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1 4 U ni v e r si t à d e gli S t u di di Mil a n o & I N F N, S e zi o n e di Mil a n o, Vi a C el o ri a 1 6, 2 0 1 3 3 Mil a n o, I t al y

R e c ei v e d: d a t e / A c c e p t e d: d a t e

A b s t r a c t We pr e s e nt a n u p d at e of t h e U ni v e r s al Fe y n-
R ul e s O ut p ut m o d el f or m at, c o m m o nl y k n o w n a s t h e
U F O f or m at, t h at i s u s e d b y s e v er al a ut o m at e d m atri x-

el e m e nt g e n er at or s a n d hi g h- e n er g y p h y si c s s oft w ar e.
We d et ail di ff er e nt f e at ur e s t h at h a v e b e e n pr o p o s e d
a s e xt e n si o n s of t h e i niti al f or m at d uri n g t h e l a st t e n
y e ar s, a n d c oll e ct t h e m i n t h e c urr e nt s e c o n d v er si o n of
t h e m o d el f or m at t h at w e c oi n t h e U ni v e r s al Fe y n m a n
O ut p ut f or m at. F oll o wi n g t h e i niti al p hil o s o p h y of t h e
U F O, t h e y c o n si st of fl e xi bl e a n d m o d ul ar a d diti o n s t o
a d dr e s s p arti cl e d e c a y s, c u st o m pr o p a g at or s, f or m f a c-
t or s, t h e r e n or m ali s ati o n gr o u p r u n ni n g of p ar a m et er s
a n d m a s s e s, a n d hi g h er- or d er q u a nt u m c orr e cti o n s.

B O N N - T H - 2 0 2 3 - 0 3 , D E S Y - 2 3 - 0 5 1 , F E R M I L A B - P U B - 2 3 - 1 3 8 - T , K A - T P - 0 6 - 2 0 2 3 ,

M C N E T - 2 3 - 0 6 , P 3 H - 2 3 - 0 2 3 , T I F - U N I M I - 2 0 2 3 - 1 1

1 I n t r o d u c ti o n

D uri n g t h e l a st 2 5 – 3 0 y e ar s, s e v er al hi g h- e n er g y p h y si c s

s oft w ar e p a c k a g e s h a v e b e e n d e v el o p e d t o e x pl or e t h e
el e ctr o w e a k s c al e a n d g et i nf or m ati o n o n t h e p o s si bl e
p h y si c s b e y o n d t h e St a n d ar d M o d el ( B S M). T y pi c al e x-
a m pl e s of s u c h pr o gr a m s t ar g et t h e si m ul ati o n of e v e nt s
at hi g h- e n er g y c olli d er, fi x e d-t ar g et or n e utri n o e x p er-

a E- m ail: f u k s @l p t h e.j u s si e u.f r

i m e nt s, t ot al a n d di ff e r e nti al cr o s s s e cti o n c al c ul ati o n s
f or m a n y pr o c e s s e s i n t h e St a n d ar d M o d el ( S M) a n d
b e y o n d it, a s w ell a s t h e c o m p ut ati o n of d ar k m att er
o b s er v a bl e s. T h e s e s oft w ar e t o ol s g e n er all y r e q uir e a s
i n p ut, i n o n e f or m or a n ot h er, t h e p arti cl e s p e ctr u m
of t h e m o d el, t h e li st a n d t h e v al u e s of all p ar a m et er s
t h at a p p e ar i n it s L a gr a n gi a n, a s w ell a s t h e li st of all
i nt er a cti o n v erti c e s a m o n g t h e di ff er e nt p arti cl e s. Hi s-
t ori c all y, e a c h pr o gr a m f oll o w e d it s o w n f or m at t o i n p ut
t h e m o d el i nf or m ati o n, wit h it s o w n c o n v e nti o n s a n d r e-
stri cti o n s o n t h e s u p p ort e d str u ct ur e s i n a L a gr a n gi a n.
T hi s s e v er el y li mit e d t h e p ort a bilit y of a m o d el, a n d
c o n s e q u e ntl y m ulti pli e d t h e w or kl o a d f or t h e i m pl e m e n-
t ati o n a n d v ali d ati o n i nt o s e v er al t o ol s a s a d v o c at e d
i n [1 ].

T h e U F O f or m at [ 2 ] w a s pr o p o s e d a s a s ol uti o n t o
t hi s i s s u e, b y i ntr o d u ci n g a n e w w a y t o p a s s m o d el i n-
f or m ati o n t o hi g h- e n er g y p h y si c s s oft w ar e. It s g o al i s
t o pr o vi d e a fl e xi bl e a n d f ull y g e n eri c f or m at t h at g o e s
b e y o n d e xi sti n g f or m at s i n t h e s e n s e t h at n o a s s u m p-

ti o n o n t h e s u p p ort e d str u ct ur e s a p p e ari n g i n t h e m o d el
i s e nf or c e d. All t h e m o d el i nf or m ati o n i s st or e d i n a n
a b str a ct f or m, i. e. i n d e p e n d e nt of t h e s oft w ar e. It i s
t h e n u p t o t h e t o ol u si n g t h e U F O m o d el t o e nf or c e
t h eir r e stri cti o n s at r u n ti m e. T h e U F O r e pr e s e nt ati o n
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of the particle physics model has been chosen to rely
on Python objects defined through a set of attributes
that encode physical properties so that the model could
be straightforwardly accessed and parsed by any high-
energy physics tool. One of the advantages of the design
choices made is that the UFO is modular. Additionally
the format is easily expandable to include new pieces
of information not originally considered. These design
choices allowed later developments that permitted the
inclusion of decay width information [3], modifications
of the propagators associated with any given field [4],
renormalisation group running effects impacting some
of the model’s parameters and masses [5], and ingredi-
ents relevant to higher-order perturbative calculations
in quantum field theories [6].

With the present paper, we take the opportunity to
collect all these recent developments in a single docu-
ment, describe (for the first time) how to embed form
factors in UFO models, and how to include missing
information relevant to the automated calculations of

electroweak corrections in the Sudakov approximation
for collider processes. In section 2, we begin with a gen-
eral description of the UFO format. We provide addi-
tional details on the philosophy of the UFO format,

describe the structure of how the model information is
organised in several Python files, and put a particu-
lar emphasis on (optional) recommendations useful for

making UFO models traceable. Section 3 is dedicated
to the original UFO format, and we describe all manda-
tory files that should be included in a UFO model. In

section 4, we detail how optional components can be
added to a UFO model, and collect information on the
inclusion of custom propagators, renormalisation group
running effects, decay widths and form factors. Finally,

section 5 focuses on higher-order computations and how
ingredients relevant to this context could be included
in the UFO format, both in general and for the specific
case of electroweak corrections in the Sudakov approx-
imation. We summarise our work in section 6.

2 The UFO format

2.1 The evolution of the UFO format

The aim of this section is to provide a general overview
of the UFO 2.0 format for new physics models, that we
propose to call the Universal Feynman Output (UFO)

format in order to distinguish it from the initial ver-
sion [2] released a decade ago. In the following, we em-
phasise the philosophy behind the UFO format, as well
as its general structure. The content of the different
files included in a UFO model and the associated syn-

tax are discussed in more detail in dedicated subsequent
sections.

A UFO model consists of a set of Python files that
can be used with a large class of publicly available com-
puter packages relevant for high-energy physics calcu-
lations. The UFO format has been built around the
philosophy that a model implementation should be in-
dependent of the software tool that uses it. This makes
it possible to have a single model implementation work-
ing across different computer codes and platforms, mak-
ing it relevant for assessing the phenomenology relevant
for different classes of experiments (targeting, for in-
stance, dark matter, high-energy collider or neutrino
experiments). The UFO standard achieves this by rep-
resenting the model information, namely the model’s
particles, parameters and vertices, in terms of Python
objects whose attributes collect their properties. It is
then up to the computer code that uses the model im-
plementation to read in these files, and to process their
content correctly. In case the code has restrictions on

the type of models, an exception is raised and informs
the user that the implementation cannot be reliably
used.

The first version of the UFO format [2] was released
a decade ago. It has changed the way particle physics

models in general, and theories beyond the SM in par-
ticular, are implemented in high-energy physics soft-
ware. Whilst the UFO format initially targeted specif-
ically the implementation of particle physics models

in matrix element and event generators dedicated to
studies at the leading-order (LO) accuracy in pertur-
bation theory, it is currently supported by a larger list

of high-energy physics software tools. This list includes
Achilles [7,8], Comix [9], Contur [10], GoSam [11,
12], Herwig 7 [13,14], MadAnalysis 5 [15,16], Mad-
DM [17–19], MadGraph5 aMC@NLO [20, 21], Re-
cola 2 [22], Sherpa [23, 24] and Whizard [25–27].

Since its inception, the UFO format underwent sev-
eral extensions to accommodate the specification of ad-
ditional model information which is not part of its orig-
inal documentation [2], such as the decay width of par-
ticles beyond the SM [3], information on non-standard
propagators [4], the renormalisation group running of
the model’s parameters [5], and ingredients relevant to
automated next-to-leading order (NLO) computations.
In the latter case, the documentation has never been
collected in a single document, despite being at the

heart of the frameworks introduced in [6,20,21]). In par-
ticular, UFO models suitable for NLO calculations have
become standard in high-energy phenomenology during
the last decade, a large variety of NLO-compatible UFO
models being now available (especially from the Feyn-
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Rules model database1). Although all extensions men-
tioned above are already being used by several codes,
there is no official documentation of the structure of the
UFO format beyond the original proposal. The main
purpose of this document is therefore to provide an up-
date of the UFO documentation, which contains all the
features relevant for computations beyond LO accuracy.

Before starting to discuss the general outline of a
UFO model implementation, let us first make a com-
ment about the name. Originally, the acronym UFO
stood for ‘Universal FeynRules Output’. The origin of
this name can be traced back to the fact that in its
original conception UFO files were produced by Feyn-
Rules [28] only. For a few years now, UFO files can
also be generated from a user-defined Lagrangian by
other computer codes such as LanHep [29, 30] and
Sarah [31,32]. For this reason we deem it more appro-
priate to remove the explicit reference to FeynRules
from the name of the UFO format, and the acronym
UFO henceforth now stands for ‘Universal Feynman
Output’.

2.2 General file structure of the UFO

In the remainder of this paper we discuss in detail
the structure of the files contained in a UFO model.

All the files, collected in a single directory, must be
valid Python files, therefore with a file extension .py.
Whereas most files are model-specific and contain the
definition of the objects relevant to each model (e.g.

particles and parameters), some of the files are model-
independent and contain Python-code objects defin-
ing, for instance, the Python classes used in a UFO

model.
The following model-specific files are mandatory in

any valid UFO model directory,

– particles.py

– parameters.py

– vertices.py

– lorentz.py

– couplings.py

– coupling_orders.py

– function_library.py

These files contain the basic definitions related to a
model. If a model is to be used for computations be-
yond LO accuracy, three extra files are mandatory and
must be included,

– CT_vertices.py

– CT_couplings.py

1See the webpage http://feynrules.irmp.ucl.ac.be/wiki/

NLOModels.

– CT_parameters.py

Moreover, in the specific case of electroweak corrections
in the high-energy (Sudakov) approximation, this list
must be complemented by an additional file that is de-
scribed in this document for the first time,

– CT_ewcasimirs.py

Finally, every UFO directory may contain certain op-
tional files, which specify additional model information,

– form_factors.py

– decays.py

– propagators.py

– running.py

The content of these files is described in detail in sec-
tion 4, so that we limit ourselves here to highlighting
some features that are common to all of them.

Each file defines a list of objects. The classes that
can be used are predefined and included in the manda-
tory file object_library.py (see below), and only stan-
dard Python syntax is allowed. Several of the files de-

fine analytic expressions for interaction vertices or cou-
pling constants in the theory. All standard arithmetic
operations in Python can be used to write such an-

alytic expressions in the UFO format, augmented by
some special symbols whose meaning is described in
subsequent sections together with the precise syntax.

Besides these model-specific files which are at the
heart of every UFO implementation, there are a couple

of mandatory model-independent files that need to be
included in every valid UFO directory,

– object_library.py

– __init__.py

together with the optional file

– write_param_card.py

that has a specific practical use.

As already mentioned, the file object_library.py

contains the definition of all classes used in a UFO
model. It includes several lists providing easy access to
the full content of the model within the code. In other
words, all declared objects within a UFO must appear
in these lists. The list all_particles collects all parti-
cle declarations (as instances of the Particle class; see
section 3.1), and the list all_parameters gathers all
parameter declarations (as instances of the Parameter

class; see section 3.2). The elements required for the

description of the model interactions (see section 3.3)
are spread over the list all_vertices that collects all
vertex declarations (as instances of the Vertex class;
see section 3.3), the list all_couplings that collects
all coupling declarations (as instances of the Coupling

http://feynrules.irmp.ucl.ac.be/wiki/NLOModels
http://feynrules.irmp.ucl.ac.be/wiki/NLOModels
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class), the list all_lorentz that includes all Lorentz
tensors appearing in the model vertices (declared as
instances of the Lorentz class), and finally the addi-
tional list all_coupling_orders that contains a list
of tags allowing certain vertices of the model to be
flagged (these tags being declared as instances of the
CouplingOrder class). In addition, the Python file
object_library.py also includes a list all_functions
whose role is to gather all Function objects instanti-
ated in the model (see section 3.4).

