2212.09345v2 [astro-ph.CO] 21 Apr 2023

arxiv

VERSION APRIL 25, 2023
Preprint typeset using I TEX style openjournal v. 09/06/15

THE CATALOG-TO-COSMOLOGY FRAMEWORK FOR WEAK LENSING AND GALAXY CLUSTERING FOR
LSST

J. Prat™ b2, J. Zuntz™ 3, Y. Omor1" 2, C. CHANGY 2, T. TROSTER!, E. PEDERSEN’, C. GARCIA-GARCIA®,
E. PHILLIPS-LONGLEY', J. SaANcHEZ®, D. ALonso®, X. Fanc®, E. Gawiser'?, K. HErTMANN'!, M. IsHAK'?, M. JARvIs'®,
E. Kovacs!, P. LARSEN', Y.-Y. Mao', L. MEDINA VARELA'?2, M. PATERNO'®, S. D. P. VITENTI'®, Z. ZHANG' AND THE

LSST DARK ENERGY SCIENCE COLLABORATION. Author affiliations may be found before the references.
Version April 25, 2023

ABSTRACT

We present TXPIPE, a modular, automated and reproducible pipeline for ingesting catalog data and
performing all the calculations required to obtain quality-assured two-point measurements of lensing
and clustering, and their covariances, with the metadata necessary for parameter estimation. The
pipeline is developed within the Rubin Observatory Legacy Survey of Space and Time (LSST) Dark
Energy Science Collaboration (DESC), and designed for cosmology analyses using LSST data. In
this paper, we present the pipeline for the so-called “3x2pt” analysis — a combination of three two-
point functions that measure the auto- and cross-correlation between galaxy density and shapes. We
perform the analysis both in real and harmonic space using TXP1PE and other LSST-DESC tools. We
validate the pipeline using Gaussian simulations and show that it accurately measures data vectors
and recovers the input cosmology to the accuracy level required for the first year of LSST data under
this simplified scenario. We also apply the pipeline to a realistic mock galaxy sample extracted from
the CosMODC2 simulation suite (Korytov et al. 2019). TXPIPE establishes a baseline framework
that can be built upon as the LSST survey proceeds. Furthermore, the pipeline is designed to be

easily extended to science probes beyond the 3x2pt analysis.
Subject headings: methods: statistical — dark energy — large-scale structure of the universe

1. INTRODUCTION

The large-scale structure (LSS) contains rich informa-
tion on both the geometry of spacetime and the growth
of cosmic structure. Among the most direct avenues for
probing the LSS is examining the statistical properties of
the large-scale distribution of galaxies (Eisenstein et al.
2005; Springel et al. 2006), which are biased tracers of
the distribution of mass. In addition, one can use the
phenomenon of weak gravitational lensing — the small
deflection of photon trajectories due to the perturba-
tion of spacetime from mass — to map the distribution
of mass directly. The weak lensing-inferred mass distri-
bution is typically measured using the distortion of ob-
served galaxy shapes (for a review of weak lensing, see
e.g. Bartelmann & Schneider 2001). Recent analyses of
galaxy surveys have further shown that it is even more
effective to combine galaxy clustering and weak lensing
in a multi-probe approach to jointly infer cosmology (e.g.
DES Collaboration 2022b; Heymans et al. 2021).

In particular, a common approach is to combine three
two-point functions of the galaxy density field d, and
the weak lensing shear field v: galaxy clustering (J,d,),
galaxy-galaxy lensing (d,y) and cosmic shear (yy). In
these measurements, we usually refer to the galaxy sam-
ple used for J, as the lens galazies, and the sample used
for weak lensing as the source galaxies. These two-point
statistics capture the Gaussian information in the mat-
ter field, which is sensitive to cosmological parameters
that describe the history and content of the Universe.
The main advantage of combining the three probes in
a coherent analysis is that since each probe depends on
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cosmological and nuisance parameters in a different way,
combining them allows us to effectively break the degen-
eracies between the parameters and tighten the overall
cosmological constraints, as well as constraints on nui-
sance parameters. Following the community’s conven-
tion, we refer to this combination of three two-point cor-
relation functions as the 3x2pt probe.

Building on the success of the Stage-III' galaxy sur-
veys the Dark Energy Survey (DES, Flaugher 2005), the
Kilo-Degree Survey (KiDS, de Jong et al. 2013) and the
Hyper Suprime-Cam survey (HSC, Aihara et al. 2018),
we are at the very beginning of Stage-IV galaxy surveys
with the Rubin Observatory Legacy Survey of Space and
Time (LSST, Ivezi¢ et al. 2019), the ESA satellite Eu-
clid (Laureijs et al. 2011) and the NASA’s Nancy Grace
Roman Space Telescope (Akeson et al. 2019) ramping
up their activities, and DESI (Levi et al. 2019) already
operating. This paper in particular focuses on LSST,
which is scheduled to begin its 10 year survey in 2024.
The 3x2pt analysis is one of the baseline pillars of the
LSST cosmology analysis and is expected to deliver a
Dark Energy Task Force Figure of Merit (DETF FoM)
~ 60 (Albrecht et al. 2006b). Together with supernovae,
galaxy clusters and strong lensing, LSST is expected to
deliver a DETF FoM ~ 500 (The LSST Dark Energy Sci-
ence Collaboration 2018).

To achieve these projections, one of the key factors
will be our ability to control for systematic effects. The
significantly lower statistical uncertainties in LSST com-

I The Stage-III and Stage-IV classification was introduced in
the Dark Energy Task Force report (Albrecht et al. 2006a), where
Stage-1II refers to the ongoing dark energy experiments that
started in the 2010s and Stage-IV refers to those that start in the
2020s.
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pared to current data places stringent requirements on
the level of systematic effects that we can tolerate. At
this point, the community collectively has extensive ex-
perience from Stage-III surveys where systematic effects
that were previously ignored are becoming relevant, and
this will only be more evident in LSST. Some examples
for these “new” systematic effects include: the coupling of
shear calibration bias and redshift uncertainties through
the blending of object images (MacCrann et al. 2022);
biases in photometric redshift distributions from incom-
pleteness of spectroscopic training samples (Hartley et al.
2020); selection effects in galaxy samples used for clus-
tering measurements (Pandey et al. 2022), to name only
a few.

To this end, we cannot necessarily predict the next
new systematic effect that will emerge, but we can learn
from our Stage-III experiences and make the upcoming
LSST cosmology analysis process smoother by building
a framework to 1) minimize the human errors in carry-
ing out the analysis and 2) enable the users to easily find
and test systematic effects that could emerge. This is the
main idea behind the creation of TXP1PE?. In TXPIPE
we focus on the measurement side of the 3x2pt cosmol-
ogy analysis, but note that its general structure could
be applied to other analyses as well. We also note that
similar concepts exist from the theory side in a number
of common cosmology tools such as CosmoSIS (Zuntz
et al. 2015) but to our knowledge it has not been devel-
oped at a similar level on the measurement side, which
is equally important. In an earlier work in Chang et al.
(2019), we explored a prototype measurement pipeline
WLP1PE? and applied it on four precursor datasets. The
work demonstrated the value of such a framework by ex-
posing a number of issues in earlier measurements. In a
similar spirit, Longley et al. (2023) recently reanalyzed
the DES Y1, HSC-Y1 and KiDS-1000 cosmic shear anal-
yses using TXPIPE, finding a few additional issues.

The goal of this paper is to first present the structure
and design of TXPIPE and then validate the basic func-
tionalities using mock galaxy catalogs. Here we target
the pipeline requirement for the 3x2pt cosmology anal-
ysis using the first year (Y1) of LSST data as it is the
first near-term goal we expect from LSST. To perform
the validation we use two sets of complementary mock
galaxy catalogs: first, a set of simple Gaussian simula-
tions to test that the basic measurements of the esti-
mators do indeed recover the input signal; second, the
DESC CosM0ODC2 catalog presented and validated in
Korytov et al. (2019) and Kovacs et al. (2022) to test
the various functionalities in TXPIPE that involve more
realistic galaxy properties. We compare the measure-
ments and the theory prediction both at the data vec-
tor level and at the level of the cosmological constraints.
Whenever possible, we also validate the 3x2pt-related
components of other DESC software packages with this
exercise — these include FIRECROWN? (likelihood), TJP-
Cov?® (covariance), the Core Cosmology Library (CCLS,
Chisari et al. 2019) and others. All together we are able

2 https://github.com/LSSTDESC/TXPipe

3 https://github.com /pegasus-isi/pegasus-wlpipe
4 https://github.com/LSSTDESC/firecrown

5 https://github.com/LSSTDESC/TJPCov

6 https://github.com/LSSTDESC/CCL

to demonstrate that the performance of core measure-
ment components is sufficient for an LSST Y1 3x2pt
cosmology analysis. We fully expect that the baseline
analysis that will be adopted in later years of LSST will
evolve depending on what we find, and so have designed
TXPIPE to be adaptable to future changes. We keep
the constituent parts of the pipeline only loosely coupled
to each other, so that changes can be isolated and their
impacts carefully assessed. We store all the pipeline’s
outputs in one place, so that they can be compared one-
to-one. And we maintain pipeline configurations under
version control, and propagate this information to output
metadata, so that the nature of changes made is never
lost or unclear.

The paper is organized as follows. In Section 2 we in-
troduce the basic background formalism used in a 3 x2pt
cosmology analysis. This includes both the theory pre-
diction and the estimators used in this work. In Section 3
we present the design and functionalities of TXPIPE. In
Section 4 we validate TXPIPE at both the data vector
and the cosmology level using the LSST Y1 like Gaussian
simulations and in Section 5 we apply it to CosmMoDC2.
We discuss lessons learned and future steps in Section 6
and summarize in Section 7.

2. MODELING: 3x2PT COSMOLOGY

The 3 x 2pt probes are the autocorrelation of the po-
sitions of galaxies, the cross-correlation of galaxy shapes
and galaxy positions and the autocorrelation of galaxy
shapes respectively. These measurements can be done
both in real space and in harmonic space. We use two
samples to perform these measurements, a lens sample
for which we have position information and a source for
which we have both position and shape information. We
also use (true) redshift information for both samples. In
this section we will describe how we define and model
these two-point correlation functions.

Unless explicitly stated, during this study we use a
cosmology close to the best-fit cosmological parameters
from WMAP-7 (Komatsu et al. 2011): €, =0.22,8), =
0.048,h=0.71,n, = 0.963,05 = 0.8, which is the assumed
cosmology in the CosMODC2 simulation.

2.1. Background theory

Considering a real signal a(n) on the unit sphere S2,
it is equivalently described in terms of its spherical har-
monic coefficients {ag,} with £ € N and m € {-(,...,¢}.
The angular power spectrum {C4} between two signals
a and b is defined as:

<a5mbzm/> = CZb deer 5mm’7 (1)

and can be obtained using the following estimator as-
suming coverage over the full-sky:

¢y ok @
T LT

The angular power spectrum corresponds to the aver-
age power in fluctuations on scales of the order of /¢
on the sphere. If we assume that a is a random field,
the power spectrum can be interpreted as a compres-
sion technique, and used to perform statistical inference
on physical models of the field. In particular, if a is an
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isotropic Gaussian random field, the power spectrum is a
sufficient statistic containing all the relevant information
in the realization a. In our case, a will be the galaxy
number overdensity for galaxy clustering, and the con-
vergence (or shear) field for weak lensing observables.

2.2. Harmonic and real space model

Under the Limber approximation (Limber 1953;
LoVerde & Afshordi 2008) and assuming a flat Universe
cosmology, we obtain the weak lensing shear power spec-
trum as a projection of the 3D matter power spectrum
Pom:

N i(x)q! 0+1/2
Ci{w(e):/dxwpmm (k: +X/ 7Z(X)>7 (3)

between two source redshift bins i, j where g,(x) are
the window functions of the given source populations of
galaxies, k is the 3D wavenumber, ¢ is the 2D multipole
moment and x is the comoving distance. We can also
model the cross-correlation between the lens and source
samples Cs, and express it as a projection of the 3D
galaxy-matter power spectrum Pyy,. For a lens redshift
bin i with a window function N;(x) and a source redshift
bin j,

- Ni { £+1/2
Caiw(g):/dX%Pgm (k= +X/ 7Z(X)>- (4)

Finally the galaxy clustering harmonic space correlation
function is a projection of the 3D galaxy power spectrum
Pyg:

Cé’g(sg(é)= / dxwpgg (k: +1/ ,z(X)>. (5)

Limber’s approximation holds if the 3D galaxy overden-
sity field of the lenses and the 3D matter overdensity
field at the redshift of the source galaxies vary on length
scales much smaller than the typical length scale of their
respective window functions in the line of sight direction.
The lens window function is defined as:

n @) dz

Ni(x) = -2 ,
100 A dx

(6)

where n! is the lens redshift distribution and 7 is the
mean number density of the lens galaxies. The weak
lensing window function of the source galaxies is:

3HQ X
0 —— 7
52 P )a(X)g(x), (7)
where a is the scale factor, p(f) is the ¢-dependent pref-
actor in the lensing observables due to the spin-2 nature”
of the shear and g(x) is the lensing efficiency kernel:

Xn n{ (2) dz X'—x
( )=/ d e ) 8
8X y X Al dx Y (8)

gl =

with nl(z) being the redshift distribution of the source

galaxies, 717 the mean number density of the source galax-
ies and xp, is the comoving distance to the horizon.

