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Abstract

The prospects of extracting new physics signals in coherent elastic neutrino–nucleus scattering

(CEνNS) processes are limited by the precision with which the underlying nuclear structure physics,

embedded in the weak nuclear form factor, is known. We present calculations of charge and weak

nuclear form factors and CEνNS cross sections on 12C, 16O, 40Ar, 56Fe and 208Pb nuclei. We obtain

the proton and neutron densities, and charge and weak form factors by solving Hartree–Fock (HF)

equations with a Skyrme (SkE2) nuclear potential. We validate our approach by comparing 208Pb

and 40Ar charge form factor predictions with available elastic electron scattering data. Since

CEνNS experiments at stopped–pion sources are also well suited to measure inelastic charged–

current and neutral–current neutrino–nucleus cross sections, we also present calculations for these

processes, incorporating a continuum Random Phase Approximation (CRPA) description on top of

the HF-SkE2 picture of the nucleus. Providing both coherent as well as inelastic cross sections in

a consistent framework, we aim at obtaining a reliable and detailed comparison of the strength of

these processes in the energy region below 100 MeV. Furthermore, we attempt to gauge the level

of theoretical uncertainty pertaining to the description of the 40Ar form factor and CEνNS cross

sections by comparing relative differences between recent microscopic nuclear theory and widely–

used phenomenological form factor predictions. Future precision measurements of CEνNS will

potentially help in constraining these nuclear structure details that will in turn improve prospects

of extracting new physics.
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I. INTRODUCTION

Coherent elastic neutrino–nucleus scattering (CEνNS), where the only detectable reaction

product is a low momentum recoiling nucleus, was suggested soon after the experimental

discovery of a weak neutral current in neutrino interactions [1]. Even though for neutrino

energies of some tens of MeV the CEνNS cross section is a few orders of magnitude larger

than competing inelastic processes, the difficulty in detecting the ∼keV scale recoil of a

nucleus has hindered experimental detection of this process for decades. In 2017, the CO-

HERENT collaboration detected the first CEνNS signal using a stopped–pion beam in the

Spallation Neutron Source (SNS) at Oak Ridge National Laboratory with a CsI detector

[2, 3], followed up by another recent measurements in a liquid argon (LAr) detector [4, 5]

and in CsI detector [6].

The detection of CEνNS has opened up a slew of opportunities in high–energy physics, as-

trophysics and in nuclear physics, inspiring new probes into beyond–Standard–Model (BSM)

physics and new experimental methods. Several extensions of the SM that can be explored

at low energy such as non–standard interactions (NSI) [7–10], sterile neutrinos [11, 12], CP–

violation [13], as well as exploration of nuclear effects, are being studied [14–17]. Several

experimental programs have been or are being set up to detect CEνNS and BSM signals

in the near future using stopped–pion neutrino sources in COHERENT at the SNS [2], Co-

herent CAPTAIN–Mills (CCM) at Los Alamos National Laboratory (LANL) [18] and at

the proposed European Spallation Source (ESS) facility [19], as well as reactor–produced

neutrinos in CONNIE [20], MINER [21], νGEN [22], NUCLEUS [23], RICOCHET [24],

TEXONO [25], NEON [26] and vIOLETA [27].

The main source of uncertainty in the evaluation of the CEνNS cross section is the accu-

racy with which the underlying nuclear structure and nucleon dynamics that determine the

distributions of the nucleon density in the nuclear ground state, embedded in the form fac-

tor, are known in the target nucleus. The ground state proton (charge) density distributions

are relatively well constrained through elastic electron scattering experiments pioneered by

Hofstadter and collaborators at the Stanford Linear Accelerator [28], followed by other mea-

surements in the following decades [29–31]. CEνNS is however primarily sensitive to the

neutron density distributions of the nucleus, which are only poorly constrained. Hadronic

probes have been used to extract neutron distributions, these measurements are however
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plagued by ill–controlled model–dependent uncertainties associated with the strong inter-

action [32]. More (experimentally) challenging electroweak probes such as parity–violating

electron scattering (PVES) [32, 33] and CEνNS provide relatively model–independent ways

of determining neutron distributions. In recent years, one such PVES experiment, PREX

at Jefferson lab, has measured the weak charge of 208Pb at a single value of momentum

transfer [34, 35], while a follow up PREX–II experiment is ongoing to improve the precision

of that measurement. Another PVES experiment, CREX at Jefferson lab, is underway to

measure the weak form factor of 48Ca [36]. Future ton and multi-ton CEνNS detectors will

enable more precise measurements and will potentially offer a powerful avenue to constrain

neutron density distributions and weak form factors of nuclei at low momentum transfers

where the process remains coherent [14, 15, 37].