The content of the files function_library.py and
write_param_card.py is detailed in sections 3 and 4.
We only focus here on the file __init__.py. This file
identifies the content of a UFO directory as a valid
Python module that can be loaded with the stan-
dard command import, and it may contain any valid
Python command that should be evaluated when the
model is loaded. In particular, the file __init__.py im-
ports all other Python files relevant to the model, and
it additionally allows users to add general information
about the model, as shown in the following example:

__author__ = "H. Solo, C. Bacca"

__date__ = "06.03.2023"

__model_version__ = "1.0"

__arxiv__ = "2304.NNNNN"

__UFO_version__ = "2.X"

__python_version__ = [2,3]

The first three variables (__author__, __date__ and
__model_version__) provide information on the im-
plementation and its author(s), whereas the __arxiv__

variable enables the connection of a given UFO model
to a publication released on the arXiv. Setting the vari-
able __UFO_version__ to "2.X" indicates that the mo-
del implementation includes features documented in the
present paper, and the __python_version__ variable
refers to the version of Python with which the UFO is

compatible (namely 2 and/or 3 at present time). While
such an electronic signature of the model is not manda-
tory, we recommend users to include it for traceability
reasons. Depending on the moment at which a UFO
model has been generated and that at which it is used
within a code, incompatibilities between Python ver-
sions may occur. While we suggest to update existing

UFO models so that they become Python 3 compati-
ble, it is up to the code using UFOs to make sure that
Python version compatibility is addressed properly
and internally. For instance, GoSam, Herwig 7 and
MadGraph5 aMC@NLO convert UFO models com-
patible with Python 2 to their Python 3 equivalent
in order to use them.

Finally, users can include information on the gauges
available for the model implementation. This is achieved

through the variable gauge that contains a list of inte-
gers, as for instance in

gauge = [0,1]

The value 0 refers to the unitarity gauge, whereas the
value 1 stands for the Feynman gauge. Other integer
values are allowed, provided that they are consistently
defined in the UFO model, in particular through appro-
priate definitions in the files parameters.py (for gauge
parameters like ξ in the Rξ gauge) and propagators.py

(for custom propagator expressions).

3 Mandatory components

The dynamics of a particle physics model at tree-level
is encoded in the UFO format within a small set of
mandatory files. This contains the description of the
particle spectrum (particles.py), the model param-
eters (parameters.py) and the different interactions
between the model particles (whose implementation is
spread over the three files vertices.py, couplings.py

and lorentz.py). In addition, two extra files are nec-
essary. The first of them, coupling_orders.py, details
tags allowing certain vertices of the model to be flagged,
whereas the last one, functions_library.py, is ded-

icated to the implementation of user-defined functions
that can be used anywhere in the UFO model. The
content of all these files is described in the following

subsections.

3.1 Particles

All physical particles of a model are declared as in-
stances of the class Particle in the file particles.py.
UFO models are generally defined in terms of the phys-
ical, propagating, mass eigenstates. Unphysical gauge

eigenstates and non-propagating auxiliary fields are thus
ignored in most implementations, with the exception of
optional ghost and Goldstone fields that may be needed
depending on the gauge chosen. However, it is always
possible to include specific auxiliary fields in an imple-
mentation if needed (see also the end of this subsection).

A Particle object is defined through various attributes
specifying the particle name and properties, including
its quantum numbers. As an illustration, we consider a
possible UFO implementation for a heavy top quark t′,

tp = Particle(

pdg_code = 8,

name = 'tp ',
antiname = 'tp∼',
spin = 2,

color = 3,
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mass = Param.MTP ,

width = Param.WTP ,

texname = 'tp ',
antitexname = 'tp∼',
charge = 2/3,

LeptonNumber = 0

)

The particle is identified by its name (the name at-
tribute taken to be tp in the present example), its spin
and colour representations (given as the value of the
spin and color attributes), its mass and width (the
value of the mass and width attributes, given in GeV)
and its electric charge (given as the value of the charge

attribute, in units of the proton’s electric charge). The
tp symbol that appears on the left-hand side of the
equality represents a unique Python identifier that is
further used internally within the model to refer to that
particle. It has thus to follow Python requirements
for names of variables. However, this identifier will not

appear within any of the lists introduced in the file
object_library.py, that include instead the objects
themselves. All Particle objects instantiated within a

UFO model must therefore have unique name attribute
values, as this is how they should be referred to within
any code using UFOs, in addition to unique Python

identifiers. In addition, such a constraint holds for all
the other classes of objects introduced below: two in-
stances of a given class must have different name at-
tributes2.

In the UFO conventions, the spin representation has
to be provided in the 2s + 1 form where s denotes
the particle spin. Whereas any s values are allowed at

the UFO level, none of the tools currently employing
UFO models are compliant with spins s > 2. More-
over, setting spin = -1 identifies ghost fields. Simi-
larly, whereas users are free to assign any colour rep-
resentation for a particle in a model, tools currently
making use of UFO models support at most the trivial,
(anti)fundamental, (anti)sextet and adjoint representa-
tions. These choices can be made by setting the color

attribute to 1, ±3, ±6 and 8.

Information on the particle mass and width are pro-
vided by referring to the corresponding model param-
eters. In the considered example, the mass and width

attributes of the tp particle are set to MTP and WTP,
that are both declared in the file parameters.py (see
section 3.2). Parameter declarations must consequently

2In the case where a given UFO model has to be used within
a toolchain involving a parton showering and hadronisation
program, it is best to also avoid using the names of standard
mesons and hadrons, like eta and sigma.

be imported prior to the declaration of any particle, i.e.
by inserting at the beginning of the file particles.py:3

import parameters as Param

The UFO conventions allow users to associate a par-
ticle with its corresponding antiparticle. This is achieved
through the antiname attribute of the Particle class,
which must be set to the name of the Particle ob-
ject representing the antiparticle. The latter is itself
declared either as above (with some of the attribute
values swapped or modified) or through the more eco-
nomical method anti(),

tp__tilde__ = tp.anti()

This method of the Particle class is defined in the
file object_library.py, and it automatically instan-
tiates an antiparticle from the corresponding particle
object. The TEX version of the particle and antiparti-
cle names are respectively provided as the value of the

texname and antitexname attributes. In the case of a
self-conjugate particle, all antiparticle attributes must
be set to the same value as their particle counterparts.

Most high-energy physics programs dealing with par-

ticles often internally identify them through their Par-
ticle Data Group (PDG) identifiers [33]. In the UFO
format, such an identifier is stored as the value of the
pdg_code attribute of the Particle class, that has been

chosen to be 8 in the t′ example considered. While users
can technically assign any code to any particle, many
programs employing UFO models have the standard

identifiers provided in the PDG review [33] hard-coded
for common BSM particles. Inconsistent choices may
therefore lead to unexpected behaviours of these tools.
We recommend users to make use of existing identifiers
for particles already listed in the PDG review, and new
non-used identifiers otherwise.

While all the attributes described above are manda-
tory, additional optional attributes (like the attribute
LeptonNumber in the tp example considered) can be in-
cluded. The UFO format includes the five predefined at-
tributes line, goldstone, propagating, counterterm
and propagator. The first three attributes indicate how
to draw the particle propagator in a Feynman diagram
(the possible self-explanatory values of the attribute
line being 'dashed', 'dotted', 'straight', 'wavy',
'curly', 'scurly', 'swavy' and 'double'), whether
the particle is a Goldstone boson ('true') or not (de-
fault, 'false'), and whether it consists of a physical

field that propagates ('true', default) or of a non-
propagating auxiliary field ('false'). Information of

3For models that are Python 3-compatible, this should read,
according to standard conventions:
from . import parameters as Param
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the last two of these predefined optional attributes,
counterterm and propagator, is provided in sections 5
and 4.3 respectively.

Finally, any extra attribute appearing in the instan-
tiation of a Particle object (like U(1) quantum num-
bers such as LeptonNumber in the above example) rep-
resents a model-dependent quantum number whose sign
changes under the action of the anti() method relevant
for antiparticle objects.

3.2 Parameters

Model parameters (masses, couplings, mixing matrix el-
ements, etc.) are declared as instances of the Parameter
class in the file parameters.py. The UFO syntax dis-
tinguishes external and internal parameters. The for-
mer are the free parameters for which numerical values
have to be provided by the user, while the latter are
derived quantities related to other parameters (internal
and/or external) via algebraic relations. Accordingly, a

numerical value has to be provided for an external pa-
rameter whilst an analytical formula has to be given for
an internal parameter. The UFO format also includes
a third class of parameters, called constant parameters,

that are similar to external parameters except that their
value cannot be changed by the user. Equivalently, such
constant parameters could also be declared as internal

parameters for which the analytical expression is equal
to a numerical value. Consequently, the only possibility
to modify the value of a constant parameter is to edit

directly the file parameters.py.

A typical declaration of an external parameter would

be

tb = Parameter(

name = 'tb',

nature = 'external',

type = 'real',

value = 10.,

texname = '\\text{tb}',

lhablock = 'HMIX',

lhacode = [ 2 ]

)

In this example, we considered the parameter tan β that
is defined as the ratio of the vacuum expectation values
of the neutral Higgs fields in two-Higgs-doublet models,
and that is often taken as one of the external parameters
describing the Higgs sector of the model.

The above expression declares an instance of the
Parameter class called tb (the value of the name at-

tribute being tb). The nature of this parameter is ex-
ternal, as indicated by the value of the nature attribute

(that has been set to external). In contrast, this at-
tribute has to be fixed to internal or constant for
internal and constant parameters respectively (see be-
low for dedicated examples). In the above instantia-
tion, the tb parameter is imposed to be real, since
external parameters must all be real numbers. This is
achieved through the attribute type whose value is set
to real (the other possible option being complex). Con-
sequently, the value of the value attribute is a floating-
point number (10 in the above example). In addition,
the TEX version of the parameter name must be spec-
ified, as for particle names (see section 3.1), by setting
accordingly the texname attribute. In principle users
can choose the name of the parameters of a model freely,
some parameter names are reserved as lying at the heart
of higher-order calculations. We refer to section 5 for
more information.

The last two attributes in the above declaration,
namely lhablock and lhacode, refer to the way in

which external parameters are organised, following con-
ventions generalising the Supersymmetry Les Houches
Accord (SLHA) format [34,35]. In this scheme, the nu-

merical values of all the model parameters are collected
into specific blocks, and each parameter is identified
inside a block by one or more integer numbers called
counters. These counters consist of a single integer for

scalar parameters, and in a sequence of integers for ten-
sor parameters, the integers corresponding to the ten-
sor indices. Moreover, all the elements of a given tensor

must be part of the same Les Houches block. In the
case of the tan β declaration above, such a Les Houches
structure would correspond to

Block HMIX

2 1.000000e+01 # tb

In the UFO conventions, the name of the block ('HMIX')
is passed as the value of the lhablock attribute, while
the counter ([ 2 ]) is given as an array through the
value of the lhacode attribute. In the SLHA-based for-
mat, the numerical value of the parameter (1.00e+01
here) is given after the counter, followed by an optional

comment (referring in the above example to the param-
eter name).

Whereas the user can freely choose the names of the
various Les Houches blocks and how the counters are
organised, the SM parameters have to be correctly iden-
tified by any tool using a UFO model. For instance, if
the SM input parameters include the inverse of the elec-
tromagnetic coupling constant at the Z-pole α−1(mZ),

the Fermi constant GF and the strong coupling con-
stant at the Z-pole αs(mZ), then they have to be de-
fined as the first three entries of the SMINPUTS block,
the electromagnetic and strong coupling constants α, e
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and gs being in this case internal quantities.4 In addi-
tion, masses and widths must be assigned to the blocks
MASS and DECAY, the counter being the PDG code of the
particle. We refer to the FeynRules manual [28] and
the description of the SLHA format [34, 35] for more
information on these conventions. Finally, UFO mod-
els suitable for higher-order calculations should include
the blocks LOOP and TECHNICAL, that contain specific
parameters relevant for programs handling calculations
beyond LO. Their role is detailed in section 5.

This SLHA-like structure associated with the or-
ganisation of the external parameters is irrelevant for
internal and constant parameters, so that instantia-
tion of the latter does not require users to provide val-
ues for the lhablock and lhacode attributes. More-
over, constant and internal parameters can be com-
plex quantities, in contrast with external parameters.
This is indicated by setting the type attribute to the
value complex. In the case of internal parameters, the
attribute value is fixed to a valid algebraic Python

expression represented by a string. This formula can
depend on any external, constant or internal parame-
ter already declared in the file parameters.py (i.e. on

any parameter appearing before in the file). For con-
stant parameters, a numerical value has to be provided
instead.

As an illustrative example, we show how to define
the cosine of the β angle. It can be derived from tan β
(defined as an external parameter earlier), and can be

declared in a UFO model as

cbeta = Parameter(

name = 'cbeta',

nature = 'internal',

type = 'real',

value = 'math.cos(math.atan(tb))',

texname = '\\cos\\beta'

)

after having properly imported the math module.

3.3 Interactions

The cornerstone of the UFO format consists of the way
in which interactions are implemented, following their
decomposition in a colour ⊗ spin space. Any generic
vertex V involving the interaction of n external particles

4There is no restriction on the adopted electroweak scheme.
Any choice has its conventions in terms of external and inter-
nal parameters, and on the manner to encode them in a Les
Houches structure. On the other hand, if the model allows for
the calculation of NLO electroweak corrections, then the cor-
responding renormalisation conditions have to be consistently
implemented, as discussed in section 5.

