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30APC, Université de Paris, CNRS, Astroparticule et Cosmologie, Paris F-75013, France
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Dark matter induced event rate in an Earth-based detector is predicted to show an annual mod-
ulation as a result of the Earth’s orbital motion around the Sun. We searched for this modulation
signature using the ionization signal of the DarkSide-50 liquid argon time projection chamber. No
significant signature compatible with dark matter is observed in the electron recoil equivalent energy
range above 40 eVee, the lowest threshold ever achieved in such a search.

The combined effect of Earth’s rotations around
the Sun and the galactic center is expected to
produce an annual modulation of the dark matter
particle interaction rate in terrestrial detectors [1],
thereby offering a unique signature for directly prob-
ing dark matter particles and unveiling their true na-
ture. The DAMA/LIBRA experiment claimed the
detection of such a signature in their NaI detectors
in the keV range [2, 3]. The interpretation of this
claim with the Weakly Interacting Massive Particle
(WIMP) hypothesis is however currently facing chal-
lenges due to the null detection of WIMP-induced
nuclear-recoil signals in other experiments [4–12].
An independent approach to test this claim and pos-
sibly to reveal WIMP properties can be offered by
searching for the modulation with other detectors
which have different target materials, background
sources, energy resolution, and experimental sites.

Dual-phase noble-liquid time projection chambers
(TPCs) measure the scintillation and ionization sig-
nals from a particle interacting in the liquid. Such
detectors were originally designed to discover and
have led the search for the WIMPs with masses
above 10GeV/c2. Moreover, in the last decade,
they have also exhibited world-class sensitivity to
light dark matter candidates exploiting only the ion-

ization signal spectrum above a few detected ion-
ization electrons (Ne) [13–21]. Among them, the
DarkSide-50 detector, a liquid argon (LAr) TPC lo-
cated underground at the Laboratori Nazionali del
Gran Sasso (LNGS) [7, 22, 23], recently demon-
strated an unprecedented sensitivity in this energy
region [24–27]. This achievement was accomplished
by looking for an event excess in the energy spec-
trum with respect to the background model above
0.06 keV electron recoil equivalent (keVee). In this
work, we report for the first time on the search
for the annual rate modulation of events down to
0.04 keVee, the lowest threshold ever achieved in a
dark matter modulation search. The analysis relies
on two approaches: the maximum likelihood fit and
the Lomb-Scargle periodogram. The results are also
compared to the claim by the DAMA/LIBRA ex-
periment.

The DarkSide-50 TPC is housed in a stainless steel
double-walled, vacuum-insulated cryostat, shielded
by a 30 t boron-loaded liquid scintillator veto in-
strumented with 110 8-inch PMTs. The purpose of
this is to actively tag neutrons in situ. A 1 kt water
Čerenkov veto, equipped with 80 PMTs, surrounds
the neutron veto to actively tag cosmic muons and
to passively shield the TPC against external back-
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grounds [28].

Two arrays of 19 3-inch photomultiplier tubes
(PMTs), located at the top and the bottom of the
TPC, detect light pulses from scintillation (S1) in-
duced by particle interactions in the liquid bulk.
The same interactions generate ionization electrons,
which are drifted through the LAr volume by a
200V/cm electric field up to the top of the TPC.
Then, they are extracted into the gas phase by a
2.8 kV/cm field and induce delayed photon pulses
(S2) by electroluminescence under a 4.2 kV/cm field.

DarkSide-50 started taking data on April 2015
with a low-radioactivity LAr target, extracted from
a deep underground source (UAr) [23], and con-
cluded the operations on February 2018. The first
four months of data were contaminated by the cos-
mogenic 37Ar isotope, with a half-life of 35.0 d [29],
and were only used to calibrate the ionization re-
sponse [30]. About 25% of the rest of the data taking
was devoted to calibration campaigns with dissolved
and external radioactive sources. The livetime used
in this paper corresponds to 693.3 d.