As long as no precision measurements of neutron density distributions of nuclei are avail-

able, the weak nuclear form factor has to be modeled in order to evaluate the CEνNS cross

section and event rates. The accuracy of such an assumption is vital to the CEνNS pro-

gram since any experimentally measured deviation from the expected CEνNS event rate can

point to new physics or to unconstrained nuclear physics. It is therefore crucial to treat the

underlying nuclear structure physics that is embedded in nuclear form factors with utmost

care. Phenomenological approaches, such as the Klein–Nystrand form factor [38] adapted

by the COHERENT collaboration, or the Helm form factor [39] where density distributions

are represented by analytical expressions, are widely used in the CEνNS community. Em-

pirical values of the proton rms radius, measured in elastic electron scattering, are often

used to evaluate the proton form factor and often similar parameterizations are assumed

for the neutron form factor. Microscopic nuclear physics approaches which provide a more

accurate description of the nuclear ground state and density distributions such as density

functional theory [37], coupled–cluster theory from first principles [40], relativistic mean–

field model [41], Hartree–Fock plus Bardeen–Cooper–Schrieffer model [42] as well as effective

field theory approaches [43, 44] have also been reported in recent years.

In this work we will present a microscopic many–body nuclear theory model where the

nuclear ground state is described in a Hartree–Fock (HF) approach with a Skyrme (SkE2)

nuclear potential. We calculate proton and neutron density distributions, charge and weak

form factors, and CEνNS cross sections on 12C, 16O, 40Ar, 56Fe and 208Pb, and confront

our predictions with the available experimental data. In view of the worldwide interest in
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liquid–argon–based neutrino and dark matter experiments, we pay special attention to the

40Ar nucleus. We attempt to gauge the level of theoretical uncertainty pertaining to the

description of the 40Ar form factor and CEνNS cross section by comparing relative differences

between recent nuclear theory and widely–used phenomenological form factor predictions.

CEνNS experiments at stopped–pion sources are also well-suited to measure inelastic

neutrino–nucleus cross sections. These measurements, in particular on 40Ar, will provide

powerful constraints on supernova detection capabilities of future kiloton neutrino experi-

ments. To this end, we also present inelastic charged–current (CC) and neutral–current (NC)

cross section calculations on 40Ar, incorporating a continuum Random Phase Approximation

(CRPA) description on top of the initial HF–SkE2 picture of the nucleus.

The remainder of this manuscript is organized as follows. In Sec. II, we lay out the

general formalism of calculating the CEνNS and inelastic neutrino–nucleus scattering cross

section. In Sec. III, we present results of proton and neutron densities, charge and weak

form factors, and CEνNS cross sections on 12C, 16O, 40Ar, 56Fe and 208Pb obtained within

our HF–SkE2 approach. We focus on 40Ar in subsection III A, and compare our predictions

with experimental data and other theoretical calculations. We also present inelastic cross

sections on 40Ar in subsection III A. We present conclusions of this study in Sec. IV.

II. FORMALISM

In this section, we lay out the general formalism for calculating cross sections of the

coherent elastic and inelastic neutrino-nucleus scattering process.

A. CEνNS Cross Section

A neutrino with four momentum ki = (Ei, ~ki) scatters off the nucleus, which is ini-

tially at rest in the lab frame with pA = (MA,~0), exchanging a Z0 boson. The neutrino

scatters off, carrying away four momentum kf = (Ef , ~kf ) while the nucleus remains in

its ground state and receives a small recoil energy T , so that p′A = (MA + T, ~p′A) with

|~p′A| =
√

(MA + T )2 −M2
A and T = q2/2MA. Here, MA is the rest mass of the nucleus,

q = |~q| is the absolute value of the three–momentum transfer which is of the order of keV

for neutrino energies of tens of MeV, Q2 ≈ q2 = |~kf −~ki|2, and the velocity dependent factor
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in the denominator refers to the relative velocity of the interacting particles. The process is

schematically shown in Fig. 1.

The initial elementary expression for the cross section reads

d6σ =
1

|~vi − ~vA|
mi

Ei

mf

Ef

d3~kf
(2π)3

MA

MA + T

d3~p′A
(2π)3

× (2π)4
∑

fi
|M|2 δ(4)(ki + pA − kf − p′A).

(1)

This expression can be integrated to yield the expression for the cross section differential in

neutrino scattering angle θf :

dσ

d cos θf
=
mi

Ei

mf

Ef

MA

MA + T

E2
f

2π
f−1rec
∑

fi
|M|2 . (2)

The recoil factor reads

frec =
Ei
Ef

MA

MA + T
. (3)

Working out the Feynman amplitude one gets∑
fi
|M|2 =

G2
F

2
LµνW

µν , (4)

with the nuclear tensor W µν reading

W µν =
∑

fi
(J µ

nuc)
†J ν

nuc. (5)

The summation symbols in these expressions denote summing and averaging over initial and

final polarizations respectively. The nuclear tensor depends on the nuclear current transition

amplitudes:

J µ
nuc = 〈Φ0|Ĵµ(~q)|Φ0〉. (6)

Under the assumption that the nuclei of interest are spherically symmetric with Jπ = 0+

and taking the z–axis to be along the direction of ~q, one only needs to take into account

the zeroth and third component of the nuclear current’s vector part, which are furthermore

connected through vector current conservation (CVC):

qµĴµ(~q) = 0. (7)

Through performing the necessary algebra, one arrives at the final expression

dσ

d cos θf
=
G2
F

2π

E3
f

Ei

[
Q4

q4
(1 + cos θf )|J V

0 |2
]