ϕ`iaii (pi) (i = 1, . . . , n) with spin indices `i (equivalently
denoting Dirac and Lorentz indices), colour indices ai
and four-momenta pi, could be decomposed as

Va1...an,`1...`n(p1, . . . , pn) =∑
i,j

Ca1...an
i Gij × L`1...`nj (p1, . . . , pn) . (1)

In this expression, the vertex V is decomposed into
a set of colour structures Ca1...an

i and spin structures
L`1...`nj (p1, . . . , pn), that are given as tensors in colour
and spin space respectively. After considering all the
model interactions, the resulting ensemble of structures
defines a colour and spin basis allowing for the decom-
position of any of the model vertices. Eq. (1) hence un-
derlines an economical way to define all the interactions
of the model, since a given spin or colour tensor could

be used in several vertices. The set of coordinates asso-
ciated with a specific vertex in the colour ⊗ spin basis
are given by the coupling strengths Gij . In version 2.0,

the UFO format only supports unbroken gauge groups
that comprise a single copy of SU(3) and any number
of U(1) factors, such as in the SM after electroweak

symmetry breaking.

As an example, we consider the four-scalar interac-

tion between right-handed up squarks and antisquarks
of the Minimal Supersymmetric Standard Model, whose
associated Feynman rule is given by:

ũc1
R

ũc2
R

ũc4†
R

ũc3†
R − 4ie2

9c2W

[
δc̄4c1δ

c̄3
c2 +δc̄3c1δ

c̄4
c2

]
− ig2

s

[
(T a)c̄3c2(T a)c̄4c1

+ (T a)c̄3c1(T a)c̄4c2

]
,

where c1 and c2 (c̄3 and c̄4) denote the fundamental
(anti-fundamental) colour indices of the two squarks
(antisquarks), a is a summed adjoint colour index, and
cW is the cosine of the electroweak mixing angle. More-
over, T a stands for the SU(3) generators in the funda-
mental representation, and gs and e are the strong and
electromagnetic coupling constant respectively. The UFO
decomposition of this vertex can be written as

(
δc̄4c1δ

c̄3
c2 δc̄3c1δ

c̄4
c2 (Ta)c̄3c2(Ta)c̄4c1 (Ta)c̄3c1(Ta)c̄4c2

)

×


−(4ie2)/(9c2W )

−(4ie2)/(9c2W )

−ig2s
−ig2s

× (1
)
.

(2)
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The colour basis C =
(
Cc1c2c̄3c̄4i

)
contains four ele-

ments,

C =

(
δc̄4c1δ

c̄3
c2 , δ

c̄3
c1δ

c̄4
c2 ,

(T a)c̄3c2(T a)c̄4c1 , (T a)c̄3c1(T a)c̄4c2

)
,

(3)

whereas the spin basis L contains a single element

L =
(
1
)
. (4)

Here the coordinates G =
(
Gij
)

are given as a 4 × 1
matrix of coupling strengths:

G =

(
− 4ie2

9c2W
, − 4ie2

9c2W
, −ig2

s , −ig2
s

)t
. (5)

The UFO format mimics this structure with the dec-

laration of the model vertices as instances of the Vertex
class in the file vertices.py. Each vertex is imple-
mented following its decomposition (1), that is passed

through five mandatory attributes (name, particles,
color, lorentz and couplings). In the case of the
four-squark vertex example considered, a possible in-
stantiation is:

V_1 = Vertex(

name = 'V_1',

particles = [

P.suR, P.suR,

P.suR__tilde__, P.suR__tilde__

],

color = [

'Identity(3,1)*Identity(4,2)',

'Identity(4,1)*Identity(3,2)',

'T(-1,1,3)*T(-1,2,4)',

'T(-1,1,4)*T(-1,2,3)'

],

lorentz = [ L.SSSS1 ],

couplings = {

(0,0):C.GC_1, (1,0):C.GC_1,

(2,0):C.GC_2, (3,0):C.GC_2

}

)

The first attribute name defines the name given to the
vertex (V_1 in our example). The list of particles outgo-
ing from the vertex is provided as an array of Particle

objects through the particles attribute of the Vertex

class. All employed particles must have been declared
in the file particles.py, and then imported in the file
vertices.py prior to the declaration of any vertex as

import particles as P

UFO colour tensor Description

1 Trivial tensor (for non-coloured par-
ticles)

Identity(2,1) Kronecker delta δı̄2 i1 , δa2a1 , or δᾱ2α1

T(1,2,3) Fundamental representation matrix
(Ta1)ı̄3 i2

f(1,2,3) Antisymmetric structure constant
fa1a2a3

d(1,2,3) Symmetric structure constant
da1a2a3

Epsilon(1,2,3) Fundamental Levi-Civita tensor
εi1i2i3

EpsilonBar(1,2,3) Antifundamental Levi-Civita tensor
εı̄1 ı̄2 ı̄3

T6(1,2,3) Sextet representation matrix
(Ta1

6 )ᾱ3α2

K6(1,2,3) Sextet Clebsch-Gordan coefficient
(K6)ı̄2 ı̄3α1

K6Bar(1,2,3) Antisextet Clebsch-Gordan coeffi-
cient (K6)ᾱ1

i2i3

Table 1 Elementary colour tensors that can be used to con-
struct the elements of the colour basis relevant for a given
UFO vertex. Fundamental, sextet, antifundamental and an-
tisextet colour indices are denoted as i, α, ı̄ and ᾱ, whilst a
denotes an adjoint colour index.

The four-squark example considered involves two in-

coming right-handed up squark (suR) and two incom-
ing right-handed up antisquarks (suR__tilde__), the
Particle objects suR and suR__tilde__ being declared
in particles.py (as detailed in section 3.1). The ver-

tex decomposition (1) is finally provided through the
color, lorentz and couplings attributes of the Vertex
class.

The color attribute refers to the array of elements
Ca1...an
i of the colour basis relevant to the vertex un-

der consideration. Each entry in this array is a poly-
nomial combination of the elementary colour tensors of

table 1, and the arguments of each tensor are positive
or negative integer numbers. Positive integers are used
to associate a colour index with one of the particles in-
coming to the vertex, the exact value referring to the
position of the particle in the list provided through the
attribute particles of the Vertex class. Negative inte-
gers must appear exactly twice in a monomial, and they
correspond to contracted (i.e. summed over) indices. In
the UFO conventions, the position of the first particle
in the list particles corresponds to 1, in contrast to
standard Python arrays. Moreover, it is up to users
to verify the consistency between the colour structures
appearing in a vertex definition and the representations

of the particles entering this vertex, as programs pro-
cessing UFO models may reject models in which the



9

UFO spin tensor Description

Identity(1,2) (Spinorial) Kronecker delta δs1s2

IdentityL(1,2) (Lorentz) Kronecker delta δµ1
µ2

Gamma(1,2,3) Dirac matrix (γµ1)s2s3

Gamma5(1,2) Fifth Dirac matrix (γ5)s1s2

ProjM(1,2) Left chirality projector ( 1−γ5

2
)s1s2

ProjP(1,2) Right chirality projector ( 1+γ5

2
)s1s2

Sigma(1,2,3,4) Sigma matrix (σµ1µ2)s1s2

C(1,2) Charge conjugation matrix Cs1s2

Metric(1,2) Minkowski metric ηµ1µ2

P(1,i) Incoming momentum of the ith particle
pµ1

i

Epsilon(1,2,3,4) Levi-Civita tensor εµ1µ2µ3µ4 (with
ε0123 = −ε0123 = 1)

Table 2 Elementary spin tensors that can be used to con-
struct the elements of the spin basis relevant to a given UFO
vertex. Spin and Lorentz indices are respectively denoted as
s and µ.

colour structures in a vertex do not match the colour
representations of the particles.

Eq. (2) shows that all the colour structures appear-
ing in the four-squark vertex can be implemented by the
sole use of Kronecker deltas (Identity) and fundamen-

tal representation matrices of SU(3) (T). Consequently,
the elements of the basis of (3) are implemented as

δc̄4c1δ
c̄3
c2  'Identity(4,1)*Identity(3,2)'

δc̄3c1δ
c̄4
c2  'Identity(3,1)*Identity(4,2)'

(T a)c̄3c2(T a)c̄4c1  'T(-1,2,3)*T(-1,1,4)'

(T a)c̄3c1(T a)c̄4c2  'T(-1,1,3)*T(-1,2,4)'

as illustrated in the declaration of the vertex V_1 above.
Similarly, all spin structures L`1...`nj (p1, . . . , pn) rel-

evant to a given vertex are collected into an array that
is passed through the lorentz attribute of the Vertex

class. The structures L`1...`nj are provided as Lorentz

objects, instead of being directly implemented at the
time of the vertex instantiation. These Lorentz objects

are then defined in the file lorentz.py, and they must
therefore be imported prior to the declaration of any
vertex in the file vertices.py file,

import lorentz as L

A Lorentz object is instantiated (in the file lorentz.py)
as in the following two examples (the first one being the
only one relevant for the considered four-squark inter-
action vertex),

SSSS1 = Lorentz(

name = 'SSSS1',

spins = [ 1, 1, 1, 1 ],

structure = '1'

)

VVSS1 = Lorentz(

name = 'VVSS1',

spins = [ 3, 3, 1, 1 ],

structure = 'Metric(1,2)'

)

All three attributes of each Lorentz object are manda-
tory. The first of them (name) indicates the name of the
object, the second (spins) the spins (in the 2s+1 nota-
tion) of the particles entering the vertex and the last one
(structure) the structure itself, provided as a polyno-
mial combination of the elementary tensors of table 2.
As in the colour case, the arguments of these tensors
are positive and negative integers, the positive ones be-
ing associated with the particles incoming to the vertex
(with the value referring to the position of the parti-
cle in the list spins), and the negative ones appearing
twice and corresponding to contracted indices (that are

therefore summed over). In this context, squared mo-
menta like p2

1 can be written as P(-1,1)**2. This is
interpreted exactly as P(-1,1)*P(-1,1) and allows for

concise expressions of Lorentz structures in UFO. Obvi-
ously, the -1 index must appear only once in this case.

In the case of the four-scalar vertex (2), the only

possible spin combination is the trivial one. This re-
quires us to use the SSSS1 object for the instantiation
of the vertex V_1. In contrast, the object VVSS1 involves

two vector bosons and two scalar particles (cf. the at-
tribute spins of the object VVSS1), and the structure
of its interactions relates the two bosons through the
Minkowski metric (cf. the attribute structure of the

object VVSS1). The corresponding UFO implementa-
tions for the structure of the Lorentz objects SSSS1

and VVSS1 are then

1 '1'

ηµ1µ2  'Metric(1,2)'

The last attribute of the Vertex class is related to
the coordinates Gij of the vertex in the colour ⊗ spin
basis. They are provided in the form of a Python dic-

tionary through the couplings attribute of the Vertex

class. This dictionary relates the coordinate (i, j), where
i and j refer to a specific colour and spin basis element
respectively, to the value of the corresponding coupling
strength given as a Coupling object. The list of all
Coupling objects necessary for the implementation of a
given model is declared in the file couplings.py, that
must therefore be imported prior to the declaration of
any vertex,

import couplings as C
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When a vertex is instantiated, only the non-vanishing
coordinates have to be included. In the four-squark ver-
tex considered, this therefore gives

(0, 0) C.GC_1 (1, 0) C.GC_1

(2, 0) C.GC_2 (3, 0) C.GC_2

where the integer counters follow this time a standard
Python numbering for the elements of an array (the
first element being thus associated with the index 0).
The example above illustrates the fact that the four-
squark vertex exemplified involves only two instances
of the Coupling class (GC_1 and GC_2), as also depicted
in (2).

The declaration of a Coupling object in the file
couplings.py is very similar to that of an internal pa-
rameter declaration (see section 3.2). For the two cou-
plings GC_1 and GC_2 necessary for the four-squark ver-
tex considered, this gives

GC_1 = Coupling(

name = 'GC_1',

value = '-(4*ee**2*complex(0,1))/(9.*cw**2)',

order = {'QED':2}

)

GC_2 = Coupling(

name = 'GC_2',

value = '-(complex(0,1)*G**2)',

order = {'QCD':2}

)

An instance of a Coupling object is declared with three
mandatory arguments, namely its name (name), the al-

gebraic coupling definition that could depend on any
of the model parameters (value), and a so-called cou-
pling order provided in the form of a Python dictio-

nary (order). In the case of the four-squark example
considered, the coupling strengths appearing in (5) are
directly provided as valid Python algebraic expres-
sions. The last attribute of a Coupling object, order,
is a Python dictionary that allows users to tag cer-
tain couplings of the model with one or more strings
(i.e. tags) to which a positive integer number is asso-
ciated. In the examples above, the tags QED and QCD

are associated with two physical quantities, the typical
strength of the electroweak and strong interactions. The
couplings GC_1 and GC_2 are hence flagged as couplings
with strengths proportional to two powers of the elec-
tromagnetic and strong coupling, respectively, as the
integer 2 is attached with each of the two tags involved.

