarly for subsys-
tem B). We will from now on focus on OTOCs of the
form, CVA,WB

(t), where VA ≡ V⊗IB andWB ≡ IA⊗W
are local operators with support on subsystems A,B,
respectively. Note that such an OTOC vanishes at
t = 0 since [VA,WB ] = 0 and grows over time as
the support of the Heisenberg evolved operator, (WB)t
grows and starts to overlap with subsystem A. We are
now ready to define the “averaged bipartite OTOC,”
[51],

G(t) ≡ EVA,WB
[CVA,WB

(t)] , (3)

where EVA
[...] denotes Haar averaging over U(HA)

(and similarly for EWB
). That is, starting from the

OTOC, CVA,WB
(t), we average over the local unitaries

VA,WB and therefore, the OTOC is now only a func-
tion of the dynamical unitary Ut (and the choice of bi-
partition A|B). Quite surprisingly, and as first noted
in Ref. [51], this allows us to make a connection with
the operator entanglement of the time evolution oper-
ator, Ut, which we will now introduce.
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B. Operator entanglement and its connection to
OTOCs

Given a linear operator, X ∈ L(HA⊗HB), we can de-
fine an operator Schmidt decomposition [68–70]. For-
mally, given a bipartite operator X ∈ L(HA ⊗ HB),
there exist orthogonal bases {Uj}

d2
A

j=1 and {Wj}
d2
B

j=1

for L(HA),L(HB), respectively, such that ⟨Uj , Uk⟩ =

Tr[U †
jUk] = dAδjk and ⟨Wj ,Wk⟩ = dBδjk. Moreover,

there exist λj ≥ 0 such that

X =
r̃∑

j=1

√
λjUj ⊗Wj . (4)

The coefficients {λj}j are called the operator Schmidt
coefficients and r̃ = min{d2A, d2B} is the operator
Schmidt rank. In fact, the operator entanglement of
a unitary introduced in Ref. [68] is exactly the linear
entropy of the probability vector p⃗ = (λ1, λ2, · · · , λr̃)
arising from the operator Schmidt coefficients. A key
result obtained in Ref. [68] was that the operator en-
tanglement of a unitary operator U can be equivalently
expressed as

Elin
op (U) = 1− 1

d2
Tr
[
SAA′U⊗2SAA′U †⊗2

]
, (5)

where SAA′ is the partial SWAP operator, acting on
the A subsystem and its copy A′.

The key result of Ref. [51] is that

G(t) = EVA,WB
[CVA,WB

(t)] = Elin
op (Ut).

That is, the OTOC when averaged over local, Haar
random unitaries is exactly equal to the operator en-
tanglement of the dynamical unitary Ut. Moreover,
typicality ensures that in higher dimensional systems,
a random instance of CVA,WB

(t) is exponentially close
to Elin

op (Ut); see, e.g., Proposition 3 of Ref. [51]. As a re-
sult, intuitively, studying almost any nonlocal OTOC
CVA,WB

(t), with VA,WB being nonlocal operators, is
equivalent to studying the operator entanglement of
Ut. As we will see, this requires reexamination when
addressing nonunitary time evolution channels.

Before proceeding further it is worth clarifying the
distinction between operator entanglement versus “lo-
cal operator entanglement,” both of which have been
widely studied in quantum chaotic systems. Local op-
erator entanglement is simply the entanglement of a
Heisenberg evolved local operator. As an example con-
sider a Pauli operator on site j, say σx

j . Local operator
entanglement is the entanglement of the following op-
erator: σx

j (t) := eiHtσx
j e

−iHt. For quantum chaotic
systems this generically grows linearly in time and has
been studied for example in Refs. [71–78]. In con-
trast, our work is focused on “global operator entangle-
ment”, namely, the operator entanglement of the time-
evolution operator, U(t) = e−iHt itself. This has been
studied for example in Refs. [38, 51, 52, 66, 67, 79–82].
We refer the reader to [83] for the interplay between
scrambling and local operator entanglement, and to
[51] for the interplay between (global) operator entan-
glement and scrambling.

C. Quantum chaos

The ability to classify quantum systems simply from
their ergodicity (or lackthereof) has been a fundamen-
tal direction of research in many-body physics for the
last few decades [20, 21]. In this regard, the devel-
opments in quantum chaos have been quite successful,
such as in extending the classification of integrable and
chaotic models, solely using their spectral statistics, to
the quantum domain. As is well-established now, the
spectral statistics of quantum chaotic systems are de-
scribed by random matrix theory, depending, e.g., on
the symmetry class for Hamiltonian systems [84, 85].
On the other hand, integrable and (many-body) lo-
calized models generically feature Poisson statistics
[86–88]. The success of classifying ergodic properties
using spectral quantities has also inspired the search
for other criteria, such as properties of the eigenstate
entanglement [89–96], dynamical quantities such as
Loschmidt echo [97, 98], OTOCs [83, 99], etc.

In this regard, perhaps the most distinct bifurcation is
exemplified by the contrast between quantum chaotic
Hamiltonians and Anderson (or many-body) localized
models. The former typically show thermalization of
the expectation values of local observables, have few
(or nonextensive) conserved quantities, and generally
have volume-law eigenstate entanglement (in the ther-
modynamic limit) [20, 21]. In contrast, localized mod-
els generally escape thermalization, have an extensive
number of (quasi-)local integrals of motion, and show
area-law eigenstate entanglement with exponentially
small violations [86–88].

While this classification has been thoroughly exam-
ined for Hermitian systems (or unitary dynamics), the
generalization to non-Hermitian systems (e.g., non-
unitary dynamics) is just beginning to be explored.
Dissipative systems are no longer classified within the
previous framework, rather, it has been suggested that
integrable systems are expected to follow Poisson level
statistics while chaotic systems follow the statistics of
the Ginibre ensemble [23–25, 28]. However, if the spec-
trum is complex then there are further nontrivialities.
All of this has initiated a program to understand the
features of quantum chaotic systems in the presence
of non-Hermitian system effects. Some approaches in-
clude (i) the introduction of complex spacing ratios as
a generalization of the universal spectral statistics [25],
(ii) the introduction of a dissipative form factor [28], in
analogy to the well-studied and universal spectral form
factor in Hermitian systems [100–102], among others.

At the same time, there is a novel interest in “hybrid”
quantum circuits, where one has unitary dynamics
with measurements interspersed throughout the evo-
lution [2–8, 103]. Furthermore, if one postselects on
the condition that there are “no quantum jumps” then
the effective dynamics can be described by a non-
Hermitian Hamiltonian [1]. If the unitary dynamics
is chaotic, then, by tuning the measurement rate, the
system can transition from a volume-law entanglement
to an area-law entanglement (e.g., in the steady-state
entanglement of a initial product state) [2]. Such tran-
sitions have been termed “measurement-induced entan-
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glement phase transitions”. It was found that one can
detect the critical point by solely studying the spectral
properties of the effective non-Hermitian Hamiltonian,
see e.g., [104]. Our isospectral model has the same
spectrum but the transition is only in the eigenstate
properties and hence cannot be diagnosed with stan-
dard spectral measures from the theory of quantum
chaos.

D. Non-Hermitian quantum mechanics

There are myriad contexts for studying non-Hermitian
Hamiltonians, but the most common is the study of
conditional time evolutions, particularly the no-jump
trajectory [1, 105]. Consider a state ρ evolving under
the standard Lindblad equation [106]

ρ̇ = −i[H, ρ] +
∑
a

(
LaρL

†
a −

1

2
{L†

aLa, ρ}
)
.

The first and third terms correspond to evolution
within a single quantum trajectory, while the second
term LaρL

†
a corresponds to jumps between quantum

trajectories, the so-called quantum jump term. If we
drop this term (i.e., postselect on the evolution condi-
tional on no quantum jumps), the resulting evolution
can be described as a pure state evolution under a non-
Hermitian effective Hamiltonian

Heff = H − i

2

∑
a

L†
aLa.

The time evolution operator can be written in terms
of Heff as Ut = e−iHeff t, which is no longer unitary.

Note that there are two approaches to studying dy-
namical properties of non-Hermitian Hamiltonians: (i)
normalization of the non-unitary evolution or (ii) the
metric formalism [1, 107]. The former describes a
system where the non-Hermitian Hamiltonian repre-
sents the effective interaction of the conditional evolu-
tion, and is physically applicable. The latter refers
to the non-Hermitian Hamiltonian being fundamen-
tal and focuses on constructing a new metric for the
Hilbert space, such that the non-Hermitian Hamilto-
nian is Hermitian with respect to the modified inner
product. We will focus on the former here. This is
e.g., the approach in studying measurement-induced
phase transitions.

In order for Ut to map states to states, we must nor-
malize its action on pure states |ψt⟩

∥ψt⟩ ≡
Ut|ψ0⟩

∥Ut|ψ0⟩∥
(6)

or trace-normalize its action on mixed states ρt:

ρt ≡
Utρ0U

†
t

Tr[Utρ0U
†
t ]

(7)

This is equivalent to dividing by the normalizing factor
in the Bayes rule for conditional probability distribu-
tions, and comes from the fact the total probability

of the current conditional trajectory is not constant in
time [33]. For this reason the divergence of ρt when
Tr[Utρ0U

†
t ] = 0 is no problem conceptually, as the case

is unphysical, i.e. occurs with probability zero.

The normalization condition breaks down in the
Heisenberg picture of time evolution, making operator-
based quantities such as OTOCs and connected cor-
relators require redefinition to remain meaningful [33,
108]. Even excluding normalization, the time evolution
of operators is nonunital, i.e., the infinite-temperature
state, ρ = I/d is no longer a fixed-point. This
causes, e.g., the seeming generation of nonlocal op-
erator growth from product evolutions:

(U † ⊗ V †)(X ⊗ I)(U ⊗ V ) = (U †XU)⊗ (V †V )

This can be understood in a dynamical form as the
breakdown of LR bounds, as described in Ref. [10].
Consider a Hamiltonian Heff =

∑
RHR + iΓR com-

posed of Hermitian HR and ΓR, acting on local regions
R, and operatorX initially localized on region Ro. The
time evolution of X (excluding normalization) under
this Hamiltonian is

Ẋ = iH†
effX − iXHeff

= i
∑

R∩Ro ̸=∅
[HR, X]−

∑
R

{ΓR, X}.

While [HR, X] = 0 for R ∩ Ro = ∅ at t = 0, the
same does not hold for {ΓR, X}, which can in general
cause nonlocal growth of X. Including normalization
yields a similar equation and does not in general return
locality.

E. Non-Hermitian Hamiltonians

When Heff is nondegenerate, it may be diagonalized as

Heff =
∑
i

λi|ri⟩⟨li| (8)

for λi the (in general complex) eigenvalues, and |ri⟩
and ⟨li| the right and left eigenvectors, respectively.
We can always bi-orthonormalize the eigenvectors such
that ⟨li|rj⟩ = δij , and may additionally normalize
⟨ri|ri⟩ = 1, but cannot do the same for ⟨li|. Given
this normalization choice, we can write the time evo-
lution operator in terms of the same components as

Ut =
∑
i

e−itλi |ri⟩⟨li|. (9)

Notice that while real λi generate periodic behavior,
complex λi cause exponential growth or decay in their
respective eigenspaces. When such λi exist, Ut is said
to be purifying, as once normalization is included the
time evolution at large t will effectively project into the
fastest growing (or slowest decaying) subspace. We re-
fer to this as the long-time eigenspace, and its dimen-
sion is equal to the number of eigenvalues that share
the maximal imaginary component.