(8)
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FIG. 1. (Left) Diagrammatic representation of the CEνNS process where a single Z0 boson is

exchanged between neutrino and target nucleus. (Right) Diagrammatic representation of the in-

elastic neutrino-nucleus scattering where a single W+ (CC) or Z0 (NC) boson is exchanged between

neutrino and target nucleus.

where J V
0 is the transition amplitude induced by the nuclear current. One can then safely

approximate Q4

q4
≈ 1 and express the differential cross section as a function of the neutrino

scattering angle θf as:

dσ

d cos θf
=
G2
F

2π

E3
f

Ei
(1 + cos θf )

Q2
W

4
F 2
W (Q2) (9)

where GF is the Fermi coupling constant, and QW the weak nuclear charge :

Q2
W = [gVp Z + gVnN ]2 = [(1− 4 sin2 θW)Z −N ]2 (10)

with coupling constants gVn = −1 and gVp = (1 − 4 sin2 θW). N and Z are the nucleus’

neutron and proton number, and θW is the weak mixing angle. The value is such that

sin2 θW = 0.23857, which is valid at low momentum transfers [45].

Here we have introduced the elastic form factor, F 2
W (Q2), which we will discuss later

in this subsection. In elastic scattering the entire nuclear dynamics is encoded in this form

factor. Equivalently one can express the differential cross section as a function of the nuclear

recoil T , which reads:

dσ

dT
=
G2
F

π
MA

(
1− T

Ei
− MAT

2E2
i

)
Q2
W

4
F 2
W (Q2), (11)

In Eq. (9) and (11), we have expressed the CEνNS kinematic distribution both in neutrino

scattering angle, θf , and in nuclear recoil energy T . In most experiments the only signal
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of a CEνNS event is a nuclear recoil energy deposition. In principle, future experiments

with more advanced detector technologies may be able to detect both nuclear recoil and

angular distribution simultaneously. Such capabilities are already being explored in some

dark-matter experiments and will greatly enhance the physics capabilities of future CEνNS

experiments [46].

The scattering process’ cross section is proportional to the squared magnitude of the

transition amplitude induced by the nuclear current. Since the relevant ground state to

ground state transition for spherically symmetrical nuclei is 0+ → 0+, only the vector part

of the current will contribute. The amplitude can be expressed as

J V
0 = 〈Φ0|ĴV0 (~q)|Φ0〉

=

∫
ei~q·~r〈Φ0|ĴV0 (~r)|Φ0〉

=
1

2

[(
1− 4 sin2 θW

)
fp(~q)Fp(Q

2)

− fn(~q)Fn(Q2)
]
,

(12)

where we have inserted the impulse approximation (IA) expression for the nuclear current,

as a sum of single–body operators:

ĴV0 (~r) =
∑
i

FZ(Q2, i)δ(3)(~r − ~ri), (13)

with

FZ(Q2, i) =

(
1

2
− sin2 θW

)
(Fp − Fn)τ3(i)

− sin2 θW (Fp + Fn),

(14)

where we used the convention τ3(i) = +1 for proton, -1 for neutrons. Furthermore, fp(~q)

and fn(~q) are the Fourier transforms of the proton and neutron densities, respectively. Fp

and Fn are proton and neutron form factors, for which we adopt the standard Galster

parametrization. Note that using a more sophisticated parametrization of the form factor,

other than Galster, will not affect the results at the energies relevant to this work. The

overall structure of the transition amplitude consists of products of the weak charge with

two factors: the nuclear form factor, determined by the spatial distribution of the nucleons

in the nucleus, as well as the nucleon form factor. We arrive at the expression:

FW (Q2) =
1

QW

[(
1− 4 sin2 θW

)
fp(~q)Fp(Q

2)

−fn(~q)Fn(Q2)
]

=
2

QW

J V
0 ,

(15)

7



such that the form factor becomes 1 in the static limit. Note that in writing down the

functional dependence we can make use of the non–relativistic approximation Q ≈ |~q|, valid

in the energy regime considered.

We employ a microscopic many–body nuclear theory model where the nuclear ground

state is described in a Hartree–Fock (HF) approach with a Skyrme (SkE2) nuclear poten-

tial, which we will refer to as HF–SkE2. We solve the HF equations to obtain single–nucleon

wave functions for the bound nucleons in the nuclear ground state. We evaluate proton

(ρp(r)) and neutron (ρn(r)) density distributions from those wave functions. The proton

density is utilized to calculate charge form factor (which can also be referred to as elec-

tromagnetic form factor), Fch(Q
2), while both proton and neutron densities are utilized to

compute weak, FW (Q2), nuclear form factor, as shown in Eq. (15). This approach involves

more realistic nuclear structure calculations of proton and neutron density distributions

making it more reliable compared to the phenomenological approaches that rely on the

approximation ρn(r) ≈ ρp(r), utilizing empirical values of ρp(r) extracted from electron

scattering experiments.

B. Inelastic Cross Sections

CEνNS experiments at stopped–pion sources are also sensitive to inelastic neutrino–

nucleus interactions. In several astrophysical environments elastic and inelastic processes

come in competition. To this end, we also present calculations of inelastic charged–current

(CC) and neutral–current (NC) cross sections, calculated within the same framework. These

results are obtained by including effects of long-range correlations through a continuum

Random Phase Approximation (CRPA) description on top of the HF–SkE2 initial picture

of the nucleus.