It is not mandatory to use tags that actually refer to
a physical interaction. For instance, in the vector-like
quark UFO implementation of [36], a VLQ coupling or-
der is introduced in order to identify all vertices sup-
pressed by the mixing of a vector-like and a SM quark

(which is achieved by setting order = {'VLQ:1'} in
the relevant coupling declarations).

This coupling-order feature allows users to filter not
only vertices, but also the resulting Feynman diagrams.
This is generally achieved in practice through the in-
troduction of criteria depending on the type of inter-
actions involved in a vertex or a Feynman diagram.
For instance, the QED and QCD tags introduced in the
definition of the GC_1 and GC_2 couplings could allow
users to neglect (subdominant) electroweak diagrams
relative to (dominant) QCD diagrams (as numerically
α2
s ∼ α) when deriving the list of diagrams relevant to a

specific hadron-collider process.Moreover, in the vector-
like quark example briefly mentioned above, users could
enforce the list of relevant diagrams to include at most
one mixing suppression.

The tags that can be used for the instantiation of
the different Coupling objects have to be declared in
the file coupling_orders.py, each tag (or coupling
order) being implemented as an instance of the class

CouplingOrder. In our supersymmetric example (taken
from [37]), the model contains two independent classes
of interactions that are named QED (for interactions pro-
portional to the electromagnetic coupling e, and there-

fore the weak coupling g = e/sW with sW being the sine
of the electroweak mixing angle, or any of the model’s
Yukawa or supersymmetry-breaking multiscalar inter-

actions) and QCD (for QCD interactions). These tags
are declared as

QCD = CouplingOrder(

name = 'QCD',

expansion_order = 99,

hierarchy = 1,

perturbative_expansion = 1

)

QED = CouplingOrder(

name = 'QED',

expansion_order = 99,

hierarchy = 2

)

Whereas the examples above refer to coupling orders
associated with physical interactions, they can easily
be generalised to any other class of tags.

In the above example, the two CouplingOrder ob-
jects are instantiated by fixing three mandatory at-
tributes (name, expansion_order and hierarchy), to-
gether with one optional attribute for the QCD cou-
pling order (perturbative_expansion). The first of
the mandatory arguments, name, contains the name of
the coupling order, that also consists of the tag that

can be used for instantiation of Coupling objects. The



11

second attribute, expansion_order, refers to the max-
imum power of the interaction that could appear in a
single amplitude. This is particularly relevant for effec-
tive field theories in which amplitudes must be trun-
cated to some power of the high effective scale. In the
above examples, this attribute is fixed twice to 99, which
effectively indicates that there is no limit. The last
mandatory attribute, hierarchy, allows users to order
the couplings according to their relative magnitude. In
the above example, we enforce such a hierarchy, and we
impose α2

s ∼ α. This is achieved by assigning to the
coupling orders QCD and QED the hierarchies 1 and 2
respectively. Such a piece of information is relevant for
the implementation of diagram filters for a given pro-
cess,5 allowing users to select given contributions to an
amplitude according to the type of contributing inter-
actions. Setting the attribute hierarchy to 0 indicates
that the corresponding coupling order plays only a role
of a tag, and that there is no connection to the rel-
ative magnitude of the associated coupling orders. In
the vector-like quark model introduced above, the at-

tribute hierarchy of the coupling order VLQ is set to
0. This coupling order can hence be used to enforce the
maximum number of suppression factors due to VLQ-

SM mixing that can appear in a diagram, regardless of
the nature of the fundamental (QED or QCD) interactions
involved.

Finally, the perturbative_expansion attribute of

the QCD coupling order is set to 1 in the above example.
This implies that the UFO model contains all ingredi-
ents necessary for NLO calculations in QCD (see sec-

tion 5). If the attribute is unspecified, a default value of
perturbative_expansion = 0 is assumed, which im-
plies that only LO calculations in this coupling are sup-

ported.

3.4 The function library

The last mandatory component of a UFO model is
the file function_library.py. It includes user-defined
functions declared as instances of the Function class.
The UFO format supports functions that can be defined
within a single line in Python, the so-called Python
lambda functions. Python lambda functions offer the
advantage of being easily translatable into other pro-
gramming languages, and they are consequently the

5In most public UFO models, the tag QED is traditionally as-
sociated with both the usual QED interactions and all elec-
troweak interactions. Consequently, in the case of the top-
quark Yukawa coupling (that is thus a coupling of QED order),
the QCD/QED hierarchy mentioned in the text is not valid. The
QED tag is however anyway very useful for diagram filtering
purpose.

only functions that can be declared within the library
defined in the file function_library.py.

A Function object is defined through three manda-
tory attributes and two optional attributes. The manda-
tory attributes consist of the name of the function (name),
its arguments specified as a tuple of strings (arguments),
and the expression of the function itself given in terms
of its arguments. The latter must be provided as a string
that represents a valid Python expression, and it is
given as the value of the attribute expression. By de-
fault, all the arguments of the functions are considered
to be complex numbers. This behaviour can however
be superseded by providing a tuple of strings through
the optional attribute argstype of the Function class,
which allows users to specify the type of the differ-
ent arguments of the function. The supported types
are real numbers (real), complex numbers (complex),
and arrays of real or complex numbers (real[n] or
complex[n] for an n-dimensional array, respectively,
where n is an integer). The two tuples provided through
the attributes arguments and argstype must have the

same size. Similarly, the type of the result of the func-
tion is a complex number by default, but this behaviour
can be modified by specifying the type attribute of the

instantiated function, that can take the self-explanatory
values real, complex, real[n] and complex[n] (with
n being an integer).

Several functions are shipped by default with any
UFO model. This includes in particular a series of math-
ematical functions for which the Python module cmath
is insufficient. First, the function_library.py file con-

tains a set of tools that facilitate the treatment of com-
plex quantities (the real part of a complex number re,
its imaginary part im, and the complex conjugation

operation complexconjugate). Second, several trigono-
metric and cyclometric functions are implemented (the
cotangent cot, the secant sec and the cosecant csc

functions, together with their arcsecant asec and arc-
cosecant acsc counterparts).

As an illustration, we provide below a function re-
turning the real part of a complex number, as well as a
function associated with the secant of a complex num-
ber. These could implemented as

re = Function(

name = 're',

arguments = ('z'),

expression = 'z.real'

)

sec = Function(

name = 'sec',

arguments = ('z'),

expression = '1./cmath.cos(z.real)'



12

)

Furthermore, the file function_library.py of a
UFO model includes a generalised version of the Heav-
iside step function theta_function. It allows users to
make use of a variety of piecewise functions involving a
single condition, and it is implemented as a Function

object relying on the one-line Python if/else state-
ment,

theta_function = Function(

name = 'theta_function',

arguments = ('x','y','z'),

expression = 'y if x else z'

)

With this generalised function, the familiar one-para-
meter Heaviside function centred on x0 = 23,

Θ(x− 23) =

{
1 if x ≥ 23.
0 otherwise

, (6)

can be used through

theta_function(x>=23., 1., 0.)

The definition of Function objects also supports
the use of the model parameters instantiated in the file

parameters.py, as well as that of other functions. This
therefore allows for more complex expressions to be de-
fined in steps. As a complete example, we consider an
elastic atomic form factor Gel(t) [38],

Gel(t) =

(
Znuc.

1 + t/dnuc.

a2
nuc.t

1 + a2
nuc.t

)2

, (7)

which depends on the three nuclear physics parameters
Znuc., anuc. and dnuc.. Its implementation as a Function

object Gel reads

Gel = Function(

name = 'Gel',

type = 'real',

arguments = ('t'),

argstype = ('real'),

expression = '(Z_nuc/(1+t/d_nuc)*

a_nuc**2*t/(1+a_nuc**2*t))**2'

)

where Z_nuc, a_nuc and d_nuc are parameters of the

model defined in the file parameters.py. In this func-
tion, we imposed the arguments to be real quantities
(real), instead of complex ones (complex, that is also
the default) or real and complex arrays (for example
real[4] or complex[4] for the four-dimensional case).
Moreover, the output of the function is defined to be
a real number, instead of a complex one, which is the
default. We note that this output is not allowed to be
a list.

The complete form factor in our example should also
include an inelastic part Gin(t) [38, 39]. The latter can
be defined similarly as its elastic counterpart, namely as
another Function object Gin. The full implementation
of both contributions as a single Function object FF is
thus

FF = Function(

name = 'FF',

arguments = ('t'),

argstype = ('real'),

expression = 'math.sqrt(Gel(t) + Gin(t))'

)

in which we illustrate how a given Function object
could call other Function objects and standard Python
methods.

4 Optional components

In this section, we describe optional files that can be
included in a UFO model. These files allow users to
provide additional information about a model, and/or

equip a UFO with non-standard practical methods and
functions. One of these files (write_param_card.py)
defines a writer of the external model parameters in an

SLHA-like text file. This file was a mandatory compo-
nent in the first version of the UFO format [2] for the
sole reason that all files defining a model were manda-
tory. As it is not strictly necessary from the point of

view of the information defining a model, we benefit
from the possibility of having optional files in version 2
of the UFO to update its nature. The other optional files

are new and were introduced after the original release
of the UFO format. They are related to the addition of
custom propagators for specific particles of the model

as introduced in [4] (in the file propagators.py), de-
tail how to provide information about particle decay
widths following [3] (in the file decays.py) and about
the renormalisation group running of the model’s pa-

rameters as defined in [5] (in the file running.py), and
enable the usage of form factors in a UFO model, which
we document below for the first time. Moreover, it is
now also possible to directly add custom Fortran and
C++ functions in a UFO model. These functions are
defined in folders Fortran and Cpp respectively, and
they can be called in any algebraic expression intro-
duced in the other files of the model. This possibility is
briefly discussed in sections 4.2 and 5.2.

4.1 Outputting the values of the model parameters

The file write_param_card.py includes routines that

write all external model parameters, together with their
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numerical value, into a text file following an SLHA-
like format [34, 35]. In the output file, the parameters
and their values are organised in Les Houches blocks
and counters, as specified by the user with the parame-
ter declarations implemented in the file parameters.py
(cf. the lhablock and lhacode attributes of the differ-
ent parameters; see section 3.2).

The output file, named param_card.dat, is gener-
ated by issuing in a shell the command

python write_param_card.py

In addition to the model external parameters and their
value, the output file includes QNUMBERS blocks [40] with
information on the quantum numbers of all the parti-
cles of the model, as well as all particle masses and de-
cay widths regardless of their external/internal nature.
Examples of such a write_param_card.py file can be
obtained from the model database of FeynRules.6

4.2 Form factors

The standard UFO decomposition of an interaction ver-

tex in a colour ⊗ spin space of (1) does not always suf-
fice to properly describe an interaction. In some mod-
els, it is indeed convenient to have couplings that de-

pend on phase space (therefore including so-called form
factors), as for instance in effective theories or empiri-
cal descriptions of interactions (e.g. as for atomic form
factors at low energy or for neutrino-nucleus interac-

tions). The extension of the UFO format described in
this section adopts the decomposition (1) by adding ex-
tra scalar functions Fj (p1, . . . , pn) that depend on the

four-momenta of the particles incoming to the vertex,

Va1...an,`1...`n =
∑
i,j

Ca1...an
i Gij

×Fj (p1, . . . , pn) L`1...`nj (p1, . . . , pn) .

(8)

This expression shows that in the UFO conventions, the
form factors Fj impact the spin dependence of the in-
teraction vertices, while they leave the colour structure

unaffected.
In practice, they are implemented as a modification

of the relevant spin structure of the vertices declared in
the file lorentz.py, following the replacement

L`1...`nj (p1, . . . , pn)→

Fj (p1, . . . , pn) L`1...`nj (p1, . . . , pn) .
(9)

This amounts to allow the value of the structure at-
tribute of a Lorentz object to make use of functions de-
fined in the file function_library.py (see section 3.4),

6See the webpage https://feynrules.irmp.ucl.ac.be/wiki/

ModelDatabaseMainPage.

and of parameters defined in the file parameters.py

(see section 3.2). This obviously requires to import the
list of parameters and the set of relevant functions in
the preamble of the file lorentz.py.

As an example, we consider the case of a form factor
given by mW /E, where mW stands for the mass of the
W boson (represented below by the Parameter object
MW) and E is the energy scale relevant for the associated
process. Such a form factor could be defined in the file
function library.py through a Function object AAA,

AAA = Function(

name = 'AAA',

type = 'float',

arguments = ('E2'),

argstype = ('float'),

expression = 'MW/cmath.sqrt(E2)'

)

This form factor can then be used in the declaration

of a spin structure relevant, for instance, for a vertex
involving two vector bosons (of momenta p1 and p2 and
associated Lorentz indices µ1 and µ2), and one scalar

state (of momentum p3),

F (p1, p2, p3) Lµ1µ2(p1, p2, p3) =
mW ηµ1µ2√

(p1 + p2)2
. (10)

In this expression, the energy scale E appearing in the

form factor is identified by E2 ≡ (p1 + p2)2. This could
be implemented as a Lorentz object VVS1 as

VVS1 = Lorentz(

name = 'VVS1',

spins = [ 3, 3, 1 ],

structure = 'AAA((P(-1,1)+P(-1,2))**2)

* Metric(1,2)'

)

following the notation introduced in table 2. In partic-
ular, we recall that negative indices are summed over,
and that squares of four-vectors are allowed.

