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ABSTRACT
We present the first detection of the baryon acoustic oscillations (BAO) signal obtained using unblinded data collected during
the initial two months of operations of the Stage-IV ground-based Dark Energy Spectroscopic Instrument (DESI). From a
selected sample of 261, 291 Luminous Red Galaxies spanning the redshift interval 0.4 < 𝑧 < 1.1 and covering 1651 square
degrees with a 57.9% completeness level, we report a ∼ 5𝜎 level BAO detection and the measurement of the BAO location at
a precision of 1.7%. Using a Bright Galaxy Sample of 109, 523 galaxies in the redshift range 0.1 < 𝑧 < 0.5, over 3677 square
degrees with a 50.0% completeness, we also detect the BAO feature at ∼ 3𝜎 significance with a 2.6% precision. These first
BAO measurements represent an important milestone, acting as a quality control on the optimal performance of the complex
robotically-actuated, fiber-fed DESI spectrograph, as well as an early validation of the DESI spectroscopic pipeline and data
management system. Based on these first promising results, we forecast that DESI is on target to achieve a high-significance BAO
detection at sub-percent precision with the completed 5-year survey data, meeting the top-level science requirements on BAO
measurements. This exquisite level of precision will set new standards in cosmology and confirm DESI as the most competitive
BAO experiment for the remainder of this decade.

Key words: cosmology: large-scale structure of Universe, observations, dark energy – galaxies: statistics – methods: data
analysis, statistical.

1 INTRODUCTION

The precise measurement of the expansion history of the Universe
remains one of the key challenges in modern cosmology, and rep-
resents a compelling probe of the nature of dark energy (DE). The
distance-redshift relation over a wide redshift range tests whether the
accelerated expansion is consistent with a cosmological constant (Λ)
or requires a dynamical explanation. It is also an important constraint
on the growth rate of structures, allowing precise probes of gravity
on cosmological scales, and on the Hubble constant, shedding light

★ E-mail: graziano@sejong.ac.kr (GR); jmoon@mpe.mpg.de (JM)

on the source of the “Hubble tension” as coming either from as-yet
unappreciated astrophysical systematics or new physics. Finally, it
breaks cosmological parameter degeneracies in, e.g., neutrino mass
measurements. Recent results from state-of-the-art experiments have
provided highly accurate constraints on the basic parameters of the
standard spatially flat ΛCDM cosmological model, dominated by
collisionless cold dark matter (CDM) and a DE component in the
form of Λ (Planck Collaboration et al. 2020; eBOSS Collaboration
et al. 2021; Dark Energy Survey Collaboration et al. 2022).

The baryon acoustic oscillation (BAO) method is one of the most
mature and robust probes of expansion history. Acoustic oscilla-
tions in the early pre-recombination Universe imprint a feature in
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the galaxy distribution at a scale (𝑟d) set by the sound horizon eval-
uated at the drag epoch. The physics of these oscillations and the
scale of this feature (which constitutes a fundamental standard ruler)
are exquisitely calibrated by cosmic microwave background (CMB)
measurements. Furthermore, the scale of the sound horizon is much
bigger than the scale of physics of nonlinear structure formation and
galaxy biasing, making it robust to the subsequent evolution of the
Universe; for a review on BAO, see Weinberg et al. (2013) and ref-
erences therein. The apparent size of this standard ruler across and
along the line of sight characterizes the angular diameter distance
(𝐷A) and the Hubble parameter (𝐻) as a function of redshift. Pre-
vious surveys have successfully measured these quantities directly
from the BAO feature at different redshifts. Examples of first BAO
detections obtained from multiple tracers include Eisenstein et al.
(2005), Cole et al. (2005), Blake et al. (2012), du Mas des Bourboux
et al. (2020), while the most recent results are reported in eBOSS
Collaboration et al. (2021) and in Dark Energy Survey Collaboration
et al. (2022).

BAO measurements at sub-percent precision are considered pri-
mary science targets for the Dark Energy Spectroscopic Instrument
(DESI; DESI Collaboration et al. 2016), along with novel constraints
on theories of modified gravity and inflation, and on neutrino masses.
DESI, the only Stage-IV DE experiment that is currently taking data,
aims to provide multiple sub-percent distance measurements over
a broad 0 < 𝑧 < 3.5 redshift range. DESI represents an order-of-
magnitude improvement both in the volume surveyed and in the
number of galaxies measured over previous experiments – e.g., Ex-
tended Baryon Oscillation Spectroscopic Survey (eBOSS; Dawson
et al. 2016), a key component of the fourth generation (SDSS-IV;
Blanton et al. 2017) of the Sloan Digital Sky Survey (SDSS; York
et al. 2000). In addition, DESI builds in a number of internal sys-
tematics checks using multiple tracer populations to probe common
volumes.

Given the exquisite precision achievable by the DESI survey, the
DESI collaboration decided to blind the redshift data to avoid any
confirmation biases that can potentially impact all of the cosmologi-
cal analyses. A general procedure to blind a modern redshift survey
has been discussed in Brieden et al. (2020), and the exact imple-
mentation into the DESI framework will be described elsewhere.
However, for early quality assurance tests and in order to validate
the data processing and analysis pipelines, the first two months of
DESI observations (hereafter referred to as DESI-M2) have been
kept intentionally unblinded.

In this work, we use the DESI-M2 dataset and report the first
high-significance detection of the BAO signal from the initial two
months of DESI operations. As part of testing these early data, we in-
tegrate the eBOSS BAO pipeline into the DESI analysis framework,
and apply such pipeline to measure the BAO scale with updates
to accommodate all of the DESI specifics. While the DESI survey
has four primary galaxy tracer populations to measure clustering,1
the survey strategy implies that not all tracers will have the same
completeness in the very early data. The two most complete sam-
ples are the DESI Bright Galaxy Sample (BGS) and the Luminous
Red Galaxies (LRGs). We focus on these two samples here for the
BAO measurement, since our simulations suggest that we would not
expect a BAO detection in the Emission Line Galaxy (ELG) and
Quasar (QSO) samples given the number density, the low complete-
ness, and the volume of this early data. A similar signal-to-noise
(SN) consideration led us to concentrate on the isotropic distance

1 The DESI survey also has a fifth tracer, i.e., the Lyman-𝛼 (Ly𝛼) forest.

measurements 𝛼 ≡ 𝐷
2/3
A 𝐻−1/3/𝑟d, probed by the angle-averaged

galaxy correlation function (the "monopole"). Future DESI analyses
will present measurements using all four tracer populations, as well
as measurements of 𝐷A𝐻 from the Alcock-Paczynski effect (Alcock
& Paczynski 1979).

As we will show in our analysis, even these early data yield a
precision in distance comparable to measurements from previously
completed surveys (i.e., Anderson et al. 2012; Bautista et al. 2021),
highlighting the remarkable statistical power of the DESI data. In the
spirit of the DESI blinding policy, we restrict ourselves to providing
just the statistical precision of the measurements rather than the
actual distance values – which will be presented instead in a series
of DESI Year 1 (Y1) forthcoming cosmological papers. This work
therefore should be seen as an end-to-end quality assurance of the
DESI data management system, as well as an early validation of the
DESI spectroscopic pipeline.

The layout of the paper is organized as follows. In Section 2, we
briefly describe the main aspects of the DESI-M2 sample used in
this work, along with the procedure to build the corresponding large-
scale structure (LSS) data catalogs. In Section 3, we present the
approximate and 𝑁-body-based mocks adopted in the core analysis,
and explain how such synthetic catalogs are constructed in order to
mimic the complex footprint and characteristics of the DESI-M2.
In Section 4, we illustrate all of the analysis tools, namely the cho-
sen two-point clustering estimator, the density field reconstruction
technique, and the BAO fitting methodology. Section 5 addresses co-
variance matrices, and in particular the construction, calibration, and
validation on mock data of semi-analytical semi-empirical covari-
ances for the BAO fitting procedure. More details on the covariance
matrices adopted here are reported in a companion paper (Rashkovet-
skyi et al. 2023). The main results are detailed in Section 6, where
we assess the precision and detection statistics of the BAO feature
in the LRG and BGS samples. We then briefly address the expected
precision of the final Year 5 (Y5) DESI LRG sample in Section 7, in
terms of the BAO detection level, based on forecasts obtained from
our promising early results. Finally, we conclude in Section 8, where
we summarize the main findings and highlight the relevance for the
upcoming Y1 DESI dataset. We also leave some additional material
in Appendix A.

2 DESI MAIN SURVEY DATA: FIRST TWO MONTHS

In this section, we provide a concise description of the DESI-M2
dataset, along with several specifics on the LSS catalog construction.
A number of additional technical details can be found in the quoted
supporting papers, many of which are still in a preparatory phase and
will be available at the time of the official Y1 DESI data release.

2.1 DESI Early Data: General Aspects

DESI began its main program on May 17, 2021. Its commission-
ing and ‘Survey Validation’ (SV) phases (DESI Collaboration et al.
2023a) had proved the instrument (Abareshi et al. 2022) and op-
erations strategy (Schlafly et al. 2023) to be efficient. The DESI
collaboration decided that the first two months of the observations of
DESI main survey data (i.e., DESI-M2) could be analyzed without
the blinding restrictions imposed on the rest of the sample that will
be used for DESI Y1 Key Projects.