The inelastic neutrino–nucleus scattering process is schematically shown in Fig. 1. A

neutrino with four momentum ki = (Ei, ~ki) scatters off the nucleus, which is initially at rest

in the lab frame, exchanging a W+ (CC) or a Z0 (NC) boson. The nucleus receives four

momentum Q = (ω, ~q), where ω = Ei−Ef and ~q = ~ki−~kf , while the scattered lepton carries

away four momentum kf = (Ef , ~kf ). Since we concern ourselves with inclusive calculations,

the hadronic part of the final states are integrated out. The inelastic neutrino–nucleus
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p/n i ni, li, ji εi (MeV) v2i # N

p 1 1s1/2 -43.7029 1.00 2

p 2 1p3/2 -31.4496 1.00 4

p 3 1p1/2 -27.3921 1.00 2

p 4 1d5/2 -17.7027 1.00 6

p 5 2s1/2 -12.0822 1.00 2

p 6 1d3/2 -10.9243 0.50 2

n 1 1s1/2 -48.3047 1.00 2

n 2 1p3/2 -35.2020 1.00 4

n 3 1p1/2 -31.0247 1.00 2

n 4 1d5/2 -21.1035 1.00 6

n 5 2s1/2 -16.1116 1.00 2

n 6 1d3/2 -14.0266 1.00 4

n 7 1f7/2 -7.2108 0.25 2

TABLE I. Single–particle energies in 40Ar, as provided by a HF calculation using the SkE2 inter-

action.

differential cross section of this process can be written as

d3σ

dωdΩ
=σWEfkfζ

2(Z ′, Ef )

× (vCCRCC + vCLRCL + vLLRLL

+ vTRT + hvT ′RT ) ,

(16)

with the Mott-like cross section prefactor σW defined as

σCCW =

(
GF cos θc

2π

)2

, σNCW =

(
GF

2π

)2

,

where GF is the Fermi constant and cos θc the Cabibbo angle. The factor ζ2(Z ′, Ef ) is

introduced in order to take into account the distortion of the scattered lepton wave function

in the Coulomb field of the final nucleus with Z ′ protons, in the case of CC interaction [58].

In the NC case ζ2(Z,Ef ) equals 1. The influence of the lepton helicity on the cross section

is encoded in h which is + for neutrinos and - for antineutrinos.

The v–factors are leptonic functions that are entirely determined by lepton kinematics.

The R–factors are the nuclear response functions that depend on the energy and momentum
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transfer (ω, q) and contain all the nuclear information involved in this process. The indices

L and T correspond to longitudinal and transverse contributions, relative to the direction

of the momentum transfer. The nuclear responses are function of the transition amplitude,

Jnuclµ (ω, q), between the initial |Φ0〉 and final |Φf〉 state:

Jnuclµ (ω, q) = 〈Φf|Ĵµ(q)|Φ0〉, (17)

where the nuclear current, Ĵµ(q), is the Fourier transform of the nuclear current operator in

coordinate space:

Ĵµ(q) =

∫
dxeix·qĴµ(x). (18)

These are computed within a HF-CRPA framework. For a detailed discussion of the

nuclear response we refer the reader to our previous work in Refs. [47–61]. Here we briefly

describe the essence of our approach. The CRPA description goes beyond a pure spectator

approach, incorporating long–range correlations in the cross section calculations. Within

many–body theory, the random phase approximation achieves this by modeling excitations

as superpositions of particle-hole (ph−1) and hole-particle (hp−1) states out of a correlated

ground state:

|ΨC
RPA〉 =

∑
C′

{
Xc,c′ |p′h′−1〉 − Yc,c′ |h′p′−1〉

}
, (19)

where the summation index C denotes a set of quantum numbers defining an excitation

channel unambiguously:

C =
{
nh, lh, jh,mjh , εh; lp, jp,mjp , τz

}
. (20)

The indices p and h represent the quantum numbers related to the particle or the hole state,

εh denotes the binding-energy of the hole state and τz defines the isospin character of the

particle-hole pair. Since the RPA approach describes nuclear excitations as the coherent

superposition of individual particle-hole states out of a correlated ground state, it allows the

description of collective effects in the nucleus.

Besides Eq. (19), the RPA approach can also be formulated in a propagator description of

many–body theory, where the central object containing the information on the excited states

of the many–body system is the polarization propagator. In the Lehmann representation,

the CRPA approach involves solving the RPA equation for the local polarization propagator
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FIG. 2. (color online) Panels (a) and (b) represent proton and neutron densities of different nuclei

obtained using the HF–SkE2 approach. Panels (c) through (d) represent charge and weak form

factors for the different nuclei.