Non-Hermitian Hamiltonians are said to be pseudo-
hermitian if they satisfy the equation H†

effη = ηHeff
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for some (non-unique) Hermitian η, which is dubbed
the metric as it defines a modified inner product un-
der which Heff is Hermitian [107, 109, 110]. In this
case the eigenvaleus of Heff come in complex conju-
gate pairs. If η is further taken to be positive definite,
Heff is referred to as quasihermitian and has real spec-
trum. While nonunitary Ut no longer generates stan-
dard norm-preserving (i.e. spherical) Hilbert space ro-
tations, it now generates evolutions that preserve the
norm with respect to η, which can be seen as ellipti-
cal (quasihermitian) or hyperbolic (pseudohermitian)
rotations.

The spectra of Hamiltonians such as in Ref. [104] can
transition from real to complex spectrum as the de-
gree of nonhermiticity is increased. At the border be-
tween the two regimes is an exceptional point, where
eigenvalues and eigenvectors coalesce. In this case (and
for general nondiagnalizable Heff) Eq. (8) must be re-
placed by the Jordan normal form. This leads to ad-
ditional polynomial terms in Ut and generally unique
behavior. The physical significance of the exceptional
point is unclear, since e.g. in Refs. [111, 112] it can be
related to a factorization surface, while in Ref. [108] it
corresponds to conditioning on a trajectory which has
probability zero of occurring.

III. QUANTUM SPIN-CHAIN MODELS

We wish to study the dynamical features of local,
non-Hermitian quantum spin-chain models. As a
paradigmatic quantum spin-chain model, we study the
transverse-field Ising model (TFIM)

HTFIM = J
L−1∑
j=1

σz
jσ

z
j+1 + g

L∑
j=1

σx
j + h

L∑
j=1

σz
j , (10)

which can host an integrable, chaotic, and a localized
phase. Here σα

j , α ∈ {x, y, z} are the Pauli matrices,
and g, h denotes the strength of the transverse field and
the local field, respectively. The TFIM Hamiltonian is
integrable for either h = 0 or g = 0 and nonintegrable
when both g, h are nonzero. We take J = 0.95 and
consider as the integrable point, g = 1, h = 0 and the
nonintegrable point g = 1, h = 0.5. At the integrable
point, the TFIM can be mapped onto free fermions via
the Jordan-Wigner transformation and is “highly inte-
grable” in this sense. At the nonintegrable point, the
model is quantum chaotic in the sense of random ma-
trix spectral statistics [113, 114] and volume-law en-
tanglement of eigenstates [115]. We also consider as
the classical point g = 0, h = 0.5, where HTFIM is
diagonal in the computational basis.

We consider two non-Hermitian extensions of the
TFIM. The first, termed the “measurement-induced
TFIM,” was considered in Refs. [104, 116] where its
spectral and eigenstate properties were studied to char-
acterize its phase transition. The model is a TFIM
with an additional imaginary field along the y-axis,

described by the Hamiltonian,

HM ≡ HTFIM + iγ
L∑

j=1

σy
j (11)

where γ denotes the strength of the imaginary field.
This model can be generated by application of HTFIM

combined with continuous weak measurement of local
y spins on all qubits, postselected to always yield mea-
surement results of +1. In this sense the nonhermitic-
ity parameter γ is a form of measurement strength. At
γ = g, the σx and σy terms combine into σ+ making
HM upper triangular in the z-basis and highly degen-
erate. At separate γ > g, HM undergoes multiple ex-
ceptional points as the spectrum becomes complex. In
the chaotic case, this generates an “entanglement phase
transition” from the volume-law phase to an area-law
phase [104, 116].

The second, closely related, model studied is termed
the “isospectral TFIM” and is motivated by the non-
Hermitian model in Ref. [10]. Starting with the Her-
mitian TFIM in Eq. (10), perform the similarity trans-
form

HI ≡ S(β)HTFIMS(β)
−1, (12)

where

S(β) ≡ exp

β
2

L∑
j=1

σz
j

 =
L∏

j=1

exp

[
β

2
σz
j

]
(13)

is a case of the Dyson map [117, 118]. Note that S(β)
acts nontrivially only on σx terms in HTFIM, so one
can calculate

HI

= J
L−1∑
j=1

σz
jσ

z
j+1 + g cosh(β)

L∑
j=1

σx
j + ig sinh(β)

L∑
j=1

σy
j

= H ′
TFIM + ig sinh(β)

L∑
j=1

σy
j .

That is, it is equivalent to a measurement-induced
TFIM with a altered transverse-field g′ ≡ g cosh(β)
and imaginary field strength γ = g sinh(β). Note that
for the classical TFIM with g = 0, HI remains Hermi-
tian, making this specific case uninteresting.

Perhaps a more interesting way to rewrite the model
is as follows – it makes apparent why the Hamiltonian
never breaks PT -symmetry, but instead has a smooth
measurement-induced entanglement phase transition.
This is because the model is equivalent to

HI = J

L−1∑
j=1

σz
jσ

z
j+1 + h

L∑
j=1

σz
j + g

L∑
j=1

(
eβσ+

j + e−βσ−
j

)
,

(14)

where σ±
j ≡ 1

2

(
σx
j ± iσy

j

)
. Clearly, at β ≪ 1 the model

is well approximated by the Hermitian TFIM while at
β ≫ 1 the model is dominated by the σ+ terms and
becomes noninteracting, at which point the eigenstates
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of this model are simply determined by the eigenstates
of σ+.

Notice that there is a unique state stationary for the
evolution under HI regardless of the choice of param-
eters in HTFIM. This is analogous to the fact that the
maximally mixed state, I/d, is a stationary state (or
fixed point) for unitary evolutions. In Appendix A we
show that the following mixed state is stationary,

ρss = S(β)2/Tr[S(β)2]. (15)

Moreover, it has a purity Tr[ρ2ss] =

2−L
[
1− tanh(β)2

]L.

Remark on the choice of spin-chain models.— The two
models considered above are both of one-dimensional
systems whose purely unitary dynamics is scrambling
and they undergo an entanglement phase transition
in the presence of (disentangling) measurements; and
therefore fall into the same universality class, see Ref.
[3] for an excellent discussion. Moreover, our specific
choice is motivated from the following criteria: (i) we
want to focus on a local many-body chaotic Hamilto-
nian (as opposed to say a nonlocal random matrix en-
semble), (ii) we want to focus on models well-studied in
the literature, e.g., Refs. [104, 119] study similar mod-
els, and (iii) they can illustrate the eigenstate vs. joint
eigenstate and spectral transition that we would like to
elucidate (namely the “isospectral TFIM” in contrast
to the “measurement-induced TFIM”). With reference
to these criteria, our models serve as both illustrative
and paradigmatic examples.

IV. OTOCS VS OPERATOR
ENTANGLEMENT FOR NON-HERMITIAN

HAMILTONIANS

As previously mentioned, OTOCs are a well studied
tool for diagnosing many-body behavior, such as the
LR bound. The traditional OTOC is defined in terms
of Heisenberg evolution of operators, and does not im-
mediately generalize to non-Hermitian models. In or-
der to generalize the OTOC, we must either redefine
the OTOC in terms of an evolution of states, or de-
fine a modified Heisenberg evolution of operators. We
take the former approach here as it is closer to the lit-
erature of measurement-induced phase transitions and
non-Hermitian Hamiltonians. The latter approach is
discussed in Appendix B.

Defining a normalized OTOC.— Given an orthonor-
mal basis {|j⟩}dj=1 for the Hilbert space H ∼= Cd, we
can write the traditional OTOC in Eq. (1) as

CV,W (t) =
1

d

d∑
j=1

[
∥VWt|j⟩∥22 − Re⟨j|W †

t V
†WtV |j⟩

]
.

(16)

We generalize this to the non-Hermitian case by apply-
ing the normalized pure state evolution in Eq. (6) to
Wt|j⟩ and WtV |j⟩. This gives the normalized OTOC

ĈV,W (t) ≡ 1

d

d∑
j=1

[
∥VWt|j⟩∥22
∥Wt|j⟩∥22

− Re
⟨j|W †

t V
†WtV |j⟩

∥Wt|j⟩∥ ∥WtV |j⟩∥

]
.

(17)

The normalization breaks basis invariance of the trace,
introducing basis dependency into the OTOC. For the
calculations performed herein, the computational basis
is used. Like in the Hermitian case, if V is unitary the
first term is simply equal to one. In this case, we have

ĈV,W (t) = 1− 1

d

d∑
j=1

Re⟨j|W †
t V

†WtV |j⟩
∥Wt|j⟩∥ ∥WtV |j⟩∥

. (18)

This normalized OTOC is useful, for example, for the
study of LR bound violations as in Fig. 1, as the nor-
malization prevents exponential growth and recovers
the bound 0 ≤ ĈV,W (t) ≤ 2 as in the Hermitian case.

Though we would like to be able to take an analytic
bipartite Haar average as in Ref. [51], the normaliza-
tion term makes this elusive. Furthermore, as shown in
Appendix C, numeric averages of the bipartite OTOC
converge to a quantity distinct from the operator en-
tanglement, indicating the connection no longer holds
for non-Hermitian systems.

A. Operator entanglement and
measurement-induced phase transitions

Motivated by the connection between bipartite
OTOCs and operator entanglement for unitary dy-
namics, we propose studying the dynamical features
of non-Hermitian evolutions by directly studying the
operator entanglement of the time evolution operator,
which is already defined in a form that applies to non-
unitary time evolutions. For an arbitrary linear oper-
ator X, the 2-Renyi operator entanglement is defined,
based on the form in Ref. [68] or as motivated by the
Choi state in Appendix D, as

Eop(X) ≡ −log

(
Tr
[
SAA′X⊗2SAA′X†⊗2

]
∥X∥42

)
, (19)

where the log is base two. This reduces to the usual
definition related to Eq. (5) if X is unitary. We choose
this particular form over linear or log entropy because
it is efficient in calculations while still scaling extrinsi-
cally for chaotic systems.

A rich physical scenario which is described by an ef-
fective non-Hermitian Hamiltonian is that of a quan-
tum system subject to continuous measurement and
postselection [104]. Broadly speaking, if the under-
lying unitary dynamics is nonintegrable then a typi-
cal initial state, for weak measurement strength, will
grow into a volume-law phase, while, for strong mea-
surements, it will grow into an area-law phase; see
Refs. [2–8] for a detailed discussion. It is important
to develop physically motivated quantifiers for these
measurement-induced entanglement phase transitions
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(a) β = 0 (b) β = 0.25 (c) β = 1 (d) β = 2

Figure 1: Breakdown of the lightcone spreading of OTOCs (see Eq. (18)) in the isospectral TFIM. CV,W (t) is plotted
for L = 11 spins, where the operators are V = W = σz, V acts on the fifth qubit and W is swept across the 1D chain.

As the strength of non-Hermiticity is increased from β = 0 (Hermitian model) to β = 0.25, the lightcone becomes
“fuzzy”. As we keep increasing the β, at β = 1 the lightcone almost vanishes and at β = 2, the OTOCs saturate

immediately. This is in stark contrast to how the operator entanglement in this system behaves; which shows a smooth
transition from a volume-law phase to an area-law phase as β increases (cf. Fig. 2).

and, as we will show now, the operator entanglement
of the time evolution operator itself undergoes a phase
transition as the measurement strength is varied. This
section discusses the transition broadly, while a more
detailed analysis is provided in sections V and VI.

We first investigate this transition numerically by
plotting the growth of Eop(Ut) for the measurement-
induced and isospectral extensions of the chaotic, inte-
grable, and classical TFIMs, where Ut = e−iHt is the
generally non-unitary time evolution operator.