The DESI-M2 data were observed on nights in 2021 from May
14th through July 9th on 304 dark time and 342 bright time ‘tiles’.
Each tile represents a specific sky location pointing of the telescope

MNRAS 000, 1–17 (2023)
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Table 1. Statistics of the four primary DESI targets from the DESI-M2 dataset, including completeness information.

Target 𝑁North 𝑁South 𝑁Total 𝑧 range Area [deg2] Completeness
BGS Bright 239492 390988 630480 0.1 - 0.5 3677 0.500

BGS Bright, 𝑀𝑟 < −21.5 38472 71051 109523 0.1 - 0.5 3677 0.500
LRG 80651 180640 261291 0.4 -1.1 1651 0.579
ELG 55383 117145 172528 0.8 - 1.6 976 0.297
QSO 70337 153453 223790 0.8 - 3.5 2906 0.778

and specific target selection for each of the 5000 robotic positioners
populating the DESI focal plane (Silber et al. 2022) determined by
the DESI fiberassign software (Raichoor et al. in preparation).
The spectra extracted from these observations were reduced by the
DESI spectroscopic pipeline (Guy et al. 2023) and released to the
DESI collaboration as the Guadalupe spectroscopic product. The
redshift measurements in these Guadalupe data are used in this
paper and will be made public with the DESI Y1 data release (DR1),
i.e., they are not available in the DESI early data release (EDR; DESI
Collaboration et al. 2023b).2

The DESI-M2 tiles are primarily first pass tiles that do not over-
lap each other. In dark time, the full DESI survey observes tiles in
7 overlapping passes, with a median overlap of 5 (Schlafly et al.
2023). Thus, the DESI-M2 data are substantially less complete in
the area observed than they will be when the survey is finished. This
incompleteness affects all samples, but is most extreme for the target
classes that are given the lowest priority during the assignment of
fibers on a tile (DESI fiber assignment is reported in Raichoor et al.
in preparation). We describe this further next, when discussing the
different DESI target classes.

2.2 DESI Targets

DESI divides its observing time into a ‘bright’ and a ‘dark’ time
program, for which the targeting is done independently (Myers et al.
2023). During dark time, in order of priority for fiber assignment,
QSOs (Chaussidon et al. 2023), LRGs (Zhou et al. 2023), and ELGs
(Raichoor et al. 2023) are observed. QSOs with redshifts greater
than 2.1 are selected for follow-up in order to increase the SN of the
spectra in the Ly𝛼 forest region. During bright time, a BGS (Hahn
et al. 2023) is observed, which has a ‘Bright’ and ‘Faint’ component,
as well as Milky Way stars (MWS; Cooper et al. 2022). In this work,
we only consider the higher priority BGS Bright sample.

For detailed discussions of how these target samples were cho-
sen, we refer the reader to the individual selection papers previously
cited. Table 1 summarizes key properties of the samples and Figure 1
shows the redshift distribution of each sample. Combined, they will
allow measurements of large-scale clustering modes at better than the
sample variance limit to 𝑧 < 1.6 (DESI Collaboration et al. 2023a).
The QSO sample provides this information at a lower sampling rate
all the way to redshifts greater than 3 and further samples density
fluctuations via the variance of Ly𝛼 forest absorption in each spec-
trum. The BGS sample is approximately flux limited and thus has a
spatial density that rapidly increases as the redshift gets lower and
is approximately sample variance limited to 𝑧 < 0.5. There is also
substantial overlap between the LRG and ELG catalogs, which will
allow comparison between results obtained from the most massive

2 The analogous spectroscopic data reductions and redshift fits for the EDR
are Fuji and will be publicly available on NERSC here: https://data.
desi.lbl.gov/public/edr/spectro/redux/fuji

Figure 1. Redshift distribution of the four primary DESI tracers, from the
DESI-M2 clustering catalogs.

and passive galaxies (LRG) and those that are actively star forming
(ELG).

2.3 LSS Catalog Construction

The construction of the LSS catalogs involves determining the area
on the sky where good observations were possible for each tracer,
applying criteria on the DESI data to select reliable redshifts within a
given redshift range, and providing weights that correct for variations
in observing completeness, target density due to changes in imaging
conditions, and relative redshift success due to variations in DESI
observing. The overall process is similar to that applied to SDSS
(most recently eBOSS; Ross et al. 2020), with the specific details of
DESI observations accounted for as we describe here. The pipeline
that was applied to the DESI-M2 sample represents an early version
of the DESI LSS catalog pipeline, which will be fully described
(and considerably improved) in Y1 publications. Many aspects of
the pipeline match that applied to the DESI ‘One Percent Survey’,
which is detailed in the overall description of the DESI EDR (DESI
Collaboration et al. 2023b). In what follows, we provide details on
the specific choices applied for DESI-M2.

The ‘randoms’ that populate the sky area where good observations
were possible were produced using the same procedures as applied to
the DESI One Percent Survey LSS catalogs. DESI randoms are pro-
duced using a standard such that each individual (and independent)
set has a density of 2500 deg−2. We use 10 such sets for the DESI-M2
clustering measurements and thus the total sky density of the random
samples used is 25000 deg−2. The process of creating DESI randoms
produces significantly different areas for different tracer types due to
the priority masking (e.g., we have no randoms in areas where LRGs
could not have been observed because a higher priority QSO target

MNRAS 000, 1–17 (2023)
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Figure 2. Footprints of the DESI-M2 BGS Bright (top) and LRG (bottom)
clustering samples, color-coded by completeness weights. The total areas
highlighted by the pink color represent the final DESI Y5 expected footprint.
The specific DESI-M2 areas covered by the BGS Bright and LRG samples
are respectively 3677 deg2 and 1651 deg2.

was assigned to the fiber positioner associated with that sky location).
In order to determine the effective area occupied by each sample, we
simply count the number of randoms in one of the final LSS random
catalogs sets and divide by 2500 deg−2. These areas are given in
Table 1. While the total effective area is considerably different per
tracer, the footprint of tiles is the same for all dark/bright time tracers.
Figure 2 shows the footprint of tiles for BGS (bright time; top panel)
and LRG (dark time; bottom panel) tracers. The plot is constructed
via a web interface provided by David Kirkby,3 and it is color coded
by the completeness in each tile grouping.

For the data samples, we follow the same procedures as applied
to the One Percent Survey LSS catalogs (described with the EDR)
in order to select targets of the given type that could have been
observed. Any unobserved targets at this stage were not observed
because a target of the same type was instead observed at the given
sky location. Each observed target is given a completeness weight,
WEIGHT_COMP, equal to the total number of targets (of the given
type) at the location of the observed target (with unique ‘locations’
determined by the combination observed tile and fiber positioner;
see DESI Collaboration et al. 2023b for more details). In particular,
we note that the fiber patrol radius is at most 89”: it depends on e.g.,
the focal plane position due to the optics.

The criteria for the BGS and LRG samples we focus this study on
are:

3 https://observablehq.com/@dkirkby/skymap/

• LRG: 0.4 < 𝑧 < 1.1, ZWARN=0, DELTACHI2>15
• BGS: 0.1 < 𝑧 < 0.5, ZWARN=0, DELTACHI2>40.

ZWARN is a bitmask generated by the redshift pipeline (Guy et al.
2023), where any non-zero value indicates a problem. The criteria
on DELTACHI2, which is the difference in 𝜒2 between the two best-
fitting redshift solutions, were shown to provide pure and complete
samples in the respective targeting papers (Hahn et al. 2023; Zhou
et al. 2023). For LRGs, the choice of redshift range is motivated
by the fact that the number density is approximately constant at
5 × 10−4 (ℎ−1Mpc)3 between 0.4 < 𝑧 < 0.8. At 𝑧 > 0.8, the LRG
density decreases mostly due to the sample’s minimum flux threshold
and is less than 1×10−4 (ℎ−1Mpc)3 for 𝑧 > 1.1. Similarly, the density
of the BGS sample decreases to less than 1×10−4 (ℎ−1Mpc)3 for 𝑧 >
0.5. For the BGS sample, we also apply an absolute magnitude cut
in the 𝑟-band 𝑀r < −21.5. When obtaining the absolute magnitude,
we simply apply the distance modulus, i.e., we do not apply any
corrections for evolution (‘e’ correction) or the shape of the spectrum
(‘k’ correction). The cut provides a sample with roughly constant
number density at ∼ 8 × 10−4ℎ3Mpc−3 and clustering amplitude
for 𝑧 < 0.4 and is thus sufficient for our preliminary study. Future
DESI studies will likely include k+e corrections, especially for the
selection of BGS samples.

We then add two more weights in order to account for variations
in the selection of the data. The first corrects for fluctuations in the
target data that are due to variation in the imaging data quality. To
do so, we apply the random forest regression method (Chaussidon
et al. 2021) available as an option in the regressis package,4 given
maps of imaging properties compiled by the DESI targeting team.
The data (after redshift cuts) and randoms are combined to produce a
map of the projected density of the sample at Healpix (Górski et al.
2005) 𝑁side = 256 and is compared to maps of the depth and PSF
size in the 𝑔, 𝑟 , 𝑧, and 𝑊1 bands, the 𝐸 (𝐵 − 𝑉) Galactic extinction
according the Schlegel et al. (1998) dust maps, and the stellar den-
sity observed in the Gaia 2nd data release (Gaia Collaboration et al.
2018). The regressis random forest method is used to determine
a model of the projected density fluctuations as a function of those
map quantities and the inverse of the model is included in the cata-
logs as a weight, ‘WEIGHT_SYS’. For our LRG and BGS samples,
very similar clustering results are obtained when instead obtaining
the weights using the linear regression method applied to eBOSS,
described in (Ross et al. 2020).