7 Here we use p(f) = £2/(£+1/2)?, which corresponds to the 1st
order extended Limber flat projection (ExtL1F1), as defined in table
1 from Kilbinger et al. (2017).

We use CCL (Chisari et al. 2019) to obtain the model
for the two-point correlation functions. We compute the
non-linear matter power spectrum using the Takahashi
et al. (2012) version of HALOFIT. For the linear power
spectrum, we use the CAMB algorithm (Lewis & Bridle
2002).

2.2.1. Galazxy bias model

In our fiducial model we assume that lens galaxies trace
the mass distribution following a simple linear biasing
model (8, = b6, where b is modeled as a constant for
each redshift bin), so the galaxy power spectrum and
the galaxy-matter power spectrum relate to the matter
power spectrum by different factors of the galaxy bias:

Pyg = b* P, (9)
Pyn = b Pom. (10)

2.2.2. Intrinsic alignment model
Intrinsic alignments (TAs) are due to correlations be-
tween the intrinsic galaxy shapes. IAs contribute to the

total observed cosmic shear angular power spectra CgG(E)
with unknown additive terms of the form:

Cla(D)=CL(O+CHO+CHWO+CI0 . (11)

and to the total galaxy-shear angular spectra Cg 0
with: y . B
1) 1) 1)

C5£G(€)=C5i7(€)+C521(€), (12)

where G represents the total observed shape of the galax-

ies that include the cosmological shear v and the intrinsic

shape I. In Egs. (3) and (4) we have defined the projec-

tions with respect to the true shear involving the matter
power spectrum, here we define the rest of projections:

’ ()N (+1/2

cir= [ ax™OEOp (1= 2 )
X X

. {ON! (+1/2

i) = / dePﬂ (k: +X/ ,z(x)) (14)

- Ni(x)N! (+1/2
b= / dx%m <k= +X/ ,z(><>) (15)

where we have introduced the source window function
N;(x) which is analogous to the lens one:

n(z) dz
it dy’

s

Ni(x) =

(16)

The Py and the P,; power spectra are generic. Usually
they are assumed to be linearly related to the local tidal
field and to be of the same shape as the matter power
spectrum except from a redshift dependent scaling:

Pu(k,z) = A(2)* Pum(k, 2), (17)
Pi(k,2) = A(2)Pum(k, 2). (18)

In this work we choose to use the two-parameter nonlin-
ear alignment (NLA) model (Bridle & King 2007), which
defines the amplitude parameter as:

_ 3H2Q T+z \™
A(R) =—-AC, =L p! : : 19
(2) mG— = (1+ZO> (19)




4 Prat, Zuntz et al. (LSST DESC)

Ay is one of the two free parameters of the NLA model
and it is a dimensionless amplitude that governs the
strength of the TA contamination. Here G is the gravita-
tional constant and D(z) is the linear growth factor. The
normalization constant C; is typically fixed at a value ob-
tained from the SuperCOSMOS Sky Survey (Brown et al.
2002) of C; =5 x 10’14M(’91h’2Mpc3. M4 s the other free
parameter which controls the redshift scaling. z is the
pivot redshift which we fix to 0.62, which is a common
choice.

2.2.3. Real space projection

Finally, each real-space two-point correlation function
is related to the total angular power spectrum for cosmic
shear, galaxy-galaxy lensing and galaxy clustering via

y dte
wito)= [ Sty ato) (20)
e [ 4 o
W)= [ S Clloaeo), (21)
and "
.= [ S Cilhatt) (22)

under the flat-sky approximation, where the J,, represent
the Bessel functions of the first kind. We have tested that
the flat-sky approximation is good enough for w(f) given
the LSST Y1 footprint and &,,_ and ; are expected to be
much less impacted by this effect (Kilbinger et al. 2017).

2.2.4. Redshift and shear marginalization

When obtaining cosmological constraints we marginal-
ize over some observational systematics such as redshift
and shear calibration effects to obtain more realistic pos-
terior uncertainties. In particular, we marginalize over
a shift in the mean redshift Az’ both for the lens and
source input redshift distributions Minout’

ni(z) = n{nput(Z - Azi)' (23)

For the shear, we marginalize over a multiplicative shear
bias m per each source bin, which modifies the shear and
galaxy-shear angular power spectra in the following way:

C o) = 1+m)CY 1o ® (24)

Cgc(é) = (1 +mi)(1 +mj) CgG,inpul(é) (25)

Note that in this first validation of the DESC software we
do not consider some effects found significant in recent
data analyses such as magnification (Elvin-Poole & Mac-
Crann et al., 2022) or redshift space distortions (Krause
et al. 2021) (although these are now implemented in
CCL).

3. TXPIPE

TXPi1pE is DESC’s implementation of the pipeline that
ingests catalog data and performs all the calculations re-
quired to obtain quality-assured two-point measurements
of lensing and clustering, and their covariances, with the
metadata necessary for parameter estimation. The code
is designed to collect and formalize the many calculations

and analysis stages that in previous surveys have often
been manually connected.

The goal of the project is that the complete pipeline,
from the output of the LSST Science Pipelines® to the
inputs to cosmological parameter estimation, can be run
and re-run in a single operation. Such unification is con-
venient, but it also permits provenance tracking of the
pipeline to be essentially complete, so that the collab-
oration can be sure of precisely what code was run to
generate data products.

We use continuous integration features to test the
pipeline as changes are made, using Github Actions®.
This system automatically runs a unit test suite when-
ever changes are proposed or made, and also a set of
pipelines on 1 deg? of data. This is not large enough to
ensure that the pipeline is numerically correct, but does
ensure that core functions work.

In Figure 1 we show a flowchart that illustrates the
TXPIPE pipeline in its most basic functionality. This
flowchart is automatically generated by TXPIPE. The
Figure shows the stages that have been used for the Gaus-
sian simulation analysis which we present in Sec. 4. Be-
sides the most basic stages presented and tested in this
initial paper, in Section 3.1 we summarize additional fea-
tures which are implemented within TXPIPE that will be
needed for the data analysis.

Much of TXPIPE functionality involves connecting to-
gether external codes that perform measurements. The
package wraps each of these tools as a Python class,
specifying input and output files required for each, and
launching them using the CEct'® library and executable
which automatically interfaces them to workflow man-
agement frameworks. TXPIPE also performs various cal-
culations internally, again using a Python class to em-
body each pipeline stage. The outputs of the pipeline
can be automatically organized as a web page. It is also
important to highlight that in all these cases TXPIPE is
optimized for the large data volumes of LSST. Wherever
possible we use parallel and online algorithms, which do
not require all data to be loaded in memory at once and
are therefore scalable. All correlation function outputs
are saved using the SACC!! format, a dedicated DESC
software for storing measurements, covariances and red-
shift distributions in a unified way. Below we describe
the TXPIPE pipeline stages grouped in different blocks:

e Data ingestion, shear and redshift calibration: The
TXPIPE pipeline starts with the ingestion of the
galaxy catalogs which are prepared into suitable
formats (e.g. HDF5 files for catalogs). TXPIPE
then splits the catalogs into different tomographic
bins, typically using criteria described below in Sec-
tion 5. Next, it builds the redshift distributions!?,
performs the requested shear calibration using the
methods of METADETECTION and METACALIBRA-
TION described in Sheldon et al. (2020), Sheldon &

8 https://pipelines.lsst.io/

9 https://docs.github.com/en/actions

10 https://github.com/LSSTDESC/Ceci

I https://github.com/LSSTDESC/sacc

12 In this work we use true redshift distributions throughout,
making this step a simple histogram. However, implementations
are undergoing to make this step realistic. See the additional func-
tionalities section in 3.1 for more details.
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Fi1c. 1.— TXPipe flowchart for the Gaussian simulation pipeline. The inputs are represented by yellow boxes and are typically HDF5
or YAML files, the TXPIPE stages by red ellipses and each of the outputs by blue boxes, which are typically HDF5, SACC, PNG or PDF

files. The input and output formats can be defined by the user.

Huff (2017) and LENSFIT described in Miller et al.
(2007), depending on the catalog type.

e Two-point measurements: We use the harmonic-
space and real-space estimators described in Ap-
pendix A. In essence, for the harmonic-space es-
timator, we first create shear and density maps in
HEALPix'3 formats. Then we use the NAMASTER'
(Alonso et al. 2019) pseudo-C; code to measure the
spectra. For the real-space estimators, we invoke
the fast tree code TREECORR!® (Jarvis et al. 2004)
to perform the measurements. A mask is needed
for the harmonic space estimator, which we gener-
ate directly using a depth map obtained from the
lens galaxies (using a resolution much coarser than
the average separation between galaxies). This is
a simplistic approach that will need to be updated
once we test on more complex simulations or data.
We also generate a random catalog from the depth
maps to be used in the real-space estimator (see
Equations A13 and A14). Typically, the number of
random points is set to be at least 20 times larger

13 https://healpix.sourceforge.io/
1 https://github.com/LSSTDESC/NaMaster
15 https://github.com/rmjarvis/TreeCorr

than that of the lens galaxies (Prat et al. 2022).
This puts a significant memory load on the real-
space measurements given the number of lenses ex-
pected for LSST Y1. As aresult, we also implement
a pixel-based estimator described in Sec. A.2.1 —
our validation tests for real-space galaxy cluster-
ing and galaxy-galaxy lensing measurements were
performed using this pixel-based estimator.

e Two-point predictions: TXPIPE interfaces with
CCL to obtain a theory prediction for the corre-
sponding measured two-point correlation functions,
automatically using the same angular binning as
the measurements, i.e. generating a theory data
vector that we use to compare with the measure-
ments. The same theory predictions are also used
in the covariance matrix calculation described be-
low.

e Covariance matrix: TXPIPE obtains a covariance
matrix for the corresponding data vector using one
of several codes with a unified interface in the
DESC TJPCov package. Currently TJPCovV in-
cludes Gaussian covariances with different treat-
ments of the mask. We compare the different op-
tions in Section 4.2 and Appendix B.
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Gaussian Simulation SRD
CosmoDC2

-180

Fic. 2.— Sky coverage or masks of the two simulations we use
in this work: a Gaussian simulation mimicking a general LSST-Y1
like mask with 12,300 deg? and CosMODC2 with 440 deg?.

61 Lenses
—— LSST-DESC SRD Y1
=== CosmoDC2
Sources
MO9S T -
1.5 2.0 2.5 3.0

Redshift

F1G. 3.— Redshift distributions of the tomographic bins for the
lens (top) and source (bottom) samples as specified in the LSST-
DESC SRD for the first year of LSST operation and for the samples
we have defined on the CosMODC2 simulation. The shaded regions
represent the bin edges for the CosMoDC2 samples, which are
designed to 1) match the SRD binning for the lenses and 2) produce
a similar number density in each source bin.

e Extra diagnostics: TXPIPE generates useful diag-
nostic plots and metadata throughout the pipeline,
including plots of maps, catalog histograms, masks,
jackknife patches, n(z) distributions as well as quan-
tities such as galaxy number densities, shape noise
values, mask area etc'S.