ΠRPA(x1, x2, Eexc) in coordinate space:

ΠRPA(x1, x2, Eexc) = Π(0)(x1, x2, Eexc)

+
1

~

∫
dx

∫
dx′
[
Π(0)(x1, x, Eexc)

× Ṽ (x, x′)ΠRPA(x′, x2, Eexc)
]
,

(21)

where Eexc is the excitation energy of the target nucleus and x is the shorthand notation for

the combination of the spatial, spin, and isospin coordinates. In this equation, the antisym-

metrized residual interaction Ṽ (x, x′), is the same SkE2 Skyrme interaction we have utilized

to calculate the single particle wave functions (and therefore, nuclear densities) of the CEνNS

cross sections, keeping the scheme selfconsistent. Π(0)(x1, x2, Eexc) denotes the zeroth-order

contribution to the polarization propagator which is equivalent to the HF contribution. The
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FIG. 3. (color online) The “weak-skin” form factor depicts the difference between the charge and

weak form factors.

(local) polarization propagator ΠRPA(x1, x2, Eexc), which describes the propagation of parti-

clehole pairs, is obtained by adding the iteration of first-order contributions to the bare local

polarization propagator Π(0)(x1, x2, Eexc). By solving this equation, one obtains the CRPA

transition amplitudes needed to calculate the inelastic neutrino–nucleus cross sections.

It is worth mentioning that the effect of long-range correlations included through the

CRPA approach, vital for inelastic calculations at low energies, are found to be negligible in

evaluating ground state densities of nuclei [62] and are therefore not included in the elastic

scattering calculations discussed in Sec. II A.

The HF-CRPA framework offers an elegant formalism that accounts for collective excita-

tions in the continuous spectrum as well as describes quasielastic neutrino–nucleus scattering

in the low and medium energy regime. Our model has been developed over decades and has

been utilized extensively to calculate various electron- and neutrino-nucleus cross sections

suited for astrophysical processes as well as accelerator-based neutrino oscillation experi-

ments [47–61].
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FIG. 4. (color online) Left: the charge form factor of 208Pb compared with elastic electron scattering

data of Ref. [29]. Right: the weak form factor of 208Pb along with the single point measured by

the PREX collaboration at the momentum transfer of q = 0.475 fm−1 [34, 35]. Both form factors

are compared with relativistic mean–field predictions of Yang et al. [41].

III. RESULTS AND DISCUSSION

Since the weak charge of the proton is strongly suppressed by the weak mixing angle

(Eq. (15)) the nuclear weak charge is predominately carried by the neutrons. The weak form

factor FW (Q2), and hence the CEνNS cross section, are both dominated by the distribution

of neutrons within the nucleus. As proton densities are well–constrained by experimental

elastic electron scattering data [31] while little reliable neutron density data is available,

phenomenological approaches approximate ρn(r) ≈ ρp(r) and thus assume Fn(Q2) ≈ Fp(Q
2),

making the nuclear form factor more of a global factor [63]. Within the HF–SkE2 approach

we treat proton and neutron densities and their corresponding form factors separately and

do not have to rely on such assumptions. The densities are defined in terms of the reduced

radial single particle wave functions as

ρq(r) =
1

4πr2

∑
a

v2a,q(2ja + 1)|φa,q(r)|2, (22)

with v2a,q being the occupation probability of orbital a of nature q (i.e. proton p or neutron

n.). In Table I, we show shells and singleparticle energy levels, in the case of 40Ar nucleus,

as yielded by a HF calculation using SkE2 potential.

In Fig. 2, we present proton (panel (a)) and neutron (panel (b)) density distributions
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FIG. 5. (color online) Total CEνNS cross sections for a set of nuclear targets obtained within the

HF–SkE2 approach.

of 12C, 16O, 40Ar, 56Fe and 208Pb obtained using our HF–SkE2 approach. Naturally the

heavier the nucleus, the more broadly the densities are distributed. Panel (c) and (d) show

the charge and weak form factors for all the nuclei. In both the charge and weak form

factor cases, the heavier the nuclei the faster the form factor encounters its first minimum

at rising q values. Lighter nuclei have their minima spread over a larger q range. 12C has

its first minimum at q ∼ 1.8 fm−1 while 208Pb has its first minimum around q ∼ 0.65 fm−1.

Although the charge and weak form factors have a similar overall structure, the minima

and maxima of both occur at slightly different values of the momentum transfer, with larger

differences in heavier nuclei. To further illustrate this, in Fig. 3, we show the “weak–skin”

form factor [32] for all these nuclei, defined as the difference between the charge and weak

form factors:

FW,skin(q) = Fch(q)− FW(q), (23)

which, near the origin, is proportional to the experimentally observable weak skin [32]. The

figure illustrates that the charge and weak form factors significantly differ from each other.
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In the left panel of Fig. 4, we show our predictions for the charge form factor of 208Pb. The

predictions are compared with the experimental charge form factor obtained from a Fourier–

Bessel fit to the elastic electron scattering data of Ref. [29]. Our predictions describe the

experimental data remarkably well. Our predictions almost overlap with data for q . 1.8

fm−1. We also performed a comparison with the relativistic mean–field (RMF) predictions

of Yang et al. [41]. There are no visible differences between both models up to q . 1.8

fm−1. The right panel shows our predictions for the weak form factor, again compared with

the RMF predictions of [41]. We also show the single data point measured at a momentum

transfer of q = 0.475 fm−1 by the PREX collaboration [34, 35]. This remains the only

measurement of the weak form factor obtained with an electroweak probe. The error bars

on the data point are too large to discriminate between theoretical predictions. The follow–

up PREX–II measurement at Jefferson lab aims to reduce the error bars by at least a factor

of three.