Plots of Eop(Ut) for the measurement-induced and
isospectral non-Hermitian extensions of the chaotic
TFIM are given in Fig. 2. In the chaotic phase Eop(Ut)
quickly saturates to its long-time average value, which
is Eop(Ut) ≈ L − 1.6 for the Hermitian chaotic TFIM
with system size L [38]. In each case increasing non-
hermiticity parameter transitions the operator entan-
glement from quick saturation to suppressed oscilla-
tions, typical of integrable systems. The measurement-
induced model alone further undergoes a purification
phase transition at the exceptional point at γ ≳ 1,
where the spectrum becomes complex. In the purifi-
cation phase nontrivial behavior occurs only for small
t ≲ 5, as Ut suppresses all but the one-dimensional
long-time eigenspace exponentially in time.

Similar effects of nonhermiticity, including the purifi-
cation transition, are seen for extensions of the inte-
grable TFIM in Fig. 3. Unlike in the chaotic case, the
measurement-induced extension has nontrivial behav-
ior at γ = 1.2, even though the spectrum is complex.
As we will see, this occurs because the additional sym-
metry in the Hamiltonian induces a degenerate long-
time eigenspace after the first exceptional point, allow-
ing for more complex behavior. At γ = 1.5 a second set
of exceptional points has broken this symmetry, creat-
ing a nondegenerate long-time eigenspace and trivial
long-time behavior.

Eop(Ut) for the non-Hermitian extensions of the classi-
cal TFIM are plotted in Fig. 4, where we see the same
transition from integrable to purification phase as be-
fore, but at lower γ. Like the chaotic and integrable
models the classical model has a degeneracy point at
γ = g = 0, but here it is most clear that this is not
an exceptional point. In fact, for γ = 0.2 we see aperi-

odic Eop growth, indicating a third, properly quantum,
phase.

Further determination of the phases comes from exam-
ining operator entanglement saturation values, which
we investigate using system-size scaling and nonher-
miticity dependence of the Eop(Ut) LTA, which closely
measures this saturation value.

B. Quantum quenches

The thermalization of closed quantum systems is a
long-standing problem that has initiated a number of
analytical, numerical, and experimental investigations
[120, 121]. A number of these studies have focussed on
the phenomena of quantum quenches, where starting
from an initial eigenstate of a (pre-quench) Hamilto-
nian, one suddenly applies a (post-quench) Hamilto-
nian. The noncommutativity of the pre- and post-
quench Hamiltonian ensures that the initial eigenstate
has nontrivial time evolution. The experimental acces-
sibility of quenched dynamics in various quantum sim-
ulators has fueled their study, in particular focussing
on the growth of entanglement and correlations. While
the exact dependence of post-quench entanglement
growth rate is a function of the initial state, the in-
tegrability (or lack thereof) of the Hamiltonian, and
so on, for local Hermitian Hamiltonians with bounded
interaction strength, the entanglement growth can be
at most linear in time [122]. A proof of this relies
on the LR bound, see, e.g., Ref. [32]. The violation
of this bound for local non-Hermitian systems invites
the question of whether entanglement growth can be
beyond linear for these systems, which we answer af-
firmatively.

To study quantum quenches in non-Hermitian systems
we will focus on the post-selected evolution, and there-
fore the quantum state is pure at all times, cf. Eq. (6).
The initial state will be a Neel state on L qubits, i.e.,
of the form, |Ψ(0)⟩ = |0101 · · · 01⟩. Then,

|Ψ(t)⟩ = Ut|Ψ(0)⟩
∥Ut|Ψ(0)⟩∥

(20)

describes the effective postselected evolution. This en-
sures that the state is pure at all times and there-
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Figure 2: Operator entanglement as a function of time for the (a) measurement-induced and (b) isospectral
non-Hermitian chaotic TFIM at L = 12. The measurement-induced model displays three phases: the chaotic phase near
the Hermitian limit, the integrable phase for γ = 0.9, and the purification phase for γ = 1.2. In contrast, the isospectral

models appears to undergo a smooth transition from chaotic to integrable as β is increased. Figures (c) and (d)
correspond to the normalized OTOC (see Eq. (18)) for the two models at size L = 8 qubits. The operators V = σx = W
are local operators at sites 1, L (ends of the 1D chain) and the OTOC saturates polynomially fast to its long-time value
at large non-Hermiticity β, γ. The breakdown of LR bounds is also evident from figures (c), (d) since the normalized

OTOC starts to grow at t ⪆ 0 for larger values of β, γ.
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Figure 3: Operator entanglement as a function of time for the measurement-induced (a) and isospectral (b)
non-Hermitian extensions of the integrable TFIM for L = 12. The line corresponding to γ = 0.9 overlaps that of γ = 1.2
and is omitted for visibility. Unlike in the chaotic case, γ = 1.2 generates highly periodic operator entanglement, owing to
the persisting spectral degeneracy at this point. The isospectral model acts similarly to the chaotic case as β is increased.

fore we can study the entanglement entropy of non-
Hermitian quenches in a similar way to the standard
approach. That is, consider a partition of the Hilbert
space, A|B and define the reduced state ρA(t) :=
TrB [|Ψ(t)⟩⟨Ψ(t)|] and the quenched entanglement en-
tanglement entropy, SEE(t) = S(ρA(t)), where S(·) is
the von Neumann entropy of the reduced density ma-
trix.

In particular, our quench studies are focused on inter-
acting non-Hermitian Hamiltonians, as opposed to the

mostly noninteracting case studied in previous works
[33, 116, 123–125]. This in turn also means that the
typical analytically tractable techniques, e.g., mapping
to free fermions via Jordan-Wigner transformation are
not directly applicable to our work [126]. To study
quantum quenches numerically, we utilize the power-
ful time-evolving block decimation technique [127] in
the ITensor package [128]. We focus on a maximum
bond dimension of D = 256 for our numerics, which,
in the chaotic case and β ⪅ 1 necessarily leads to a
truncation of the time-evolving state.
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Figure 4: Operator Entanglement of the
measurement-induced extension of the classical TFIM
with h = 0 and L = 12. As γ is increased we see two

phase transitions, the first when nonhermiticity makes the
model become quantum and causes operator

entanglement growth, and the second when the models
shifts into the purification phase. In the latter, one still

sees brief operator entanglement growth before the
exponential decay of transient eigenspaces dominates.

To understand the thermalization of local subsystems
under the isospectral TFIM Eq. (14), we numerically
study the entanglement entropy following a quench
from a Neel state. We study (i) subsystems of increas-
ing size l for a fixed L and (ii) an equal bipartition for
increasing L. For the former one expects that small
subsystems will thermalize while larger ones will still
retain information about the initial conditions. The
latter lets us quantify the rate of thermalization of a
small subsystem as we approach the thermodynamic
limit. For both, we focus on the integrable and chaotic
limits of the isospectral TFIM, for various values of the
measurement strength.

In Fig. 5, we note that both the integrable and chaotic
phases at small non-Hermiticity, β = 0.1 display a
thermalization of the subsystem, up to size l = L/4.
In contrast, we notice that at β ⪆ 1, cf. Fig. 6 both
chaotic and integrable models seem to fail thermal-
ization of even small subsystems, in this case of size
l = 4. In Fig. 7 we see that while the measurement-
induced model has L-dependant entanglement satura-
tion at small measurement rate γ = 0.25, the satura-
tion value is L-independent in the purification phase
with γ = 2.

V. LONG-TIME AVERAGES

In Hermitian systems, the long-time average (LTA) of
the operator entanglement can distinguish integrable

and chaotic models, e.g. via its system-size scaling,
making it an interesting time-invariant quantity to
consider for non-Hermitian systems [38, 51].

A. Analytic approximation

The operator entanglement LTA can be taken analyt-
ically in Hermitian systems, given the so-called non-
resonance condition (NRC) [51]. The NRC requires
that differences between eigenvalues be unique, and
can be thought of as a stronger extension of nondegen-
eracy. In non-Hermitian systems however, time depen-
dence of the normalization term in time-evolved quan-
tities prevents exact analytic calculation, but in cer-
tain cases the LTA can be analytically approximated
sufficiently well to study the necessary physics.

Here, the specific quantity we are interested in is the
LTA of the 2-Renyi entropy (Eq. (19)) of the time evo-
lution operator, Eop(Ut).

First, let us assume H is diagonalizable and consider
the form of Ut given in Eq. (8). Notice that any con-
stant imaginary shift in λi will affect both the numer-
ator and denominator of Eop(Ut) equivalently, and so
will cancel out in the overall fraction. Without loss
of generality we can then assume all Im[λi] ≤ 0 with
max(Im[λi]) = 0. As the LTA is invariant under short
time behavior, we can take the limit t → ∞ before
averaging. All eigenspaces with Im[λi] < 0 are ex-
ponentially suppressed and do not contribute in this
limit, and we are left with only terms that depend on
the long-time eigenspace HL.

The approximation we must make is log(f) ≈ log( f ),
which comes from typicality of Haar-distributed uni-
taries and is valid for chaotic systems. For non-chaotic
systems it is qualitatively correct, and sufficiently ac-
curate to distinguish phases of non-Hermitian systems.
As log(f/g) = log(f) − log(g), this approximation al-
lows the numerator and denominator to be averaged
independently within the logarithm.

Additionally, we must assume nonresonance in HL -
a weaker condition than full NRC, as it only applies
to eigenvalues with maximal imaginary component.
Within HL all eigenvalues have only real differences,
so long-time NRC allows an average to be taken using
techniques from [51]. The approximate LTA of Eop(Ut)
is then derived in Appendix E 1, and found to be

Eop(Ut) ≈ − log
Tr [RALA] + Tr [RBLB ]− Tr [diag(RA)diag(LA)]

[Tr[η
L
]]2 + Tr[RL]− Tr[L]

(21)

where we define

(RX)i,j ≡ ⟨ρXi , ρXj ⟩
(LX)i,j ≡ ⟨σX

i , σ
X
j ⟩

(22)
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(a) (b)

Figure 5: Growth of entanglement entropy following a quantum quench from the Neel state for L = 128 and subsystem
size l = {4, 8, 16, 32}. The MPS simulations are for the isospectral TFIM at β = 0.1 for (a) the integrable model and (b)

the chaotic model. At small measurement strength, we notice that both models seem to thermalize equally well for
subsystem sizes up to L/4, with the equilibration value of the integrable quench being lower than the chaotic regime.

Figure 6: Growth of entanglement entropy following a
quantum quench from the Neel state for L = 128 and a

subsystem of size l = 4. The MPS simulations are for the
isospectral TFIM at β = {1, 1.5, 2} for both the integrable

and chaotic regimes. Interestingly, we notice that the
thermalization properties of both the chaotic and the

integrable model vanish even at moderate non-Hermiticity
strength β ≈ 1, while both completely suppress

entanglement at β ⪆ 1.

for |i⟩, |j⟩ ∈ HL as the long-time right and left reduced
Gram matrices, which remain symmetric in this con-
text, and

ρXk ≡ TrX̄ (|rk⟩⟨rk|) , σX
j ≡ TrX̄ (|lj⟩⟨lj |) (23)

as the reduced left and right Hamiltonian eigenstates.
In the denominator, η

L
=
∑

i∈HL
|li⟩⟨li| is the restric-

tion to HL of the Hilbert space metric η satisfying
H†η = ηH. L and R are the equivalent unreduced
Gram matrices where no partial trace is taken. In the
Hermitian limit Eq. (21) reduces the the form given in
Ref. [51].

Of the models here considered, the chaotic TFIM obeys
NRC outside of its degenerate and exceptional points.
The integrable TFIM never obeys true NRC, and only
obeys long-time NRC when HL is one-dimensional, e.g.
at large γ. The classical model is degenerate in the
Hermitian limit, but obeys NRC for any γ > 0.