16 The full list of currently implemented diagnostics

3.1. Additional functionalities

Most of the validation tests performed in this paper
assume an idealized LSST Y1 dataset. We also test TX-
P1PE on the more realistic mock catalog CosMODC2 in
Section 5, but still with idealized conditions. Thus, we
only test the core functionalities of TXPIPE. There are
additional functionalities that have been developed for
more realistic analyses and that will continue to be de-
veloped and tested in future work. We briefly describe
them here:

e Redshift distribution estimation: TXPIPE is inte-
grated with the DESC photometric redshift code
RAIL tool'”, which contains a suite of algo-
rithms to estimate both point-estimate redshifts
per galaxy'® and redshift distribution estimates for
ensembles of galaxies!®. The former are some-
times used to define tomographic bins (although,
see Zuntz et al. 2021, for alternative binning ap-
proaches), while the latter are used for making the-
ory predictions for cosmological inference.

e Null tests: In most Stage-III surveys, the mea-
surement of the data vectors are accompanied by a
large suite of null tests to ensure that the data vec-
tor is not significantly contaminated by systematic
effects (see, for example Gatti et al. 2021; Giblin
et al. 2021; Li et al. 2022; Rodriguez-Monroy et al.
2022a). These tests include correlations of shear
and density with survey property maps and cata-
logs, testing for B-mode leakage, calculating mean
shear in bins of size and signal-to-noise, etc. In the
idealized simulations used in this paper, we do not
put in any systematic effects, thus these functional-
ities will not be rigorously tested here and we leave
this for future work.

e Blinding: In the era of precision cosmology, it is
important to build in some mechanism so that we
do not base our analysis choices on the outcome
of our measurements. These so-called “observer bi-
ases” can be minimized by “blinding” the analysis
and only “unblinding” the results once all analysis
choices are frozen. In TXPIPE, we currently im-
plement the methodology described in Muir et al.
(2020), where the data vectors are shifted to a
slightly different cosmology in a way that preserves
the relation between all parts of the data vector.

Convergence maps: TXPIPE interfaces with the
WLMASSMAP tools?, where the weak lensing
shear catalogs are converted to convergence maps
using a range of methods (e.g. Jeffrey et al. 2021).
These maps are typically used for higher-order
statistics such as peak counts (Liu et al. 2015;

can be found in https://txpipe.readthedocs.io/en/latest/stages/
Diagnostics.html

17 https://github.com/LSSTDESC/RAIL

18 Including BPZ, Delight, FlexZBoost, and PZFlow (Benitez
2000; Coe et al. 2006; Leistedt & Hogg 2017; Izbicki & Lee 2017;
Dalmasso et al. 2020; Crenshaw & Doster 2022)

19 Including self-organizing maps, direct calibration, and
variational-inference based models (e.g. Carrasco Kind & Brunner
2014; Wright et al. 2020; Rau et al. 2021)

20 https://github.com/LSSTDESC/WLMassMap
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Zircher et al. 2022) and moments (Gatti et al.
2020, 2022). This functionality highlights the
flexibility of TXPIPE, where data vectors beyond
3x2pt can be incorporated into the framework
and share the same infrastructure.

In general, it is straightforward to build on the existing
TXPIPE structure and incorporate new functionalities
thanks to its modular and transparent design. We expect
TXPIPE to grow and become more complete/mature as
the LSST data arrives in the coming years.

3.2. Performance requirements

Because of its depth and area, LSST data volumes will
be very large: the final 10-year data release will contain
0(10'%) galaxies. This size, and the corresponding in-
creases in required systematic accuracy, mean that many
methods and algorithms must be re-designed for LSST.
DESC’s primary computing facility is the National En-
ergy Research Scientific Computing Center (NERSC),
and we have targeted the parallelization features to deal
with this size at the systems they host.

Our primary limitation is memory; many algorithms
begin by loading entire catalog columns before perform-
ing operations on them, or on subsets on them. At full
LSST scale a single column can be more than 50 GB in
size. Although loading these is possible on high-memory
systems, depending on the number of columns needed,
doing so limits the number of processes that can simul-
taneously operate on data. We minimize such patterns
in TXPIPE wherever possible, preferring to model our
data tables as streams and processing them in parallel.
Since many operations involve core descriptive statistics
on data columns (means, standard deviations, etc), we
use a DESC library?! of tools to implement them where
possible.

Given the large data set size, processing speed is also
greatly important. In many cases I/O is the bottle-
neck in TXPIPE stages. The complete analysis described
here iterates through the complete input catalogs mul-
tiple times; some algorithmic steps in the pipeline in-
herently require multi-pass runs, although sometimes it
is a choice. We make heavy use of NERSC’s LUSTRE
file system’s parallel I/O facilities, which stripe chunks
of data files across multiple storage targets, and enable
fast access to different parts of the data from different
processes in parallel. Storing data in the HDF5 format
makes it straightforward to both read and write different
data chunks in parallel through MPI, provided that data
chunks are large and contiguous.

We use a hybrid of Message Passing Interface (MPI)
process and OpenMP (thread) parallelism paradigms.
For example, when assigning objects to tomographic
bins in TXSourceSelector, a low-CPU and thus I/0O-
dominated operation, we use pure MPI, creating as many
processes as there are CPUs on a node, and splitting data
among them. In cases where I/O is not the bottleneck, or
where we can pre-reduce data down to multiple smaller
subsets, such as when computing correlation functions in
TXTwoPoint, we typically make use of thread parallelism

21 https://github.com/LSSTDESC/parallel statistics/

with OPENMP, creating only a single process per node
with many threads.

A step further in this case is the use of GPU accel-
eration with TXPIPE on for example the NERSC en-
vironment. GPU acceleration can speed up numerical
calculations that involve a large throughput. We tested
here an implementation of the TXNoiseMaps using the
Google Jax library stage of TXPIPE so that it can benefit
from the speed up allowed by GPU acceleration offered
by the NERSC Perlmutter system. The TXNoiseMaps
stage generates random rotations and applies them to
galaxy shape catalogs. By default, the stage evaluates
rotations of galaxy shears, 100,000 items at a time. We
find that for large enough catalogs, the speedup from
using GPU acceleration is significant (of the order of a
factor of 10).

There is sometimes a trade-off to be made between
wider algorithmic speed and code flexibility and modu-
larity. We can try to minimize the total number of I/O
passes of the data, at the cost of requiring much greater
coordination and unified behavior between stages. We
avoid this where stages are not conceptually connected
in TXPIPE, which also enables us to remain flexible re-
garding stage input and output data. For example, we
have a pipeline stage that does diagnostic plots on the
source sample (such as shear as a function of object size,
and similar null tests), and another stage that assigns ob-
jects to tomographic bins. Both use the same input data
- the shear catalog - so could be combined in a single step.
We choose not to do so, however, so that we can modify
and verify them independently. However, we do not go
to the extreme length of splitting the diagnostics stage
into multiple stages, each for different null tests, since
the small gain in clarity would not be useful enough to
offset the cost of the time taken for added loops through
the data.

We specify the computation time and resources we use
for each TXPIPE stage when running on the LSST-Y1
like Gaussian simulation in Table 1. Note that this cat-
alog actually has a much larger effective number density
for the lens sample due to reasons specified in Sec. 4.1.
Therefore, the times detailed in this table are expected
to be an upper limit for the data runs.

4. VALIDATION OF TXPIPE

In this section we validate the core functionalities of
TXPIPE to show that it meets the accuracy/precision
requirement needed for the first year of LSST data as
specified by the LSST DESC Science Requirement Doc-
ument (hereafter the DESC SRD, The LSST Dark En-
ergy Science Collaboration 2018). First we introduce the
mock galaxy catalog used for the validation (Section 4.1).
Next we describe our covariance matrix estimation (Sec-
tion 4.2). We then validate the measurement of the data
vectors (Section 4.3) and the recovered cosmological con-
straints (Section 4.4). All validations are done for the
3x2pt probes in both harmonic and real space.

4.1. Gaussian mock galaxy catalog

We generate a set of idealized Gaussian simulations
following the galaxy sample specifications described in
the LSST DESC SRD to stress-test TXPIPE. Such a
setup with perfectly known inputs allows us to validate
whether the pipeline is capable of recovering our input
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TXPirE Stage Time M Ny, M Description
TXConvergenceMaps 38 min 1 1 32 Make a convergence map from a source map the using Kaiser-Squires method.
TXDensityMaps 1 min 1 1 1 Convert galaxy count maps to overdensity maps.
TXFourierGaussianCovariance 2 min 1 1 64 Compute a Gaussian Fourier-space covariance with TJPCov using fq, only.
TXGaussianSimsMock 49 min 1 1 20 Simulate mock photometry from Gaussian simulations.
TXJackknifeCenters 8 min 1 1 1 Generate jackknife centers from random catalogs.
TXExternallLensMaps 132 min 2 10 1 Make tomographic lens number count maps from external lens catalog.
TXRealGaussianCovariance 19 min 1 1 64 Compute a Gaussian real-space covariance with TJPCov using fs, only.
TXShearCalibration 7 min 1 7 1 Split the shear catalog into calibrated bins.
TXSourceMaps 51min 4 4 10 Make tomographic shear maps from shear catalogs and tomography.
TXSourceSelectorMetadetect 11 min 2 64 1 Source selection and tomography for metadetect catalogs.
TXTwoPointFourier 32 min 4 4 20 Make Fourier space 3X2pt measurements using NAMASTER.
TXTwoPointPixel 780 min 6 6 32 Compute pixelated versions of the 3x2pt real space correlation functions.
TXTwoPointTheoryFourier 1 min 1 1 1 Compute theory predictions for Fourier-space 3x2pt measurements.
TXTwoPointTheoryReal 0.2min 1 1 1 Compute theory predictions for real-space 3x2pt measurements.
TXUniformDepthMap 0.1 min 1 1 1 Generate a uniform depth map from the mask.

TABLE 1
BRIEF DESCRIPTION OF EACH STAGE FOR (GAUSSIAN SIMULATIONS PIPELINE AND TIME IT TAKES TO RUN. N, IS THE NUMBER OF NODES, N, IS
THE TOTAL NUMBER OF PROCESSES AND N; THE NUMBER OF THREADS PER PROCESS. SEE
HTTPS://TXPIPE.READTHEDOCS.I0/EN/LATEST /STAGES.HTML FOR THE LATEST DOCUMENTATION OF EACH STAGE.

Lens bin (zy Number density ~ Galaxy bias

1 0.30 2.25 1.229
2 0.50 3.11 1.362
3 0.70 3.09 1.502
4 0.90 2.61 1.648
5 1.10 2.00 1.799
Source bin  (z) Number density Shape noise o,
1 0.31
2 0.49
3 0.69 1.78 0.26
4 0.96
5 1.59

TABLE 2
LSST Y1 DESC SRD SAMPLE SPECIFICATIONS. THE NUMBER
DENSITIES ARE IN l/ARCMIN2 AND 0, IS DEFINED IN EqQ. 28. THE
SAME NUMBER DENSITY AND SHAPE NOISE IS ASSUMED IN ALL
SOURCE REDSHIFT BINS.

signal to the precision required for LSST-Y1 analyses.
Once this baseline is validated, we can then move on to
more realistic mock galaxy catalogs from e.g. N-body
simulations (see Section 5). We show the sky coverage
for each simulation in Fig. 2 using the CARTOSKY?? code.

To generate the mock catalog, we use the redshift dis-
tributions shown in Figure 3 with five lens redshift bins
and five source redshift bins, which follow the definitions
given in the DESC SRD. We also assume the number den-
sities listed in that document, which are 10 gal/arcmin?
for the source catalog and 18 gal/arcmin? for the lens cat-
alog, but note that these are the total number densities if
one were to integrate over the full redshift distributions
ignoring the tomographic bins. We use the redshift dis-
tributions to obtain the binned number densities which
are listed in Table 2.

Assuming the cosmology from Section 2, we generate
theory predictions of all the 3x2pt auto and cross C; data
vectors in harmonic space using CCL up to ¢, = 16384.
We use the galaxy bias values listed in Table 2. From
the C;’s we generate correlated, noiseless Gaussian maps
at a HEALPIX resolution Ngge = 819223 for both spin-0

22 https://github.com/kadrlica/cartosky

23 Note that even though later we only use large scales in the
analysis we still need a high Ngg. value because of the following
reasoning: Since the simulations were designed to work both for

fields (density, d,,) and spin-2 fields (shear, ) using the
approach described in Giannantonio et al. (2008). To
turn the noiseless maps into galaxy catalogs, we employ
the following process:

e We apply a simple mask to define the survey foot-
print, illustrated in Fig. 2. We apply a declina-
tion cut of —36.61° < Dec < 0°, which results in an
area of 12,300 deg?, consistent with the DESC SRD
specification for the LSST Y1 data for the 3x2pt
analysis. Note that the actual LSST footprint will
cover a larger range of declinations but maintain
the same area due to regions of high Galactic dust
as detailed in Lochner et al. (2022, 2018).

e To generate source galaxies, we randomly sample
points inside the survey mask with a number den-
sity according to the DESC SRD as listed in Ta-
ble 2. For each galaxy, we obtain a true shear value
v =, +i7v, corresponding to the pixel in the shear
maps it falls in. Then, this catalog is ingested into
TXPi1pPE, which adds shape noise to it. To do that,
we draw from a Gaussian distribution with a width
0 =0.26 to add a random “intrinsic shape” compo-
nent. We draw independent values for 7int1, Yint2,
which represent the intrinsic shape of each galaxy
Yint = Yint,1 +iVint2- We then add 7y to the true shear
~ to form the observed ellipticity values e (Seitz &
Schneider 1997):

_ Yint TY
1+ Ying
from which we extract each ellipticity component
as e; = Re], ex = Se].