The total CEνNS cross section as a function of neutrino energy for 12C, 16O, 40Ar, 56Fe

and 208Pb is shown in Fig. 5. All nuclei show a similar behavior: there is a rapid rise of the

cross section for incoming neutrino energies up to about ∼ 30 MeV, then the steep increase

slows down and flattens out on the log scale thereafter. The cross section increases with the

atomic number, with nearly two to three orders of magnitude difference between 12C and

208Pb, reflecting the ≈ N2 scaling behavior shown in Eq. 10.

To demonstrate the dominance of the CEνNS strength over the quasi–elastic one for

a neutrino energy of a few tens of MeV, in Fig. 6 we compare CEνNS cross sections to

νe–nucleus charged–current quasielastic (CCQE) and neutral–current quasielastic (NCQE)

cross sections. For the energies relevant for pion decay–at–rest neutrinos, E . 52 MeV, the

CEνNS cross section is roughly two orders of magnitude larger than inelastic cross sections.

A. Constraining 40Ar

In view of the worldwide interest in liquid argon (LAr)–based detectors in neutrino and

dark matter experiments, in this section we will focus on 40Ar. In the COHERENT col-

laboration’s expanding series of detectors at SNS, the collaboration has recently presented

new measurements from a 24 kg, single–phase, LAr CENNS–10 detector [5] while a ton-scale

LAr experiment is underway. A 10 ton LAr scintillation detector, Coherent CAPTAIN-Mills
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FIG. 6. (color online) CEνNS cross section strength compared to CCQE and NCQE scattering

cross sections for several nuclei, above particle emission threshold.

(CCM), was recently built at LANL to study CEνNS on 40Ar and to search for low–mass

dark matter that coherently scatters off 40Ar nuclei [18]. Several other neutrino [64, 65] and

dark matter experiments [66–69] employ LAr detectors, making it vital to study ground

state properties of the 40Ar nucleus.

In Fig. 7 (left) we compare our argon charge form factor (Fch(q)) predictions with the

elastic electron scattering data of Ref. [70]. Our predictions describe experimental data re-

markably well for q . 2 fm−1, validating our approach. We also compare with the predictions

of Payne et al. [40] where form factors are calculated within a coupled–cluster approach, us-

ing a chiral NNLOsat interaction. At higher q, q & 2 fm−1, both predictions diverge from

experimental data. Note that for neutrino energies relevant for pion decay–at–rest the region

above q & 0.5 fm−1 does not contribute to CEνNS cross sections. We also show a comparison

with two phenomenological form factors which are widely used in the CEνNS community:
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the Klein–Nystrand [38] form factor that is adapted by the COHERENT collaboration and

the Helm form factor [39]. Note that we also show an adapted version of the Klein–Nystrand

form factor that will be described in more detail in our discussion of form factor predictions,

later in this section.

After validating our approach, we make predictions for the weak form factor of 40Ar in

Fig. 7 (right). There is no data available for the weak form factor on argon yet. We compare

our results with the prediction of Payne et al. [40], Yang et al. [41] and Hoferichter et al. [43]

as well as with the Helm form factor [39], the Klein–Nystrand [38] and an adapted version of

the Klein–Nystrand form factor. Overall, the shape and structure of the weak form factor is

similar to the charged one, but the positions of minima and maxima are somewhat different.

In our HF–SKE2 approach the first minimum of Fch(q) is at q ∼ 1.23 fm−1 while for FW(q)

it lies at q ∼ 1.19 fm−1, pointing to the fact that the neutron distribution extends further

out compared to the proton one. To quantify differences between the charge and weak form

factor, in Fig. 3 we show the “weak-skin” form factor of 40Ar using Eq. (23).

In order to appreciate which values of momentum transfer q are involved at different

neutrino energies, as well as to see at which q values the differences in the nuclear modeling

start causing discrepancies in reaction strength predictions, we plot cumulative cross sections

for 40Ar at several neutrino energies and for different models in Fig. 8. This is defined as

the total cross section strength, integrated up to a cutoff value qcutoff in the momentum

transfer:

σ(qcutoff ) =

∫ qcutoff

0

dσ(q)

dq
dq (24)

The model differences become stronger for increasingly high energies with discrepancies

originating from the higher–q regions of the elastic form factor. The range of cutoff values

also coincides with all kinematically available momentum transfers. At 100 MeV e.g., 40Ar

is only probed up to q ≈ 1fm−1.

In Fig. 9, we show differential cross sections on 40Ar as a function of recoil energy T , and

scattering angle θf , for different incoming neutrino energies according to Eq. (9) and (11).

For comparison, we have also plot the case with no nuclear structure effects i.e. F (Q2) = 1.

The effects of nuclear structure physics are more prominent as the neutrino energy increases.