After, we obtain a weight to account for variations in redshift
success based on the particulars of DESI observations. Zhou et al.
(2023) showed that the LRG redshift success can be modeled as a
function of the effective observing time and the target’s fiber flux in
the 𝑧-band. A similar dependency exists for BGS, with the 𝑟-band
fiber flux the relevant photometric quantity. The inverse of the best-fit
model for the failure rate is used as ‘WEIGHT_ZFAIL’. We find that
applying these redshift failure weights has very little impact on the
clustering measurements used in this work.

Next, we determine ‘FKP’ weights (Feldman et al. 1994) in order
to properly weight each volume element with respect to how each
sample’s number density changes with redshift. This is simply given
by:

𝑤FKP =
1

1 + 𝑛(𝑧)𝐶𝑃0
(1)

where 𝑛(𝑧) is the weighted number per volume, 𝐶 is the mean

4 https://github.com/echaussidon/regressis/releases/tag/1.
0.0

MNRAS 000, 1–17 (2023)

https://observablehq.com/@dkirkby/skymap/
https://github.com/echaussidon/regressis/releases/tag/1.0.0
https://github.com/echaussidon/regressis/releases/tag/1.0.0


DESI Early BAO Detection 5

completeness for the sample, and 𝑃0 is a fiducial power-spectrum
amplitude. We use 𝑃0 = 104 (ℎ−1Mpc)3 for LRGs and 𝑃0 =

7 × 103 (ℎ−1Mpc)3 for BGS. These values approximately match the
monopole of the power spectrum at 𝑘 = 0.15ℎ/Mpc for the respective
samples.

The redshifts and all four weights are then randomly sampled from
the data catalog and attached to the random catalogs in order to match
the radial selection function. Finally, the catalogs are normalized
separately (and all weights are fit for separately) in the North and
South photometric regions.

3 MOCK CATALOGS

In our analysis, we utilize DESI mock galaxy catalogs for statistically
testing the performance of the BAO fits, as well as for validating the
adopted covariance matrices in terms of BAO fitting. Here, we briefly
describe the main characteristics of the various sets of mocks, along
with the DESI customization procedure to include survey realism.

3.1 DESI Mocks: General Description

We use two different sets of DESI mock galaxy catalogs for the LRG
sample: one type is directly constructed from 𝑁-body simulations
(i.e., AbacusSummit; Maksimova et al. 2021), while a second type
is based on approximated methods (i.e., EZmocks; Zhao et al. 2021).

The 𝑁-body-based realizations are part of the first official set of
DESI mock galaxy catalogs (Alam et al. in preparation) which were
calibrated based on an early reduction of the One Percent Survey
spectroscopic data for LRG (see Section 3.3).5 This set is made of
25 cutsky simulations based on the 2 ℎ−1Gpc AbacusSummit runs.6
The halo occupation distribution (HOD) model for LRGs is cali-
brated using small-scale (below 5 ℎ−1Mpc) wedges in combination
with large-scale bias evolution where available. The LRG mocks are
further subsampled to approximately match the 𝑛(𝑧) distribution of
the specific LRG sample (called ‘main’) considered in this paper (see
Figure 16 of Zhou et al. 2023, for the ‘main’ selection in the One
Percent Survey). The mocks implementing the DESI survey geom-
etry and specifics (denoted as ‘cutsky’ mocks) are generated using
the simulation output near the primary redshift of LRGs that we do
not report in this paper. The 2 ℎ−1Gpc box is repeated and then the
coordinates are converted to sky coordinates.7

The approximate mock realizations consist of 1000 EZmocks for
LRGs, and are built with an elaborated procedure centered on the
Zel’dovich approximation (Zel’dovich 1970). They do account for
stochastic scale-dependent, non-local, and nonlinear biasing contri-
butions: extensive details on the production methodology can be
found in the original release paper by Chuang et al. (2015). The
EZmocks have accurate clustering properties consistent with the pre-
viously described 𝑁-body-based AbacusSummit realizations – and
nearly indistinguishable from actual 𝑁-body solutions – in terms of
one-point, two-point, and three-point statistics.

We note that we have decided not to use any mocks for the BGS
sample, primarily for reasons related to a calibration performed with
an earlier DESI dataset than the one considered in this study.

5 The matching data in the final reductions are publicly released as part of
the DESI EDR.
6 https://abacussummit.readthedocs.io/en/latest/
7 The code used to create the cutsky/lightcones can be found at https:
//github.com/Andrei-EPFL/generate_survey_mocks/
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Figure 3. [Top] Map of a single LRG EZmock realization with the pixel prob-
ability of the HEALPix mask. [Bottom] Dispersion of 1000 LRG EZmocks,
after application of the different masks described in Section 3.2, compared
with the actual LRG DESI-M2 redshift distribution.

3.2 DESI Mocks: Masking and Customization

An important step in the mock-making pipeline is the incorporation
of survey realism, namely the characteristics of the various synthetic
realizations need to accurately match the properties of the DESI-M2
sample. This is achieved via the application of a succession of masks,
as we schematically describe in what follows.

Survey Masks. We subsample the mocks using a tile mask matching
the footprint of DESI-M2 and match the redshift distribution of each
target: for LRGs, the 𝑛(𝑧) distribution is based on DESI-M2 results
(Figure 2), while for BGS on the One Percent Survey distribution.
This tile mask cuts the data and random to the circular region around
each tile center.

Intra-tile Geometry. The geometrical area where DESI targets
could have been observed is obtained for the data catalogs following
the procedure described in Section 2.3. In order to analyze all 1000
mocks, we approximate the results of the procedure run on the data
using a HEALPix (Górski et al. 2005) map built from the random
catalogs. As a reference, we utilize the same random cuts to the
target catalog sky area that were the inputs to the LSS catalog process,
additionally cutting them to be within the tile area previously defined.
In every 𝑁side = 1024 pixel, we count the number of randoms in
both the LSS catalog and in the reference randoms. The ratio of these
counts approximates the small-scale holes in the observed footprint.

MNRAS 000, 1–17 (2023)
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We apply it by sub-sampling the mock data and randoms by the
fraction in each pixel. In this way, the effective area of the footprint,
as determined by summing random points assumed to have a constant
surface density, matches that of the observed data. This is shown as
an example in the top panel of Figure 3, to be compared with the
bottom panel of Figure 2.

Incompleteness Assignment. At this stage, we still have more sim-
ulated galaxies than those observed in the actual DESI data. This
is because, for most of the locations, only one fiber is available to
observe multiple targets. In order to approximate this effect in terms
of number counts, we simply take the overall assignment complete-
ness of the data in the LSS catalogs, i.e., 𝑁observed/𝑁total, where
𝑁total is the number of targets within the DESI-M2 footprint where
observations were possible. This type of completeness should vary
strongly as a function of the number of overlapping DESI tiles, but
we simply apply a constant factor (an average of 0.51 for the 1000
realizations) given that over 90% of the DESI-M2 area is covered by
only a single tile. To this end, the bottom panel of Figure 3 shows
that the observed DESI-M2 LRG redshift counts per square degree
match well those obtained from mock data, after applying the as-
signment incompleteness factor. This procedure is implemented in
the 𝑁-body based AbacusSummit realization as well as in the ap-
proximate EZmocks. Finally, we note that the incompleteness will
be modeled more rigorously for the forthcoming DESI Y1 analysis.

3.3 DESI Mocks: Calibration

In terms of clustering properties (see Section 4.1), the two sets of
mocks described here have been tuned via survey and completeness
masks with an earlier version of the DESI LRG clustering measure-
ments (i.e., One Percent Survey data) having a 10% lower amplitude
than the DESI-M2 LRG sample considered in the current study. This
can be readily inferred from Figure 4, where we contrast the observed
LRG clustering in the DESI-M2 sample at 𝑟 ∼ 20 ℎ−1Mpc with the
average clustering of 1000 LRG EZmocks. For this reason, in the
present analysis mocks are only used for validation purposes, and we
will be adopting semi-analytical semi-empirical covariances rather
than mock-based covariances for our primary BAO fits – as described
in Section 5. In fact, a calibration offset in the two-point clustering
(although located outside of the BAO fitting range) would manifest
in a substantial difference in the covariance between different scales,
causing a 17.6% impact on the resulting BAO precision when pairing
such a mock-based covariance matrix with the actual data clustering.

4 ANALYSIS METHODS

In this section, we illustrate all of the analysis tools adopted in our
work, from the two-point clustering estimator to the density field
reconstruction, until the BAO fitting methodology. In particular, the
DESI team is currently studying all aspects of the BAO pipeline given
the stringent requirements on theoretical and observational systemat-
ics that will be imposed by a dataset as powerful as we expect by the
end of the survey. For the investigation of this preliminary DESI-M2
data, and to make contact with earlier work on the subject, we choose
to largely follow the analysis choices made by the BOSS/eBOSS sur-
veys. We highlight these choices in what follows, while referring the
reader to the original papers for more extensive details.
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Figure 4. Monopole of the LRG two-point correlation function before recon-
struction, as measured from the DESI-M2 sample (blue dots) and from the
average of 1000 EZmocks (orange dots). Data errorbars are obtained from
a jackknife covariance directly inferred from DESI-M2 LRGs, while mock
errorbars are drawn from the LRG EZmock sample covariance. As mentioned
in the main text (Section 3.3), the ∼ 10% difference near the ∼ 20 ℎ−1Mpc
peak is not surprising, as these mocks were tuned with an earlier version of
the DESI data. Hence, in the present work mocks are only used for validation
purposes.