(26)

e To generate lens galaxies, we Poisson sample the
density map with the galaxy number density listed
in Table 2. Since a density field cannot have val-
ues smaller than -1, the Gaussian field will have

harmonic space and real-space mimicking the process we would
apply to real data, we needed to use a high #max in order for the real
space input theory to also be accurate. We found that in this case
there is a significant aliasing of power to lower ¢, which produces a
significant mismatch of the resulting measurements with the input
theory, unless the resolution is high enough.
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tails that cannot be Poisson sampled. To circum-
vent this, we scale the density maps for each to-
mographic bin by factors 1/[2.458, 2.043, 1.878,
2.060, 2.249] such that the fraction of pixels with
values < —1 is small (< 1%), and verify that the im-
posed cut does not induce differences in the power
spectra. Specifically, these numbers come from im-
posing that bd,, > —1 for each redshift bin. The
galaxy bias b is larger for the higher redshift bins,
while the matter fluctuations 9,, are larger for the
lower redshift bins, thus compensating each other
and yielding a similar scaling factor in all redshift
bins. The field is then Poisson sampled with the de-
sired galaxy number density to form the lens sam-
ple. Due to this scaling, the galaxy clustering and
galaxy-galaxy lensing data vectors measured from
this catalog will be artificially low and will need
to be rescaled by the same factor to recover the
correct amplitude (in the case of galaxy cluster-
ing by the square of these factors), as has been
done before in e.g. Elvin-Poole et al. (2018). Note
that the target number density (shown in Table. 2)
needs to be multiplied by the scaling factor squared
when sampling from the field, otherwise the result-
ing shot noise levels would be much higher due to
this needed scaling of the data vectors. This re-
sults in approximately [603 M, 576 M, 482 M, 490M,
449M] galaxies per each lens bin and 20 times more
random points (for comparison the source catalog
has ~ 78M objects per source bin).

e After the galaxy catalogs are generated, they are
fed to TXPIPE in a similar way as we would input
real data catalogs. Then, we use TXPIPE stages to
generate the galaxy and shear maps that are used
to compute the two-point correlation functions us-
ing the estimators detailed in Appendix. A. We use
Nsige = 4096 for all the maps generated within TX-
PIPE.

4.2. Cowvariance matrix

To evaluate the accuracy of TXPIPE against theoreti-
cal predictions, and to do inference, we need an estimate
of the covariance matrix. In this work we use a Gaus-
sian covariance matrix. The Gaussian component com-
ing from the 2-point functions is dominant with respect
to the non-Gaussian parts related to using higher order
information from the bispectrum. In harmonic space,
at fixed cosmology, the Gaussian component is approxi-
mately described by (Schneider et al. 2002; Crocce et al.
2011)

D 0p 0)+D¥ (DI (4
(2€ + 1)f sky

where i, j and i’, j/ denotes the redshift bin pairs associ-
ated with the two considered power spectra; X is either

Y7, 8y O 80y DY(0) = CL(O)+ Ny (0) is the sum of the
signal Cy (described in Section 2.2) and noise power spec-
tra Ny, ger is the Kronecker delta function and feky is the
fractional sky coverage. The noise power spectra is 1/ng
for Cs,s, and o7 /ngy for C,, and are assumed to be zero
for cross-correlations between different redshift bins and

CICH (1), C (0] = 54 . (27)

Harmonic space Real space

Lens bin
1 £ <253 0 > 42.81 arcmin
2 <402 6 > 26.93 arcmin
3 £ <535 6 > 20.21 arcmin
4 < 654 6 > 16.52 arcmin
5 £ <761 6 > 14.21 arcmin
Source bin
1-5 £ < 3000 6 > 2.5 arcmin

TABLE 3
SCALE CUTS IN REAL SPACE AND HARMONIC SPACE, THAT IN THE
CASE OF THE LENS SAMPLE CORRESPOND TO kyax = 0.3h/MPC,
ACCORDINGLY WITH THE DESC SRD SPECIFICATIONS.

for the galaxy-shear cross-correlation. o, is the shape
noise per component defined as

. 1 var(e;) var(ey)
\/z( ww)

within the METACALIBRATION framework for a diagonal
response matrix. R;; is the response factor for the el-
lipticity component i. For the Gaussian simulations, we
assume an identity response matrix and thus we recover
0. =0.26, the same value we input as the standard devi-
ation of the ellipticity per component.

In practice, the covariance is non-Gaussian and
cosmology-dependent. There are plans to implement
these improvements for the analysis with future LSST
data. However, for the analysis presented here these ap-
proximations are sufficient — see figure 3 from Friedrich
et al. (2021) which shows that the non-Gaussian terms
represent less than 10% of the diagonal elements of the
covariance for both cosmic shear and angular galaxy clus-
tering. The validation of these terms with DESC soft-
ware is left for future work.

To convert Equation 27 into a real-space covariance we
apply the Hankel transform operator to the Fourier space
covariance, implementing the approach in Singh (2021)
and SKYLENS?4,

In Equation 27 and also in the real space transforma-
tion we have made the assumption that the precise ge-
ometry of the footprint of the dataset does not have a
big effect on the covariance, and we use the simple fqy
factor to account for the size of the footprint. As was
shown in Troxel et al. (2018), this can lead to biases in
the covariance when the footprint is small. However, we
check in Appendix B that the effect is small for our setup
for the LSST Y1-like Gaussian simulation. In particular
we find the diagonal errorbars without including this ef-
fect are slightly smaller, thus making our validation tests
if anything more stringent. For the CosM0ODC2 simu-
lation this effect becomes important, especially at large
scales. Thus, for the tests in CosM0DC2 we include the
mask effects in the harmonic space covariance using the
DESC TJPCov package, see Appendix B and Section 5
for more details.

4.3. Data vector

In Figures 4, 5 and 6 we show the data vector out-
puts of TXPIPE for cosmic shear, galaxy-galaxy lensing
and galaxy clustering, in real and harmonic space. In

24 https://github.com/sukhdeep2/Skylens_public
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Fi1c. 4.— Cosmic shear measurements (correlation between galaxy weak lensing and galaxy weak lensing) from TXPIPE in harmonic
space (Cy~, lower left) and real space (&4,&-, upper right). Each panel corresponds to a (source, source) redshift bin combination. For each
combination, we show the measurements with point markers from our Gaussian simulations and the input theory with lines (upper panels)
and the ratio of the measurement to the theory (lower panels). The error bars are the square root of the diagonal covariance.

Probe x2/v (r1) PTE (r1) x?/v (r2) PTE (r2)
£ 259.9/300 = 0.87 0.95 260.8/300 = 0.87 0.95
I 283.7/300 = 0.95 0.74 284.7/300 = 0.95 0.73

Real space - 91.5/67 = 1.37  0.02 60.8/67 = 0.91  0.69
w 57.8/53 = 1.09  0.30 71.3/53 =135  0.05
3x2pt  722.6/720 = 1.00 0.47 680.3/720 = 0.94 0.85
C,,  232.8/225 = 1.03 0.35 223.9/225 = 1.00 0.51

Harmonic space Csy  75:3/63 =120  0.14 56.3/63 = 0.89  0.71
Cs,5, 55.5/49 =113 024 40.2/49 = 0.82  0.81
3x2pt  383.2/337 = 1.14 0.04 339.7/337 = 1.01  0.45

TABLE 4

X2 PER DEGREE OF FREEDOM AND THE PROBABILITY-TO-EXCEED (PTE), AFTER SCALE CUTS, WHEN COMPARING TXPIPE OUTPUT AND
INPUT FOR THE DESC SRD LSST Y1-LIKE GAUSSIAN SIMULATION. WE LIST THE RESULTS FOR TWO DIFFERENT REALIZATIONS: R1 AND R2.
FOR THE REST OF THE PAPER WE ALWAYS USE THE DATAVECTORS FROM R1.
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Fic. 5.— Galaxy-galaxy lensing measurements (correlation between galaxy position and galaxy weak lensing) from TXPIPE in harmonic
space (lower left) and real space measurements (upper right). Each panel corresponds to a (lens, source) redshift bin combination. For each
lens-source bin pair, we show the measurements from our Gaussian simulations and the input theory (upper panels) and the ratio of the
measurement to the theory (lower panels). The error bars are the square root of the diagonal covariance. For simplicity, we do not show
all the bin pairs that are measured, but only the highest signal-to-noise ones, which are the ones included in the cosmological analysis,
following the DESC SRD. In addition, we show the SRD scale cuts represented with the gray shaded bands for scales we do not use — some
of the bins are entirely removed.
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Fi1a. 6.— Galaxy clustering measurements from TXPIPE in harmonic (top row) and real space (bottom row). We only show the auto-
correlation measurements, which are the ones included in the cosmological analyses, following the DESC SRD specifications. For each bin,
we show the measurements from our Gaussian simulations and the input theory (upper panels) and the ratio of the measurement to the
theory (lower panels). The error bars are the square root of the diagonal covariance. The gray shaded bands represent the SRD scale cuts.

all the figures we also show the input theoretical pre-
diction as well as the ratio of our measurements to the
theory. For cosmic shear we show all the bin combina-
tions. For galaxy-galaxy lensing and galaxy clustering,
we only show a subset of the bin combinations for sim-
plicity, in particular the ones where the signal-to-noise is
larger and that are included in our analysis. The error
bars in these figures are the square root of the diago-
nal of the covariance matrix described in Section 4.2.
Our measurements are performed on scales 2.5 < 6 < 250
arcmin for real space (with 20 logarithmic bins) and
20 < ¢ < 3722 for harmonic space (with 17 logarithmic
bins, to match the scales defined in the DESC SRD). In
all ongoing galaxy surveys, the modeling of the 3x2pt
data vector is uncertain on small angular scales due to
either uncertainty in the matter power spectrum Py, or
the uncertainty in nonlinear galaxy bias, which affects
both Py, and Py,. These scale cuts are currently one
of the determining factors of the constraining power of a
given dataset. We adopt the DESC SRD scale cuts listed
in Table 3, with ke =0.3AMpc™ =0.213Mpc™! for the
lenses used in galaxy clustering and galaxy-galaxy lens-
ing and ¢ < 3000 for cosmic shear. We convert from the
3D quantity k to the projected ¢ using:

Emax = kmaXX(Zl)_0~5~ (29)

For the galaxy-galaxy lensing and galaxy clustering
probes, we convert to a real space scale cut using the ap-
proximation Oy ~ 7/lmax. Moreover, for galaxy-galaxy
lensing we only use the lens-source redshift bin combina-
tions that are indicated in the DESC SRD, which only in-

clude: 7/ =z, 7 =%, 2 =2}, 5 =%}, =%, 4 =7, and /=g,

corresponding to the combinations with higher signal-to-
noise and where the lenses and the sources barely over-
lap in redshift. For galaxy clustering we only include
the auto-correlations, as specified in the SRD. Note the
choice of redshift combinations and of all the scale cuts
might need to be revised for the analysis with data. In
particular: a) overlapping bins between the lenses and
sources will probably need to be included in future anal-
yses since they are useful to self-calibrate the intrin-
sic alignment parameters, as it was done in e.g. the
DES Y1 and in the DES Y3 3x2pt analyses (Abbott
et al. 2018; DES Collaboration 2022b), and b) cluster-
ing cross-correlations between redshift bins are useful to
self-calibrate the redshift distributions of the lens sam-
ple (Nicola et al. 2020; Hang et al. 2021). For cosmic
shear, we include all the scales we measure in real space
and we cut at ¢ < 3000 in harmonic space, following the
SRD. In general, within the scale cuts, we find excellent
agreement between the measurements and the input. To
quantify this agreement, we evaluate the x> per degree
of freedom v defined as

1 _
XZ/V = ;(DTXPipe_Dtheory)tC ](DTXPipe_Dtheory)7 (30)

where v is the number of data points, Drxpipe is the data
vector as measured by TXPIPE, Dyeory is the theory data
vector evaluated at the same angular scales as the mea-
surements?® and C is the covariance matrix. We list the

25 In harmonic space we weight the scales using the bandpower
window functions within the NAMASTER formalism, as detailed in
Appendix A. In real space we evaluate the theory at the mean
angular scale value, as measured in the data using the meanlogr
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Parameter Prior
Cosmological parameters
Qc N10.220,0.2]
Q N10.0448,0.006]
oy NT0.8,0.14]
Ay x 1070 NT2.16,0.378]
h NT0.71,0.063]
ns NT0.963,0.08]
wo NT[-1,0.8]
Wq N10.0,2.0]
Astrophysical nuisance parameters
bl NT1.229,0.9], N1.362,0.9], N'[1.502,0.9],
NT1.648,0.9], N11.799,0.9]
Aja NT0.0,3.9]
n NT0.0,2.3]
Observational nuisance parameters
ml=3 NT0.0,0.013]
Az} x 10° NT0.0,6.6], N'10.0,7.5], N[0.0,8.5],

NT0.0,9.5], A[0.0,10.5]
NT0.0,2.6], N10.0,3.0], A[0.0,3.4],
N0.0,3.9], N[0.0,5.2]

Azl 3 x 10

TABLE 5
PRIORS FOR THE PARAMETERS OF OUR MODEL. N(u,0) IS A
GAUSSIAN DISTRIBUTION WITH A MEAN g AND A WIDTH o. THE
PRIORS MOSTLY FOLLOW THOSE SPECIFIED IN THE LSST DESC
SRD, BUT CENTERED ON THE TRUE VALUES OF OUR SIMULATIONS.

x*/v values in Table 4. We also report the Probability-
To-Exceed (PTE) or also sometimes called p-value, de-
fined as:

2
XD
PTE = 1—/ X2 (x,vp)dx, (31)
0

where the y? function is integrated until the given x?
value for the data set D.