Error in this formula arises from nonorthogonality of
Hamiltonian eigenstates, which is maximal around the
exceptional points where eigenstates become paral-

lel, and from NRC violations, which are present at
both degenerate and exceptional points. However, as
shown in Appendix E 2 the formula captures the cor-
rect system-size scaling and qualitative dependence on
nonhermiticity parameter of the entanglement LTA, as
well as the correct qualitative behavior around the de-
generacy and exceptional points. Thus, it can still be
useful for detecting measurement-induced phase tran-
sitions and scaling behavior of non-Hermitian systems.

B. Finite-size scaling

We now investigate the usefulness of the operator en-
tanglement LTA applied to physical models and ran-
dom matrix ensembles. This was previously studied for
Hermitian models in Ref. [38], where it was found that
Eop(Ut) ≈ µL − log(α), where µ ≈ 1 for the chaotic
TFIM and GUE ensemble, µ ≈ 0.5 for the integrable
TFIM and NRC Product State (“NRCPS”) ensemble,
and α is a model-dependant constant. The NRCPS
ensemble is described in Ref. [38], and is an example
of the most chaotic an integrable Hamiltonian can be.

Our numerical results are plotted in Fig. 8, where
we see three general regions of operator entanglement
growth corresponding to the volume law chaotic mod-
els, suppressed volume law integrable models, and area
law integrable models. The scaling of Hermitian mod-
els here mirrors the findings of Ref. [38]1, and includes
both volume-law models, and the chaotic TFIM and
GUE. The second general region of growth correspond-
ing to suppressed volume law integrable growth in-
cludes the NRCPS ensemble, the classical TFIM with
γ = 0.2, the chaotic TFIM with γ = 0.9, and the two
isospectral chaotic TFIM models, which all demon-
strate mostly linear growth in L but with reduced
coefficients relative to the volume-law models. The

1 Though Ref. [38] describes log(1− Elin
op ) and we study Eop =

log(1− Elin
op ), as mentioned earlier this is equivalent for suffi-

ciently chaotic systems, as numerically confirmed here.
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(a) (b)

Figure 7: Growth of entanglement entropy following a quantum quench from the Neel state for L = {8, 16, 32, 64, 128}
and L/2 : L/2 bipartition. The MPS simulations are for the measurement-induced TFIM in the (a) volume-law phase at

γ = 0.25 and (b) area-law purification phase at γ = 2.

isospectral model with β = 2 fits into this region of
growth because one can see for large L it does faintly
grow, unlike the classical TFIM and chaotic TFIM
with γ = 1.3. These last two models exhibit area law,
in this case constant, growth and constitute the third
region. Unlike the Hermitian case it is difficult to find
a universal linear fit as entanglement LTA scaling can
be nonlinear, and even non-monotonic, in L.
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Figure 8: Comparison of system size scaling of the
Eop(Ut) LTA for a range of models. The Gnibre ensemble
is omitted, as its behavior is identical to that of the GUE.

A closeup of the scaling behavior of the classical TFIM
is plotted in Fig. 9. For intermediate γ = 0.2, just
before the first exceptional point, the classical model
shows greater scaling in system size than the NRCPS
average, indicating a potential lack of integrability.
However, immediately past the exceptional point at
γ ≈ 0.25 there is a lack of monotonic growth in L as
the system enters the purification phase.

C. Dependence on non-Hermiticity parameter

We use the operator entanglement LTA to study how
Ut changes as a function of nonhermiticity parame-
ter, with numerical results plotted in Fig. 10. Prior to
the degenerate point, all nonclassicl models have simi-
lar Eop decay coming from increasing nonorthonormal-
ity of Hamiltonian eigenvectors, which are volume-law
entangled in the Hermitian limit in the chaotic case.
For the isospectral TFIMs, this is the only behavior
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Figure 9: System size scaling of Eop(Ut) for the
measurement-induced classical TFIM with J = .95, g = 0,
and h = 0.5, with GUE and NRCPS averages included for

comparison.

that occurs, and the overall effect of nonhermiticity
is monotonic decay of operator entanglement. On the
other hand, the measurement-induced TFIM has non-
monotonic scaling in γ regardless of whether the Her-
mitian limit is chaotic, integrable, or classical. In each
case, this occurs because the nonhermiticity breaks de-
generacies present at the degenerate point (γ = 1 in
the chaotic and integrable models, γ = 0 in the classi-
cal model), increasing operator entanglement immedi-
ately after this point. This growth continues until an
exceptional point is reached, after which it is in compe-
tition with exponential suppression of subspaces from
imaginary components of eigenvalues, which eventu-
ally dominates. This leads to non-monotonic growth
and decay of entanglement after the exceptional point.

In the integrable model alone, the degeneracy point is
also a degenerate exceptional point, after which mul-
tiple eigenvalues take the same imaginary component
(see Fig. 12). This creates a degenerate HL and in-
creased Eop(Ut) despite being in the purification phase.
At the second exceptional point this degeneracy is
broken, making HL one-dimensional like in the other
measurement-induced models.
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Figure 10: Eop LTA of various models as a function of
nonhermiticity parameter (γ or β) at L = 10. Note that γ
and β act differently as parameters and the two models
should be compared only qualitatively. The dip in the
classical model at γ = 0.2 and other non-smoothness in
the measurement-induced models past their exceptional
points are likely due to eigenvalues becoming complex at

different values of γ, causing changes in long-time
eigenspace and discontinuities in saturation value.

VI. SPECTRAL ANALYSIS

The measurement-induced phase transition in the
measurement-induced chaotic TFIM was studied in
Ref. [104] in terms of the level spacing ratio, and stan-
dard spectral measure of chaoticity. This quantity was
found to be hard to generalize to the case of com-
plex spectra. However, direct inspection of Hamil-
tonian spectrum for simple cases is sufficient to un-
derstand the non-monotonicity in the measurement-
induced TFIM seen in Fig. 10. To this end, the spectra
of the measurement-induced chaotic, integrable, and
classical TFIM are plotted in Figs. 11, 12, and 13, re-
spectively.

From Fig. 11 we see that for the measurement-induced
chaotic TFIM, as γ approaches the degenerate point
at γ = g from the left, most eigenvalues converge
towards a few unique values, reducing the effective
eigenvalue range and thus chaoticity of the system.
Past this degenerate point, the eigenvalues split again,
but begin to go through exceptional points and pick
up imaginary components, causing the purification
phase. These imaginary components are seen to be
nondegenerate, leading to a one-dimensional long-time
eigenspace. The competing effects of eigenvalue split-
ting and eigenspace decay lead to the non-monotonic
behavior of the Eop average after the degeneracy point
seen in Fig. 10.

In Fig. 12 we see that the degeneracy of the integrable
TFIM remains unbroken by nonhermiticity. Addition-
ally, unlike the chaotic model, all exceptional points
occur at one of two distinct γ values, the first of which
coincides with the degenerate point at γ = g. Be-
tween the two exceptional points the system is nom-
inally in the purification phase, but eigenvalues with
degenerate maximal imaginary components causes a
multi-dimensional long-time eigenspace. This leads to
unique plateu behavior in the Eop(Ut) for 1 ≤ γ ≲ 1.2,

as seen in Fig. 10. This is the only model stud-
ied here which ever has a multi-dimensional long-time
eigenspace other than the full Hilbert space.

Fig. 13 shows the spectrum of the classical TFIM,
which appears as a special case of the chaotic TFIM
with degeneracy point at γ = g = 0, the Hermitian
limit. In contrast to the integrable model, γ > 0 acts
as a perturbation, breaking degeneracies of the original
HTFIM and making the spectrum no longer area-law.
This leads to the sharp initial growth of Eop(Ut) in
Fig. 10.

VII. CONCLUDING REMARKS

Non-Hermitian Hamiltonians provide a fundamentally
new avenue to explore well-established ideas in many-
body physics. While the constraints induced from uni-
tarity and locality have been understood quite rigor-
ously, hybrid quantum circuits incorporating measure-
ments require a revision of our intuition, especially
due to the breakdown of LR bounds. In this pa-
per we focused on aspects of information scrambling
and quantum chaos of local, non-Hermitian variants
of paradigmatic spin-chain models. The breakdown
of LR bounds makes traditional OTOCs unwieldy as
we exemplify with Fig. 1. In contrast, we show that
the operator entanglement – which in the unitary case
is closely related to OTOCs – is still able to distin-
guish the scrambling properties of these Hamiltonians.
Additionally, the long-time average of operator entan-
glement is able to distinguish the chaotic, integrable,
and purification phases.

Moreover, quantum quenches allow us to understand
the thermalization properties of the local subsystems
and we note that, even at small measurement rates, the
subsystems do not seem to thermalize. Operator en-
tanglement is closely tied to simulability for Hermitian
quantum circuits [73]. The methods studied here prove
a potential way to generalize this to hybrid quantum
circuits, which may live in a separate computational
complexity class from standard quantum circuits. This
has potential use towards e.g. quantum supremacy ex-
periments with non-Hermitian systems, where demon-
strating the breakdown of simulability is required [129].
As a future direction, it would be worth exploring
the classical and quantum computational complexity
of simulating non-Hermitian Hamiltonians, in particu-
lar, following the imaginary time evolution protocol of
Ref. [130].

Experimental prospects.— The non-Hermitian Hamil-
tonians and their scrambling properties that are dis-
cussed in this paper can be readily explored in a va-
riety of quantum simulators such as those based on
ultracold atoms [131], trapped ions [132], cavity QED
[133], etc. This is owing to the natural spontaneous
decay processes that occur in these systems, see the ex-
cellent discussion in Refs. [124, 134]. To simulate the
non-Hermitian evolution, e−iHIt, we simply notice that
e−iHIt = S(β)UtS(β)

−1 where Ut is the purely unitary
dynamics. Since we are mostly interested in Ising-type
Hamiltonians, these can be easily implemented in most
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Figure 11: Spectrum of the chaotic TFIM with L = 6 as γ is increased. Here the degenerate point occurs at γ = 1,
which is marked with a gridline for clarity. Eigenvalues begin to go through exceptional points shortly thereafter. For

large γ, HM is dominated by the γ
∑n

i=1 σ
y
i term, which is why the eigenvalues converge towards n+ 1 distinct, linearly

growing in γ, imaginary components, with static real parts.
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Figure 12: Spectrum of the integrable TFIM with L = 6 as γ is increased. The degeneracy point occurs the same as in
the chaotic case, but now coincides with the first exceptional point. There is additional degeneracy in eigenvalues that

exists in the Hermitian limit and remains unbroken until the second exceptional point at γ ≈ 1.2. Unlike both the
chaotic and classical models, all exceptional points occur at two discrete values of γ
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Figure 13: Spectrum of the classical TFIM with L = 6 as γ is increased. Here the degeneracy point occurs in the
Hermitian limit, and the gap between that and the first exceptional point is much larger than in the chaotic case.

current day experimental platforms. Moreover, to im-
plement the nonunitary piece, S(β) we need to post-
select on no quantum jumps under continuous moni-
toring. In particular, the ability to continuously mon-
itor the cavity in 2D and 3D superconducting QPUs
[135, 136] would allow for an experimental verification

of these non-Hermitian scrambling effects; although,
this would probably require having multiple transmon
qubits (or qudits) coupled to the same cavity. Simi-
larly, photonic systems provide a natural testbed for
these experiments because of their ability to carefully
tune gain and loss [137].
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Furthermore, a rigorous approach to benchmarking
quantum computing platforms is to quantify their
ability to prepare computationally nontrivial states,
for e.g., long-range entangled states. Generically, LR
bounds prevent the preparation of such states by
low-depth quantum circuits. However, in recent years,
there has been a striking development in this area
by the introduction of “adaptive quantum circuits,”
unitary circuits interspersed with measurements,
that violate the LR bound (this is also the class of
dynamics that we focus on in this paper). Perhaps
unsurprisingly, this allows for a low-depth preparation
of long-range entangled states [138]. In fact, the
approach in Ref. [138] is analogous to the ideas in
fusion-based quantum computation [139]. Moreover,
the introduction of measurements and postselection
have inspired revisiting the existing classification
of phases of matter [140]. We expect these ideas
to provide further insights into benchmarking and
characterization of quantum devices, both from a
technological and foundational perspective.
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Appendix A: Stationary state of the isospectral model

Here we verify that the stationary state ρss in Eq. (15) is indeed stationary under evolution under HI and calculate
its purity. For any time evolution operator with spectral decomposition U =

∑
i e

−itλi |ri⟩⟨li| for λi ∈ R, any state
of the form ρ =

∑
i pi|ri⟩⟨ri| is invariant in time. In the case of the isospectral TFIM in Eq. (12), |ri⟩ = S(β)|i⟩,

where |i⟩ is an eigenvector of HTFIM. Thus, ρss is one such state with pi = Tr[S(β)2]−1 ∀i. Analogous to the
maximally mixed state I/d, ρss is stationary regardless of choice of HTFIM.