4.1 Two-Point Correlation Function Estimator

We compute all of the anisotropic redshift-space correlation func-
tions 𝜉’s with the well-known Landy-Szalay estimator (LS; Landy &
Szalay 1993), namely:

𝜉 (𝑠, 𝜇) = 𝐷𝐷 (𝑠, 𝜇) − 2𝐷𝑅(𝑠, 𝜇) + 𝑅𝑅(𝑠, 𝜇)
𝑅𝑅(𝑠, 𝜇) , (2)

where 𝐷𝐷 (𝑠, 𝜇) and 𝑅𝑅(𝑠, 𝜇) are the normalized weighted number
of pairs in the data and random catalogs – respectively – binned as a
function of the separation 𝑠 between two galaxies, 𝜇 ∈ [−1, 1] is the
cosine angle between the galaxy pair and the line of sight (LOS), and
𝐷𝑅(𝑠, 𝜇) denotes pair counts between data (𝐷) and randoms (𝑅).
The LS estimator gets modified when the reconstruction procedure
(described in Section 4.2) is applied. In essence, a shifted random
catalog (termed 𝑆) should be used in the numerator of Equation (2) in
substitution of 𝑅, and one needs to replace 𝐷𝑅 with 𝐷𝑆 and 𝑅𝑅 with
𝑆𝑆, respectively. We use 200 𝜇-bins spanning the interval [−1, 1] and
4ℎ−1Mpc 𝑠-bins for BGS and LRGs.

The anisotropic correlation function 𝜉 (𝑠, 𝜇) is then integrated over
the Legendre polynomials Lℓ (𝜇) to obtain the various multipoles;
in the current analysis, we only use the monopole, i.e., ℓ = 0:

𝜉ℓ (𝑠) =
2ℓ + 1

2

∫ 1

−1
𝑑𝜇𝜉 (𝑠, 𝜇)Lℓ (𝜇) (3)

≃ 2ℓ + 1
2

∑︁
𝑖

𝜉 (𝑠, 𝜇𝑖)
∫
Δ𝜇𝑖

𝑑𝜇Lℓ (𝜇). (4)

In the last equality, we have made explicit the discrete sum over
𝜇-bins, weighted by the analytic integral of Lℓ (𝜇) over each 𝜇-bin
having width Δ𝜇𝑖 .8

8 Such a summation scheme, contrary to weighting 𝜉 (𝑠, 𝜇𝑖 ) by Lℓ (𝜇𝑖 )Δ𝜇𝑖 ,
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Figure 5. Two-point correlation function measurements of the four DESI tracers, obtained from the DESI-M2 sample. Errorbars are derived from the diagonal
of the corresponding covariance matrixes, although we caution the reader of a significant bin-to-bin correlation in these measurements. Model curves are simple
damped linear theory predictions that indicate the expected overall clustering amplitude and BAO damping typical at the mean redshift of the target samples.

All of the two-point correlation function calculations are per-
formed with the Python package pycorr,9 which wraps a modified
version10 of the Corrfunc package (Sinha & Garrison 2019; Sinha
& Garrison 2020).11

Figure 5 shows the observed two-point correlation functions of the
four tracers discussed in Section 2.2, contrasted with simple damped
linear theory models that indicate the expected overall clustering
amplitude and BAO damping typical at the mean redshift of the
target samples. From LRGs and BGS, we observe a local bump
near the expected location of the BAO peak. Moreover, while BGS
observations appear to lie systematically below the model curve at
scales greater than 120ℎ−1Mpc, this is simply because there are
fewer modes at larger separations in these early DESI data. Therefore,
they are highly correlated and thus the amplitude of the two-point
correlation function decreases at those scales.12 For ELGs and QSOs,
the amplitude of the observed clustering appears consistent with the

ensures that the ℓ > 0 multipoles are exactly zero if 𝜉 (𝑠, 𝜇) remains constant
as a function of 𝜇.
9 https://github.com/cosmodesi/pycorr
10 https://github.com/adematti/Corrfunc
11 https://github.com/manodeep/Corrfunc
12 In addition, note that we only fit up to 150ℎ−1Mpc for the BAO analy-

theoretical expectations (within errors), although it is challenging
to identify a clear BAO-like signature. Indeed, we do not expect a
BAO detection from ELGs and QSOs of the DESI-M2 sample, given
the small survey volume in combination with the low completeness
(ELGs) and high shot noise (QSOs).

4.2 Density Field Reconstruction

We apply the density field reconstruction technique (Eisenstein et al.
2007) on the observed galaxy density fields in order to partially
recover the BAO feature that has been degraded due to structure
growth and redshift space distortions (RSD). To do so, we follow the
iterative procedure described in Burden et al. (2015), as implemented
in the IterativeFFTReconstruction algorithm of the pyrecon
package13 with the RecIso convention.14 The density contrast field
is smoothed by a Gaussian kernel of width 15 ℎ−1Mpc and three

sis, where the corresponding linear theory prediction is still consistent with
observations – within errorbars.
13 https://github.com/cosmodesi/pyrecon
14 RecIso is a choice to remove the large-scale anisotropy due to redshift-
space distortions in the process of reconstruction (Padmanabhan et al. 2012;
Seo et al. 2016).
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iterations are performed, assuming an approximate growth rate and
the expected bias for each sample. The choice of these reconstruction
conditions along with the assumed fiducial cosmology were shown to
have a very marginal impact on BAO measurements in earlier galaxy
survey samples – i.e., see Vargas-Magaña et al. (2018) and Carter
et al. (2020).

4.3 BAO Fitting Methodology

We employ the same BAO fitting pipeline that has been previously
applied to a large number of BOSS and eBOSS analyses (Ross et al.
2017; Ata et al. 2018; Hou et al. 2020; Raichoor et al. 2020).15 The
accuracy of such methodology was demonstrated to be sufficient at
the precision demanded by BOSS/eBOSS data, especially for de-
termining the isotropic BAO scale. However, advances are expected
to be necessary in order to meet the exquisite precision expected
for DESI Y5, and thus an improved DESI pipeline is currently under
development and will be presented along with the DESI Y1 analyses.

In this study, we only fit for the monopole of the correlation func-
tion, hence for the isotropic scaling parameter 𝛼. Our BAO pipeline
is ‘template-based’, and it essentially coincides with the algorithm
introduced by Xu et al. (2012). However, the BAO templates are
generated via the formulae defined by Equations 9-13 of Ross et al.
(2017), where the linear power spectrum is split into a BAO and a
no-BAO components, and damping is added solely to the BAO that
depends on the LOS angle.

The templates require a choice of four parameters that are kept
fixed during the fitting process, namely: 𝛽, Σs, Σ | | , Σ⊥. These deter-
mine, respectively, the degree of anisotropy with respect to the LOS
in linear RSD (Kaiser 1987), the degree of streaming velocity, the
degree of radial BAO damping, and the degree of transverse BAO
damping. Such parameters are fixed separately for different samples
and the pre- or post-reconstruction fits. For galaxy velocities, we set
𝛽 = 0.4, Σs = 3 ℎ−1Mpc for both samples; such choices guaran-
tee an approximate match to the anisotropic clustering as measured
from the DESI-M2 data, although their impact in the fitting pro-
cess is essentially negligible since we only fit for the monopole.
The BAO damping parameters for post-reconstruction are fixed to
Σ | | , Σ⊥ = 3, 5 ℎ−1Mpc for both samples, roughly consistent with
those used/determined in previous studies (e.g., Seo et al. 2016;
Ross et al. 2017; Vargas-Magaña et al. 2018; Bautista et al. 2021).
For pre-reconstruction, we set these to 6, 10 ℎ−1Mpc for the BGS
sample (again, roughly consistent with the pre-reconstruction results
from Seo et al. 2016) and reduce them to 4, 8 ℎ−1Mpc for pre-
reconstruction LRGs. This evolution in the pre-reconstruction values
roughly corresponds to the change in the linear growth factor between
the effective redshifts 𝑧eff of the two samples, noting that the BAO
damping is expected to scale with the amount of non-linear struc-
ture growth, which approximately scales with the linear growth factor
(Seo et al. 2016). The post-reconstruction values are smaller and con-
stant as reconstruction helps to reduce the effect of non-linearities
(hence, smaller damping values), and the degree of remaining non-
linearity does not depend strongly on the initial degree (hence the
independence of redshift). The impact of fixing these choices was
already shown to be negligible at the precision of BOSS DR12 (Ross
et al. 2017), and therefore is also not a concern in the present work.