Note that we find some of the PTE values to be below
0.05 or above 0.95. This is expected given a distribu-
tion of values but we still want to check that they are
indeed due to noise and not due to an identifiable is-
sue. In order to do so we run a second realization of the
Gaussian simulations, for which we also list the results
in Table. 4. We find that most of the deviations that
are below 0.05 or above 0.95 in the first realization yield
a good agreement (values between 0.16 and 0.84) in the
second realization, except for the PTE 0.95 value for &,
that remains the same in both realizations, pointing to a
possible overestimation of the covariance for this probe
and also potentially for &.. Besides this case, we con-
clude that the rest of the anomalies are due to statistical
fluctuations.

4.4. Cosmology inference

We now take the data vectors measured from TXPIPE
and propagate them into cosmological constraints to val-
idate that we can recover the input cosmology to the
required precision and accuracy. To this end, we use the
DESC likelihood package FIRECROWNZ®. In this work
we assume a Gaussian likelihood throughout. The core
of FIRECROWN uses CCL as its theory prediction and
it is designed to interface with established cosmological
inference code such as COBAYA and COsSMOSIS so that
we can take advantage of the fast sampling and caching

TreeCorr function.
26 https://github.com/LSSTDESC/firecrown

techniques implemented therein. This is the first time
FIRECROWN is used for a scientific project, and is a suit-
able test case given the idealized settings. We use the
EMCEE sampler (Foreman-Mackey et al. 2013), and ob-
tain 640,0000 samples for each chain, for which we apply
a burn-in of 150,000 samples in all cases. We use CHAIN-
CoNSUMER (Hinton 2016) with a Kernel Density Estima-
tion (KDE) smoothing value of 2.0 for the plots and to
obtain the mean and 1-0 values shown in the tables.

We fit the measured data vectors to a ACDM model
and a wy—w,CDM model with the priors on the cosmo-
logical parameters and nuisance parameters listed in Ta-
ble 5, which closely follows that used in the DESC SRD
— see Appendix C for a detailed description of the dif-
ferences between our analysis and DESC SRD. In Fig. 7
we show the cosmological results from FIRECROWN for
the harmonic space analysis using the data vectors de-
rived from TXPIPE in Section 4.3. We show the cosmic
shear only results, the galaxy-galaxy lensing and galaxy
clustering (also called 2x2pt) results and their combina-
tion. In Figures 8 and 9 we also compare the constraints
coming from the real and harmonic space estimators for
a subset of the parameters, which we find to be in very
good agreement. We show the rest of the parameters
for these cases in Appendix D, together with the nui-
sance parameter posteriors. We also present a summary
of the results in Table 6 for ACDM and in Table 7 for
wo—w,CDM. In all cases, we recover the true input cos-
mological parameters within the 1o contours.

We use the APRIORI sampler provided by CosmMoOSIS
within FIRECROWN to sample the prior and understand
which parameters we are able to constrain with respect to
the prior. We add the APRIORI samples in all the contour
plots as the gray dotted lines. Overall we find that with
LSST Y1 precision all the cosmological parameters are
significantly constrained with respect to the prior in the
3x2pt combination. Also, as shown in Fig. 7 we find
that cosmic shear gives more precise results for ny and
Sg, while the 2x2pt combination is able to constraint §2,,
and 2, more tightly.

Moreover, using the priors stated in Table 5 we find
that both the ACDM and the wy—w,CDM LSST-Y1
analyses are systematics limited, meaning that the con-
straints on Sg improve significantly when fixing observa-
tional systematics. Specifically, we find the constraints
on Sg are ~5 times more precise in ACDM and ~1.8 more
precise in wy—w,CDM times when fixing the shear and
redshift calibration parameters, while the parameters de-
scribing the equation of state of dark energy do not vary
as much and yield similar constraints. In Fig. 16 we dis-
play this comparison.

Then, we also compare our results on the LSST Y1
patch simulated using the SRD specifications with the
forecast on cosmological parameters from the DESC
SRD. Generally we find the constraining power of our
posteriors is similar to what was predicted in the SRD.
This is an important cross-check given that the software
tools used in the two studies are significantly different.
For more details we refer the reader to Appendix C.

We also compare the results from this work with the
most constraining Stage-I1I posteriors to date, the 3x2pt
constraints from the first three years (Y3) of DES data
(DES Collaboration 2022b,a). We find that the LSST Y1
results on the Gaussians simulation provide a constraint
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F1a. 7.— Cosmological contours assuming the ACDM model for the LSST Y1-like Gaussian mock catalogs compared with the input
values and the DESC SRD priors. We show the results for the harmonic space 2x2pt analysis (galaxy clustering and galaxy-galaxy lensing,
dashed blue), cosmic shear only (dashed yellow) and their combination 3x2pt (solid black).

in Sg that is ~2 times tighter than DES Y3 in ACDM
and ~2.5 times in wy—w,CDM, as well as a significant
improvement in the rest of the cosmological parameters.
Note that this comparison is not straightforward because
of two main reasons: 1) The priors from the DES Y3
analysis are uninformative (flat) while we use Gaussian
priors. 2) The TA model is not the same for the DES
Y3 ACDM and our work (we marginalize over a the 2-
parameter NLA model and the DES Y3 ACDM analysis
marginalizes over a 5-parameter TATT model). The TA
models are the same in both analyses for wy—w,CDM,
which provides a cleaner comparison that we show in
Figure 15. Therefore, even with these caveats in mind,
we expect that the LSST Y1 data set will be able to shed
light into the current Sg tension, see e.g. Di Valentino

et al. (2021).

Overall, the work presented here shows that the DESC
tools that are needed to perform an end-to-end 3x2pt
analysis are sufficiently accurate in their most basic func-
tionalities for LSST Y1 precision. This includes analyses
both in harmonic space and in real space, from the data
vector measurement to the parameter inference.

5. APPLICATION TO COSMODC2

Now that we have validated the core functionalities of
TXPIPE at scale, we describe its application to a more
complex mock galaxy catalog as a first step towards ap-
plying the pipeline to data (we note that in Longley et al.
2023, TXP1PE was used with Stage-III data, but that pa-
per focused on testing cosmic shear in real space, while
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ACDM o O Sg FoM
Harmonic Gauss. Sims. LSST Y1 0.78970013  0.272470005¢  0.75117001%% 12,317
Harmonic Gauss. Sims. LSST Y1 fixed obs. sys.  0.7920%)005  0.2715700662  0.75320:0010 91,760
Real Gauss. Sims. LSST Y1 0.797:3012 0271150001 07582700502 13,604
Real Gauss. Sims. LSST Y1 fixed obs. sys. 0.7935130078  0.27211330¢2 0.755410:0020 89,928
Harmonic CosMoDC2 0.767 +0.031 - 0.737+0.016 -

Y 0.031 0.016
Real CosMODC?2 0.7714303) - 0.7401 9018 -
TABLE 6

15

RESULTS FOR THE LSST Y1 GAUSSIAN SIMULATION AND CosMODC2 UNDER THE ACDM MODEL, SHOWN ALSO IN F1G. 8. WE ALSO ADD
THE RESULTS FIXING THE OBSERVATIONAL SYSTEMATICS PARAMETERS, WHICH INCLUDE MULTIPLICATIVE SHEAR BIASES AND PHOTOMETRIC

REDSHIFTS (SEE APPENDIX C). THE FIGURE OF MERIT IS DEFINED As FoM = det [C(Qm,ag)]"/z7 WHERE C IS THE COVARIANCE OF THE
POSTERIOR PARAMETERS.

wCDM og Qm Sg wo Wq FoM
Harm. Gauss. Sims. LSST Y1 0.79370:0%9 0.2670:017 0.750019-99%3 -1.08*513 037703 331
Harm. Gauss. Sims. LSST Y1 fixed obs. sys. ~ 0.8047 0! 0.25970010  0.7470£0.0057  -1.20%013  0.66%07F  49.4
Real Gauss. Sims. LSST Y1 0.8009052 0.267+012 0.756:9:012 -1.0570-10 0237039 27.2
Real Gauss. Sims. LSST Y1 fixed obs. sys. 0.80170014  0.265+0.012  0.7531+9-3%¢7 1147047 059703 420
Harmonic CosMoDC2 0.76670:033 - 0.736 £0.020 - - -
Real CosmoDC2 0.7537:038 - 0.7401901 - - -
Forecasted in DESC SRD LSST Y1 0.831£0.020 0.31540.020  0.8524+0.010 -1.00£0.21 0.00+0.69 17.5

TABLE 7
ANALOGOUS RESULTS FOR THE wy—w,CDM MODEL, SHOWN ALSO IN FIG. 9. IN THE LAST ROW WE ALSO ADD THE FORECAST PRODUCED BY
THE DESC SRD ASSUMING THE SAME AREA AS OUR (GAUSSIAN SIMULATION. THE CENTER VALUES OF THAT FORECAST WERE DIFFERENT BUT
THE UNCERTAINTIES CAN BE COMPARED. THE FIGURE OF MERIT IS DEFINED AS FoM = det[C(w,Wa)]"'/2, WHERE C IS THE COVARIANCE OF
THE POSTERIOR PARAMETERS.

Lens bin (z} Number density  Galaxy bias

1 0.30 2.48 0.87
2 0.50 3.51 1.02
3 0.70 4.11 1.19
4 0.90 4.12 1.30
5 1.10 2.49 1.54
Source bin  (z)  Number density Shape noise o,
1 0.37 2.85 0.288
2 0.52 2.87 0.317
3 0.66 3.35 0.305
4 0.83 5.00 0.335
5 1.29 7.79 0.353
TABLE 8

CosMODC2 SAMPLE SPECIFICATION. THE NUMBER DENSITIES ARE
IN 1/ARCMIN2 AND 0, IS DEFINED IN EQ. 28. WE ALSO LIST THE
GALAXY BIAS VALUES THAT WE INPUT TO THE COVARIANCE. WE
CHECK THEY ARE CONSISTENT WITH THE POSTERIORS IN
FIGURE 10.

we test the full 3x2pt data vector in both real and har-
monic space here). In particular, we run TXPIPE on
the LSST DESC simulation suite CosMoDC2 (Korytov
et al. 2019; Kovacs et al. 2022).

CosMoDC2 is a mock galaxy catalog based on the
Outer Rim N-body simulation (Heitmann et al. 2019).
It covers ~ 440 deg? area to redshift and depth much be-
yond that expected for LSST. Each galaxy is assigned
observable quantities from photometry to morphology
based on a number of semi-analytical models. The galax-
ies also carry cosmological information from both their
position on the sky and ray-traced weak lensing proper-
ties. This provides a fairly realistic test bed for TXPIPE
while still having a known true input cosmology to the
simulations.

We add noise to the CosMoDC2 observed magni-
tudes following the methodology described in Ivezic et al.
(2010), which accounts for the width of the point spread
function (PSF), sky brightness, instrumental noise, and

/)

Q
Q(.\
Prior
o ‘Harmonic CosMoDC2 -~
O Real CosmoDC2—

Harm¢nic LSST-Y1 GaussSim
/ Real LSST-Y1 GaussSim

Q m

Fic. 8.— Cosmological contours assuming the ACDM model for
the CosmMoDC2 and LSST Yl1-like Gaussian mock catalogs com-
pared with the input values and the DESC SRD priors that we use
in both cases.

pixelization®”. We use 16 visits per band per pixel, ap-
proximating an LSST Y1 survey. We also include the
noise and estimator response on the shear truth values,
using a constant shape noise per component i of o =0.26
and shear estimator response values (Sheldon et al. 2020).