Using UI = S(β)(e−itHTFIM)S(β)−1, one can verify that UIS(β)
2U†

I = S(β)2, so

ρss(t) =
UIρssU

†
I

Tr[UIρssU
†
I ]

=
S(β)2/Tr[S(β)2]

Tr [S(β)2/Tr[S(β)2]]
= ρss (A.1)

is stationary in time. The purity is computed using the fact that Tr[S(β)2a] = Tr[exp(aβσz)]L = (2cosh(aβ))L,
to be

Tr[ρ2ss] =
∥S(2β)∥22
∥S(β)∥42

=
[2cosh(2β)]L

[2cosh(β)]2L
=

[
1 + tanh(β)2

2

]L
(A.2)

These results generalize to any quasihermitian Hamiltonian, which can be written H = SH0S
−1 for some

Hermitian H0 and S. Furthermore, when restricted to the long-time eigenspace, any non-Hermitian Hamiltonian
will be quasihermitian up to an overall shift, and can be written in this form. Thus the forms Eq. (15) is valid
for all non-Hermitian Hamiltonian evolutions in the long-time limit.

https://carc.usc.edu
https://carc.usc.edu
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Appendix B: Alternative definition for a normalized OTOC

1. Definition of the OTOC

An alternative method of generalizing the OTOC to non-Hermitian systems relies on extending the notion of
Heisenberg evolution. Motivated by the Heisenberg-Schrodinger correspondence of for unconditional (in general
open-system) trajectories Tr(Atρ) = Tr(Aρt), we propose defining a time evolved operator At with respect to a
state ρ in terms of a CP time evolution superoperator Et as

At ≡
E†
t (A)

Tr(Et(ρ))
(B.1)

where in the case that time evolution is generated by a non-Hermitian Hamiltonian, Et(·) = Ut · U†
t and E†

t (·) =
U†
t · Ut. Plugging this into the traditional OTOC (Eq. (1)) for some yet arbitrary ρ yields

ĈV,W (t, ρ) ≡ 1

d

[
∥VWt∥22 − ReTr(W †

t V
†WtV )

]
=

1

d · Tr(Et(ρ))2

[∥∥∥V E†
t (W )

∥∥∥2
2
− ReTr(E†

t (W
†)V †E†

t (W )V )

] (B.2)

State dependence of the Heisenberg evolution arises from the nature of non-Hermitian evolutions as describing
conditional evolutions, which are conditional on the system state ρ. In the case where Et is generated by a
non-Hermitian Hamiltonian and ρ = I/d is the maximally mixed state, the denominator simplifies to

d · Tr(UtρU
†
t )

2 = d−1 ∥Ut∥42

The numerator of Eq. (B.2) is the same as the unconditional open-system OTOC used in [51, 52]. Using similar
techniques to those in the literature, we find the Haar averaged bipartite normalized OTOC to be

Ĝ(t, ρ) =
dBTr(TrA(Et(I))2)− Tr(SAA′E⊗2

t (SAA′))

d2 · Tr(Et(ρ))2

=
dBTr(TrA(UtU

†
t )

2)− Tr(U †⊗2
t SAA′U⊗2

t SAA′)

d2 · Tr(UtρU
†
t )

2

(B.3)

Then in the case where E is generated by a non-Hermitian Hamiltonian and we take ρ to be the maximally mixed
state, we have

Ĝ(t, I/d) =
dBTr(TrA(UtU

†
t )

2)

∥Ut∥42
− Tr(U †⊗2

t SAA′U⊗2
t SAA′)

∥Ut∥42
= Elin

op (Ut)− EB(UtU
†
t )

(B.4)

where

EB(UtU
†
t ) = 1− dB

Tr(TrA(UtU
†
t )

2)

∥Ut∥42
(B.5)

can be interpreted as a form of linear entanglement entropy on the B subsystem, and reduces to 0 in the case Ut

is unitary. Elin
op (Ut) is the linear operator entanglement of Ut across the bipartition, as defined in Ref. [68], and

reduces to the usual definition if Ut is unitary.

2. Long-time average

The long-time average (LTA) of the bipartite Haar-averaged OTOC Eq. (B.4) can also be taken via similar
techniques to that of the 2-Renyi operator entanglement in Appendix E 1. For this we use the approximation
(f/g) ≈ f/g which is a weaker restriction than the one used in Eq. (21), and average Elin

op and EB individually.

Elin
op (Ut) can be averaged identically to Eop(Ut) without the log, giving

Elin
op (Ut) ≈ 1− Tr [RALA] + Tr [RBLB ]− Tr [diag(RA)diag(LA)]

[Tr[η
L
]]2 + Tr[RL]− Tr[L]

. (B.6)
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The EB term (Eq. (B.5)) has the same denominator as Elin
op , while the numerator may be expanded

Tr(TrA(UtU
†
t )

2) =
∑
i,j,k,l

eit(λ
∗
i +λ∗

j−λk−λl) Tr [TrA(|rk⟩⟨lk|li⟩⟨ri|) TrA (|rl⟩⟨ll|lj⟩⟨rj |)] (B.7)

This term’s LTA can be taken similarly to as in Eq. (E.3), yielding

Tr(TrA(UtU
†
t )

2) = (a) + (b)− (c) (B.8)

for

(a) =
∑

i,j∈HL

Tr[TrA(|ri⟩⟨ri|) TrA(|rj⟩⟨rj |)]⟨li|li⟩⟨lj |lj⟩

=
∑

i,j∈HL

Tr[ρBi ρ
B
j ] Tr[σi] Tr[σj ]

=
∑

i,j∈HL

(RB)ij(LAB)ij

= Tr[RBLAB ]

(B.9)

where (LAB)ij = Tr[σi] Tr[σj ] = (η
L
)ii(ηL

)jj is the completely reduced long-time left Gram matrix. For the
second term we find,

(b) =
∑

i,j∈HL

Tr[TrA(|ri⟩⟨rj |) TrA(|rj⟩⟨ri|)]⟨li|lj⟩⟨lj |li⟩

=
∑

i,j∈HL

Tr[SBB′ |rirj⟩⟨rjri|] Tr[σiσj ]

=
∑

i,j∈HL

⟨rirj |SAA′ |rirj⟩Lij

=
∑

i,j∈HL

(RA)ijLij

= Tr[RAL]

(B.10)

where the second line comes from Tr[TrA(X)TrA(Y )] = Tr[S TrA(X) ⊗ TrA(Y )] = Tr[SBB′(X ⊗ Y )], the third
from SAA′ = SSBB′ , and the fourth line from Eq. (E.7). The final term is a special case of the second with i = j,
yielding

(c) =
∑
i∈HL

(RA)iiLii

= Tr[diag(RA)diag(L)]
(B.11)

Note that diag(RA) = diag(RB) and diag(L) = diag(LAB). This gives us the final form

EB(UtU
†
t ) ≈ 1− dB

Tr[RBLAB ] + Tr[RAL]− Tr[diag(RA)diag(L)]

[Tr[η
L
]]2 + Tr[RL]− Tr[L]

(B.12)

Appendix C: Convergence of the OTOC

In the Hermitian case, the OTOC in Eq. (18) averaged over sets of Haar-random unitaries VA,WB converges to
linear entanglement entropy of Ut, given by

Elin
op = 1− 1

∥Ut∥42
Tr
[
SAA′U⊗2

t SAA′U †⊗2
t

]
. (C.1)

As shown in Fig. 14, this no longer holds for non-Hermitian systems, for which the OTOC saturates more quickly
even as operator entanglement drops.
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Figure 14: Plots of the linear entanglement entropy (Eq. (C.1)) vs the Haar-averaged OTOC (Eq. (18)) for the
isospectral chaotic TFIM at L = 10. As expected, the operator entanglement and averaged OTOC are identical at

β = 0, the Hermitian case, but differ at β = 1. The OTOC is averaged over 100 pairs of unitaries VA,WB drawn from
the Haar distribution over their respective subsystem, at which point it has converged to low error. The isospectral

model is used to demonstrate that the failure of the OTOC to converge to Elin
op is due to the effect on eigenstates of Ut

rather than on the spectrum.

Appendix D: Operator entanglement from the Choi state

We show here that the form of operator entanglement used in Eq. (19) is motivated directly by normalization of
the Choi state.

For CP channel E the associated Choi state is

C(E) = 1

d

d∑
i,j=1

(E ⊗ I)(|ii⟩⟨jj|). (D.1)

which can be interpreted as a normalized state either if E is trace-preserving or if we explicitly divide by the
trace Tr[C(E)] = Tr[E(I)].
The operator entanglement Eop(E) across a bipartition can be defined as the entanglement entropy (across the
same bipartition) of the Choi state [141]. For e.g. the linear entropy across an A|B bipartition, that is,

Elin
op (E) = 1− Tr[TrA[C(E)]2]

Tr[C(E)]2
(D.2)

= 1− Tr[SAA′E⊗2(SAA′)]

Tr[E(I)]2
(D.3)

where the numerator comes from the Choi-Jamiołkowski isomorphism. For the pertinent case E(·) = U · U†, this
becomes the standard form

Elin
op (E) = 1− Tr[SAA′U⊗2SAA′U†⊗2]

∥U∥42
(D.4)

Appendix E: Analytic form of Eop(Ut)

1. Derivation of the analytical formula

We wish to prove Eq. (21), that is, to find an analytic approximation to the long time average of the equation

Eop(Ut) = −log

Tr
[
SAA′U⊗2

t SAA′U†⊗2
t

]
∥Ut∥42

 . (E.1)
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The approximation log(f) ≈ log( f ) allows the time average to be applied to the numerator and denominator of
Eq. (E.1) separately and within the logarithm, using log(f/g) = log(f)−log(g). Using the spectral decomposition
U =

∑
i e

−itλi |ri⟩⟨li|, the numerator within the logarithm may be expanded as

Tr
[
SAA′U†⊗2

t SAA′U⊗2
t

]
=
∑
i,j,k,l

eit(λ
∗
i +λ∗

j−λk−λl) Tr (SAA′ |lilj⟩⟨rirj |SAA′ |rkrl⟩⟨lkll|) (E.2)

.