Selected events are required to be single-scatter,
i.e., with a single S2 pulse, after a veto of 20ms for
each event triggering the DAQ. Additional cuts are
used to remove pileup pulses, surface α events, and
events reconstructed in the outer ∼7 cm thick cylin-
drical shell of the TPC. In addition, the low energy
threshold for this analysis is defined in order to re-
ject spurious electrons (SEs) [17, 24], the object of a
paper in preparation. These originate from ioniza-
tion electrons trapped on impurities along the drift
in LAr, and released with a certain delay. A full
description of the selection criteria can be found in
Ref. [24].

A crucial aspect for this analysis is long-term sta-
bility of the detector performance, monitored by var-
ious sensors incorporated inside the cryogenic sys-
tem, as well as by the recorded events from the TPC
itself. The two parameters whose fluctuations may
potentially have a high impact on the modulation
search are the electric drift field, F , and the average
number of detected S2 photons per ionization elec-
tron extracted in the gas phase, g2. The stability of
F is monitored ex situ via the stability of the sup-
plied high voltages for the electric fields and in situ
via the stability of the drift time of events at the very
bottom of the TPC. The maximum fluctuation of F
was estimated to be less than 0.01%, too small to
affect the ionization response. Based on the S2/S1
ratio for electronic recoil events above the region of
interest (RoI) (0.04–21 keVee), g2 varies at most by
0.5% over the whole data-taking period. The impact
from the instability is evaluated by pseudo experi-

ments and found to be negligible compared to the
statistical fluctuations.

The time evolution of background events can be
described by the combination of a set of decaying
exponentials and a constant term. The latter com-
ponent includes the radioactive backgrounds whose
lifetime is much longer than the data-taking period
of about three years, and is dominated by the β-
decay of 39Ar (268 yr [31]). The exponential com-
ponents arise from the decays of 37Ar (35.0 d [29]),
85Kr (10.8 yr [32]), 54Mn (312.1 d [32]), and 60Co
(5.27 yr [33]). The first two isotopes are intrinsically
present in the LAr, while the latter two are contam-
inants of the PMTs, and 60Co is also present in the
cryostat stainless steel. The latter two emit γ- and
x-rays, which deposit energy in the LAr target. The
background model is generated with the DarkSide-
50 Geant4-based Monte Carlo [34] code. The model
is built on data from an extensive materials screen-
ing campaign to characterize the trace radioactivity
content of every detector component. It also uses in
situ measurements with DarkSide-50 [24] and incor-
porates the detector response model [30].

Fig. 1 shows the measured time-dependent event
rates for events with Ne in the 4–41 e− and 41–
68 e− ranges, corresponding to 0.06–2.0 keVee and
2.0–6.0 keVee, respectively. The signal and back-
grounds are modelled with

f(t) = Aχ cos
( t− ϕ

T/2π

)
+
∑
l

Al

τl
e−t/τl + C,

(l =37 Ar,85 Kr,54 Mn,60 Co) (1)

where Aχ is the amplitude of the modulated term
of the signal, ϕ the phase, and T the period fixed to
1 yr. The constant term C is the sum of the time-
averaged signal component and long-lived back-
grounds. The parameters τl and Al correspond to
the decay times and amplitudes, respectively, of the
short-lived isotopes l. Examples of background-only
fits to data, by fixing Aχ = 0, are shown in Fig. 1
for the two ranges.

The statistical significance of a possible modu-
lated signal is assessed using the following binned
likelihood with the bin width of 7 d

L =
∏

i∈ tbins

P (ni|mi(Aχ, ϕ, C,Θ))

×
∏

θk ∈Θ

G(θk|θ0k, ∆θk). (2)

The first term represents the Poisson probability
of observing ni events in the ith time bin with re-
spect to the expected ones, mi(Aχ, ϕ, C,Θ), eval-
uated with Eq. (1). In the fit, Aχ, ϕ and C are
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FIG. 1. Temporal evolution of the observed event rates
for 3–4 e− (corresponding to 0.04–0.06 keVee), 4–41 e−

(0.06–2.0 keVee), and 41–68 e− (2.0–6.0 keVee) ranges.
The bin width is 7 d. The coloured solid lines represent
the background-only fit. The vertical dotted lines corre-
spond to June 2nd, when the dark matter induced event
rate has its maximum. The blue-shaded region corre-
sponds to the first four months devoted to the detector
calibration and is thus excluded from this analysis.