27 Future noise simulations will be done with updated values of
the parameters in that document, which may be found at https:
//smtn-002.1sst.io/
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Fia. 9.— Cosmological contours assuming the wy—w,CDM model for the CosMoDC2 and LSST Y1-like Gaussian mock catalogs compared
with the input values and the DESC SRD priors that we use in both cases.

We sample the responses from a multivariate normal with
the mean and standard deviation from a spline in size and
signal-to-noise fitted to the DES-Year 1 catalog (Zuntz
et al. 2018), and a correlation coefficient p =0.2 between
the size and shape response, as measured from the DES-
Year 1 shape catalog. We do not vary any noise proper-
ties across the field. Using Eq. 28, we obtain the shape
noise values per component o, displayed in Table 8.

We construct a similar lens sample as that used in
Section 4.1 based on the DESC SRD, using all galax-
ies with i < 24.1. For source galaxies we select objects on
the riz signal-to-noise and size as measured by the trace
of the moments matrix compared to that of the PSF:
SNR > 10, T /Ty > 0.5 (see Zuntz et al. 2018 for more
details). For both samples we use a random forest al-
gorithm to assign galaxies to tomographic redshift bins,
training a classifier on an ideal spectroscopic sample. For
the lens sample we use grizy for the training while for the
source sample the training can only be done in the riz
bands because of the requirements of metacalibration -
for more details on both the algorithm and this limitation
see Zuntz et al. (2021).

The resulting redshift distribution and galaxy charac-
teristics are shown in Figure 3 and Table 8. We note
that this is not identical to the specification in DESC
SRD, while it is consistent with the findings in Zhang

et al. (2022b). We next run TXPIPE with this sam-
ple. CosM0ODC2 offers us additional opportunities to
test TXPIPE as well as the simulations. For instance,
we are able to test effects such as non-unity METADE-
TECTION responses (see Section A.3), non-linear effects
in the matter power spectrum on small scales, generating
tomographic bins based on the galaxy colors, and many
more.

Then, we estimate the linear galaxy bias of the lens
sample performing a direct fit to the large scales for
galaxy-galaxy lensing and galaxy clustering. We report
these values in Table 8. Using these galaxy bias values,
we obtain a good agreement between the measurements
and the theory data vectors both in real and harmonic
space after applying the scale cuts detailed in Table 3.
We display the resulting x? values in Table 9. We also
show the two-point measurements in Appendix E.

We use these bias values to infer the Gaussian covari-
ance matrix and use FIRECROWN to perform parameter
inference. Then, we check the galaxy bias posteriors are
consistent with the input values, which we demonstrate
in Figure 10. Since they are found consistent, we do not
update our initial estimates in the covariance. Note that
the difference between the galaxy bias we find in CoOs-
MODC2 and what we input for the Gaussian sims might
have an impact on the relative constraining power of each
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Fic. 10.— Linear galaxy bias for the CosMoDC2 lens catalog.
The dashed lines mark the values we have used as input to the

covariance matrix and for the x? values.

Probe x2%/v PTE
£ 295.7/300 = 0.99  0.56
£ 297.5/300 = 0.99  0.53
Real space Y 67.4/67 = 1.01  0.46
w 48.8/53 = 0.92  0.64

3x2pt 716.8/720 = 1.00 0.53
Cyry 200.4/225 = 0.89 0.88
Harmonic space Coey 47.9/63 = 0.76 0.92
Cs,s, 45.3/49 = 0.92 0.62
3x2pt  296.4/337 = 0.88 0.95

TABLE 9
XZ VALUES WHEN COMPARING TXPIPE OUTPUT AND INPUT FOR
CosMoDC2. For CosMODC2 INPUT WE USE THE GALAXY BIAS
VALUES LISTED IN TABLE 8 AND THE INPUT COSMOLOGY TO THE
SIMULATIONS.

simulation. However, since the area difference is so large,
we expect this will not be a dominant effect.

The final cosmological constraints are shown in Fig-
ure 8 for the ACDM model and in Figure 9 for wy—
w,CDM. Comparing with the priors, we find we are only
able to constraint og and Sg, which we list in Tables 6
and 7 — the rest of the parameters are prior-dominated,
as shown in Figure 15. In the latter, we also compare
them with the DES Y3 3x2pt results assuming the same
wo—w,CDM model.

6. DISCUSSION: LESSONS LEARNED AND FUTURE WORK

Lessons learned— Several practical lessons can be learnt

from this validation exercise relevant for LSST-scale
datasets, some of which would not have been obvious
in Stage-IIT datasets:

e Monitoring intermediate steps is critical for multi-
ple parts of the pipeline, and devising a mechanism
to do this automatically requires careful choices.

In many cases, such as when validating maps gen-
erated in our pipeline, a key test is the general
question “does anything look unusual in this map?”
rather than a purely numerical comparison that is
not easily automated. We also have a number of
null tests that we can run automatically on data, to
ensure that, for example, galaxy shear is not cor-
related with signal-to-noise. But we have enough
of these tests that we do expect some to randomly
fail at the 20, even on correct data, so we cannot
automate this process entirely.

The complex web of external software dependencies
in umbrella frameworks like TXPipe makes testing
challenging; continuous integration is a relatively
small part of addressing this problem, and more
complete regression tests on large data sets were
needed. Changes in code or packaging of other
DESC projects like RAIL and general packages
like NUMPY have required careful version manage-
ment. We found that a containerization approach
using Docker (Merkel 2014) is effective for manage-
ment, using two images, one for experimentation
and one more stable, and both built automatically
using Github Actions.

e Having redundancy in the pipeline allows for very
powerful cross-checks and debugging and we should
incorporate this as much as possible into our
pipelines. This includes multiple estimators, mul-
tiple implementations of covariance and noise es-
timations, etc. For example, as shown in Fig. 12
and detailed in Appendix A5 we have implemented
two ways of estimating the noise power spectrum
needed for the Fourier space measurements. This
comparison revealed some subtle issues related to
handling maps with weights per object and a par-
tial mask.

Similarly, comparing different parts of the TXPIPE
output to external codes is an essential exercise
that often reveals problems that would otherwise
be hard to track. Even though this kind of tests are
especially needed for validating new code, periodic
comparisons can expose unexpected behaviors from
different revisions of the code. In this work, we car-
ried out several comparisons of different outputs
such as: (i) Real space two-point measurements
and theory data vectors, comparing them with an-
other DESC code DESCQA (see Appendix F for
examples of the aftermath of such a comparison);
(ii) harmonic space two-point measurements and
theory data vectors, comparing them with a per-
sonal code (iii) real space analytical covariance with
the external code CosMoCov?® (Krause & Eifler
2017; Fang et al. 2020) and with the TXPIPE’s
jackknife covariance (iv) harmonic space analytical
covariance with a covariance obtained from several
gaussian simulation realizations and with an exter-
nal personal code from one of the authors. All these
comparisons exposed issues in each of the pieces
and helped to disentangle errors in such a large

28 https://github.com/CosmoLike/CosmoCov
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pipeline when the PTE validation tests were not
meeting our criteria.

e It is extremely valuable to validate pipelines on
simple simulations such as the Gaussian simula-
tion used in this work before embarking on tests
with more realistic N-body simulations, in order to
be able to disentangle between different issues in
an easier way. Even this nominally simple set-up
has allowed us to find multiple issues and inaccu-
rate approximations. In Appendix F we list some
examples of this, to illustrate such a process.

e Once the pipeline has been tested in the simplest
setup it becomes equally essential to test it with a
more realistic scenario that mimics the data bet-
ter. For example, non-unity lens and source galaxy
weights and non-unity response functions are prone
to introduce many bugs if not thoroughly tested.

e The usage of real-space randoms to account for
mask effects becomes unsustainable at LSST scale,
given the memory load it needs. Instead, pixel-
based estimators are much more efficient in this
regime. More generally, the right memory vs speed
trade-offs may change significantly at LSST scale
vs. what has been found in Stage III galaxy sur-
veys.

Future work— We have introduced a number of simplifi-
cations in this work in order to carry out clean and unam-
biguous tests of the basic pipeline. Moving forward, we
will need to improve on several areas described below in
order to bring the DESC infrastructure to the readiness
level required for the LSST Y1 data:

e Sample selection: We have used the specifications
from DESC SRD as a guide for the sample char-
acteristics (number density, redshift distribution,
associated nuisance parameters) as well as many
of the analysis choices (scale cuts, models of nui-
sance parameters, priors on cosmological parame-
ters). Some of these specifications should be up-
dated given our current knowledge from Stage-III
experiments.

e n(z): We have used the true redshift information for
the source and lens samples in the modeling of this
work to decouple the effect of photometric redshift
estimation. Future analyses will employ realistic
photometric redshift algorithms to determine the
impact of potential biases in the estimated redshift
distributions.

o Mask: We use a very simplistic LSST Y1 mask,
without holes and without accounting for the Milky
Way region or Rubin’s survey strategy. Future
analyses should use more realistic masks such as
the one from Lochner et al. (2018) or an updated
version of that when available. Moreover, we do not
account for generally spatially varying systematics,
which would usually be corrected with LSS weights.
Future analyses should implement and test meth-
ods to correct for these effects.

e Covariance matriz: Here we rely on a Gaussian co-
variance and only include mask effects in harmonic
space for the CosM0DC2 simulation. Future anal-
yses will include non-Gaussian terms and mask ef-
fects both in harmonic and real space.

e Fstimators: In this analysis we have implemented
the standard estimators that have already been
used in Stage-III 3x2pt analyses. As an exception,
we did not include lens-source clustering effects in
the galaxy-galaxy lensing estimator, usually cor-
rected for with the so-called “boost factors”, which
future analyses should account for. Moreover, a
whole suite of alternative estimators optimized for
different goals exist in the literature, such as the
KNN’s (Banerjee & Abel 2021) sensitive to higher
order information in the galaxy density field; the
COSEBIs (Schneider et al. 2010), an alternative
E/B mode decomposition of the cosmic shear infor-
mation; or the AY estimator (Sheldon et al. 2004)
for galaxy-galaxy lensing, which is often used to
perform galaxy-halo connection studies. TXPIPE’s
flexible framework will make it possible to imple-
ment and test these estimators in future analyses.

e Model: To perform a 3x2pt analysis with the LSST
Y1 data set the model will need to be extended
in several aspects to at least consider: non-Limber
terms, Tidal Alignment Tidal Torque (TATT) IA
model, redshift-space distortions and magnification
effects.

e Cosmology inference code: This is the first analy-
sis where FIRECROWN has been used, and as such
we have only tested the most basic implementation
of it. Future analyses will be able to test more
advanced features such as different matter power
spectrum models or nuisance parameter marginal-
ization schemes.

7. SUMMARY

In this paper we perform a rigorous validation test on
the software pipeline in LSST DESC to be used for a cos-
mology analysis with three two-point functions: galaxy
clustering, galaxy-galaxy lensing, and cosmic shear, or
the 3x2pt analysis. The core of the validation surrounds
the software package TXPIPE, which carries out the mea-
surement of the 3x2pt data vector in both real and har-
monic space. But TXPIPE also interfaces with several
other DESC software packages — CCL (for the theoret-
ical modeling), FIRECROWN (for the cosmological infer-
ence), TJPCov (for the covariance matrix calculation),
SACC (for storing data vectors and relevant metadata)
— which are also tested via this process.

We first validate the pipeline using a Gaussian sim-
ulation that is designed to mimic the galaxy sample
used in the LSST DESC Science Requirements Document
(DESC SRD). In particular, we test the pipeline with the
statistical power expected for the first year (Y1) of LSST
data. We find that TXPIPE can properly recover the in-
put theory to the LSST Y1 precision at both the data
vector level and the cosmological constraints, with both
the real-space and harmonic-space estimators. This first
validation of the pipeline assumes a number of simplifi-
cations that will need to be revisited when considering
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the first-year data analysis. We leave for future work a
validation of the pipeline including additional effects.

We also find that in this set up, the systematics con-
tribute to a significant part of the uncertainties, par-
ticularly in the Sg parameter, which we find it would
be ~ 5(1.8) times more tightly constrained under the
A(wo—w,)CDM model if we fixed shear and redshift cal-
ibration parameters. On the other hand we find these
systematics only contribute slightly to the uncertainties
in wy or w,, the parameters describing the equation of
state of dark energy.