The procedure just described produces a theory template, 𝜉0. Sub-
sequently, the data is fit against this template evaluated with a scaling

15 https://github.com/ashleyjross/BAOfit

parameter 𝛼, a free amplitude, and a polynomial with three nuisance
terms:

𝜉mod (𝑠) = 𝐵𝜉0,t (𝑠𝛼) + 𝐴0 + 𝐴1/𝑠 + 𝐴2/𝑠2. (5)

The polynomial has been shown to account for any difference between
the broad-band shape of the template 𝜉0,t and the measured 𝜉0; e.g.,
due either to cosmology or to observational systematics. The model
is evaluated at the 𝑠 of the data bin assuming a spherically symmetric
distribution.16 The 𝜒2 (𝛼) is computed on a grid of spacing 0.001
in 𝛼, where the minimum 𝜒2 at each grid point is determined by
varying 𝐵, 𝐴0, 𝐴1, 𝐴2. We note that the various 𝜒2 are inferred from
the data vector ®𝐷 and covariance matrix 𝑪 via 𝜒2 = ®𝐷𝑪−1 ®𝐷𝑡 , as
routinely done. Our data vectors are always selected to have 50 <

𝑠 < 150 ℎ−1Mpc.
Finally, the derived likelihood on the value of 𝛼 can be used to

constrain cosmological models via

𝛼 =
𝐷V (𝑧)𝑟fid

d
𝐷fid

V (𝑧)𝑟d
(6)

and

𝐷V (𝑧) =
[
𝑐𝑧(1 + 𝑧)2𝐻 (𝑧)−1𝐷2

A (𝑧)
]1/3

, (7)

where 𝐻 (𝑧) and 𝐷A (𝑧) are evaluated at an effective redshift of the
data sample being tested.

In closing this part, we highlight that while the methodology
adopted here is largely equivalent to the one exploited in previ-
ous BOSS/eBOSS analyses, the version of the BAO pipeline used in
this work has been fully updated to be compatible with DESI code
packages assuming generic cosmological backgrounds and primor-
dial/linear power spectrum calculations: such effort is carried out
within the cosmodesi framework.17 To this end, the most signifi-
cant change specific to the BAO fitting procedure is how we isolate
the BAO feature, namely by splitting the input linear power spectrum
into a smooth function with no-BAO and another one that is pure
BAO. To achieve such splitting, we apply the technique described
in Wallisch (2018) and coded in the bao_filter module18 of the
cosmoprimo package. The impact of this change in filtering the BAO
feature is less than ∼ 0.1% on the measured value of 𝛼.

5 COVARIANCE MATRICES

In this section, we briefly address covariance matrices, and in partic-
ular the construction, calibration, and validation of semi-analytical
semi-empirical covariances on mock data – eventually adopted for
the BAO fitting procedure.

5.1 Covariance Matrices: Types and Conventions

The primary BAO fits performed in our main analysis are obtained
with semi-analytical semi-empirical covariance matrices, generated
by the RascalC code (Philcox et al. 2020). As mentioned in Section
3.3, this choice is mainly driven by the fact that the galaxy mocks
available at the time of this study – implementing all of the DESI-M2
survey characteristics – have been calibrated with an earlier version of

16 For our binsize of 4 ℎ−1Mpc, this corresponds to a 0.03% effect compared
to just using the bin center.
17 https://github.com/cosmodesi/BAOfit_xs/
18 https://github.com/cosmodesi/cosmoprimo/blob/main/
cosmoprimo/bao_filter.py
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Table 2. Covariance matrices utilized in this work.

Name Tracer Notes
DESI-M2-EZ LRG Constructed from EZmock clustering
RascalC-EZ LRG RascalC calibrated on EZmock clustering
RascalC-LRG LRG RascalC calibrated on DESI-M2 LRG clustering
RascalC-BGS BGS RascalC calibrated on DESI-M2 BGS clustering

Figure 6. Scatter plots showing the BAO detection significance in units of standard deviations (left panels), the 𝛼’s (middle panels), and the 𝜎𝛼 values (right
panels) related to the validation procedure of the RascalC-based covariance. BAO best fits are performed on a mock-by-mock basis, using 1000 LRG EZmocks
(open green dots) and 25 AbacusSummit LRG realizations (filled yellow points). Stars of the same color are averages over the corresponding entire set of
realizations. Top panels refer to pre-reconstruction measurements, while bottom panels display post-reconstruction quantities. Individual BAO fits using the
RascalC covariance calibrated on EZmocks (i.e., RascalC-EZ; 𝑥-axes) are contrasted with those performed adopting the EZmock covariance (i.e., DESI-M2-EZ;
𝑦-axes). As evident from the figure, the narrow scatter along the diagonal implies that both covariances produce compatible results, validating the usage of
RascalC-based covariances for our primary DESI-M2 BAO fits.

the DESI LRG clustering (i.e., the One Percent Survey), rather than
with the LRG clustering as measured directly from the DESI-M2
dataset considered here. Nevertheless, we also construct a numerical
covariance from 1000 LRG EZmocks (termed ‘DESI-M2-EZ’), and
use it for validating the LRG RascalC semi-analytical covariance
in terms of BAO fitting. In order to calibrate the RascalC covari-
ance matrix for LRGs, besides the previous numerical covariance,
we also utilize a covariance directly constructed from the jackknife
estimates of the LRG sample under consideration. Once the RascalC
semi-analytical covariance is validated (in terms of BAO fits) for the
LRG sample, we build a similar semi-empirical covariance for BGS
galaxies and calibrate it using jackknife estimates obtained from the
corresponding BGS dataset. Table 2 reports all of the covariance
matrices utilized in this work. Specifically, in terms of name conven-
tions, we indicate with ‘RascalC-EZ’ the semi-analytical covariance
based on the EZmocks LRG clustering, with ‘RascalC-LRG’ the
semi-empirical covariance calibrated on the DESI-M2 LRG cluster-

ing measurements (including jackknife), and with ‘RascalC-BGS’
the one based on the DESI-M2 BGS clustering.

Next, we provide some additional information on RascalC-based
covariances, and then present the BAO fitting validation tests per-
formed on the mock LRG sample.

5.2 RascalC Covariances

The semi-analytical semi-empirical covariance matrices used in
our analysis are obtained via the publicly available code RascalC
(Philcox et al. 2020; Rashkovetskyi et al. 2023).19 The procedure
to construct such covariances only requires a two-point correlation
function as input (along with its optional jackknife estimates), and
a random catalog. The RascalC algorithm integrates the Gaussian

19 https://github.com/oliverphilcox/RascalC
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terms for the covariance matrix using importance sampling from the
set of random points. It then progressively changes the amount of
shot noise, which has the effect of empirically rescaling those terms.
The optimization of the shot noise level is performed on separate
jackknife covariance estimates. Once the optimal shot noise level is
determined (i.e., its best-fit value), a rescaling based on such best-fit
is applied to finally obtain the full covariance matrix terms.

For the construction of the RascalC-LRG and RascalC-BGS co-
variances (i.e., the covariances calibrated on the DESI-M2 dataset),
the input correlation functions are measured directly from the DESI-
M2 LRG and BGS samples, respectively. In addition, 60 jackknife
regions are assigned based on data points with a K-means subsam-
pler. For the pre-reconstruction case, the RascalC code is run on
10 random catalogs separately, and the integration results are finally
averaged. Building the post-reconstruction covariances calibrated on
the DESI-M2 dataset requires some additional steps, described in
detail in Rashkovetskyi et al. (2023). In essence, such procedure
depends upon the usage of non-shifted random catalogs for normal-
ization, shifted random catalogs for sampling, and a slightly different
two-point correlation function than the familiar LS estimator (i.e.,
Equation 2). In this latter case, the code is run on 20 random catalogs
separately, and integration results are eventually averaged.

In order to build the RascalC-EZ covariance, we use instead
the averaged pre- and post-reconstructed LRG EZmock correlation
functions obtained from 1000 EZmocks, without jackknife estimates,
and with no shot-noise rescaling (Gaussian). We run the RascalC
code on 10 concatenated random catalogs in pre-reconstrution, and
on 20 randoms for the post-reconstruction case.

As concluding remarks for this section, we note that, by construc-
tion, the LRG RascalC data covariance (i.e., RascalC-LRG) gives
larger error bars than the DESI-M2-EZ sample covariance, while the
RascalC covariance based on the EZmock clustering (i.e., RascalC-
EZ) is consistent with the DESI-M2-EZ sample covariance. A more
detailed assessment on the performance of RascalC-based covari-
ances is presented in Rashkovetskyi et al. (2023).

5.3 Validation of RascalC Covariances for BAO Fitting

Before performing BAO fits on the DESI-M2 dataset, we validate
our LRG RascalC covariance against a set of approximate LRG
EZmocks and 𝑁-body based AbacusSummit realizations. While the
following tests are performed on LRGs, we note that the validation
procedure is general and would apply to any tracers.

Specifically, we first compute the two-point clustering statistics of
1000 LRG EZmocks and 25 AbacusSummit LRG realizations with
the estimator presented in Section 4.1, adopting default FKP weights.
We then apply the reconstruction algorithm detailed in Section 4.2 to
all of the mocks, assuming a smoothing scale of 15ℎ−1Mpc. After,
we build the pre- and post-reconstruction EZmock covariance (i.e.,
DESI-M2-EZ; Table 2), and aRascalC covariance (i.e., RascalC-EZ;
Table 2), which is based on the exact average clustering inferred from
the entire set of pre- and post-reconstruction LRG EZmocks. Finally,
we use both covariances to fit 1000 individual EZmocks as well as
25 individual AbacusSummit realizations with the fitting procedure
explained in Section 4.3, within the spatial range 50−150ℎ−1Mpc.20

In essence, we quantify the BAO best fits and relative errors on a
mock-by-mock basis.