For more complicated form factor expressions, users
have the possibility to nest the definition of several
functions, as shown in the example given in section 3.4
or in [41,42]. For extreme cases, form factors can be pro-
vided externally, through Fortran or C++ functions
as in the tau-lepton decay module of [43]. Such a con-
struction should however be avoided as much as possi-

ble as it breaks the spirit of portability of UFO models.
It may however be sometimes the only choice. In this
case, we encourage authors to provide both Fortran
and C++ routines for their form factors, and imple-
ment them in the Fortran file Fortran/functions.f

(or Fortran/functions.f90) and C++ header and
source files Cpp/functions.h and Cpp/functions.cpp

respectively.

https://feynrules.irmp.ucl.ac.be/wiki/ModelDatabaseMainPage
https://feynrules.irmp.ucl.ac.be/wiki/ModelDatabaseMainPage
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4.3 Particle propagators

In general, the propagator of a particle can be inferred
from its spin, and so it is usually redundant to define
propagators explicitly for each particle. There may be
cases, however, where it is useful to have the possi-
bility to redefine the propagator of a certain class of
particles. This includes, for example, theories with non-
standard kinetic terms, implementations featuring non-
propagating auxiliary particles (in which case the prop-
agator is simply a product of Kronecker delta functions
without any momentum dependence), and models rel-
evant for particles with a spin value s ≥ 3/2 for which
the conventions are not unique.

For a few years already, the UFO format has al-
lowed the user to define new propagators as instances
of the class Propagator, and in a given model imple-
mentation all these custom propagator definitions must
be collected in the optional file propagators.py [4].
The instantiation of a Propagator object follows simi-
lar conventions as for any other UFO object, as exem-

plified below with the case of a massless gauge boson
propagator in the Feynman gauge (instantiated as V0),

V0 = Propagator(

name = "V0",

numerator = "-1 * Metric(1, 2)",

denominator = "P(-1, id)**2"

)

This declaration includes the two mandatory attributes
of the Propagator class (name and numerator), as well
as the only possible optional attribute (denominator).

The attribute name provides a way to identify a given
propagator object, whereas the attribute numerator in-
cludes an analytical expression for the numerator of the
propagator, a global factor i excluded. The optional at-
tribute denominator then allows users to provide an
analytical expression of the denominator. If unspecified,
the Feynman propagator denominator (p2−m2 + imΓ )
is assumed for a particle of mass m, width Γ and four-
momentum pµ.

The analytical expressions to be provided for the

propagator numerators and denominators rely on the
UFO conventions detailed in section 3.3 (and in table 2
in particular), as well as on several additional quanti-
ties that are introduced in table 3. For non-scalar prop-
agators, the numerator involves non-contracted (spin
and/or Lorentz) indices that are referred to as ‘1’ and
‘2’ in the implementation. These respectively correspond
to the incoming and outgoing directions. For non-fermi-
onic propagators, these directions are arbitrary, whereas
for fermionic propagators they are crucial and must be
defined from the ‘fermion flow’ associated with the cor-

responding diagrams [44]. In the case of a spin-2 parti-

UFO expression Description

P(1,id) Momentum of the propagating particle
in a direction aligned with the incoming
momentum flow

P(2,id) Momentum of the propagating particle
in a direction aligned with the outgoing
momentum flow

Mass(id) Mass of the propagating particle

Width(id) Width of the propagating particle

OverMass2(id) 1/M2 for massive particle, and 0 other-
wise

PSlash(1,2,id) /ps1s2
where p is the momentum of the

propagating particle

Table 3 Lorentz objects that can be used for the definition
of the numerator and denominator of custom particle propa-
gators.

cle, the ‘51’ and ‘52’ indices are additionally introduced
for the second pair of Lorentz indices attached to the
propagating state.

As shown in the example above and in table 3, the
flag id is used as the unique identifier for the prop-

agating particle. For instance, the momentum of the
propagating particle can be represented by P(1,id)

and P(2,id) in the incoming and outgoing cases re-

spectively, whereas for a fermionic propagator (of mo-
mentum p), PSlash(1,2,id) would refer to the quan-
tity (/p)s1s2 in spin space. Moreover, the mass and width

of the propagating particle are identified as Mass(id)

and Width(id) respectively, and the additional quan-
tity OverMass2(id) corresponds to 1/M2 for a massive
particle and 0 otherwise. Finally, we emphasise that as

for Lorentz structure definitions, repeated negative in-
dices are summed over.

In order to link custom propagators to particles, the
Particle class is equipped with an optional attribute
propagator. It allows users to refer to the specific prop-

agator to employ through its name as defined in the file
propagators.py. For example, a massless spin-1 par-
ticle with a custom propagator as given in the above
example could be defined by

photon = Particle(

pdg_code = 22,

name = 'photon',

antiname = 'photon',

spin = 3,

color = 0,

mass = Param.ZERO,

width = Param.ZERO,

propagator = propagators.V0

texname = '\gamma',
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antitexname = '\gamma',

charge = 0

)

where the preamble of the file particles.py is assumed
to include the instruction

import propagators

In the case a Particle object is instantiated without
any value for the attribute propagator (as in most ex-
isting UFO models), default propagators are assumed.
As non trivial and existing examples, we refer to [4]
and [45]. They respectively address models featuring
particles with spin s ≥ 3/2, and models in which run-
ning width effects are incorporated in the particle prop-
agators.

Finally, some models are such that it is impossible
to simultaneously diagonalise both the mass and width
matrices. In this case, ‘matrix’ propagators are in or-

der [46]. We mention as a side note that the UFO format
is compliant with such a structure through the imple-
mentation of a set of two-point vertices that emulate

each off-diagonal entry of the propagator matrix.

4.4 Particle decays

Many applications of calculations involving massive un-
stable particles require the evaluation of the total and
partial decay widths of all particles of the model, to-

gether with the estimation of the decay channels that
are kinematically allowed. This task is highly dependent
on the mass spectrum of the model, and it requires a
re-evaluation of the widths for each choice of external
parameters. In order to provide a simple solution to this
problem, the UFO format allows users to input analyt-
ical formulas for LO two-body decay rates associated

with the particles of the model. These are all collected
inside the file decays.py [3]. As two-body decays might
sometimes be insufficient (when for instance higher-
multiplicity decays are the dominant decay modes or
when higher-order corrections are important), it is up
to the code using the UFO model to decide how (and
if) they should include such extra contributions in their

computations.

In the special case of a two-body decay of a parti-
cle of mass M to two particles of masses m1 and m2,
Lorentz invariance implies that the matrix element rel-
evant for the calculation of a partial width Γ can only

depend on the masses of the external particles, and we
can write

Γ =

√
λ(M2,m2

1,m
2
2)

16π S |M |3
|M|2 , (11)

where S denotes the phase-space symmetry factor, the
function λ(M2,m2

1,m
2
2) = (M2−m2

1−m2
2)2−4m2

1m
2
2 is

the usual Källén function, and |M|2 stands for the av-
erage squared matrix element associated with the decay
mode considered. The matrix element of this two-body
decay only receives contributions from a single three-
point vertex V, so that it can be written as

|M|2 = Va1a2a3
µ1µ2µ3

Pµ1µ
′
1

1 Pµ2µ
′
2

2 Pµ3µ
′
3

3 (V∗)a1a2a3

µ′1µ
′
2µ
′
3
, (12)

where the colour and spin indices of the particle i are

generically denoted by ai and µ
(′)
i respectively. In addi-

tion, we have introduced the polarisation tensor of the
particle i, Pi, that depends on its spin and its mass.

The content of the file decays.py contains declara-
tions of instances of the class Decay. Each instance of
this class can be thought of as a collection of LO an-
alytic formulas of two-body partial widths of a given
state (obtained from (11) and (12)). For example, the

two-body partial widths of the Higgs boson in the Stan-
dard Model could be represented as

Decay_H = Decay(

name = 'Decay_H ',
particle = P.H,

partial_widths = {

(P.W__minus__ , P.W__plus__ ): 'ΓWW ',
(P.Z, P.Z): 'ΓZZ ',
(P.b, P.b__tilde__ ): 'Γbb̄',
(P.ta__minus__ , P.ta__plus__ ):'Γττ ',
(P.t,P.t__tilde__ ): 'Γtt̄'

}

)

where ΓXY schematically represent the analytic for-
mula of the partial width of the Higgs boson associ-
ated with the decay mode H → XY . The syntax to
be used to write these analytic formulas is identical to
that introduced in the previous sections. In the above
example we assume that the first two generations of

fermions are massless. All possible LO two-body decays
have been included, even if some of them are kinemati-
cally forbidden. The analytic formula for the two-body
decays of a Higgs boson into a pair of top quarks or
weak bosons are hence also present (even if not kine-
matically allowed for a light Higgs boson). It is then
up to the high-energy physics tool to filter out at run

time the kinematically allowed channels (that depend
on the chosen set of external parameters), and to com-
bine them consistently into the total width and branch-
ing ratios for a given particle. When implementing the
file decays.py, it is strongly recommended to include
all two-body decay channels for all the particles of the
model, kinematically allowed or not, in order to prevent
the code that relies on this option of the UFO format
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from producing incorrect results for some benchmark
scenarios and correct ones for others.

The example of the Higgs boson is also a case where
tree-level two-body decays are not sufficient for an ac-
curate calculation of the total width of the particle. We
should indeed include important contributions arising
both from loop-induced Feynman diagrams and from
three-body decays with off-shell effects, and the explicit
choice of the renormalisation scale is known to impact
the results strongly. We emphasise that it is not the role
of the UFO model to check whether the provided formu-
las are enough to compute reliably the total width of a
particle. The inclusion of the file decays.py in a UFO
model instead only provides some analytical formula
to facilitate the approximate evaluation of the particle
widths.

4.5 Renormalisation group running effects

In many practical applications in particle physics, the

free parameters of the Lagrangian are provided at a
given input scale that could be quite different from the
natural scales relevant to the physics process consid-

ered. One possibility to increase the precision of the
predictions can therefore be to include renormalisation
group (RG) running effects, which amounts to re-evalu-
ating couplings and/or masses of the model at a specific

scale. The UFO format has been extended [5] so that in-
formation on RG running could be provided within the
optional file running.py. Following the general UFO

philosophy, the UFO format only contains information
on the running of the model’s parameters, and it does
not provide any method allowing to handle it numeri-
cally. It is hence up to the high-energy physics software

employed to handle this, and/or to rely on any existing
external tools like those introduced in [31, 32, 47, 48].

In full generality, the RG equations associated with

the model parameters {C} = {c1, c2, . . .} can be written
as

dci(µ)

d log µ
= γ

(1)
ij cj(µ) + γ

(2)
ijk cj(µ)ck(µ) + . . . , (13)

where the anomalous dimension matrix γ has been de-
composed into a part involving a single other parameter
(γ

(1)
ij ), a part involving two other parameters (γ

(2)
ijk), and

so on. The file running.py contains the values of the
(non-zero) elements of the various γ tensors appearing

in the right-hand side of (13). Several of these elements
can be defined simultaneously, provided that they cor-
respond to the same analytical expression, which allows
for an economical implementation. Consequently, users
have the possibility to declare one Running object for

each unique value of the elements of the various γ ten-
sors appearing in an RG equation given by (13), instead
of one Running object per summand appearing in its
right-hand side.

In practice, a Running object is defined as:

RGE_1 = Running(

name = 'RGE_1',

value = '2./(3.*cmath.pi)',

run_objects = [

[P.c1, P.c2, P.gs],

[P.c3, P.gs]

]

)

This declaration relies on three mandatory attributes.
The first of them is the name of the object that is pro-
vided as a string (name), while the second attribute
(value) refers to the analytical formula associated with
the elements of the γ tensors considered. This formula
has to be provided as a valid Python expression that

follows the same technical limitations as those inherent
to the value attribute of the classes Parameter and
Coupling (see sections 3.2 and 3.3). Moreover, this ex-

pression should not depend on any running parameter.
The value of the run objects attribute contains a

list in which each element is a list of external param-

eters (that must therefore be declared as instances of
the Parameter class), with the exceptions of the stan-
dard QCD and QED couplings αs, α, gs and e that

could be used despite their external/internal nature.
For each entry in the primary list, the first parame-
ter corresponds to the parameter appearing on the left-
hand side of (13), while all the other entries correspond

to the parameters appearing on the right-hand side of
that equation. In addition, a given parameter can be re-
peated as many times as needed to obtain a dependency
on a specific power of it. The above example would cor-
respond to

dc1(µ)

d log µ
=

2

3π
gsc2 + . . . ,

dc3(µ)

d log µ
=

2

3π
gs + . . . ,

(14)

where the dots refer to terms not captured by the dec-
laration of the RGE_1 object above.

5 Features pertaining to NLO

Up to this point, we have presented many aspects of
the UFO format that provide the necessary informa-
tion to generate tree-level matrix elements for arbitrary
processes within a model. In principle, this informa-
tion is also sufficient to produce matrix elements that
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include corrections associated with an arbitrary num-
ber of loops. In practice, however, a number of addi-
tional ingredients are necessary, mainly in the form of
process-independent counterterms whose derivation is
often quite involved. They should therefore ideally be
supplied along with the rest of the tree-level informa-
tion included in a UFO model. In this section, we de-
scribe the standard according to which this additional
information is provided. We stress that this extended
UFO format is not bound to one-loop corrections. How-
ever current applications only involve one-loop auto-
matic matrix element generation, and it is therefore the
case that drove our choice of syntax.