Most of the cross section strength lies at the lower–end of the recoil energy spectrum and for

forward scattering as the cross section falls off rapidly at higher T (top panels) and higher

θf values (bottom panels). Most CEνNS detectors are sensitive only to the recoil energy
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FIG. 7. (color online) (Left) The 40Ar charge form factor predictions compared to elastic electron

scattering data taken from Ref. [70], a comparison is also performed with the coupled–cluster theory

predictions of Payne et al. [40] as well as with Klein–Nystrand [38] (standard and adapted) and

Helm [39] form factors. (Right) The 40Ar weak form factor predictions compared with calculations

of Payne et al. [40], Yang et al. [41], Hoferichter et al. [43] and with the predictions of Klein–

Nystrand [38] (standard and adapted) and Helm [39] form factors.

deposited in the detector but, in principle, in the future more advanced detector technologies

might enable measurement of both nuclear recoil and angular distribution simultaneously.

Utilizing such additional information can be valuable in disentangling new physics signals

in CEνNS experiments [46].

In Fig. 7 (right), we come back to the differences between various predictions. Differ-

ent form factor approaches are based on different representations of the nuclear densities,

with no experimental data to constrain neutron distributions. Identifying the size of the

differences between various theoretical predictions is crucial as experiments have to assign

any deviation from expected event rates either to new physics or to unconstrained nuclear

physics. We compare six predictions. These include four nuclear theory approaches: the

HF–SkE2 calculation of this work, the predictions of Payne et al. [40], and the RMF cal-

culations of Yang et al. [41] where form factors predictions are informed by properties of

finite nuclei and neutron star matter, and the predictions of Hoferichter et al. [43] where

form factors are calculated using a large–scale nuclear shell model. They also contain two

phenomenological approaches: the Helm [39] and Klein–Nystrand [38] form factors where
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40Ar

FIG. 8. (color online) The 40Ar cumulative cross section as a function of qcutoff compared with

calculations done using Payne et al. [40], Yang et al. [41], as well the Klein–Nystrand [38] (standard

and adapted) and Helm [39] form factors.

density distributions are represented by analytical expressions.

In the Helm approach [39] the density distribution is described as a convolution of a

uniform nucleonic density with a given radius and a Gaussian profile characterized by the

folding width s, accounting for the nuclear skin thickness. The resulting form factor is

expressed as:

FHelm(q2) =
3j1(qR0)

qR0

e−q
2s2/2, (25)

where j1(x) = sin(x)/x2 − cos(x)/x is a spherical Bessel function of the first kind. R0 is an

effective nuclear radius given as: R2
0 = (1.23A1/3 − 0.6)2 + 7

3
π2r20 − 5s2 with r0 = 0.52 fm

and s = 0.9 fm, fitted [71, 72] to muon spectroscopy and electron scattering data compiled

in [30]. The Klein–Nystrand (KN) form factor, adapted by the COHERENT Collaboration,
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FIG. 9. (color online) Differential cross section on argon as a function of recoil energy and scattering

angle.

is obtained from the convolution of a short–range Yukawa potential with range ak = 0.7 fm

over a Woods–Saxon distribution approximated as a hard sphere with radius RA = 1.23A1/3

fm [38]. The resulting form factor is expressed as:

FKN(q2) =
3j1(qRA)

qRA

[
1

1 + q2a2k

]
. (26)

An adapted version of the KN form factor is often used, where RA is defined as RA =√
5
3
r20 − 10a2k utilizing measured proton rms radii r0 of the nucleus [16, 63]. We show both

the standard and the adapted (ad.) KN form factor. For the adapted one we use r0 = 3.427

fm, the measured proton rms radii of 40Ar [31].

We attempt to quantify differences between different form factors and the CEνNS cross

section due to different underlying nuclear structure details. We consider quantities that

emphasize the relative differences between the results of different calculations, arbitrarily

using HF–SkE2 as a reference calculation, as follows:

|∆F i
W(q)| =

|F i
W(q)− FHF

W (q)|
|FHF

W (q)| , (27)
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and

∆σiW(E) =
|σiW(E)− σHF

W (E)|
σHF
W (E)

, (28)

where i refers to calculations from different approaches as discussed above.

The relative differences are shown in Fig. 10. We show only the low–momentum part of

the weak form factor to a maximum value of q = 0.5 fm−1 (∼ 100 MeV) that corresponds

to a maximum incoming neutrino energy of E ∼ 50 MeV, as shown in Fig. 8. The relative

differences are shown on a linear scale. At smaller energies the momentum transfer is low and

hence the differences between form factors are also small. For higher energies the available

momentum transfer increases and therefore the differences between the form factors become

more prevalent. The differences in model predictions amount to < 7.5% over the entire

momentum transfer range. The differences rise rapidly at the higher end of the q range.

This translates into relative differences in CEνNS cross sections, ∆σ(E), of < 5% over the

whole energy range, where E . 55 MeV, relevant for neutrinos from pion decay-at-rest.

Note that most of the strength in the cross section lies at the lower T end (and therefore at

the lower q end), as we have seen in Fig. 9.