20 Note that the Percival factor (Percival et al. 2014) has been applied to the
EZmocks.

Figure 6 shows the results of such a validation test. Top panels re-
fer to pre-reconstruction measurements, while bottom panels display
post-reconstruction quantities. From left to right, we report the BAO
detection significances in units of standard deviations, and the 𝛼 and
𝜎𝛼 values for all of the individual fits performed to the two sets of
mocks using the RascalC-EZ covariance (𝑥-axes), against the corre-
sponding values obtained with the DESI-M2-EZ covariance (𝑦-axes).
Open green dots display LRG EZmocks measurements, while filled
yellow dots are for AbacusSummit LRG synthetic catalogs. Stars
of the same color represent averages over the corresponding entire
set of realizations. As evident from the figure, the scatter along the
diagonal is quite narrow (both for the pre- and post-reconstruction
cases), implying that the two covariances produce compatible results.
Moreover, the average values in the various panels are almost over-
lapping, strongly confirming the consistency between RascalC and
mock sample covariances.

A further validation test is reported in Figure 7, where we show
the histograms of (𝛼 − ⟨𝛼⟩)/𝜎𝛼, with ⟨𝛼⟩ the mean of the scaling
parameter, measured from the 𝜉 (𝑠)’s of the pre- (top panel) and
post-reconstruction (bottom panel) LRG mocks. This quantity rep-
resents an approximation for the signal-to-noise ratio (SNR) of the
BAO measurement. Here, we use the 𝜒2 test to assess the validity
of the covariances. In essence, we compare the observed scatter in
the best-fitting 𝛼 for the 1000 LRG EZmocks to the 𝜎𝛼 estimated
in each individual fit from the Δ𝜒2 (𝛼) curve. Red lines and his-
tograms refer to measurements performed on the EZmock set using
the RascalC-EZ covariance, while blue lines and histograms corre-
spond to analogous measurements done assuming the numerically-
based DESI-M2-EZ covariance. Results are compared with Gaussian
distributions, showing good agreement, as confirmed by near-zero
Kolmogorov-Smirnov (K-S) 𝐷𝑛 tests. Moreover, the corresponding
𝑝-values imply that our values are drawn from a Gaussian distribu-
tion, and that the values of 𝜎𝛼 we measure from the 𝜒2 distribution
are faithful descriptors of the error on 𝛼 measured by fitting 𝜉 (𝑠).
Once again, this test represents another confirmation of the valid-
ity of our semi-analytical semi-empirical RascalC-EZ covariance,
which produces results compatible with the numerical case.

In summary, the tests performed in this section clearly prove
that using a RascalC-based covariance returns unbiased and con-
sistent estimates when compared to results obtained with the nu-
merical EZmock covariance. We can then safely proceed to tune our
RascalC covariance to match the clustering inferred from the DESI-
M2 datasets, and perform the key BAO fits on the LRG and BGS
samples – as we describe in the next section.

6 KEY RESULTS: BAO SIGNAL DETECTION

In this section, we present the main results of our DESI-M2 analysis,
and assess the precision and detection statistics of the BAO feature
both in the LRG and BGS samples. We do not report here the best
fit BAO scales as inferred from actual data, since the cosmology
is intentionally kept blinded. Our focus is primarily on LRGs, as
they are characterized by the highest SNR among the four DESI-M2
tracers.

6.1 BAO Reconstruction Efficiency

Before performing BAO fits to the DESI-M2 dataset, we first address
the effect of BAO reconstruction on the BAO fitting procedure – fo-
cusing on the LRG sample. In Figure 8, we report the BAO detection
significances expressed in units of standard deviations, as well as
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Figure 7. Histograms of (𝛼 − ⟨𝛼⟩)/𝜎𝛼, with ⟨𝛼⟩ the mean of the scal-
ing parameter, measured from the 𝜉 (𝑠)’s of the pre- (top panel) and post-
reconstruction (bottom panel) LRG mocks. Measurements are performed on
1000 LRG EZmocks, assuming the RascalC-EZ covariance (red lines and
histograms), or a numerically-based DESI-M2-EZ covariance (blue lines and
histograms). Results are then compared with Gaussian distributions, show-
ing good agreement, and indicating that the values of 𝜎𝛼 we measure from
the 𝜒2 distribution are faithful descriptors of the error on 𝛼 measured by
fitting 𝜉 (𝑠) . This test represents a further validation of our semi-analytical
RascalC-EZ covariance, which produces results compatible with the numer-
ical one.

the 𝛼 and 𝜎𝛼 values from all of the individual correlation function
fits performed to the two sets of LRG mocks previously consid-
ered. Specifically, we compare pre- (𝑥-axes) and post-reconstruction
(𝑦-axes) measurements, obtained by adopting the RascalC-EZ co-
variance. Open purple dots display EZmocks LRG results, while
filled orange dots are for the AbacusSummit LRG synthetic cata-
logs. Similarly to Figure 6, stars of identical color represent averages
over the corresponding entire set of realizations. As evident from
the scatter plot, the BAO detection significance (reported in the left
panel) increases considerably after reconstruction, and the 𝛼’s of
the mocks are closer to unity after reconstruction (central panel), as
expected.21 Moreover, the errors tend to improve significantly after
reconstruction for about 90% of the cases (i.e., right panel). Hence,
the reconstruction procedure appears to be efficient on the mocks.

Reconstruction applied to LRG data appears instead to produce
only marginal effects. To this end, in Figure 8 we overplot the DESI-
M2 LRG measurements (cyan stars in the left and right panels),
obtained by using the RascalC-LRG covariance calibrated directly
on LRGs. As evident from the figure, the DESI-M2 LRG measure-
ments are located in the upper right corner of the significance scatter
plot (left panel), and in the lower left corner of the 𝜎𝛼 plot (right
panel), respectively: hence, we are in a similarly ‘lucky’ situation

21 See also Table A1 for additional BAO fitting details.

as those reported for the BOSS CMASS LRG sample by Anderson
et al. (2012), and also for eBOSS LRGs (Bautista et al. 2021). Table
A1 provides a quantification of the ‘lucky’ realization of the ob-
servational data point, showing that both its detection significance
and precision are consistent with those obtained via mock averages.
In particular, focusing on post-reconstruction results, the detection
significance of the data point is 5.050 (in units of standard devia-
tions) with a precision of 1.7%, while the average EZmocks results
yield a detection significance of 4.138 with a precision of 2.1%,
and from the average of the AbacusSummit mocks we obtain 4.242
with a 2.0% precision. Note that a small 𝜎𝛼 implies a better BAO
detection, thus a higher significance. In essence, while generally re-
construction improves errors on 𝛼, this may not happen if the starting
(pre-reconstruction) point already has a low error to begin with (i.e., a
‘lucky’ realization). In such a situation, reconstruction does not tend
to produce much improvement, as shown in the ∼ 10% of the mocks
in our analysis. This seems to be the case for the DESI-M2 LRG sam-
ple data volume: our recovered 𝜎𝛼 for data is much smaller than the
mean expected from the mocks (right panel), and our BAO detection
significance is high (left panel), showing a strong and well-defined
acoustic peak.

6.2 BAO Detection from the LRG Sample

Figure 9 displays the BAO fit to the DESI-M2 LRG two-point cor-
relation function, along with its significance: this measurement rep-
resents one of the key results of our analysis. The left panel shows
the pre- and post-reconstruction clustering statistics computed with
the LS estimator (points with errorbars), and the best-fit model
(curves). The gray and black curves are respectively pre- and post-
reconstruction fits to 𝜉 (𝑠) in the spatial range 50 − 150ℎ−1Mpc,22

obtained with the procedure detailed in Section 4.3 and using the
RascalC-LRG covariance matrix: errorbars in the plot show the
square root of its diagonal elements. The BAO peak is clearly de-
tected, and well matched to the best-fitting model. This is confirmed
quantitatively: we find 𝜒2

min = 15.6 and 𝜒2
min = 13.5 for the pre-

and post-reconstruction cases assuming 20 dof, respectively. Table 3
reports the specifics of these BAO fits.

The right panel of Figure 9 displays the likelihood for the DESI-
M2 LRG BAO scale, as represented by Δ𝜒2 = 𝜒2 − 𝜒2

min, before
and after reconstruction (solid curves). Dotted lines having identical
colors represent corresponding fits to the data using a model with-
out BAO. This provides two crucial results: the uncertainty on the
measurement, and the significance of the BAO feature. Assuming a
Gaussian likelihood, the 1𝜎 confidence region is represented by the
width of the curve with Δ𝜒2 < 1. We estimate the 1𝜎 uncertainty
to be 0.016 in pre-reconstruction and 0.017 in post-reconstruction,
respectively. The BAO detection significance can be simply deter-
mined by comparing results obtained from a fit to the data using a
model without BAO (displayed via dotted lines in the figure), and
once again subtracting the 𝜒2

min from the BAO fit. This indicates how
much better a model containing BAO fits the LRG data (i.e., actual
existence of the BAO peak in the galaxy sample). The Δ𝜒2

min,noBAO
is greater than 25 both in pre- and post-reconstruction. Hence, we
report a detection of the BAO feature in the DESI-M2 LRG sample
at a significance greater than 5𝜎.