The counterterms provided in a UFO model con-
taining the necessary information for performing com-
putations at NLO accuracy (afterwards referred to as
an NLO UFO) come in two distinct categories called R2

and UV. The R2 category contains rational terms of the
second kind. They originate from the need of recovering

contributions from the d-dimensional part of one-loop
numerators that are typically computed in four dimen-
sions by most numerical approaches [49–56]. The UV
category implements the ultraviolet renormalisation of

the model. This requires an analysis of the loop cor-
rections to the vertices and two-point functions of the
model, together with physically motivated choices made

by the model builder (e.g. renormalisation conditions).
For this reason, such counterterms are also best com-
puted once and for all and specified in the UFO model.
As it is further discussed below, an NLO UFO model is

therefore suitable for one (or at most a few) particular
renormalisation scheme(s).

We now present the standardised format in which
these R2 and UV counterterms are provided in an NLO
UFO model, and that is already used by many one-
loop providers (OLPs). This is however only achieved
after first briefly introducing information relevant for
one-loop matrix element computations in sections 5.1
(UV and R2 counterterms) and 5.2 (the complex mass
scheme). In section 5.3, we focus on electroweak cor-
rections in the Sudakov approximation and detail why
additional pieces of information must be provided. As
mentioned in section 2.2, several additional files must
be supplied in an NLO UFO model. We provide de-
tails about those files in section 5.4. They consist of
the file CT_vertices.py7 that allows for the instanti-

ation of all CTVertex objects included in the model,
the file CT_couplings.py that allows for the declara-
tion of Coupling objects used in the counterterms, and

7The letters ‘CT’ appearing at the beginning of the filename
refer to the word ‘counterterm’, although the information in-
cluded in the UFO files described in the present section does
not only concern counterterms stricto sensu.

the file CT_parameters.py that includes instantiation
of all CTParameter objects needed in the counterterm
couplings.

Additional information not available in any other
UFO file is needed for making it possible to automat-
ically calculate electroweak Sudakov corrections. This
consists of the eigenvalues of various electroweak oper-
ators, and on how the components of the physical fields
in a theory are gathered into SU(2)L multiplets. This
is provided in the file CT_ewcasimirs.py through the
declaration of EWOperator objects.

The objects specific to UFO NLO models can eas-
ily be accessed through generic lists included in the file
object_library.py. A first list all_CTvertices col-
lects all declared CTVertex objects, while a second list
all_CTparameters is dedicated to the CTParameter

objects declared by the user. On the other hand, all
counterterm couplings (declared as standard Coupling

objects) are available together with the other couplings

of the model, through the list all_couplings. Finally,
the list all_EWOperators collects additional objects
relevant for the calculation of electroweak Sudakov cor-

rections.

5.1 Counterterms

This section includes brief definitions of both the R2

and UV counterterms relevant for NLO UFO models,
and we additionally discuss aspects relevant to the au-
tomation of the computation of loop amplitudes.

5.1.1 R2 counterterms

In d dimensions, one-loop amplitudes can be generically
written as

A (q) =
1

(2π)
4

∫
ddq

N (q)

D0D1 . . . Dm−1

, (15)

where Di ≡ (q + pi)
2 −m2

i are the propagator denomi-
nators with mi being the masses of the particles in the
loop, q is the loop momentum and pi are linear combi-
nations of external momenta. The bar denotes all the
quantities living in d dimensions (x), which can thus be
split in a four-dimensional part (x) and a d− 4 dimen-

sional part (x̃) in dimensional regularisation, x ≡ x+ x̃.

Rational terms are finite contributions generated by
the integration over d − 4 pieces of the one-loop inte-

grand. They are organised into two sets of contributions
called R1 and R2. The rational terms R1 originate from
the d−4 component of the integrand denominators, and
they can be computed similarly as the four-dimensional
part of the integrand but using a different basis of scalar
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integrals [57]. The R2 terms are instead due to the d−4
component of the numerator

R2 ≡ lim
ε→0

1

(2π)
4

∫
ddq

Ñ (q̃, q, ε)

D0D1 . . . Dm−1

, (16)

where d ≡ 4−2ε and Ñ (q̃, q, ε) ≡ N̄(q̄)−N(q). Various
schemes exist for the definition of the rational terms.
For example, in the ’t Hooft-Veltman scheme [58] all the
quantities involved in the loop, i.e. the loop momentum,
the Dirac matrices and the metric, are taken as living
in d dimensions, so that

ηµ νηµ ν = d and γµγµ = d 1l, (17)

where 1l denotes the identity matrix in the Dirac space.
Instead, the external momenta and the polarisation vec-
tors live in four dimensions. Another scheme depen-
dence is related to the choice of properties of the matrix
γ5 in d dimensions.8 For example, the Dirac matrices in
d dimensions γu can be chosen to anti-commute with

γ5 [59–61]. In this case, the cyclic property of a Dirac
trace has to be dropped to avoid algebraic inconsis-
tency.

An extra scheme has to be defined when computing
R2 terms related to operators including more than two
fermions due to the presence of evanescent operators,

namely operators which are only non-vanishing in d 6= 4
dimensions. Any Lorentz invariant four-fermion opera-
tor can always be decomposed in a basis of four-fermion
operator,

f̄1Γaf2f̄3Γ
′
af4 =

∑
k

(bk + akε)f̄1Γ̃kf2f̄3Γ̃
′
kf4 , (18)

where fi are fermions, Γ ′a and Γa are products of Dirac

matrices that appear in the operator considered, and
Γ̃k and Γ̃ ′k are products of Dirac matrices that define
a basis of four-fermion operators in four dimensions. In

the above expression, only the bk coefficients are fixed
by requiring that both sides are equal in four dimen-
sions. The determination of the coefficients ak in (18)
requires extra conditions to be imposed, as for instance
by requiring the equality of the trace of the Dirac struc-
ture [62]

Tr
(
Γ̃mΓaΓ̃

′
mΓ
′
a

)
=
∑
k

(bk+akε)Tr
(
Γ̃mΓ̃kΓ̃

′
mΓ̃
′
k

)
. (19)

Once a scheme is fixed, the integral (16) can be evalu-
ated from a set of process-independent Feynman rules
which can be computed once and for all in a given
model. The R2 terms can typically not be captured

8This scheme is only relevant when considering axial anoma-
lies.

by a direct four-dimensional implementation of the nu-
merator of all possible loop integrands, and they must
therefore be computed separately and analytically.

Finally, we emphasise that the R2 and R1 terms are
not separately gauge-invariant, but only their sum is.
This provides a means for a mutual check of the imple-
mentation of the model and the package employed for
NLO computations, as R1 and R2 terms are computed
independently. The former is handled by the NLO tool
whilst the latter is provided in the NLO UFO model.

5.1.2 UV counterterms

In general, loop amplitudes in a quantum-field theory
are not finite. One type of related divergences originates
from loop-momenta with large Euclidean norm, and
these divergences are usually referred to as ultraviolet
divergences. They should be removed by the well-known
renormalisation procedure, which reabsorbs them into
a redefinition of the tadpoles, the fields and the free
parameters of the model provided that the Lagrangian

is renormalisable.9 This yields

tφ0 → tφ + δtφ ,

φ0 → (1 +
1

2
δZφφ)φ+

∑
χ

1

2
δZφχχ ,

x0 → x+ δx ,

(20)

where tφ is the tadpole for the field φ, i.e. the coeffi-
cient of the term linear in φ in the Lagrangian, φ and
χ are physical fields with the same quantum numbers,

and x is an external parameter (internal parameters
being subsequently renormalised through their depen-
dence on the external parameters). An additional zero

subscript denotes the bare quantities compared to the
renormalised fields or parameters, and a δ precedes the
renormalisation constants. In the above expression, the
wave function renormalisation constants have been ex-

panded at one loop, and we consider that each fermion
chirality is renormalised independently, as in the gen-
eral case fermionic matter is chiral.

The bare Lagrangian is then the sum of a renor-
malised Lagrangian, depending only on renormalised
quantities, and a counterterm Lagrangian at least lin-
ear in the renormalisation constants,

L0 = L+ δL . (21)

The UV counterterm vertices originate from the coun-
terterm Lagrangian δL, and they must be provided
in an NLO UFO model. Their implementation is split

9Renormalisable is understood here in a wide way, such that
effective field theories are considered renormalisable, but or-
der by order in the effective scale expansion.
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within the files CT_vertices.py, CT_couplings.py and
CT_parameters.py. As shown later, those vertices can
be efficiently expressed in term of the renormalisation
constants of the model thanks to the instantiation of
the latter as CTParameters objects.

While the ultraviolet poles of the renormalisation
constants are fixed by requiring the cancellation of the
UV-divergences appearing in the loop amplitudes, their
finite part can be chosen according to the renormal-
isation scheme considered. Some schemes are particu-
larly suitable for numerical computations and make the
evaluation of the loop amplitudes faster. For instance,
imposing on-shell and/or complex renormalisation con-
ditions for the derivation of the mass and wave func-
tion counterterms can avoid the computation of on-shell
two-point loop Feynman diagrams on the external legs.
Similarly, tadpole renormalisation allows us to ignore
tadpole diagrams together with their renormalisation,
as they identically cancel each other.

The renormalisation scheme used for the external
parameters of the model has to be chosen adequately

as well. Depending on the chosen scheme, the parame-
ters may acquire a dependency on the renormalisation
scale driven by related renormalisation group equations,
and the associated running has to be included in order

to guarantee formal NLO accuracy. The renormalisa-
tion of the strong coupling constant is a bit peculiar
for hadronic collisions in that it must be set equal to

what was used when determining the parton density
functions. The other model parameters, such as for ex-
ample the coefficients of higher-dimensional operators

appearing in an effective field theory, can also run and
mix through their renormalisation group equations, un-
less specific renormalisation conditions are chosen (see
for example [63] for a fixed scale renormalisation of the

new physics couplings without running).

Finally, we mention that special counterterms such
as those related to the restoration of supersymmetry
that is explicitly broken by dimensional regularisation
can also be included in NLO UFO models, in a similar
way as what is performed for the UV countertems of
the model [37, 64].

5.2 The complex mass scheme

In order to properly treat unstable particles that ap-
pear in the S-matrix, a convenient scheme, the Complex
Mass (CM) scheme, has been proposed, and it relies on
the introduction of complex masses for all unstable par-
ticles [65,66]. The generic support of the Complex Mass

scheme in NLO calculations requires a careful analytic
continuation of all loop integrals defining the renormal-

isation counterterms, a topic about which an extensive
discussion can be found in [21].

5.2.1 Complex-mass and on-shell renormalisations

Imposing a renormalisation scheme leads to mass (δM2)
and wave function (δZ) renormalisation constants from
the self-energy Feynman diagrams associated with the
different particles. On-shell (OS) renormalisation con-
ditions for a stable particle of (renormalised) mass M
yield

δM2
OS = <[Σ(p2 = M2)] ,

δZOS = −<[Σ′(p2 = M2)] ,
(22)

where the real part operator < is only applied to the
absorptive part of the self-energy function Σ(p2). In
the CM scheme and for an unstable particle of (renor-

malised) mass M and width Γ , the renormalisation con-
ditions lead to

δM2
CM = Σ(p2 = M2 − iΓM) ,

δZCM = −Σ′(p2 = M2 − iΓM) .
(23)

The renormalised complex mass hence becomes

M2 − iΓM = M2
0 − δM2

CM , (24)

where M0 is the bare mass.

One obvious distinction between the two schemes is
the application of the operator < in the OS scheme,
that is absent in the CM scheme. This consideration
suggests that a single UFO model compatible with both
renormalisation schemes can be achieved, provided we
introduce a new special function recms to be defined in
the file function library.py. This function is defined
by

recms = Function(

name = 'recms',

arguments = ('cms_cond','z'),

argstype = ('bool', 'complex'),

expression = '(z if cms_cond else z.real)'

)

In addition, a switch called CMSParam is instantiated in
the file parameters.py as a new internal Parameter ob-
ject. Its value should be changed according to whether
the complex-mass scheme is turned on or off, which is
achieved for CMSParam=0.0 and CMSParam=1.0 respec-
tively.
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5.2.2 Analytic continuation

A dynamic choice of an appropriate Riemann sheet is
mandatory within complex renormalisation conditions
for the particle masses and wave functions, which criti-
cally depends on the mass spectrum and decay table in
a model.

For example, the complex mass renormalisation con-
stant associated with an unstable particle of mass M
and width Γ is derived from its one-loop self-energy
function Σ(p2 = M2 − iΓM), as shown in (23). Let us
assume that there is a contribution to this self-energy
function originating from a two-point scalar function
B0 (depending on a single mass M2 and width Γ2),

Σ(p2 = M2 − iΓM) ⊃
B0(p2; 0,M2

2 − iΓ2M2)|p2=M2−iΓM .
(25)

The analytic expressions for the B0 integral in the first
Riemann sheet, i.e. when the imaginary part of the mo-

mentum squared =(p2) ≥ 0, read [21]:

1

iπ2
B0(p2; 0, 0) =

1

εUV
+ 2− log

−p2 − i0
µ2

,

1

iπ2
B0(p2; 0,m2) =

1

εUV
+ 2 + log

µ2

m2

+
m2 − p2

p2
log

m2 − p2 − i0
m2

,

1

iπ2
B0(p2;m2

1,m
2
2) =

1

εUV
+ 2− log

p2 − i0
µ2

+
∑
i=±

[
γi log

γi − 1

γi
− log (γi − 1)

]
.