As discussed in the main text, we can assume without loss of generality that max{Im[λi]} = 0, and when taking
the LTA drop all terms in the sum with Im[λi] < 0, as in the limit t → ∞ they will be zero, leaving only terms
in HL. The numerator LTA is then

Tr
[
SAA′U †⊗2

t SAA′U⊗2
t

]
=

∑
i,j,k,l∈HL

eit(λi+λj−λk−λl)⟨rirj |SAA′ |rkrl⟩⟨lkll|SAA′ |lilj⟩

=
∑

i,j,k,l∈HL

(δikδjl + δilδjk − δijkl)⟨rirj |SAA′ |rkrl⟩⟨lkll|SAA′ |lilj⟩

= (a) + (b)− (c)

(E.3)

where in the third line we leverage use of the NRC to take the time average, as in Ref. [51], and δ are Kronecker
deltas. The three terms are

(a) =
∑

i,j∈HL

⟨rirj |SAA′ |rirj⟩ ⟨lilj |SAA′ |lilj⟩ (E.4)

(b) =
∑

i,j∈HL

⟨rirj |SBB′ |rirj⟩ ⟨lilj |SBB′ |lilj⟩ (E.5)

(c) =
∑
i∈HL

⟨riri|SAA′ |riri⟩ ⟨lili|SAA′ |lili⟩ (E.6)

Note that the final term is simply the product of the purities of the left/right eigenvectors, and is symmetric
under the swap A ↔ B. Each term can be written in terms of modified Gram matrices using the definitions in
Eq. (22) and Eq. (23) and techniques from Ref. [51]:

⟨lilj |SAA′ |lilj⟩ = Tr [TrB (|li⟩⟨li|)TrB (|lj⟩⟨lj |)]
= ⟨σA

i , σ
A
j ⟩A

≡ (LA)ij

(E.7)

and similarly under the swap {|l⟩, σA, LA} ↔ {|r⟩, ρA, RA}, and the swap A↔ B. This gives, for example,

(a) =
∑

ij∈HL

(RA)ij(LA)ij = Tr[RALA]

Using NRC, the time average of the denominator is then

∥Ut∥42 = Tr
[
U†⊗2
t U⊗2

t

]
=

∑
i,j,k,l∈HL

eit(λi+λj−λk−λl)⟨rirj |rkrl⟩⟨lkll|lilj⟩

= (d) + (e)− (f).

(E.8)

Here,

(d) =
∑

i,j∈HL

⟨ri|ri⟩⟨rj |rj⟩⟨li|li⟩⟨lj |lj⟩

= (
∑
i∈HL

⟨li|li⟩ )2

= [Tr[η
L
]]2

(E.9)
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Figure 15: Comparison of numerically and analytically calculated values of the operator entanglement LTA as a
function of system size L for a range of models. The numeric values are the same as in Fig. 8, but the integrable and

Hermitian classical models are omitted for visibility as they do not satisfy NRC. The analytic approximation has visible
error for the classical γ = 0.2 and chaotic β = 1 models, but in this case still captures the correct scaling behavior.

where we use the normalization ⟨ri|ri⟩ = 1 ∀i. Similarly,

(e) =
∑

i,j∈HL

|⟨ri|rj⟩|2 |⟨li|lj⟩|2

=
∑

i,j∈HL

Tr [ρiρj ]Tr [σiσj ]

=
∑

i,j∈HL

RijLij

= Tr [RL]

(E.10)

where ρ, σ, L, and R are the unreduced long-time eigenstates and Gram matrices. Note Lij = |(η
L
)ij |2. Finally,

(f) =
∑
i∈HL

|⟨li|li⟩|2

=
∑
i∈HL

Lii

= Tr [L]

(E.11)

where we have again dropped ∥ri∥ = 1. Notice that all three terms manifest the non-Hermiticity of the Hamil-
tonian in the eigenvector non-orthonormality.

2. Verifying accuracy of analytic form

By comparison of numerically and analytically calculated operator entanglement averages in Fig. 15, we see that
for the NRC-satisfying models and nonhermiticity parameters considered it is highly accurate in most cases, and
sufficiently accurate to capture the correct scaling behavior in the rest. From the comparison in Fig. 16, we see
that the analytic approximation is primarily inaccurate in the cases where NRC is not satisfied: for the classical
and chaotic models at their degeneracy points (γ = 1 and γ = 0 respectively) and for the integrable models
in general. However away from points where NRC is not satisfied, the analytic approximation does capture all
interesting behavior.

[1] Y. Ashida, Z. Gong, and M. Ueda, Advances in Physics 69, 249 (2020).
[2] Y. Li, X. Chen, and M. P. A. Fisher, Phys. Rev. B 98, 205136 (2018).
[3] B. Skinner, J. Ruhman, and A. Nahum, Phys. Rev. X 9, 031009 (2019).

http://dx.doi.org/ 10.1080/00018732.2021.1876991
http://dx.doi.org/10.1103/PhysRevB.98.205136
http://dx.doi.org/10.1103/PhysRevX.9.031009


A7

0.0 0.5 1.0 1.5 2.0
0

2

4

6

8

Figure 16: Comparison of numerically and analytically calculated operator entanglement LTA as a function of
nonhermiticity parameter for a range of models. Numerical values are the same as in Fig. 10. Note large deviations come

from the integrable TFIM and near-Hermitian classical TFIM, which violate NRC (or in the classical TFIM with
0 < γ < .2, nearly violate) but are included for completeness.

[4] A. Chan, R. M. Nandkishore, M. Pretko, and G. Smith, Phys. Rev. B 99, 224307 (2019).
[5] Y. Li, X. Chen, and M. P. A. Fisher, Phys. Rev. B 100, 134306 (2019).
[6] M. J. Gullans and D. A. Huse, Phys. Rev. X 10, 041020 (2020).
[7] S. Choi, Y. Bao, X.-L. Qi, and E. Altman, Phys. Rev. Lett. 125, 030505 (2020).
[8] M. Ippoliti, M. J. Gullans, S. Gopalakrishnan, D. A. Huse, and V. Khemani, Phys. Rev. X 11, 011030 (2021).
[9] K. D. Agarwal, T. K. Konar, L. G. C. Lakkaraju, and A. S. De, “Recognizing critical lines via entanglement in

non-hermitian systems,” (2023), arXiv:2305.08374 [quant-ph].
[10] N. Matsumoto, K. Kawabata, Y. Ashida, S. Furukawa, and M. Ueda, Physical Review Letters 125, 260601 (2020).
[11] K. Kawabata, K. Shiozaki, M. Ueda, and M. Sato, Phys. Rev. X 9, 041015 (2019).
[12] T. E. Lee, Phys. Rev. Lett. 116, 133903 (2016).
[13] R. Hamazaki, K. Kawabata, and M. Ueda, Phys. Rev. Lett. 123, 090603 (2019).
[14] J. Mák, M. J. Bhaseen, and A. Pal, “Statics and dynamics of non-hermitian many-body localization,” (2023),

arXiv:2301.01763 [cond-mat.dis-nn].
[15] K. B. Efetov, Physical Review Letters 79, 491 (1997).
[16] J. T. Chalker and Z. J. Wang, Physical Review Letters 79, 1797 (1997).
[17] Y. V. Fyodorov, B. A. Khoruzhenko, and H.-J. Sommers, Physical Review Letters 79, 557 (1997).
[18] Y. V. Fyodorov, H.-J. Sommers, and B. A. Khoruzhenko, Annales de l’I.H.P. Physique théorique 68, 449 (1998).
[19] Y. V. Fyodorov and H.-J. Sommers, Journal of Physics A: Mathematical and General 36, 3303 (2003).
[20] L. D’Alessio, Y. Kafri, A. Polkovnikov, and M. Rigol, Advances in Physics 65, 239 (2016).
[21] F. Borgonovi, F. Izrailev, L. Santos, and V. Zelevinsky, Physics Reports 626, 1 (2016).
[22] T. Guhr, A. Müller–Groeling, and H. A. Weidenmüller, Physics Reports 299, 189 (1998).
[23] R. Hamazaki, K. Kawabata, N. Kura, and M. Ueda, Phys. Rev. Research 2, 023286 (2020).
[24] G. Akemann, M. Kieburg, A. Mielke, and T. c. v. Prosen, Phys. Rev. Lett. 123, 254101 (2019).
[25] L. Sá, P. Ribeiro, and T. Prosen, Physical Review X 10, 021019 (2020).
[26] F. Haake, Quantum Signatures of Chaos, 3rd ed., Springer Series in Synergetics No. 54 (Springer, Berlin ; New York,

2010).
[27] D. C. Brody, Journal of Physics A: Mathematical and Theoretical 47, 035305 (2013).
[28] J. Li, T. Prosen, and A. Chan, Physical Review Letters 127, 170602 (2021).
[29] S. Sayyad, J. D. Hannukainen, and A. G. Grushin, Phys. Rev. Res. 4, L042004 (2022).
[30] E. H. Lieb and D. W. Robinson, in Statistical mechanics (Springer, 1972) pp. 425–431.
[31] M. B. Hastings and T. Koma, Communications in Mathematical Physics 265, 781 (2006).
[32] S. Bravyi, M. B. Hastings, and F. Verstraete, Phys. Rev. Lett. 97, 050401 (2006).
[33] Y. Ashida and M. Ueda, Phys. Rev. Lett. 120, 185301 (2018).
[34] B. Nachtergaele and R. Sims, Communications in Mathematical Physics 265, 119–130 (2006).
[35] M. B. Hastings, Phys. Rev. B 69, 104431 (2004).
[36] B. Nachtergaele and R. Sims, Communications in Mathematical Physics 276, 437–472 (2007).
[37] I. Kukuljan, S. Grozdanov, and T. Prosen, Physical Review B 96 (2017), 10.1103/PhysRevB.96.060301.
[38] N. Anand and P. Zanardi, Quantum 6, 746 (2022).
[39] I. A. Larkin and Y. N. Ovchinnikov, Journal of Experimental and Theoretical Physics 28, 2262 (1969).
[40] A. Kitaev, “A simple model of quantum holography (part 1),” (2015).
[41] B. Swingle, Nature Physics 14, 988 (2018).

http://dx.doi.org/10.1103/PhysRevB.99.224307
http://dx.doi.org/10.1103/PhysRevB.100.134306
http://dx.doi.org/10.1103/PhysRevX.10.041020
http://dx.doi.org/ 10.1103/PhysRevLett.125.030505
http://dx.doi.org/10.1103/PhysRevX.11.011030
http://arxiv.org/abs/2305.08374
http://dx.doi.org/ 10.1103/PhysRevLett.125.260601
http://dx.doi.org/ 10.1103/PhysRevX.9.041015
http://dx.doi.org/10.1103/PhysRevLett.116.133903
http://dx.doi.org/10.1103/PhysRevLett.123.090603
http://arxiv.org/abs/2301.01763
http://dx.doi.org/10.1103/physrevlett.79.491
http://dx.doi.org/10.1103/physrevlett.79.1797
http://dx.doi.org/10.1103/physrevlett.79.557
http://www.numdam.org/item/AIHPA_1998__68_4_449_0/
http://dx.doi.org/10.1088/0305-4470/36/12/326
http://dx.doi.org/10.1080/00018732.2016.1198134
http://dx.doi.org/ 10.1016/j.physrep.2016.02.005
http://dx.doi.org/ 10.1016/S0370-1573(97)00088-4
http://dx.doi.org/ 10.1103/PhysRevResearch.2.023286
http://dx.doi.org/ 10.1103/PhysRevLett.123.254101
http://dx.doi.org/10.1103/PhysRevX.10.021019
http://dx.doi.org/10.1088/1751-8113/47/3/035305
http://dx.doi.org/ 10.1103/PhysRevLett.127.170602
http://dx.doi.org/10.1103/PhysRevResearch.4.L042004
http://dx.doi.org/10.1007/s00220-006-0030-4
http://dx.doi.org/10.1103/PhysRevLett.97.050401
http://dx.doi.org/10.1103/PhysRevLett.120.185301
http://dx.doi.org/10.1007/s00220-006-1556-1
http://dx.doi.org/10.1103/PhysRevB.69.104431
http://dx.doi.org/10.1007/s00220-007-0342-z
http://dx.doi.org/10.1103/PhysRevB.96.060301
http://dx.doi.org/10.22331/q-2022-06-27-746
http://online.kitp.ucsb.edu/online/entangled15/kitaev/
http://dx.doi.org/10.1038/s41567-018-0295-5


A8

[42] S. Xu and B. Swingle, “Scrambling dynamics and out-of-time ordered correlators in quantum many-body systems:
a tutorial,” (2022).