We note that we have shifted each 𝛼 by the corresponding value

22 Since we assume a bin size of 4ℎ−1Mpc for characterizing the 𝜉 (𝑠)
clustering statistics, we therefore fit over 25 points using five parameters,
leaving us 20 degrees-of-freedom (dof).
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Figure 8. Scatter plots for the BAO detection significance in units of standard deviations (left panel), 𝛼’s (middle panel), and 𝜎𝛼’s (right panel), addressing
the effect of reconstruction on the BAO fitting procedure for the LRG sample. Results are obtained from individual correlation function fits performed to
1000 LRG EZmocks (open purple dots) and 25 AbacusSummit LRG synthetic catalogs (filled orange dots). Stars of identical color represent averages over
the corresponding entire set of realizations. Pre- (𝑥-axes) and post-reconstruction (𝑦-axes) measurements are compared, adopting the RascalC-EZ covariance.
While reconstruction increases considerably the BAO detection significance for the mocks, the same procedure applied to the DESI-M2 LRG sample produces
only marginal effects: the cyan stars in the left and right panels are DESI-M2 LRG measurements obtained via a RascalC covariance calibrated directly on
LRGs, pointing to a ‘lucky’ realization in the upper right corner of the significance scatter plot (left panel), and in the lower left corner of the 𝜎𝛼 plot (right
panel), respectively. This situation is similar to those reported for BOSS CMASS LRGs (Anderson et al. 2012), and for the eBOSS LRG sample (Bautista et al.
2021).

Table 3. BAO key fitting results for DESI-M2 LRGs and BGS.

Sample Reconstruction BAO Detection Significance 𝛼 + Δ𝛼 min(𝜒2 )/dof
DESI-M2 LRG Pre-recon 5.170 0.987 ± 0.016 15.619 / 20

Post-recon 5.050 1.000 ± 0.017 13.463 / 20
DESI-M2 BGS Pre-recon 2.337 0.980 ± 0.040 13.172 / 20

Post-recon 2.963 1.001 ± 0.026 16.724 / 20

Figure 9. BAO feature and its significance, as detected in the large-scale correlation function of DESI-M2 LRGs. [Left] Pre- (lighter pink dots with errorbars) and
post- (red dots with errorbars) reconstruction two-point clustering statistics inferred from the LRG sample, clearly displaying the BAO peak. The gray and black
lines are respectively pre- and post-reconstruction fits to 𝜉 (𝑠) in the spatial range 50− 150ℎ−1Mpc over 25 points with 20 dof, obtained using the RascalC-LRG
covariance. Errorbars are the square root of its diagonal elements. [Right] Detection significance of the DESI-M2 LRG BAO feature before (lighter gray lines)
and after (black lines) reconstruction. Dotted lines with similar colors are corresponding fits to the data using a model without BAO. We have shifted each value
of 𝛼 by Δ𝛼 both in pre- and post-reconstruction, such that the minimum 𝜒2 of the post-reconstruction result is at 1. We note that an identical Δ𝛼 was introduced
for post-reconstruction LRGs and BGS (Figure 10), to demonstrate the coherence in terms of cosmological implications from the two tracers at the two different
redshifts, while being blinded. The BAO peak is detected at ∼ 5𝜎 confidence with a 1.6% and 1.7% precision in the pre- and post-reconstruction DESI-M2
LRG sample, respectively, with the reconstruction procedure playing only a marginal role. Such a remarkable detection level, obtained with just two months of
DESI operations, is comparable to the one reported for the BOSS CMASS sample (Anderson et al. 2012), and it is quite reassuring – given the high complexity
of the DESI instrument and of the DESI spectroscopic reduction pipeline.
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Figure 10. BAO feature and its significance, as detected in the large-scale correlation function of DESI-M2 BGS. Line styles and conventions same as in
Figure 9. [Left] Pre- and post-reconstruction two-point clustering statistics inferred from the BGS sample. BAO fits to 𝜉 (𝑠) are performed in the spatial range
50 − 150ℎ−1Mpc, adopting the RascalC-BGS covariance. Errorbars are the square root of its diagonal elements. [Right] Detection significance of the DESI-M2
BGS BAO feature before (lighter gray lines) and after (black lines) reconstruction. Dotted lines with indentical colors are corresponding fits to the data using a
model without BAO. We have shifted each value of 𝛼 by the same Δ𝛼 both in pre- and post-reconstruction, as done for the LRG analysis. The acoustic feature
is detected at ∼ 2.5𝜎 significance with a 4.0% precision in pre-reconstruction, and at ∼ 3.0𝜎 with a 2.6% precision in post-reconstruction. Clearly, for this
galaxy sample, reconstruction plays a more substantial effect in sharpening the acoustic peak. This BAO detection represents another relevant milestone of our
DESI-M2 analysis.

of Δ𝛼 in the right panel of Figure 9, such that the minimum 𝜒2 is
at 1 for the post-reconstruction case. The magnitude of the required
shift for the post-reconstruction result was less than 1𝜎. Thus, while
we do not reveal the precise value of the BAO scale in this analysis,
we are consistent with the fiducial cosmology.

As illustrated in Figure 9, the BAO detection in the DESI-M2 LRG
sample is highly significant. Such a remarkable detection level, ob-
tained with only two months of DESI operations, is comparable to the
one reported for the BOSS high-𝑧 LRG sample (i.e., CMASS; Ander-
son et al. 2012), comprised of 264 283 galaxies in the redshift interval
0.43 < 𝑧 < 0.7. Notice also that the reconstruction procedure has
practically no impact on the BAO peak inferred from the DESI-M2
LRG clustering, as evident from the right panel of Figure 9 (compare
the gray and black curves). As pointed out in the previous section,
this is due to the ‘lucky’ starting point of the pre-reconstruction LRG
measurement, which happens to be located in the lower left corner
of the 𝜎𝛼 plot in Figure 8, yielding already a very low error to begin
with, and hence carrying a high BAO detection significance (i.e., left
panel of the same figure, see the cyan star in the upper right corner
of the significance scatter plot).

In closing this section, we emphasize that the first BAO mea-
surement obtained with DESI-M2 LRGs represents an important
milestone, and its high detection level is quite reassuring – consider-
ing the complexity of the DESI instrument and of the spectroscopic
reduction pipeline. It also constitutes an important early validation
and quality-control of the data management system, as well as a con-
firmation of the successful survey design strategy adopted for DESI
targets. Next, we move to the BGS sample and carry out a similar
BAO analysis.

6.3 BAO Detection from the BGS

Figure 10 contains another central result of our analysis. Here, we
report the BAO feature as detected in the large-scale clustering of the
DESI-M2 BGS BRIGHT sample characterized by a magnitude cut

of −21.5 (see Section 2), together with its significance. In detail, the
left panel displays two-point correlation function measurements from
those galaxies. Following similar conventions as in Figure 9, the gray
and black curves are respectively the pre- and post-reconstruction
best-fit models to 𝜉 (𝑠) in the spatial range 50−150ℎ−1Mpc, obtained
using the RascalC-BGS covariance matrix. Errorbars in the plot
show the square root of its diagonal elements. Also in this case, the
BAO peak is clearly detected and well matched to the best-fitting
model. Specifically, 𝜒2

min = 13.2/20 dof in pre-reconstruction, and
𝜒2

min = 16.7/20 dof in post-reconstruction. See again Table 3 for
details on these BAO fits.

The right panel of Figure 10 shows the likelihood for the DESI-
M2 BGS BRIGHT BAO scale before and after reconstruction (solid
lines). Dotted lines with identical colors represent the corresponding
fits to the data using a model without BAO. Similarly to the LRG
analysis, we determine the 1𝜎 confidence region of the measurements
based on the width of the curve with Δ𝜒2 < 1. This yields an
uncertainty of 0.040 in pre-reconstruction, and of 0.026 in post-
reconstruction. As evident by comparing the gray and black curves
from both panels of Figure 10, here reconstruction plays a more
substantial effect in sharpening the acoustic peak and in partially
removing the BAO smearing caused by non-linear structure growth.
By comparing the 𝜒2 of the data fits against a model without BAO, we
determine the significance of the BAO feature. We find Δ𝜒2 to be 5.5
in pre-reconstruction and 8.8 in post-reconstruction, corresponding
to a BAO detection significance of ∼ 2.3𝜎 and ∼ 3.0𝜎, respectively.

Even for the DESI-M2 BGS sample, we have shifted the individual
𝛼’s by the sameΔ𝛼 factor applied to the LRG sample, both in pre- and
post-reconstruction. Since the BGS minimum 𝜒2 values are within
1𝜎 of 𝛼 + Δ𝛼 = 1, we can conclude that the BGS BAO results are
fully consistent with the LRG ones.

Along with the first BAO measurement from the DESI-M2 LRG
sample, this first BAO detection obtained using the DESI-M2 BGS
represents another relevant milestone, as well as an additional early
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validation of the DESI pipeline and data management system for the
bright time survey.

7 OUTLOOK FOR FUTURE DATA RELEASES

Based on the promising BAO results presented in Section 6, ob-
tained with the DESI-M2 dataset collected over just two months of
operations, we now proceed to forecast the expected BAO detection
significance and accuracy with the completed survey data, focusing
on the final Y5 DESI LRG sample.