We then apply this pipeline to CosMmoDC2, a DESC
mock galaxy catalog built on an N-body simulation, de-
signed to be sufficiently deep for LSST and have more
realistic galaxy characteristics. We find good agreement
between the measurements and theory when we only con-
sider scales where we supply the correct theory. We are
also able to recover the input cosmological parameters,
in particular in the og and Sg parameters, which we find
are the only parameters that are not prior-dominated in
this setup.

Overall, we have developed and validated to LSST-Y1
precision a catalog-to-cosmology framework with DESC
tools to obtain cosmological information from weak lens-
ing and galaxy clustering measurements. In this paper
we have focused on two-point weak lensing and galaxy
clustering estimators, but the scheme we have developed
can easily be extended to include higher order estimators
and also other probes. Therefore, we have accomplished
the first milestone in the roadmap to perform cosmolog-
ical analyses with LSST data.
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APPENDIX
TWO-POINT ESTIMATORS
Harmonic space estimator

We use NAMASTER (Alonso et al. 2019) to measure
the harmonic space power spectra, based on the pseudo-
Cy method. For the harmonic space measurements we
start from a map, either of galaxy density d, or shear 7.
An observed map 4 is the product of the true map a and
a weight map w: d=wa. The weights map can either be
a binary mask or an inverse-variance local weight, down-
weighting regions of high noise.

The spherical harmonic coefficients of the observed
map d are a convolution of the spherical harmonic coef-
ficients of a and w, given the convolution theorem. This
leads to mode-coupling between the power spectra of the
observed and true fields and prevents us from directly
measuring the desired C;. We can instead define first the
coupled pseudo CZ” between fields a, b with weights v,w
respectively:

4
~ 1 -
ab _ ~ *
Cé = W+l E a[mbém, (Al)

m=—A{

which is related to the true power spectrum via the mode-
coupling matrix (MCM):

(CPy=> My, (A2)
el

where the averaging () is over different realizations of a
and b of the initial Gaussian fields. The coupling matrix
depends only on the weights of the two fields being cor-
related. Explicit expressions for the coupling matrix of
different combinations of spin-0 and 2 fields can be found
in Alonso et al. (2019). If the data covers all sky, then the
coupling matrix is the identity. When we are only able
to observe a part of the sky, this produces off-diagonal
coupling between neighboring multipoles. To obtain Cgb,
we need to invert the coupling matrix. However, M}y, is
non-invertible in many scenarios. This is usually solved
by binning the power spectra in bandpowers B, contain-
ing weighted sums of different multipoles:

Ci=> " BiCY, (A3)
legq
in which case the binned coupling matrix is defined as:
=2 D M (Ad)
leqgl'eq’

and is usually invertible for sufficiently broad bandpow-
ers. Then, the decoupled Cgb for a chosen bandpower
binning ¢ is:

Cib = (M™) 0 (o0 =N, (A5)
q/

Zuntz J., et al. 2018, MNRAS, 481, 1149

Zuntz J., et al. 2021, The Open Journal of Astrophysics, 4, 13
Zircher D., et al. 2022, MNRAS, 511, 2075

de Jong J. T. A., et al. 2013, The Messenger, 154, 44

where N;’/b is the (binned) mode-coupled noise power
spectrum, which needs to be removed first for autocorre-
lations. The form of the noise power spectrum depends
on the maps being correlated, and their calculation is de-
scribed below in A.1.1. The results of Equation (A5) are
the measurements we plot in Figures 4, 5 and 6.

Then, the decoupled C‘,‘;b would be an unbiased esti-
mator of the true power spectrum evaluated at, e.g. the
central multipole of each bandpower, if the power spectra
was exactly constant within each bandpower. Since that
is not the case, when comparing with theory we need
to propagate this averaging with the bandpower window
functions, which relate the theoretical prediction for the
bandpowers CZ" to the theory power spectrum Czb:

Cy =Y Fucl, (A6)
4
where ,
=Y (MM > whMg,. (A7)
q/ v eql

In Figure 11 we show the impact of this effect with the
angular binning that we use in this work for harmonic
space, which are 17 logarithmically spaced bandpowers
between £ =20 and ¢=3722, to match the scales defined in
the SRD. We find small ¢ values are impacted the most,
reaching a ~20% effect at the largest scale. We use a
common HEALPIX resolution of Nyjqe = 4096 for all sky
maps.

Finally, we apply a beam correction to account for the
window function of HEALPix, which depends on Ngge.
The correction is largest for small scales (large ¢), reach-
ing ~3% at £~ 3000.

Harmonic space noise subtraction

In Equation A5 we subtract the mode-coupled noise
power spectrum N(‘;,b from the measured cosmological sig-

nal C‘Z,b. In TXPIPE we have implemented two different

ways to compute the noise power spectrum, analytically
and using a number of realizations of noise maps. Here
we detail these implementations for the galaxy clustering
and cosmic shear estimators in harmonic space.

For galaxy clustering, the noise is due to poisson sam-
pling of the fields when we observe galaxies. We can
compute the coupled noise analytically by averaging the
mask and dividing by the number density of galaxies n,,
in each redshift bin:

- (mask)

Ncoupled, clustering = n ) (A8)
8

where in our case the mask is uniform with unity values
within the footprint and with zero values outside of it,
i.e. (mask) will approximately be the same as fay, .

29 Note that the decoupled noise can be expressed as:
Ndecoupled, clustering =2 é, and that the decoupling operation cor-

responds to approximately an fy, factor.
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using Equation (A6) vs. using the equations described in Section 2 evaluated at the center ¢ of each angular bin. The colors represent
different redshift bins, with the darker (black) colors corresponding to lower redshift, and the lighter (orange) colors to higher redshift bin

combinations.

For the cosmic shear case, the coupled noise can be
computed as the sum of weights estimator from Equa-
tion (2.24) in Nicola et al. (2021):

Ncoupled, cosmic shear = <0'ipix>Apixa for ¢ > 27 (Ag)
and zero for £ <2 (in general N =0 for £ < spin), where

Apix is the area of each pixel, the averaging () happens
across all pixels in the sphere and Uz_’pix is the sum of the
weighted variance of the calibrated ellipticity e computed
in each pixel as

1 L1
Jez,pix = N Z D) (e%,i"'e%.i) W?,

1

(A10)

where w; are the weights associated with the source sam-
ple for each object i in a given pixel that has a total of
N galaxies. O’Z‘Pix =0 outside the footprint. For Cos-
MODC2, we calibrate this quantity under the META-

CALIBRATION framework with ngix = Riznvaez(uncalibrated) pix?

where in this case we only use the diagonal part of the
mean of the response matrix.

We cross-check the above estimates with an alterna-
tive method based on generating a given number of noise
realizations. For this work we use 30 realizations of the
noise maps. For cosmic shear, we generate maps with
random rotations of the ellipticities, and then compute
the pseudo-C; in each noise realization r, and estimate
the noise as the mean across all of them, following the
method from Nicola et al. (2021). For galaxy clustering,
we generate gaussian realization of the density field, and
then for each noise map we measure the pseudo-C, for
half the galaxies in the map, which we label as 41 and
h2. Then, we subtract the measurements from each half
to null the signal and be left with the noise part, which
we divide by 4 to account for the fact that the number
density for each split is 1/2 of the total one:

Ncoupled, clustering, maps = Z <é?1 _é?2>r . (A]']')

We find agreement between the analytic and the noise
maps realizations methods, which we show in Figure 12
for the CosMoDC2 simulation.

Real space estimator

For the real space measurements we start from galaxy
or shear catalogs and not from maps as in the harmonic
space case. We use £ as the estimators for cosmic shear,
defined in terms of the tangential (¢) and cross (x) com-
ponents of the ellipticity é defined along the line that
connects each pair of galaxies a,b. Correlating galaxies
in a pair of redshift bins (i, j) we define,

5i 5l 5i 5l
Zwawb (et,a €b == €x.a€x ,b)

HOESS

L (A1)
WaWhp,

with inverse variance weighting w and where the sums
run over pairs of galaxies a, b, for which the angular sep-
aration falls within the range |@—A60| and |6+ A8|. The
ellipticities that enter Equation (A12) are corrected for
residual mean shear, such that éi = el —(e;); for compo-
nents k € (1,2) and redshift bin i. Also, they have already
been corrected by the METACALIBRATION response fac-
tors as described below.

For galaxy-galaxy lensing, the mean tangential shear
estimator is usually expressed as:

s Wis&lys () s Wrs éiles(6)
ZLS wis(9) ZRS wgs(0) ’

where LS refers to lens-source galaxy pairs that are sep-
arated by a given angular scale that falls within the bin.
RS refers to random-source pairs, and this term removes
the tangential shear around a sample of random points to
correct for mask effects and reduce the noise in the jack-
knife covariance®® (Singh et al. 2017; Prat et al. 2018).
Note in this work we do not include the effect of lens-
source clustering in the tangential shear estimator, usu-
ally referred as “boost factors”, which is left for future
work. In our setup we do not expect them to have a
significant impact given the scale cuts we use and the
mostly non-overlapping redshift bins between lenses and
sources.

Finally, for the angular 2-point correlation function,
w(#) the typical estimator is the Landy-Szalay estimator

A0 =

(A13)

30 We do not use the jackknife covariance in this work to in-
fer cosmology but nonetheless we validated its implementation in
TXPipe, which is useful for other purposes.
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Fic. 12.— Noise power spectrum for CosM0DC2, computed by TXPIPE as described in Section A.1.1.

(Landy & Szalay 1993) which can be written as:

.. DDI—-DRI—DIR +RRI

(A14)

where DD, RR and DR are the normalized galaxy-galaxy,
random-random and galaxy-random pair counts within
an angular bin, respectively. We use 20 log-spaced 6 bins
between 2.5 and 250 arcminutes for all the probes in real
space.

Pizel based estimators

Both the galaxy-galaxy lensing and the galaxy cluster-
ing estimators written above require a sample of random
points. This sample usually needs to be at least 20 times
larger than the sample of lens galaxies (Prat et al. 2022),
to avoid adding significant extra noise to the measure-
ments®!. We found that for the Gaussian simulation built
following the LSST Y1 SRD lens number densities and
area, it becomes infeasible to apply these estimators due
to the high amount of memory they require, even after
attempting several memory optimizations. As a result,
we also implement a pixel-based estimator which we use
for the fiducial measurements presented in Section 4.3.
The pixel-based version of the Landy-Szalay estimator
between two lens redshift bins i, j is

Npix Npix

A,](H) ZZ (Nl

=1 k=1

— NN/ —N7)

N Ok,

(A15)

where N, is the galaxy number density in pixel /, N is the
mean galaxy number density over all pixels within the
footprint and ©; is a top-hat function which is equal
to 1 when pixels [ and k are separated by an angle 6
within the angular bin. In the limits of an infinitely
large random catalog and small enough pixel size this is
equivalent to the Landy-Szalay estimator.The fractional

31 We tested using less amount of random points, in particular
12 times larger than the lens sample, and found this was insufficient
to obtain a good fit to the theoretical predictions.

coverage of each pixel is taken into account in the cal-
culation of N; and N. We also use TREECORR for this
pixel-based estimator. As input for this function, we use
the same density contrast maps that are used in the har-
monic space two-point measurements. Note this estima-
tor has already been implemented with DES Y3 data in
Rodriguez-Monroy et al. (2022b). The analogous pixel-
based estimator for the mean tangential shear can be
written as:

Npix Npix

Atj(e) ZZ(NINZN) J@lk

=1 k=1

(A16)

where we can effectively use the correlation using the
density contrast and ellipticity maps, named KG as im-
plemented in the TreeCorr code. We verify that the dif-
ference between this pixel version of the estimator and
that using random points is negligible for the angular
scales we consider given the nside =4096 we use and the
scales cuts that are applied for the galaxy clustering and
galaxy-galaxy lensing probes.

Response factors

We use response factors that account for shear and
selection biases within the METADETECTION framework
introduced in Sheldon et al. (2020). In all the above
equations, the shear per each galaxy é has already been
corrected by the response factors. In particular, we use
the full response matrix to correct for the shear. We
measure the response matrix in each of the source red-
shift bins, for the whole ensemble of galaxies in each bin,
and then apply this mean response factor to each of the
galaxies individually, before using the two-point estima-
tors as described above. We test this implementation in
TXPipe with the CosMODC2 measurements, for which
we generate a non-unity response factor. While this im-
plementation is already more advanced than what has
been used in Stage-III surveys (e.g as in Amon et al.
2022; Secco et al. 2022; Prat et al. 2022), more sophis-
ticated treatments may be required for LSST estimates,
such as computing response factors for smaller ensem-
bles or the deep-field approach described in Zhang et al.
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(2022a).