The CEνNS cross section on 40Ar as a function of the neutrino energy is shown in Fig. 11

(left). We also show recent flux–averaged measurements performed by the COHERENT
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FIG. 11. (color online) (Left) The CEνNS cross section on 40Ar as a function of neutrino energy,

recent flux–folded measurement by the COHERENT collaboration [5] is shown along with the

flux-folded HF–SkE2 prediction. (Right) Flux–averaged CEνNS cross sections as a function of

neutron number for the 12C, 16O, 40Ar, 56Fe and 208Pb nuclei. We also show 40Ar data measured

by COHERENT [5].

collaboration [5]. Measurements from two analyses are included, with the horizontal bars

indicating the minimum value set by the nuclear recoil threshold energy for each analysis.

The flux–averaged measured cross section is 2.2 ± 0.7 × 10−39cm2 (average of both analyses),

while the HF-SkE2 predicted flux–averaged cross section is 1.82 × 10−39cm2. The total

experimental error is dominated by statistics, amounting to ∼ 30%. Future measurements

by ton–scale LAr detector at SNS and 10–ton LAr detector CCM at LANL will be able to

provide more precise measurements of the CEvNS cross section on 40Ar. In Fig. 11 (right),

we also show flux–folded cross sections as a function of neutron number for all five nuclei

– 12C, 16O, 40Ar, 56Fe and 208Pb – considered in this paper. As expected, the deviation of

F (Q2) = 1 from the full HF-SkE2 calculation becomes more prominent as the number of

neutrons, and hence the influence of nuclear structure effects, increases. Also included is the

40Ar data measured by COHERENT [5].

CEνNS liquid argon detectors at stopped–pion sources are well suited to measure inelastic

cross sections as well. Inelastic cross section measurements on 40Ar will provide powerful

constraints on supernova detection capabilities of future kiloton liquid argon experiments

such as DUNE [65]. In view of this, in Fig. 12 we present CC (left) inelastic (νe,
40Ar)

and NC (right) inelastic (ν,40Ar) cross sections for energies relevant to pion decay–at–rest
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FIG. 12. (color online) Charged-current (left) and neutral-current (right) inelastic cross section:

total as a function of neutrino energy shown along with contributions from different multipoles (top

panel), differential as a function of excitation energy (middle panel) and as a function of lepton

scattering angle (bottom panel) for fixed neutrino energies, Eν = 30 and 50 MeV.
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neutrinos. These cross sections are calculated by incorporating the CRPA approach on top

of the initial HF–SkE2 nuclear picture.

The top panels in Fig. 12 show total cross section as a function of incoming neutrino

energy along with separate contributions coming from the dominating individual multipoles.

In both CC and NC case, most strength arises from 1−, 1+ and 2− multipoles. The 0+ and 0−

transitions contribute only minimally to the total reaction strength for excitations into the

continuum and are not shown here. Still, it is clear that a considerable part of the strength

stems from forbidden transitions. The middle panels show the differential cross sections as

a function of excitation energy ω for two incoming neutrino energies Eν = 30 MeV and 50

MeV. As the energy increases, more resonance peaks show up as an increasing number of

excitations becomes accessible. Differential cross sections are folded with a Lorentzian of

width 3 MeV in order to account for the finite width of the resonances [55]. The bottom

panels show the differential cross sections as a function of the direction of the outgoing

lepton scattering angle cos θf for two incoming neutrino energies Eν = 30 MeV and 50 MeV.

The differential cross sections in scattering angles favor backward scattering.

IV. CONCLUSIONS

The experimental observation of coherent elastic neutrino–nucleus scattering processes

by the COHERENT collaboration has inspired physicists across many fields. The power

of CEνNS as a probe of BSM physics and its potential for determining neutron density

distributions is becoming more and more apparent. The main uncertainty in the evaluation

of the CEνNS cross sections is driven by the weak form factor that encodes the entire nuclear

structure contribution to the CEνNS cross section.

We presented microscopic nuclear physics calculations of charge and weak nuclear form

factors and the CEνNS cross section on 12C, 16O, 40Ar, 56Fe and 208Pb nuclei. We obtain

neutron (proton) densities and weak (charge) form factors by solving the Hartree–Fock

equations with a Skyrme (SkE2) nuclear potential. Our predictions for 208Pb and 40Ar

charge form factors describe elastic electron scattering data remarkably well.

After validating 40Ar charge form factor calculations, we make predictions for the 40Ar

weak form factor. Thereby, we calculate differential cross section as a function of recoil en-

ergy and neutrino scattering angle. We attempt to gauge the level of theoretical uncertainty

24



pertaining to the description of 40Ar form factor and CEνNS cross section by comparing

relative differences between recent nuclear theory and widely–used phenomenological form

factor predictions. We compare our 40Ar prediction with recent measurements of the CO-

HERENT collaboration. Future precise measurements of CEνNS with ton and multi–ton

detectors will aid in constraining neutron densities and weak nuclear form factor that will

in turn improve prospects of extracting new physics through CEνNS.

Furthermore, we calculate inelastic charged–current and neutral–current cross section

on 40Ar within the same formalism, and comparing the strength of coherent and inelastic

processes. We present total and differential cross sections as a function of excitation energy

and lepton scattering angle for neutrino energy relevant for pion decay–at–rest neutrinos.

CEνNS experiments at stopped–pion sources are well-suited to measure these inelastic cross

sections and can provide powerful constraints on supernova detection capabilities of future

kiloton liquid argon experiments.
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