To this end, we compute Fisher matrix forecasts of the LRG
isotropic BAO scale. We perform such calculations by adopting co-
variance matrices constructed using post-reconstruction EZmocks for
the two survey configurations (i.e., DESI-M2 LRGs and DESI Y5
LRGs, respectively) and the best-fit monopole model for DESI-M2
– while marginalizing over the same free parameters as in the ac-
tual data fit. We then take the ratio of the two Fisher estimates to
rescale the DESI-M2 constraint, in order to account for the specific
calibration of the LRG EZmocks, tuned on the One Percent Survey
clustering rather than on DESI-M2 (see again Section 3.3 for de-
tails). These Fisher estimates return a factor of ∼ 5.8 between the
BAO SN inferred from Y5 LRGs and that of DESI-M2 LRGs. When
we rescale our data best-fit LRG estimate of 1.7% accounting for this
factor, we then predict a ∼ 0.29% precision on the BAO scale from
the final Y5 LRG sample over 0.4 < 𝑧 < 1.1.

We note that such estimate should be taken as an approximate pro-
jection for DESI Y5, since we have simply assumed the same BAO
signal from DESI-M2 while only changing the covariance. Never-
theless, the projected BAO precision for DESI Y5 LRGs agrees well
with the more accurate DESI LRG Y5 forecasts based on GoFish23

– i.e., 0.25% precision for the DESI Y5 LRG sample, presented in
DESI Collaboration et al. (2023a). This exquisite level of sub-percent
precision on the BAO scale (even from a single tracer) will confirm
DESI as the most competitive BAO experiment for the remainder of
this decade.

8 CONCLUSIONS

The BAO scale represents a key standard ruler that provides a direct
way to measure the expansion history of the Universe and infer robust
cosmological constraints. Hence, BAO measurements are considered
primary DESI science targets, and a major deliverable at any stage of
the survey. Precision on the expansion history of the Universe con-
stitutes a compelling probe of the nature of DE. DESI is expected to
deeply impact the current understanding of DE, along with providing
unprecedented constrain on theories of modified gravity and infla-
tion, and on neutrino masses (DESI Collaboration et al. 2016). In this
respect, DESI plans to conduct a series of BAO analyses throughout
its five-year survey time with blinded catalogs: the Y1 sample would
be the first of such rigorously blinded BAO analyses.

The remarkable complexity of the DESI instrument, along with
the adopted survey design and the elaborated DESI spectroscopic
pipeline and data management system, pose a potential challenge
to all BAO analyses. It is then of utmost importance to test such
pipelines well in advance, and it has been the main goal of the cur-
rent study: this is a crucial aspect in order to guarantee the success
of future BAO investigations, and for confirming the optimal perfor-
mance of the DESI spectrograph and the quality level of the data

23 https://github.com/ladosamushia/GoFish

reduction pipeline. Precisely for this reason, the first two months of
DESI operations were intentionally kept unblinded (i.e., DESI-M2
sample).24

To this end, we have used the DESI-M2 dataset and reported the
first high-significance detection of the BAO signal from the LRG and
BGS samples. Specifically, our primary results are:

• ∼ 5𝜎 level BAO detection in the DESI-M2 LRG sample at a
precision of 1.7%.

• ∼ 3𝜎 level BAO detection in the DESI-M2 BGS sample at a
precision of 2.6%.

In particular, our LRG BAO measurement is comparable to the 5−6𝜎
BAO detection obtained with the BOSS high-𝑧 LRG sample (i.e.,
CMASS; Anderson et al. 2012), comprised of 264,283 galaxies in
the redshift interval 0.43 < 𝑧 < 0.7. Moreover, the BOSS and eBOSS
BAO measurements made with LRGs between 0.4 < 𝑧 < 1.0 (with
𝑁gal = 1,063,828) returned an aggregate precision of 0.77% on 𝐷V
(Bautista et al. 2021), which is only a factor of 2.2 times better
(in terms of precision) than our quoted result with DESI-M2 LRGs
(having just 𝑁gal = 266, 269). This latter aspect is rather remarkable,
considering that the DESI-M2 dataset has been collected simply
during the initial two months of DESI operations.

Based on these results, we forecasted that DESI is on target to
achieve a high-significance BAO detection at a ∼ 0.29% precision
with the completed Y5 LRG sample over 0.4 < 𝑧 < 1.1, meeting the
DESI top-level science requirements on BAO measurements. This
exquisite level of precision will set novel standards in cosmology
and confirm DESI as a highly accurate and precise Stage-IV BAO
experiment.

Additional relevant aspects of our investigation on these prelimi-
nary DESI-M2 data that are worth highlighting are summarized as
follows:

• Although the catalogs we used are unblinded, we presented
a blinded cosmology analysis – in that we do not report here the
best fit BAO scale. In fact, we only presented the precision and
detection level of the BAO measurements. We plan to provide a
full cosmological interpretation with the Y1 data release in the near
future, after additional rigorous systematic tests.

• We focused on the isotropic BAO scale exploiting only the
monopole of the LRG and BGS samples.

• We applied the nominal BAO pipeline that has been previously
well-tested with BOSS and eBOSS data. In particular, we utilized
the early version of the pipeline package cosmodesi that the DESI
collaboration team has been developing, which wraps both existing
and new cosmological galaxy survey analysis pipelines from the
literature.

• We constructed, calibrated, and used semi-analytical semi-
empirical covariance matrices based on the RascalC code, and val-
idated those covariances in terms of BAO fitting procedures (in pre-
and post-reconstruction) using a set of mocks – as detailed in Section
5 and in Rashkovetskyi et al. (2023).

• We also found that the LRG BAO signal from the DESI-M2 data
is stronger than the typical BAO signal present in the LRG mocks.
Partly for this reason, the reconstruction procedure performed on
actual LRG data is less effective than the one performed on LRG
mocks. On the other hand, we found that the BGS sample shows a
factor of ∼ 1.5 precision improvement after reconstruction. These
results are consistent with the typical behavior we find on DESI-M2

24 Note that DESI-M2 is approximately 1/5 of the DESI Y1 sample.
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mocks; less scatter is expected for the more complete DESI Y1 and
Y5 samples.

This work represents the first step towards the analysis techniques
that will lead to the key cosmological results from DESI Y1 data.
While the BAO results presented here constitute an important mile-
stone and are quite reassuring in terms of consistency in the clustering
amplitude (considering the complexity of the DESI instrument and
of the spectroscopic reduction pipeline), we anticipate that the DESI
Y1 analysis alone will surpass the cosmological information from
all of the BAO analyses performed to date. This will require going
beyond the legacy BAO analysis setting that has been well-tested
using BOSS and eBOSS data (and also mainly adopted here), with
an unprecedented level of BAO systematic tests and by developing
an optimal BAO pipeline – given the stringent requirements on the-
oretical and observational systematics that are imposed by a dataset
as powerful as we expect by the end of the survey. The DESI team
is currently working in this direction, and presenting all these novel
technical aspects will be the subject of many forthcoming DESI Y1
cosmology papers.
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APPENDIX A: SUPPORTING MATERIAL

In support of the primary BAO analysis carried out in the main text,
in Table A1 we provide some further technical details related to the
various BAO fits performed to the DESI-M2 LRG sample, as well
as to the corresponding LRG mocks adopted in this work – namely,
pre- an post-reconstruction results of the BAO detection significance
and precision, along with the 𝛼 values for the mock fits. Specifically,
as reported in the main text, the DESI-M2 LRG sample provides
a ∼ 5𝜎 BAO detection significance at a 1.6% and 1.7% precision
in pre- and post-reconstruction, respectively. From the two sets of
mocks considered (AbacusSummit and EZmocks), we also find a
significant BAO detection at more than 3.4 𝜎 in pre-reconstruction,
and exceeding a 4.0 𝜎 detection in post-reconstruction, with a cor-
responding precision better than 2.8% (pre-reconstruction) or 2.3%
(post-reconstruction). Remarkably, the 𝛼-values inferred from the
mocks are close to unity, indicating that the fiducial cosmology
is very-well recovered. This also implies that the mock production
pipeline is working properly. Additionally, from Table A1 one can
readily infer that the RascalC-based LRG covariance is compatible
with the EZmock LRG covariance (as we also reported in Section 5),
simply by comparing all the corresponding fitting results obtained
with the two sets of covariances (i.e., last two columns).
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Table A1. BAO key fitting results for LRGs. For DESI-M2 LRGs, we use the RascalC-LRG covariance, while for the two sets of mocks we applied instead
the RascalC-EZ covariance – see Section 5 and Table 2 for details. We do not show here the 𝛼 values for the LRG data fits, as the cosmology is kept blinded.
Moreover, we do not report DESI-M2 fits with the EZmock numerical covariance, since EZmocks are calibrated with the One Percent Survey data (as explained
in Section 3.3).

Reconstruction BAO results RascalC cov EZmock cov
Pre-recon Detection significance 5.170 –

DESI-M2 LRG Precision 1.6% –
Post-recon Detection significance 5.050 –

Precision 1.7% –
Detection significance 3.423 3.597

Pre-recon 𝛼 1.006 1.006
EZmock LRG Precision 2.8% 2.7%

Detection significance 4.138 4.091
Post-recon 𝛼 1.000 1.001

Precision 2.1% 2.3%
Detection significance 3.623 3.801

Pre-recon 𝛼 1.001 0.997
AbSmock LRG Precision 2.8% 2.5%

Detection significance 4.242 4.209
Post-recon 𝛼 0.992 0.994

Precision 2.0% 2.1%
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