[43] C. B. Dağ, K. Sun, and L.-M. Duan, Phys. Rev. Lett. 123, 140602 (2019).
[44] S. Zamani, R. Jafari, and A. Langari, Phys. Rev. B 105, 094304 (2022).
[45] Y. Huang, Y.-L. Zhang, and X. Chen, Annalen der Physik 529, 1600318 (2016).
[46] R. Fan, P. Zhang, H. Shen, and H. Zhai, Science Bulletin 62, 707 (2017).
[47] Y. Chen, “Universal logarithmic scrambling in many body localization,” (2016), arXiv:1608.02765 [cond-mat.dis-nn].
[48] C. von Keyserlingk, T. Rakovszky, F. Pollmann, and S. Sondhi, Phys. Rev. X 8, 021013 (2018), arXiv:1705.08910

[cond-mat.str-el].
[49] N. Yunger Halpern, B. Swingle, and J. Dressel, Physical Review A 97 (2018), 10.1103/PhysRevA.97.042105.
[50] B. Yan, L. Cincio, and W. H. Zurek, Physical Review Letters 124 (2020), 10.1103/PhysRevLett.124.160603.
[51] G. Styliaris, N. Anand, and P. Zanardi, Physical Review Letters 126, 030601 (2021).
[52] P. Zanardi and N. Anand, Physical Review A 103, 062214 (2021).
[53] N. Anand, G. Styliaris, M. Kumari, and P. Zanardi, Phys. Rev. Res. 3, 023214 (2021).
[54] N. Y. Halpern, A. Bartolotta, and J. Pollack, Communications Physics 2, 92 (2019), arxiv:1806.04147.
[55] J. Cotler, T. Schuster, and M. Mohseni, “Information-theoretic hardness of out-of-time-order correlators,” (2022).
[56] X. Mi, P. Roushan, C. Quintana, S. Mandra, J. Marshall, C. Neill, F. Arute, K. Arya, J. Atalaya, R. Babbush, J. C.

Bardin, R. Barends, A. Bengtsson, S. Boixo, A. Bourassa, M. Broughton, B. B. Buckley, D. A. Buell, B. Burkett,
N. Bushnell, Z. Chen, B. Chiaro, R. Collins, W. Courtney, S. Demura, A. R. Derk, A. Dunsworth, D. Eppens,
C. Erickson, E. Farhi, A. G. Fowler, B. Foxen, C. Gidney, M. Giustina, J. A. Gross, M. P. Harrigan, S. D. Harrington,
J. Hilton, A. Ho, S. Hong, T. Huang, W. J. Huggins, L. B. Ioffe, S. V. Isakov, E. Jeffrey, Z. Jiang, C. Jones, D. Kafri,
J. Kelly, S. Kim, A. Kitaev, P. V. Klimov, A. N. Korotkov, F. Kostritsa, D. Landhuis, P. Laptev, E. Lucero,
O. Martin, J. R. McClean, T. McCourt, M. McEwen, A. Megrant, K. C. Miao, M. Mohseni, W. Mruczkiewicz,
J. Mutus, O. Naaman, M. Neeley, M. Newman, M. Y. Niu, T. E. O’Brien, A. Opremcak, E. Ostby, B. Pato,
A. Petukhov, N. Redd, N. C. Rubin, D. Sank, K. J. Satzinger, V. Shvarts, D. Strain, M. Szalay, M. D. Trevithick,
B. Villalonga, T. White, Z. J. Yao, P. Yeh, A. Zalcman, H. Neven, I. Aleiner, K. Kechedzhi, V. Smelyanskiy, and
Y. Chen, “Information scrambling in quantum circuits,” (2021).

[57] J. Braumüller, A. H. Karamlou, Y. Yanay, B. Kannan, D. Kim, M. Kjaergaard, A. Melville, B. M. Niedzielski,
Y. Sung, A. Vepsäläinen, et al., Nature Physics 18, 172 (2022).

[58] K. X. Wei, C. Ramanathan, and P. Cappellaro, Physical Review Letters 120 (2018), 10.1103/physrevlett.120.070501.
[59] J. Li, R. Fan, H. Wang, B. Ye, B. Zeng, H. Zhai, X. Peng, and J. Du, Physical Review X 7, 031011 (2017).
[60] X. Nie, Z. Zhang, X. Zhao, T. Xin, D. Lu, and J. Li, “Detecting scrambling via statistical correlations between

randomized measurements on an nmr quantum simulator,” (2019), arXiv:1903.12237 [quant-ph].
[61] X. Nie, B.-B. Wei, X. Chen, Z. Zhang, X. Zhao, C. Qiu, Y. Tian, Y. Ji, T. Xin, D. Lu, and et al., Physical Review

Letters 124 (2020), 10.1103/physrevlett.124.250601.
[62] M. Gärttner, J. G. Bohnet, A. Safavi-Naini, M. L. Wall, J. J. Bollinger, and A. M. Rey, Nature Physics 13, 781

(2017).
[63] M. K. Joshi, A. Elben, B. Vermersch, T. Brydges, C. Maier, P. Zoller, R. Blatt, and C. F. Roos, Physical Review

Letters 124 (2020), 10.1103/physrevlett.124.240505.
[64] E. J. Meier, J. Ang’ong’a, F. A. An, and B. Gadway, Physical Review A 100 (2019), 10.1103/physreva.100.013623.
[65] B. Chen, X. Hou, F. Zhou, P. Qian, H. Shen, and N. Xu, Applied Physics Letters 116, 194002 (2020).
[66] P. Zanardi, Quantum 6, 666 (2022).
[67] F. Andreadakis, N. Anand, and P. Zanardi, Phys. Rev. A 107, 042217 (2023).
[68] P. Zanardi, Physical Review A 63 (2001), 10.1103/PhysRevA.63.040304.
[69] C. Lupo, P. Aniello, and A. Scardicchio, Journal of Physics A: Mathematical and Theoretical 41, 415301 (2008).
[70] P. Aniello and C. Lupo, Open Systems and Information Dynamics 16, 127–143 (2009).
[71] T. Prosen and I. Pižorn, Physical Review A 76 (2007), 10.1103/physreva.76.032316.
[72] I. Pižorn and T. Prosen, Physical Review B 79 (2009), 10.1103/physrevb.79.184416.
[73] J. Dubail, Journal of Physics A: Mathematical and Theoretical 50, 234001 (2017).
[74] V. Alba, J. Dubail, and M. Medenjak, Physical Review Letters 122 (2019), 10.1103/physrevlett.122.250603.
[75] M. J. Hartmann, J. Prior, S. R. Clark, and M. B. Plenio, Physical Review Letters 102 (2009), 10.1103/phys-

revlett.102.057202.
[76] D. Muth, R. G. Unanyan, and M. Fleischhauer, Physical Review Letters 106 (2011), 10.1103/physrevlett.106.077202.
[77] M. Žnidarič, T. Prosen, and I. Pižorn, Physical Review A 78 (2008), 10.1103/physreva.78.022103.
[78] C. Jonay, D. A. Huse, and A. Nahum, “Coarse-grained dynamics of operator and state entanglement,” (2018).
[79] P. Hosur, X.-L. Qi, D. A. Roberts, and B. Yoshida, Journal of High Energy Physics 2016 (2016),

10.1007/JHEP02(2016)004.
[80] B. Jonnadula, P. Mandayam, K. Życzkowski, and A. Lakshminarayan, Physical Review A 95 (2017), 10.1103/phys-

reva.95.040302.
[81] Y. D. Lensky and X.-L. Qi, Journal of High Energy Physics 2019 (2019), 10.1007/jhep06(2019)025.
[82] R. Pal and A. Lakshminarayan, Physical Review B 98 (2018), 10.1103/physrevb.98.174304.
[83] N. Dowling, P. Kos, and K. Modi, “Scrambling is Necessary but Not Sufficient for Chaos,” (2023), arxiv:2304.07319

[cond-mat, physics:hep-th, physics:nlin, physics:quant-ph].
[84] M. L. Mehta, Random Matrices, 3rd ed., Pure and Applied Mathematics Series No. 142 (Elsevier, Amsterdam, 2004).
[85] G. Livan, M. Novaes, and P. Vivo, Introduction to Random Matrices , SpringerBriefs in Mathematical Physics,

Vol. 26 (Springer International Publishing, Cham, 2018).
[86] R. Nandkishore and D. A. Huse, Annual Review of Condensed Matter Physics 6, 15 (2015).
[87] D. A. Abanin, E. Altman, I. Bloch, and M. Serbyn, Reviews of Modern Physics 91 (2019), 10.1103/RevMod-

Phys.91.021001.
[88] F. Alet and N. Laflorencie, Comptes Rendus Physique 19, 498 (2018).

http://dx.doi.org/10.48550/ARXIV.2202.07060
http://dx.doi.org/10.48550/ARXIV.2202.07060
http://dx.doi.org/10.1103/PhysRevLett.123.140602
http://dx.doi.org/10.1103/PhysRevB.105.094304
http://dx.doi.org/10.1002/andp.201600318
http://dx.doi.org/ 10.1016/j.scib.2017.04.011
http://arxiv.org/abs/1608.02765
http://dx.doi.org/10.1103/PhysRevX.8.021013
http://arxiv.org/abs/1705.08910
http://arxiv.org/abs/1705.08910
http://dx.doi.org/10.1103/PhysRevA.97.042105
http://dx.doi.org/10.1103/PhysRevLett.124.160603
http://dx.doi.org/10.1103/PhysRevLett.126.030601
http://dx.doi.org/10.1103/PhysRevA.103.062214
http://dx.doi.org/ 10.1103/PhysRevResearch.3.023214
http://dx.doi.org/10.1038/s42005-019-0179-8
http://arxiv.org/abs/1806.04147
http://dx.doi.org/10.48550/ARXIV.2208.02256
http://dx.doi.org/ 10.1126/science.abg5029
http://dx.doi.org/10.1103/physrevlett.120.070501
http://dx.doi.org/ 10.1103/PhysRevX.7.031011
http://arxiv.org/abs/1903.12237
http://dx.doi.org/10.1103/physrevlett.124.250601
http://dx.doi.org/10.1103/physrevlett.124.250601
http://dx.doi.org/10.1038/nphys4119
http://dx.doi.org/10.1038/nphys4119
http://dx.doi.org/10.1103/physrevlett.124.240505
http://dx.doi.org/10.1103/physrevlett.124.240505
http://dx.doi.org/10.1103/physreva.100.013623
http://dx.doi.org/10.1063/5.0004152
http://dx.doi.org/10.22331/q-2022-03-11-666
http://dx.doi.org/10.1103/PhysRevA.107.042217
http://dx.doi.org/10.1103/PhysRevA.63.040304
http://dx.doi.org/10.1088/1751-8113/41/41/415301
http://dx.doi.org/10.1142/s1230161209000104
http://dx.doi.org/10.1103/physreva.76.032316
http://dx.doi.org/10.1103/physrevb.79.184416
http://dx.doi.org/10.1088/1751-8121/aa6f38
http://dx.doi.org/10.1103/physrevlett.122.250603
http://dx.doi.org/10.1103/physrevlett.102.057202
http://dx.doi.org/10.1103/physrevlett.102.057202
http://dx.doi.org/10.1103/physrevlett.106.077202
http://dx.doi.org/10.1103/physreva.78.022103
http://dx.doi.org/10.48550/ARXIV.1803.00089
http://dx.doi.org/10.1007/JHEP02(2016)004
http://dx.doi.org/10.1007/JHEP02(2016)004
http://dx.doi.org/10.1103/physreva.95.040302
http://dx.doi.org/10.1103/physreva.95.040302
http://dx.doi.org/10.1007/jhep06(2019)025
http://dx.doi.org/10.1103/physrevb.98.174304
http://dx.doi.org/ 10.48550/arXiv.2304.07319
http://arxiv.org/abs/2304.07319
http://arxiv.org/abs/2304.07319
http://dx.doi.org/10.1007/978-3-319-70885-0
http://dx.doi.org/10.1146/annurev-conmatphys-031214-014726
http://dx.doi.org/ 10.1103/RevModPhys.91.021001
http://dx.doi.org/ 10.1103/RevModPhys.91.021001