MASK EFFECT ON THE COVARIANCE

In Figure 13 we show the impact of including the mask
effects on the covariance for harmonic space. We com-
pare the covariance obtained with the fy, approximation
with the one where the coupling between modes due to
the mask is taken into account. We compute the cou-
pling between modes with the DESC package TJPCov,
which calls the NAMASTER code. We find the impact
is biggest for the largest scales, corresponding to lower
£. In particular, for our simple LSST Y1 mask shown in
Figure 2 we find that for the largest scale used in this
work of ¢ =20 the effect is ~15% on the square root of
the diagonal elements of the covariance. We find this to
be the case for all the probes. At small scales the impact
of the mask is <5%. We check the impact on the cosmo-
logical contours is negligible in Figure 14, and therefore
do not include it in our fiducial covariance with the LSST
Y1 Gaussian simulation. We note that these conclusions
might differ when considering a more realistic mask (e.g.
masking bright stars will affect all angular scales, and
not only large scales).

On the other hand, we find this effect to be much larger
for the smaller ~440 deg.? CosMoODC2 mask, where we
find it can be as large as ~200% for £=20. We note how-
ever that £ =20 is quite close to the edge of the footprint,
which we would normally not use in a typical cosmolog-
ical analysis. We also find that the difference in the two
covariances is most significant for the cosmic shear probe.
Given the magnitude of this effect, we use the covariance
including mask effects for our fiducial harmonic space re-
sults on CosM0ODC2. We do not find the impact of the
mask to be as important for the real space counterpart,
since there we do not use such large scales: for the real
space analysis we use scales up to 250 arcmin, which cor-
responds to about ¢ ~ 45, using the ¢ ~ 7/0 approximate
scaling.

COMPARISON WITH DESC SRD FORECASTS AND
STAGE-III SURVEYS

In this appendix we compare our results on the LSST
Y1 Gaussian simulation with the forecast from the DESC
SRD and from Stage IIT surveys. However, neither of
those are perfect comparisons since there are some dif-
ferences in the analyses. First we list the differences be-
tween our analysis and the DESC SRD forecast:

1. Input cosmology: The width of the priors is
matched to the DESC SRD forecast one but not
their center values, since we wanted to use the same
cosmological parameters that were input to Cos-
MODC2.

2. Covariance: The DESC SRD uses a non-Gaussian
covariance, while we only use the Gaussian terms.

3. Noise: The DESC SRD used noiseless datavectors
while we use a noisy realization of the Gaussian
simulation.

4. Intrinsic alignment model: The DESC SRD used
a 4-parameter IA model, with an overall redshift
scaling parameter with a Gaussian prior with mean
u=>5, 0 = 3.9 (while we use the same o, but center

it at zero, since the simulations we use do not in-
clude intrinsic alignment effects); a power-law lumi-
nosity scaling parameter (which we do not include),
a redshift scaling parameter with =0 and 0 =2.3
(identical as ours) and an additional high-redshift
scaling parameter (not included here).

Thus, the comparison with the DESC SRD is not com-
pletely straightforward but it is still useful as a valida-
tion, since each analysis uses very different software tools.
Note that we only compare the results in the wo—w,CDM
model, since that is the only one that was considered in
the DESC SRD. We display the mean and 1-o uncertain-
ties for both cases in Table 7 and plot the 1D posteriors
in Figure 15. Note that for the plot we have shifted the
DESC SRD posteriors to match their mean to the in-
put values of the Gaussian and CosmoDC2 simulations
that we use in this work, for an easier visual compari-
son. Generally we find that the constraining power of
our posteriors is similar to what was predicted in SRD
in most of the parameters. We only obtain significant
differences in the parameters describing the equation of
state of dark energy: we find the 1-o uncertainties in
wp are ~1.3 times more constraining than originally pre-
dicted and ~2 times more constraining for w,. A poten-
tial explanation for these differences is that we assume a
simpler TA model (with 2 free parameters instead of the
4 in the SRD).

Then, we also compare the results from this work
with Stage-III posteriors, in particular with the DES Y3
3x2pt wyp—w,CDM analysis from the extensions work in
DES Collaboration (2022a), which assumes the same 2-
parameter (NLA) TA model as we do, and allows us to
perform a reasonable comparison. However, an impor-
tant difference between the analyses are the priors: in
our work we use the same priors that were used in the
DESC SRD, which are Gaussian and are informative in
some of the cosmological parameters, such as the Hub-
ble constant, €, and w,, as seen in Fig. 15 comparing
the yellow and the gray posteriors, while in the DES Y3
analyses all the priors are flat and non-informative in
the cosmological parameters (i.e. it would look flat in all
the panels from Fig. 15). With these caveats in mind,
we find that the LSST Y1 results on the Gaussian sim-
ulation provide a constraint in Sg that is 2.5 times more
constraining than DES Y3 and a significant improvement
in the rest of the cosmological parameters. Interestingly,
we also find that a LSST Y1 3x2pt analysis will be able
to place constraints in the tilt of the power spectrum ny,
which was completely unconstrained in Stage-I1I surveys
analyses.

FULL PARAMETER POSTERIORS

Here we report the rest of the 2D parameter posteri-
ors for the LSST-Y1 like Gaussian simulation. In Fig-
ure 16 we show the cosmological parameters, for ACDM
and wyg—w,CDM, in comparison with the prior. We find
that all the parameters are constrained with respect to
the prior, not only the usual €2,, and og parameters. In
particular, we obtain a relatively tight constraint on ny,
observed for the first time in 3x2pt analyses.

We also show the difference in the posteriors when we
fix the nuisance parameters controlling the redshift and
shear calibration parameters (but still varying the in-
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F1G. 13.— Comparison between the covariance including coupling between the £ modes due to mask effects and the one using the fyiy

approximation. The covariance that includes mask effects is computed with the DESC code TJPCov that is based on NaMaster. The colors
represent different redshift bins, with the darker (black) colors corresponding to lower redshift, and the lighter (orange) colors to higher

redshift bin combinations.

trinsic alignment and galaxy bias parameters). We find
that fixing these systematics results in Sg constraints that
are ~5 times more precise in ACDM, both in real space
and harmonic space. In wy—w,CDM, Sg uncertainties
decrease ~1.8 times when fixing the same observational
systematics, ~1.3 times for wy and do not change signifi-
cantly for w,. We note that the DESC SRD only tried to
optimize the wy and w, parameters in the wy—w,CDM
model and thus it is somewhat expected that we find that
Sg is systematics dominated, also especially in the ACDM
model which was not considered in the DESC SRD.

We have also checked the posteriors of the nuisance
parameters, for the TA, shear and redshift calibration
parameters. In Figure 18 we show the IA parameter
posteriors, finding that the amplitude of intrinsic align-
ments has a tight posterior while the parameter control-
ling its scale dependence is barely constrained. We show
the posteriors for the multiplicative shear bias parame-
ters in Figure 17. We find they are being self calibrated
by the data themselves with a substantial improvement
with respect to the prior, especially at higher redshift.
The redshift calibration parameters are shown in Fig-
ure 17 and also present significant self-calibration, espe-
cially for the lens redshift bins. Overall we find that most
of the nuisance parameters are self-calibrated by the data
and have tighter posteriors than the prior. This is inter-
esting, and partly due to the fact that the DESC SRD
requirements on the redshift and shear calibration pa-

rameters are rather conservative (similar to current val-
ues in Stage-IIT experiments). While we only show the
posteriors for ACDM we have checked the ones for the
wo—w,CDM model, which exhibit a very similar behav-
ior.

COSMODC2 DATAVECTORS

In Figures 19, 20 and 21 we display the measurements
for cosmic shear, galaxy-galaxy lensing and galaxy clus-
tering, respectively, for the CosMODC2 simulation. Vi-
sually inspecting the measurements, we observe that the
large scales suffer from some sharp features below ¢ ~ 50,
which probably indicates that such large scales should
be used carefully given the relatively small area of Cos-
MODC2. We also observe some apparent deviations be-
tween the theory and the measurements for the real space
galaxy clustering case. However, we note that these mea-
surements are highly correlated and that we find good
agreement between the theory and the measurements
within the scale cuts using the x> and PTE metrics de-
scribed in Section 4 and shown in Table 8.

AFTERMATH OF THE CODE COMPARISON WITH
DESCQA AND VALIDATION PROCESS

This appendix complements the discussion from Sec-
tion 6, where we mention that comparing different pieces
of the output with external codes often exposes problems
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F1a. 14.— Comparison at the cosmological posteriors level for the

LSST Y1 like Gaussian simulation in the ACDM model between
using the covariance that includes coupling between the £ modes
due to mask effects and the one using the fgi, approximation, using
the harmonic space datavectors.

that would otherwise be hard to track. Here we illustrate
this point by giving examples of the aftermath of such a
comparison, in particular of the one comparing the real-
space two-point correlation function measurements and
theory data vectors from TXPIPE’s output to the ones
from another DESC code, DESCQA?32, previously vali-
dated in Kovacs et al. (2022). From this comparison we
identified:

e A bug when constructing the redshift distributions
in TXPIPE related to an offset in the redshift bin-
ning vs. the histogram, by half a bin. This pro-
duced noticeable differences in the theory data vec-
tors yielded by each code.

e A bug in the mean shear subtraction. The mean
shear across the whole sample per each redshift bin
was not being subtracted correctly.

e A bug related to a mislabeling/typographical error.
A name mismatch in the configuration file made us
think we were using bin_slop=0 (a parameter in
TreeCorr that when non-zero introduces some ran-
domness in the result while speeding up the calcu-
lation), when in reality this option was not being
transferred to TreeCorr.

Other examples of issues that were identified in the pro-
cess of validating the two-point measurements and theory
data vectors for the Gaussian simulations include:

e Bugs related to the ingestion of the input catalogs:
Initially the catalog that was fed in to TXPIPE was
already masked, and the catalog level mask was

32 https://github.com/LSSTDESC/descqa

interacting with the mask applied within TXPIPE
in unexpected ways.

e Bugs related to using patches in several stages,
which are needed to handle such large catalogs. For
instance, clashing cache name directories produced
identical outputs from different inputs, which was
identified and then fixed by making a cache direc-
tory based on creation time with an absolute path.

e Some redshift distributions produced by TXPiIrPE
were susceptible to numerical errors when being in-
tegrated to produce theory predictions, which led
to incorrect theory data vectors.

This paper was built using the Open Journal of As-
trophysics IATEX template. The OJA is a journal which
provides fast and easy peer review for new papers in the
astro-ph section of the arXiv, making the reviewing pro-
cess simpler for authors and referees alike. Learn more
at http://astro.theoj.org.


https://github.com/LSSTDESC/descqa
http://astro.theoj.org

Catalog-to-cosmology framework for LSST 27

Prior (for this work)
Gaussian sims LSST Y1
Forecasted in DESC SRD

—DES Y3
— CosmoDC2

PP > E A PO DD E DO &S
L TE T IR AT AT T T AT 7T

Mg

VRN Nl O > a» A D D OO H D oo B
P FF PP P NN NN RS Q,.(\ &

Qb Qm g8 SS

Fi1c. 15.— Comparison of the 1-D posteriors from different data sets under the wy—w,CDM model. First, we compare the results obtained
in this paper from the 440 deg.? CosmMoDC2 simulation and the 12300 deg.? LSST-Y1 like Gaussian simulation with the prior. Most of
the parameters are prior dominated for CosMODC2. The vertical dashed lines correspond to the input values for both of these simulations.
Then, we compare these results with the forecasted predictions from the DESC SRD (shifted in this plot to match the same values as
CosMoDC2). We also compare the constraining power to that of stage-III surveys, in particular to the DES Y3 3x2pt wy—w,CDM results
from the extensions work from DES Collaboration (2022a), with the caveat that they assume different priors with respect to this work
(they assume flat priors in all cosmological parameters). The mean contours of DES Y3 are also shifted to match the input of CosmoDC2.
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Fic. 16.— ACDM (top) and wy—waCDM (bottom) cosmological contours for the LSST-Y1 like Gaussian simulation.
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F1G. 17.— Multiplicative shear bias posteriors (top) and redshift calibration parameters (bottom) for the LSST-Y1 like Gaussian simulation
assuming the ACDM model.
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F1G. 18.— Intrinsic alignment parameters posteriors for the

LSST-Y1 like Gaussian simulation assuming the ACDM model.
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F1a. 19.— Analogous figure to Fig. 4 for the CosMmoDC2 simulation.
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F1a. 20.— Analogous figure to Fig. 5 for the CosmoDC2 simulation.
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F1G. 21.— Analogous figure to Fig. 6 for the CosMoDC2 simulation. Note that these measurements are highly correlated and that we
find good agreement between the theory and the measurements using the PTE metric as shown in Table 8.