(26)

In these expressions, we have explicitly indicated the
UV origin of the divergence (through 1/εUV), µ stands
for the regularisation scale, and we have introduced

γ± =
1

2

(
γ0 ±

√
γ2

0 − 4γ1

)
,

γ0 = 1 +
m2

1

p2
− m2

2

p2
, γ1 =

m2
1 − i0
p2

.

(27)

In order to properly analytically continue the B0

function appearing in (25), a second Riemann sheet
should be selected when the imaginary part of the mo-
mentum squared =(p2) < 0. This allows for a correct
evaluation of the logarithm and square root functions.

In our specific example, this gives

1

iπ2
B0(M2 − iΓM ; 0,M2

2 − iΓ2M2) =
1

εUV
+ 2

+ log
µ2

M2
2−iΓ2M2

+
M2

2−iΓ2M2−M2+iΓM

M2 − iΓM

×


log−1

M2
2−iΓ2M2−M2+iΓM

M2
2−iΓ2M2

if M>M2 and ΓM2 > Γ2M ,

log
M2

2−iΓ2M2−M2+iΓM

M2
2−iΓ2M2

otherwise.

(28)

In the above expression, when M > M2 and ΓM2 >
Γ2M we need to evaluate the logarithm in the second
negative Riemann sheet,

log−1 z ≡ log z − 2πi ,

log z ≡ log |z|+ i arg z with −π < arg z ≤ π .
(29)

Moreover, we mention that the analytic continuation

of the general B0 function (i.e. B0(a; b, c) with a 6= 0,
b 6= 0 and c 6= 0) is more involved than that achieved
in the example.

In order to render a UFO model compliant with the
CM scheme, we first define, for practical purpose, the
finite remainder B0f of the function B0,

B0f (a; b, c) ≡ 1

iπ2
B0(a; b, c)−

(
1

εUV
+2+log

µ2

c

)
, (30)

that is independent of the regularisation scale µ. We

then include, in the file function library.py, the in-
stantiation of a Function object B0F that can be used
to calculate B0f (a; b, c) when a 6= 0 and c 6= 0.10 All

other cases are simpler and could be explicitly ignored
in terms of a UFO implementation, as the resulting ex-
pressions can be written in terms of log and log(±)

functions with

log(±) z ≡ log z ± 2πi θ
(
−<(z)

)
θ
(
∓=(z)

)
. (31)

These logarithmic functions must however be included
in a UFO model, and they are thus all defined in the
file function library.py as reglog (for log ), reglogp

(for log(+) ) and reglogm (for log(−) ). For instance, the
declaration of the reglog function reads

reglog = Function(

name = 'reglog',

arguments = ('z'),

argstype = ('complex'),

expression = '(0.0 if z==0.0

else cmath.log(z))'

)

10We recall that B0f (a; b, c) is symmetric in b and c, so that
B0f (a; b, 0) = B0f (a; 0, b).
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We emphasise that an alternative and more robust
method to evaluate all these two-point functions could
rely on the trajectory method proposed in [21]. They
should then be implemented as low-level functions, di-
rectly in the directories Fortran or Cpp of the UFO. An
explicit example as implemented in the MadGraph5-
aMC@NLO framework has been reported in [67], fol-

lowing the algorithm outlined in [21].

5.3 Electroweak Sudakov corrections

In the present section, we briefly review the formal-
ism relevant for the evaluation of electroweak Sudakov
corrections in the leading and subleading logarithmic
approximation, or in other words, in the high-energy
expansion of any given observable in powers of log s

m2
W

where s is the partonic centre-of-mass energy and mW

is the mass of the W boson. A one-loop-accurate al-
gorithmic procedure for calculations in this approxi-

mation has been available for a long time ago [68],
and it has been automated in recent years for SM pro-
cesses [69, 70]. Such calculations can be achieved via

a few basic ingredients: the eigenvalues and eigenvec-
tors of specific electroweak operators, and the finite
but logarithmic-enhanced contributions to the parame-
ter and wave-function renormalisation constants. Those

quantities have been hard-coded, for example in the
MadGraph5 aMC@NLO code [70], and their values
had to be consistently matched to the conventions of the

Feynman rules used in the calculations of the related
amplitudes. This step can be avoided by providing the
necessary additional information directly within a UFO
model, using the same conventions as those used for the
computation of amplitudes. Moreover, while so far the
calculation of electroweak corrections has been auto-
mated for SM processes only, in the case of the Sudakov

approximation it would be in principle also achievable
for many BSM processes as soon as this additional in-
formation would be provided within UFO models.

It is important to bear in mind that for the cal-
culation of electroweak corrections in the Sudakov ap-
proximation, the UFO model does not need to contain
all the information necessary for the exact evaluation

of NLO electroweak corrections. Within their approxi-
mate version, electroweak corrections can be extracted
from the knowledge of two kinds of ingredients, namely
the finite but logarithmically-enhanced contributions to
the parameter and wave-function renormalisation con-
stants, and the eigenvalues and eigenvectors of relevant
electroweak operators. The latter can be derived from
the content of the model in terms of gauge eigenstates
and their associated representation. However, they are

rarely available for an NLO UFO model expressed in
terms of mass eigenstates. Consequently, this requires
some addition to the NLO UFO format, that are to
be implemented in the file CT_ewcasimirs.py. On the
contrary, the finite but logarithmic-enhanced contribu-
tions to the parameter and wave-function renormalisa-
tion constants can be either computed once and for all
from the knowledge of the bare Lagrangian and stored
in the file CT_parameters.py, already described above,
or they can be identified within the complete expres-
sions of UV counterterms usually available in an NLO
UFO model allowing for exact NLO EW corrections.
In this second case, it is only necessary to provide ad-
ditional information allowing for the selection of the
finite but logarithmic-enhanced component of the cor-
rection.11

In the following we briefly describe the analytical
structure of the Denner-Pozzorini (DP) algorithm [68],
following as much as possible the notation introduced

in [70]. Practical details are provided at the end of sec-
tion 5.4.

We consider a process involving n external particles
that we identify through the indices i1, . . ., in and mo-

menta p1, . . ., pn. The associated tree-level amplitude
is denoted by Mi1...in

0 , and the one-loop electroweak
Sudakov corrections δMi1...in can be written as

δMi1...in = δEW
i′1i1...i

′
nin
Mi′1...i

′
n

0 . (32)

In this expression, the matrix elementsMi′1...i
′
n

0 are tree-
level amplitudes associated with processes with n ex-

ternal particles that include up to two particles dif-
ferent from these of the original process. In addition,
δEW
i′1i1...i

′
nin

collects contributions involving logarithms or
double logarithms of kinematic invariants of the pro-
cess, and of the squared mass of the W boson (m2

W )
and Z boson (m2

Z).

The contributions to δEW can be classified as

δEW = δLSC + δSSC + δC + δPR . (33)

In this expression, we have organised the corrections in
their leading (δLSC) and subleading (δSSC) soft-collinear
logarithmic contributions, the purely collinear logarith-
mic terms (δC), and the logarithms originating from
parameter renormalisation (δPR).

11In [69,70], vertex counterterms have not been used to eval-
uate electroweak corrections in the Sudakov approximation
originating from parameter renormalisation. Alternative nu-
merical methods, involving e.g. the derivative of the relevant
amplitudes, have been employed instead. These methods were
employed in the first place because of missing information
about vertex counterterms, which can now be suitably imple-
mented in the file CT vertices.py.
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The leading soft-collinear terms can be expressed as
a sum over all external legs,

δLSCMi1...in =
n∑
k=1

δLSC
i′kik

(k)Mi1...i
′
k...in , (34)

where the correction factors δLSC
i′kik

depend on the proper-

ties of all possible pairs of states ik and i′k that can cou-
ple via SU(2)L×U(1)Y interactions. These read [71,72]

δLSC
i′kik

= − α

8π

[
δi′kikQ

2
kL

EM + CEW
i′kik

log2 s

m2
W

− 2
(
IZi′kik

)2
log

m2
Z

m2
W

log
s

m2
W

]
,

(35)

where LEM collects all logarithms of purely electromag-
netic origin below the mW scale, and Qk is the electric
charge of the state ik. The δLSC factor can thus be au-
tomatically derived, for any given process in any given
model, once the eigenvalues of the effective Casimir op-

erator matrix CEW and these of the IZ operator matrix
are known, together with information on how the dif-
ferent states couple via electroweak interactions.

The subleading soft-collinear contributions are given
as a double sum over the pairs of external states that

can couple via electroweak interactions, each term in
the sum featuring the exchange of a specific neutral or
charged electroweak vector boson V = A,Z,W±. They
read

δSSCMi1...in =
n∑
k=1

∑
`<k

∑
V

δV,SSC
i′kiki

′
`i`
Mi1...i

′
k...i

′
`...in , (36)

where the individual photon, Z and W boson correc-
tions are respectively given by [70]

δA,SSC
i′kiki

′
`i`

=
α

2π
log

s

Q2

(
log
|rk`|
s
− iπΘ(rk`)

)
IAi′kik

IAi′`i`
,

δZ,SSC
i′kiki

′
`i`

=
α

2π
log

s

m2
W

(
log
|rk`|
s
− iπΘ(rk`)

)
IZi′kik

IZi′`i`
,

δW
±,SSC

i′kiki
′
`i`

=
α

2π
log

s

m2
W

(
log
|rk`|
s
− iπΘ(rk`)

)
I±i′kik

I∓i′`i`
.

(37)

Here, we have neglected the terms denoted as ∆s→rk`

in [70], since they are not relevant for the present dis-
cussion. Moreover, the scale Q is the regularisation scale

related to photon infrared divergences (we assume Q2 ∼
s), rkl = (pk + p`)

2 and Θ denotes the usual Heaviside
step function. As for the leading logarithms, the correc-
tion factors are hence generically known for any process
in any model as soon as the eigenvalues of the IA, IZ

and I± operator matrices are provided.

We now turn to the single logarithmic contributions
arising from the soft or collinear regime. These are writ-
ten as a single sum over the external legs of the process,

δCMi1...in =
n∑
k=1

[
δcoll
i′kik

+
1

2
δZi′kik

]
Mi1...i

′
k...in . (38)

Such corrections are derived from the wave-function
renormalisation constants relevant to all external legs in
the process (possibly involving mixing with fields shar-
ing the same quantum numbers), as well as from the
mass-singular loop diagram contributions that respec-
tively read, for bosons and fermions [73],

δB,coll
i′kik

=
α

4π
CEW
i′kik

log
Q2

m2
W

,

δF,coll
i′kik

=
α

2π

[
CEW
i′kik

log
Q2

m2
W

+Q2
k log

m2
W

m2
k

]
.

(39)

In these equations, mk and Qk are respectively the mass

and the electric charge of the (fermionic) state k, while
Q stands for the regularisation scale. The δC correc-
tions can hence be evaluated generically for any process

in any model once the eigenvalues and eigenvectors of
the electroweak effective Casimir operator CEW and the
finite but logarithmic-enhanced component of the wave-

functions renormalisation constants δZi′kik are known.

The last contributions in (33) arise from the renor-
malisation of the input parameters of the model, like α

(or GF ), mW , mZ and the masses of the Higgs boson
and of the top quark. These logarithmic corrections are
analogous to those associated with the wave-function

renormalisation constants in (38), and include the finite
but logarithmically-enhanced component of the param-
eter renormalisation constants. In both cases these have
to be calculated externally, and they must be then pro-

vided as instances of the CTParameter and CTVertex

classes.

5.4 Counterterm implementation

We reviewed in section 5.1 the origin of the UV and
R2 counterterms that are relevant for numerical NLO
calculations, and how they should be defined in order
to obtain correct results from an NLO UFO model. In
this section, we discuss the details of the format in
which such counterterms are explicitly specified. One
particular difficulty that an OLP faces when making
use of UFO counterterms is to ensure that their selec-
tion is consistent with the loop diagrams contributing
to the loop amplitude considered. This task can indeed
be complicated by the fact that OLP users are often
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given the freedom to filter out any gauge-invariant se-
lection of loop diagrams. It is therefore desirable that
the OLP is able to enforce a strict correspondence be-
tween the loop diagrams generated and the associated
counterterm.

For this reason, an NLO UFO model offers the pos-
sibility to group counterterms originating from a given
subset of loop diagrams. A specific counterterm is then
identified by a few properties that include the list of
particles attached to the loop, the non-repeating set of
particles running in the loop(s) ‘corresponding’ to this
counterterm, the cumulative coupling orders (see sec-
tion 3.3) appearing in the loop vertices, and a keyword
identifying the nature of the counterterm as well as how
it is intended to be matched to the contributing loops.