A9

[89] Y. Huang, Nuclear Physics B 938, 594 (2019).
[90] M. Kumari and Á. M. Alhambra, Quantum 6, 701 (2022).
[91] L. Vidmar and M. Rigol, Phys. Rev. Lett. 119, 220603 (2017).
[92] W. Beugeling, A. Andreanov, and M. Haque, Journal of Statistical Mechanics: Theory and Experiment 2015,

P02002 (2015).
[93] L. Vidmar, L. Hackl, E. Bianchi, and M. Rigol, Phys. Rev. Lett. 119, 020601 (2017).
[94] L. Hackl, L. Vidmar, M. Rigol, and E. Bianchi, Phys. Rev. B 99, 075123 (2019).
[95] C. Murthy and M. Srednicki, Phys. Rev. E 100, 022131 (2019).
[96] P. Łydżba, M. Rigol, and L. Vidmar, Phys. Rev. Lett. 125, 180604 (2020).
[97] A. Goussev, R. A. Jalabert, H. M. Pastawski, and D. A. Wisniacki, Scholarpedia 7, 11687 (2012), revision #127578.
[98] T. Gorin, T. Prosen, T. H. Seligman, and M. Žnidarič, Physics Reports 435, 33 (2006).
[99] I. García-Mata, R. A. Jalabert, and D. A. Wisniacki, “Out-of-time-order correlators and quantum chaos,” (2022).

[100] M. V. Berry, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 400, 229 (1985).
[101] J. S. Cotler, G. Gur-Ari, M. Hanada, J. Polchinski, P. Saad, S. H. Shenker, D. Stanford, A. Streicher, and M. Tezuka,

Journal of High Energy Physics 2017, 118 (2017), arXiv:1611.04650 [hep-th].
[102] J. Cotler, N. Hunter-Jones, J. Liu, and B. Yoshida, Journal of High Energy Physics 2017, 1 (2017).
[103] Z. Weinstein, S. P. Kelly, J. Marino, and E. Altman, “Scrambling transition in a radiative random unitary circuit,”

(2022), arXiv:2210.14242 [quant-ph].
[104] S. Gopalakrishnan and M. J. Gullans, Physical Review Letters 126, 170503 (2021).
[105] T. A. Brun, American Journal of Physics 70, 719 (2002).
[106] D. A. Lidar, arXiv:1902.00967 [quant-ph] (2019), arxiv:1902.00967 [quant-ph].
[107] A. Mostafazadeh, Journal of Mathematical Physics 43, 205 (2002).
[108] N. Matsumoto, M. Nakagawa, and M. Ueda, Phys. Rev. Res. 4, 033250 (2022).
[109] C. M. Bender and S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998).
[110] C. M. Bender, D. C. Brody, and H. F. Jones, Phys. Rev. Lett. 89, 270401 (2002).
[111] K. D. Agarwal, T. K. Konar, L. G. C. Lakkaraju, and A. S. De, “Detecting exceptional point through dynamics in

non-hermitian systems,” (2022), arXiv:2212.12403 [quant-ph].
[112] L. G. C. Lakkaraju and A. Sen(De), Phys. Rev. A 104, 052222 (2021).
[113] M. C. Bañuls, J. I. Cirac, and M. B. Hastings, Phys. Rev. Lett. 106, 050405 (2011).
[114] H. Kim and D. A. Huse, Phys. Rev. Lett. 111, 127205 (2013).
[115] M. M. Wolf, F. Verstraete, M. B. Hastings, and J. I. Cirac, Physical Review Letters 100 (2008), 10.1103/Phys-

RevLett.100.070502.
[116] A. Biella and M. Schiró, Quantum 5, 528 (2021).
[117] A. Fring and M. H. Y. Moussa, Phys. Rev. A 93, 042114 (2016).
[118] F. J. Dyson, Phys. Rev. 102, 1230 (1956).
[119] X. Turkeshi, A. Biella, R. Fazio, M. Dalmonte, and M. Schiró, Physical Review B 103, 224210 (2021).
[120] A. Mitra, Annual Review of Condensed Matter Physics 9, 245 (2018).
[121] C. Gogolin and J. Eisert, Reports on Progress in Physics 79, 056001 (2016), arxiv:1503.07538.
[122] V. Alba and P. Calabrese, SciPost Physics 4, 017 (2018).
[123] B. Dóra, D. Sticlet, and C. u. u. u. u. P. m. c. Moca, Phys. Rev. Lett. 128, 146804 (2022).
[124] T. E. Lee and C.-K. Chan, Phys. Rev. X 4, 041001 (2014).
[125] J. Pi and R. Lü, Journal of Physics: Condensed Matter 33, 345601 (2021).
[126] G. B. Mbeng, A. Russomanno, and G. E. Santoro, arXiv:2009.09208 [cond-mat, physics:quant-ph] (2020),

arxiv:2009.09208 [cond-mat, physics:quant-ph].
[127] G. Vidal, Physical Review Letters 91 (2003), 10.1103/PhysRevLett.91.147902.
[128] M. Fishman, S. R. White, and E. M. Stoudenmire, SciPost Phys. Codebases , 4 (2022).
[129] J. Preskill, “Quantum computing and the entanglement frontier,” (2012).
[130] M. Motta, C. Sun, A. T. K. Tan, M. J. O’Rourke, E. Ye, A. J. Minnich, F. G. S. L. Brandão, and G. K.-L. Chan,

Nature Physics 16, 205 (2019).
[131] C. Gross and I. Bloch, Science 357, 995 (2017).
[132] R. Blatt and C. F. Roos, Nature Physics 8, 277 (2012).
[133] S. Schmidt and J. Koch, Annalen der Physik 525, 395 (2013).
[134] T. E. Lee, F. Reiter, and N. Moiseyev, Phys. Rev. Lett. 113, 250401 (2014).
[135] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and W. D. Oliver, Applied Physics Reviews 6,

021318 (2019).
[136] M. S. Alam, S. Belomestnykh, N. Bornman, G. Cancelo, Y.-C. Chao, M. Checchin, V. S. Dinh, A. Grassellino,

E. J. Gustafson, R. Harnik, C. R. H. McRae, Z. Huang, K. Kapoor, T. Kim, J. B. Kowalkowski, M. J. Kramer,
Y. Krasnikova, P. Kumar, D. M. Kurkcuoglu, H. Lamm, A. L. Lyon, D. Milathianaki, A. Murthy, J. Mutus,
I. Nekrashevich, J. Oh, A. B. Özgüler, G. N. Perdue, M. Reagor, A. Romanenko, J. A. Sauls, L. Stefanazzi, N. M.
Tubman, D. Venturelli, C. Wang, X. You, D. M. T. van Zanten, L. Zhou, S. Zhu, and S. Zorzetti, “Quantum
computing hardware for hep algorithms and sensing,” (2022), arXiv:2204.08605 [quant-ph].

[137] L. Feng, R. El-Ganainy, and L. Ge, Nature Photonics 11, 752 (2017).
[138] T.-C. Lu, L. A. Lessa, I. H. Kim, and T. H. Hsieh, PRX Quantum 3, 040337 (2022).
[139] S. Bartolucci, P. Birchall, H. Bombin, H. Cable, C. Dawson, M. Gimeno-Segovia, E. Johnston, K. Kieling, N. Nick-

erson, M. Pant, F. Pastawski, T. Rudolph, and C. Sparrow, “Fusion-based quantum computation,” (2021),
arxiv:2101.09310 [quant-ph].

[140] L. Piroli, G. Styliaris, and J. I. Cirac, Phys. Rev. Lett. 127, 220503 (2021).
[141] C. Li, B.-H. Wang, B. Wu, and X. Yuan, Communications in Theoretical Physics 73, 115101 (2021).

http://dx.doi.org/10.22331/q-2022-04-27-701
http://dx.doi.org/10.1103/PhysRevLett.119.220603
http://dx.doi.org/10.1103/PhysRevLett.119.020601
http://dx.doi.org/ 10.1103/PhysRevB.99.075123
http://dx.doi.org/10.1103/PhysRevE.100.022131
http://dx.doi.org/ 10.1103/PhysRevLett.125.180604
http://dx.doi.org/10.4249/scholarpedia.11687
http://dx.doi.org/10.48550/ARXIV.2209.07965
http://dx.doi.org/10.1007/JHEP05(2017)118
http://arxiv.org/abs/1611.04650
http://arxiv.org/abs/2210.14242
http://dx.doi.org/10.1103/PhysRevLett.126.170503
http://dx.doi.org/10.1119/1.1475328
http://arxiv.org/abs/1902.00967
http://dx.doi.org/10.1063/1.1418246
http://dx.doi.org/10.1103/PhysRevResearch.4.033250
http://dx.doi.org/10.1103/PhysRevLett.80.5243
http://dx.doi.org/10.1103/PhysRevLett.89.270401
http://arxiv.org/abs/2212.12403
http://dx.doi.org/10.1103/PhysRevA.104.052222
http://dx.doi.org/10.1103/PhysRevLett.106.050405
http://dx.doi.org/10.1103/PhysRevLett.111.127205
http://dx.doi.org/10.1103/PhysRevLett.100.070502
http://dx.doi.org/10.1103/PhysRevLett.100.070502
http://dx.doi.org/10.22331/q-2021-08-19-528
http://dx.doi.org/10.1103/PhysRevA.93.042114
http://dx.doi.org/10.1103/PhysRev.102.1230
http://dx.doi.org/ 10.1103/PhysRevB.103.224210
http://dx.doi.org/10.1146/annurev-conmatphys-031016-025451
http://dx.doi.org/10.1088/0034-4885/79/5/056001
http://arxiv.org/abs/1503.07538
http://dx.doi.org/10.21468/SciPostPhys.4.3.017
http://dx.doi.org/10.1103/PhysRevLett.128.146804
http://dx.doi.org/10.1103/PhysRevX.4.041001
http://arxiv.org/abs/2009.09208
http://dx.doi.org/10.1103/PhysRevLett.91.147902
http://dx.doi.org/10.21468/SciPostPhysCodeb.4
http://dx.doi.org/10.48550/ARXIV.1203.5813
http://dx.doi.org/ 10.1038/s41567-019-0704-4
http://dx.doi.org/10.1103/PhysRevLett.113.250401
http://dx.doi.org/ 10.1063/1.5089550
http://dx.doi.org/ 10.1063/1.5089550
http://arxiv.org/abs/2204.08605
http://dx.doi.org/10.1038/s41566-017-0031-1
http://dx.doi.org/10.1103/PRXQuantum.3.040337
http://dx.doi.org/10.48550/arXiv.2101.09310
http://arxiv.org/abs/2101.09310
http://dx.doi.org/10.1103/PhysRevLett.127.220503
http://dx.doi.org/ 10.1088/1572-9494/ac1da1