left free to vary, while the other parameters are con-
tained inside Θ, which represents the set of remain-
ing nuisance parameters constrained by the Gaus-
sian penalty terms in the last factor of Eq. (2). In the
latter, θ0k and ∆θk represent the nominal central val-
ues and uncertainties, respectively, of the nuisance
parameters and are listed in Table I. The nuisance
parameters account for uncertainties on the fiducial
volume of the TPC (which induces a 1.1% uncer-
tainty on the event rate from 54Mn and 60Co in the
PMTs and cryostat; and a 1.5% uncertainty on the
other event rates, acting in a correlated way [24])
and on the activities of short-lived decays in the en-
ergy range of interest. These are obtained from the
combination of the uncertainty on the measured rate
(14%, 4.7%, 40%, 12% for 37Ar, 85Kr, 54Mn, 60Co,
respectively [24]), with the uncertainty arising from
the definition of the energy range due to the ioniza-
tion response. In addition, the uncertainty on the
85Kr activity is combined with the spectral uncer-
tainties from the β-decay Q-value and atomic ex-
change and screening effects [35, 36], as discussed in
Ref. [24].

The fit to data with Eq. (2) does not show any
evidence of modulation in either of the two ana-
lyzed ranges. Fig. 2 shows the best fit values of
(Aχ, ϕ), and the associated 68% and 95% confidence
level (C.L.) contours, for the two energy ranges. The
same analysis has been repeated by varying the bin
width from 1d to 10 d, and no significant variations
have been found.

The result in the 2.0–6.0 keVee range is used to
test the modulation observed by DAMA/LIBRA in
the same interval, compatible with a dark matter

TABLE I. List of the nuisance parameters, together

with their central values (θ0k) and uncertainties (∆θk).
The uncertainties are given as percentages of the corre-
sponding central values. The uncertainties arising from
the β-decay spectrum and the ionization response are
reported in terms of the event rate.

Parameter θ0k ∆θk Refs.

T 1 yr 0
Fiducial
volume

19.4 kg 1.5%* [24]

τ37Ar 35.0 d 0 [29]
τ85Kr 10.8 yr 0 [32]
τ54Mn 312.1 d 0 [32]
τ60Co 5.27 yr 0 [33]

A37Ar 2.1 counts/(d kg)† 14%

A85Kr 1.7 counts/(d kg)† 4.7% [24]

A54Mn 0.02 counts/(d kg)† 40% [24]

A60Co 0.58 counts/(d kg)† 12% [24]
85Kr β-decay
spectrum

1.7 counts/(d kg)† 0.7%† [24, 35, 36]

Ionization
response

4.4 counts/(d kg)† 0.4%† [24, 30]

* More details in the text.
† In 2.0–6.0 keVee range.

signal over 14 cycles with a significance of >13σ [3].
The significance from this analysis is such that we
can neither confirm nor reject the DAMA/LIBRA
observation over the null hypothesis. For complete-
ness, the same conclusion is drawn for the 1.0–
3.0 keVee range, also analyzed by DAMA/LIBRA.
Additional constraints on the modulation ampli-

tude are obtained by simultaneously fitting event
timestamps and energies after fixing the period
(1 yr) and the phase (maximum at June 2nd) to
those expected from the Standard Halo Model [41,
42]. This approach does not require any assump-
tion on the SE rate and thus allows the range to
be extended down to 3 e− or 0.04 keVee, which cor-
responds to the primary electron induced by the in-
teraction plus, on average, two subsequent ionization
electron. The likelihood,

L =
∏

i∈ tbins

∏
j ∈E bins

P
(
nj
i |m

j
i (A

j
χ, C

j , Θ̃)
)

×
∏

θ̃k ∈ Θ̃

G(θ̃k|θ̃0k, ∆θ̃k), (3)

is the product of the Poisson probabilities in each
of the ij-bins defined by the event time (i) and
energy expressed in terms of number of electrons
(j) given the signal amplitude, Aj