We start our discussion of these properties with the
example of the QCD R2 counterterm for the triple-
gluon vertex, encoded in the class CTVertex, that there-
fore features a few new attributes relative to the class
Vertex previously introduced:

V_R23G = CTVertex(

name = 'V_R23G',

particles = [ P.G, P.G, P.G ],

color = [ 'f(1,2,3)' ],

lorentz = [ L.VVV1 ],

loop_particles = [

[ [P.u],[P.d],[P.c],[P.s],[P.b],[P.t] ],

[ [P.G] ]

],

couplings = {

(0,0,0):C.R2_3Gq,

(0,0,1):C.R2_3Gg

},

type = 'R2'

)

The triple nested structure of the loop particles at-
tribute allows users to group together similar contri-
butions, while retaining the correct counterterm mul-
tiplicity in the case where only a subset of particles is
selected at the level of the OLP. In this example, the
R2 counterterms stemming from each fermion species

are all equal to the coupling R2 3Gq labelled by the key
(0,0,0) in the couplings attribute. Here, the third
index refers to the position in the loop particles list
while the first two indices refer to the particular colour
and Lorentz structure considered (as for standard ver-
tices in a UFO model; see section 3.3).

The type of the counterterm encodes not only its

nature but also how the OLP should match it to the
loop diagrams present in the computation. R2 counter-
terms are specified by setting the attribute type to the
value R2. By construction and for a given set of exter-
nal particles, one such counterterm must be included

for each possible loop in the model, i.e. for each loop
with the specific external particles considered that has
given particles running in it, and with given cumulative
coupling orders. Counterterms with the attribute type

set to the value UVmass take their name from the mass
renormalisation constants, and they feature a similar
one-to-one correspondence to the (two-point) loop dia-
grams generated by the OLP. Their matching is there-
fore performed exactly like for counterterms of type R2,
the type keyword serving to encode this time the UV
nature of the counterterm. On the other hand, coun-
terterms for which type attribute is fixed to the value
UVloop (or UV) should not be considered by the match-
ing procedure. The loop particles attribute is in this
case only used to discard the counterterm if any of its
specified loop particles appears as having been glob-
ally excluded from the process definition by the user.
Finally, counterterms for which the attribute type is
set to UVtree do not have a direct correlation to any
particular loop diagram, and as such they should be

constructed independently. Their contribution must be
built exactly like that of tree-level diagrams, while how-
ever enforcing the presence of exactly one such coun-
terterm vertex per diagram. This type of counterterm

is for example well suited to implement counterterms
restoring supersymmetry when it is explicitly broken
by dimensional regularisation.

The need for a distinction between the types UVmass
and UVloop may seem unnecessary at first, so we illus-
trate its use-case with the UV QCD counterterm Zgdd̄
of the vertex gdd̄. Such a counterterm is defined by

Zgdd̄ ≡ Z
1
2
αsZ

1
2
g Z

1
2

d Z
1
2

d̄
, (40)

which depends on the wave function renormalisation
constants associated with the particles incoming to the
vertex and with that of the relevant coupling. This high-
lights the fact that the loop particles associated with
the counterterm Zgdd̄ are not directly related to the

corresponding loop diagrams, but rather to the loop
particles originating from the explicit calculation of the
involved renormalisation constants. This leads to a lack
of direct correspondence between a vertex countert-
erm and its corresponding loop corrections. The listed
loop particles cannot thus be matched directly to the

particle content of the contributing diagrams, and they
only represent an overall list of allowed particles in the
process. According to the UFO standard, this countert-
erm is defined with type UV ≡ UVloop,

V_UVGDD = CTVertex(

name = 'V_UVGDD',

particles = [ P.d__tilde__,P.d,P.G ],

color = [ 'T(3,2,1)' ],



24

lorentz = [ L.FFV1 ],

loop_particles = [

[ [P.u],[P.d],[P.s] ],

[ [P.c] ],

[ [P.b] ],

[ [P.t] ],

[ [P.G] ]

],

couplings = {

(0,0,0):C.UV_GQQq,(0,0,1):C.UV_GQQc,

(0,0,2):C.UV_GQQb,(0,0,3):C.UV_GQQt,

(0,0,4):C.UV_GQQg

},

type = 'UV'

)

A more detailed and technical description of the vertex
renormalisation and loop particle matching procedure
can be found in eqs. (2.80)–(2.87) in [20].

We now discuss the implementation of the couplings

assigned to CTVertex instances. The main difference
with respect to tree-level couplings already used in LO-
only UFO is the necessity of supplying them in the form

of terms of a Laurent series in the dimensional regulator
ε. This is achieved by allowing for the specification of
an expansion dictionary as the value of the coupling,12

A

ε2
+
B

ε
+ C  {−2 : A,−1 : B, 0 : C} (41)

Given the omnipresence of wave function renormalisa-
tion constants in all vertex counterterms (see (40)), it
is desirable to be able to define counterterm-related pa-

rameters which are themselves expansions in ε. This is
allowed in the NLO UFO format, and taken advantage
of, for example when writing the coupling UV GQQt ap-
pearing in the definition of the CTVertex UV_GQQt,

UV_GQQt = Coupling(

name = 'UV_GQQt',

value = 'complex(0,1)*G_UVt*G',

order = {'QCD':3}

)

G_UVt = CTParameter(

name = 'G_UVt',

type = 'real',

value = {

-1 : '((G**2)/(96.0*cmath.pi**2))*4.0*TF',

0 : 'cond(MT, 0.0,

-((G**2)/(96.0*cmath.pi**2))

12All entries not specified in the dictionary representation of
the Laurent series are to be understood as being zero. More-
over, there is no restriction on the range of ε orders spanned
by the Laurent series.

*4.0*TF*reglog(MT**2/MU_R**2))'

},

texname = '\delta Gt'

)

where the new cond function, implemented in the file
function library.py, is a shortcut function designed
to support the cases of both zero and finite top mass.
When the first argument of the cond function is equal
to 0, then the second argument of the cond function
is returned. Otherwise, the third argument is returned.
Moreover, the coupling order in this example is QCD=3,
which corresponds to the cumulative coupling orders
of the loop corrections to that vertex. It is important
that this coupling order is correctly set, as it may be
used in the OLP matching procedure when building the
counterterm contributions.

The introduction of the CTParameter object named
G UVt is convenient (though not necessary), as it will
appear in the counterterms associated with many QCD
vertices. In order to facilitate the usage and import
of the model, there are a few limitations to writing

counterterm couplings. First, the value attribute of a
counterterm coupling can be either a string or an ex-
pansion dictionary. When the latter is used, the string
expression of its values can only involve instances of

Parameter, but not of CTParameter. Second, when writ-
ing the coupling value as a string, it must correspond to
a term whose summands each contain at most k occur-

rences of CTparameter objects for a UFO model suit-
able for NkLO computations. At NLO, the expression
'2*ParamA*CTParamB + 4*CTParamE' would be accept-

able (one CTParameter instance in each of the two sum-
mands), but '2*CTParamA*CTParamB + 4*CTParamE'

would not (two CTParameter instances in the first term).
Additionally, the UFO 2.0 format does not explic-

itly differentiate the UV and infrared quantities εUV

and εIR in the expansion dictionaries. The distinction
between them can however be retained at NLO by using
reserved parameters named epsUV and epsIR as multi-
plicative factors, that are defined as external parame-
ters in a Les Houches block TECHNICAL.13 In addition,
NLO UFO models include a LOOP block that is reserved

for the renormalisation scale parameter MU_R that ap-
pear in loop integrals.

Before closing this section, we now discuss how to
implement in an NLO UFO model the information nec-
essary for the calculation of electroweak Sudakov cor-
rections to any matrix element in the leading and sub-
leading logarithmic approximation. As detailed in sec-
tion 5.3, these corrections can be generically derived

13The UV-finite part of the wave function counterterm of
massless fermions typically includes poles in the IR regulator
εIR.



25

for any process from the knowledge of the eigenvalues
of the electroweak effective Casimir operator matrix
CEW, that of the photon, Z-boson and W -boson op-
erator IA, IZ and I±, and from information on which
pairs of states interact through electroweak interactions
(and of course how). Additional quantities such as the
coefficients of the related beta function or Dynkin op-
erators may also be useful in this context, and can be
further added to this list (see [68]).

In the following, we first consider as an example the
matrix associated with the electroweak Casimir opera-
tor when it acts on neutral weak bosons, [68]

CEW
AZ =

2

s2
w

 s2
w −swcw

−swcw c2w

 . (42)

In this expression, sw and cw stand for the sine and co-
sine of the electroweak mixing angle. The corresponding
implementation in a UFO model is achieved through
the declaration of an EWOperator object,

CEW_AZ = EWOperator(

name = 'CEW_AZ',

type = 'casimir',

particles = [ [P.A, P.Z] ],

elements = {

(0,0): P.EW_AA, (0,1): P.EW_AZ,

(1,0): P.EW_ZA, (1,1): P.EW_ZZ

}

)

In this example, the EWOperator object considered is
defined through four mandatory attributes. The first
of them consists of its name (name), and the second of
them, type, can either take the value 'casimir' (for
the eigenvalues of the effective electroweak Casimir op-

erator, like in the above example) or refer to one of
the electroweak bosons of the theory (for the various
IV operators, as illustrated in the next example be-
low). The value of the attribute particles is a list
that provides information on the states relevant for the
operator considered. This primary list includes a sin-

gle list for the electroweak Casimir operator CEW and
the ‘neutral’ operators IA and IZ , and two lists for the
‘charged’ operators I± that connect different elements
of the weak multiplets of the model. The (non-zero)
matrix elements of the operator are finally provided
through the value of the attribute elements, that con-
tains a dictionary mapping any non-zero element of the
matrix to a Parameter object (declared as detailed in
section 3.2).

As another example, we provide a possible imple-
mentation of the I+ operator, for the case in which it
acts on left-handed quarks,14

Ip = EWOperator(

name = 'Ip',

type = P.W__plus__,

particles = [

[ P.u, P.c, P.t], [P.d, P.s, P.b]

],

chirality = 'left',

elements = {

(0,0):C.EW_ud,(0,1):C.EW_us,(0,2):C.EW_ub,

(1,0):C.EW_cd,(1,1):C.EW_cs,(1,2):C.EW_cb,

(2,0):C.EW_td,(2,1):C.EW_ts,(2,2):C.EW_tb

}

)

This time the attribute particles contains two lists of
particles, as the I+ operator relates up-type fermions
(the first list, [ P.u, P.c, P.t]) and down-type ones

(the second list, [ P.d, P.s, P.b]). Moreover, an op-
tional attribute (chirality), relevant when fermions
are involved, has been included in the declaration. Its
value indicates that only the left-handed components

of the fermions involved is concerned.
In addition to the information provided above, the

derivation of all logarithmic corrections to any given

matrix element shown in (33) requires to include those
stemming from parameter and wave-function renormal-
isation. This can be achieved automatically once the
renormalisation constants are computed or, in the case

of a model that allows for electroweak corrections in
the Sudakov approximation but not for exact NLO elec-
troweak corrections, they have to be calculated for this
purpose. In both cases, it is necessary to access di-
rectly the finite but logarithmically-enhanced compo-
nent of the parameter counterterms and possibly their

impact in vertex counterterms. The analytical results
should therefore be provided, through declarations of
CTParameter and possibly CTVertex objects relevant
to the implementation of counterterms (see above).

6 Conclusion

In this paper, we have presented the current 2.0 update
of the UFO format for (B)SM models, that we have
coined the ‘Universal Feynman Output ’ format. This
new name has been adopted to distinguish the current
format from its initial version, as the UFO has evolved
significantly during the last decade. Moreover, the UFO

14In [68], the CKM matrix is approximated to a unit matrix,
so that only the diagonal elements of the quark I± matrices
are non-zero. In our example, we consider the general case.
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is not solely connected with FeynRules anymore, but
it lies at the heart of many high-energy physics software
tools.

The UFO 2.0 format includes several new features
that were not part of the initial proposal, thanks to the
flexible and modular structure that drove the design of
the UFO ten years ago, and that allows it to be easily
expandable and encompass features relevant for the in-
terest of high-energy physics software at a given time.
Initially, the UFO format has been designed to include
information on a model’s particles, the list and values
of the parameters appearing in the model’s Lagrangian
and the associated interaction vertices. In addition to
such information, UFO 2.0 models can optionally in-
clude information on the particle’s decay widths, on the
renormalisation group running of the model’s parame-
ters and masses, and on ingredients relevant for auto-
matic higher-order perturbative calculations. Moreover,
users can include form factors and enforce the usage of
custom propagators in their implementation. Whereas
some of these features were already described in ear-
lier publications, others have never been documented

officially in any scientific article.

It was the aim of the present paper to release the
most up-to-date documentation of the UFO format, col-
lecting in a single document information about all fea-

tures that could be present in a UFO model, from the
initial mandatory ones to those subsequently developed
during the last decade.
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and C.-H. Shen, Computing decay rates for new physics

theories with FeynRules and MadGraph 5 aMC@NLO,
Comput. Phys. Commun. 197 (2015) 312–323,
[1402.1178].

4. N. D. Christensen, P. de Aquino, N. Deutschmann,
C. Duhr, B. Fuks, C. Garcia-Cely et al., Simulating
spin- 3

2
particles at colliders, Eur. Phys. J. C 73 (2013)

2580, [1308.1668].
5. R. Aoude, F. Maltoni, O. Mattelaer, C. Severi and

E. Vryonidou, Renormalisation group effects on SMEFT
interpretations of LHC data, 2212.05067.

6. C. Degrande, Automatic evaluation of UV and R2 terms

for beyond the Standard Model Lagrangians: a

proof-of-principle, Comput. Phys. Commun. 197 (2015)
239–262, [1406.3030].
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