χ, and the con-

stant background component, Cj . The chosen bin
width along the time axis corresponds to 7 d and
the bin widths along the energy axis are 0.02 keVee

below 0.06 keVee, 0.25 keVee below 1 keVee, 1 keVee
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FIG. 2. Best fit parameters in the phase versus am-
plitude space from the likelihood analysis with the
fixed period of 1 yr. The vertical dotted line repre-
sents the phase of the dark matter signal expected from
the standard halo model. Also shown are the results
from other experiments using NaI(Tl) crystal scintilla-
tors (DAMA/LIBRA [3], COSINE-100 [37], and ANAIS-
112 [38]) and liquid xenon TPC (XENON100 [39] and
LUX [40]).

up to 6 keVee, and 2 keVee elsewhere, starting from
0.04 keVee (3 e−). The sample of events with 3 e−

is contaminated by SE’s. To account for this back-
ground, we anchored its time variation to that of
events below 3 e−, selected in coincidence with the
previous event, largely dominated by SE. This ap-
proach is justified by the observation that the spec-
trum of events occuring in a 2ms window from the
previous event, which consists of more than 90% of
SE’s, is stable over time. The amplitude of the signal
in each energy interval, Aj

χ, is assumed uncorrelated

with the others. Nuisance parameters Θ̃, in Eq. (3)
are the same as in Eq. (2), but account for energy
spectral distortions of the background components
as done in Ref. [24].

Fig. 3 shows the best-fitted amplitude as a
function of the energy, together with the 1-
and 2-σ significance coverages, as derived with
background-only Monte Carlo datasets. The re-
sults from DAMA/LIBRA [3], COSINE-100 [37],
and XMASS [10] are also shown. In contrast to our
approach, the DAMA/LIBRA looked at each energy
bin independently and measured the amplitude by
looking at the residuals of a yearly averaged event
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FIG. 3. Best fit amplitude of the modulation signal as
a function of Ne. The green and yellow bands represent
the expected 1σ and 2σ statistical fluctuations derived by
background-only Monte Carlo samples. Also shown are
the results from DAMA/LIBRA [3], COSINE-100 [37],
and XMASS [10].
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FIG. 4. Observed sinusoidal signal strengths from the
Lomb-Scargle periodogram as a function of its period.
The vertical axis is normalized by the 1σ false alarm
probability. The vertical dashed line corresponds to the
period of 1 yr.

rate.

Finally, a Lomb-Scargle periodogram analysis [43]
is performed on the temporal evolution of the event
rate to look for sinusoidal signals with any period,
including the one expected from dark matter. The
analysis is applied to the data residuals, after the
subtraction of the best-fitted background model,
shown in Fig. 1. The uncertainty from the back-
ground fit is propagated to the data errors. The
false alarm probability is calculated with the Boot-
strap method [43] and used to assess the significance
of the sinusoidal signals. The sensitivity of this anal-
ysis is evaluated by applying the Lomb-Scargle anal-
ysis over 1000 pseudo experiments where an annual
modulation signal has been injected. A median of
1σ significance for the false alarm probability is ob-
tained with the addition of 0.03 counts/(d kg keV).
The analysis of the data does not identify any sig-
nificant modulation, scanning periods up to 800 d,
as shown in Fig. 4.
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In conclusion, we searched for an event rate
modulation in the DarkSide-50 data between 2.0
and 6.0 keVee, where DAMA/LIBRA observed a
yearly modulated signal compatible with dark mat-
ter. Also, for the first time, we probed the energy
range down to 0.04 keVee, the lowest threshold ever
probed in an annual dark-matter modulation search.
In none of the analyzed intervals, a modulation sig-
nal was observed. The significance of this result is
not sufficient to confirm or reject the DAMA/LIBRA
observation.

The stability of the DarkSide-50 detector over
nearly three years of operation, the accuracy of
the background model, and the low-energy thresh-
old achieved demonstrate the competitiveness of the
dual-phase LAr-TPC technology in searching for
modulation signals. This result is therefore promis-
ing in view of future massive dual-phase liquid argon
experiments [44–46], expected to reach much larger
exposures and even lower background levels.
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