
MNRAS 000, 1–30 (2022) Preprint 14 March 2023 Compiled using MNRAS LATEX style file v3.0

A declining major merger fraction with redshift in the local Universe from
the largest-yet catalog of major and minor mergers in SDSS

R. Nevin,1★ L. Blecha,2 J. Comerford,3 J. Simon,3† B. A. Terrazas,4 R. S. Barrows,3
J. A. Vázquez-Mata5
1Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510, USA
2Department of Physics, University of Florida, Gainesville, FL 32611, USA
3Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309, USA
4Columbia Astrophysics Laboratory, Columbia University, 550 West 120th Street, New York, NY 10027, USA
5Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, CDMX, 04510, México

Accepted Feb 16, 2023. Received YYY; in original form ZZZ

ABSTRACT
It is difficult to accurately identify galaxy mergers and it is an even larger challenge to classify them by their mass ratio or merger
stage. In previous work we used a suite of simulated mergers to create a classification technique that uses linear discriminant
analysis (LDA) to identify major and minor mergers. Here, we apply this technique to 1.3 million galaxies from the SDSS DR16
photometric catalog and present the probability that each galaxy is a major or minor merger, splitting the classifications by merger
stages (early, late, post-coalescence). We present publicly-available imaging predictor values and all of the above classifications
for one of the largest-yet samples of galaxies. We measure the major and minor merger fraction ( 𝑓merg) and build a mass-complete
sample of galaxies, which we bin as a function of stellar mass and redshift. For the major mergers, we find a positive slope of
𝑓merg with stellar mass and negative slope of 𝑓merg with redshift between stellar masses of 10.5 < 𝑀∗ (𝑙𝑜𝑔 𝑀�) < 11.6 and
redshifts of 0.03 < 𝑧 < 0.19. We are able to reproduce an artificial positive slope of the major merger fraction with redshift
when we do not bin for mass or craft a complete sample, demonstrating the importance of mass completeness and mass binning.
We determine that the positive trend of the major merger fraction with stellar mass is consistent with a hierarchical assembly
scenario. The negative trend with redshift requires that an additional assembly mechanism, such as baryonic feedback, dominates
in the local Universe.
Key words: galaxies: interactions – galaxies: evolution – surveys – catalogues –methods: statistical – techniques: image
processing

1 INTRODUCTION

The ΛCDM model of structure growth predicts that galaxies grow
hierarchically through mergers, but uncertainty still surrounds the
impact of mergers on physical processes in galaxies. For instance,
while theory predicts that mergers contribute to the growth of stellar
bulges and elliptical galaxies Springel 2000; Cox et al. 2008, trig-
ger star formation (Di Matteo et al. 2008) and active galactic nuclei
(AGN, Hopkins et al. 2006), and even quench star formation (Di
Matteo et al. 2005; Hopkins et al. 2008), observational work often
disagrees about the importance of mergers for driving these evolu-
tionary processes (e.g. for whether mergers trigger AGN and/or star
formation, see Cisternas et al. 2011; Knapen et al. 2015; Ellison et al.
2019; Pearson et al. 2019). This is a critical tension: the implication
is that our models and/or our current methods for identifying mergers
are incorrect.

In order to determine the role of mergers in driving galaxy evo-
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lution, reconcile simulations with observations, and test the ΛCDM
cosmological model, the galaxy-galaxy merger rate and merger frac-
tion are key diagnostic tools. The merger rate, which will be the focus
of future work (Simon et al. 2023, in prep), is measured using the
merger fraction and the merger observability timescale (Lotz et al.
2011), both of which vary as a function of redshift, mass, mass ratio,
and critically, the technique used to identify mergers.

Characterizing the merger fraction as a function of mass, redshift,
and mass ratio is critical for understanding the relative contributions
of both major and minor mergers to the growth of different types of
galaxies over cosmic time. For instance, we can use the mass- and
redshift-dependent merger fraction to constrain the relative contribu-
tion of major and minor mergers to the growth of the most massive
galaxies, which are predicted to assemble at late times by ΛCDM. It
is therefore an important test of ΛCDM cosmology. We can also use
the merger fraction to test the predictions of other structure formation
channels (see §5.1 for a review).

Many different techniques exist to measure the evolution of the
major merger fraction with redshift, including close-pair (e.g. Patton
et al. 1997; Lin et al. 2004; Kartaltepe et al. 2007; Bundy et al. 2009),
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clustering (e.g. Bell et al. 2006; Robaina et al. 2010) and morpho-
logical techniques (e.g. Lotz et al. 2008; Conselice et al. 2009). The
majority of these studies find that the major merger fraction peaks at
earlier times, in agreement with the above theoretical measurements.
Other work focuses on the evolution of the major merger fraction
with stellar mass (e.g. Xu et al. 2012; Casteels et al. 2014), finding
either an increasing or decreasing merger fraction with stellar mass.
For a thorough review of past results, see §5.2.

Most of the literature has focused either on the mass- or redshift-
dependence of the merger fraction separately. Also, most of the
redshift-dependent studies only cover higher redshifts. In this work
we focus on constraining the mass- and redshift-dependent merger
fraction for galaxies in the Sloan Digital Sky Survey (SDSS). Our
focus is on the local Universe, which will allow us to avoid the un-
certainties that plague many of the above studies due to small sample
sizes. We additionally use a carefully calibrated morphologically-
based technique that avoids incompleteness issues due to fiber over-
lap.

While most past work has focused on the more easily measured
major merger fraction, the minor merger fraction is also an impor-
tant quantity. Past work finds that the minor merger fraction is sev-
eral times higher than the major merger fraction (e.g. Lotz et al.
2011; López-Sanjuan et al. 2011; Bluck et al. 2012; Kaviraj 2014b,a;
Rodriguez-Gomez et al. 2015), indicating that minor mergers have a
critical role to play in building mass in disk galaxies, the envelopes
of massive ellipticals, and the bulges of lower mass galaxies without
destroying the merger remnant (Hopkins et al. 2010). In this work
we set out to constrain not only the major merger fraction but also
the minor merger fraction and how they both vary as a function of
stellar mass and redshift.

In addition to providing constraints on the importance of galaxy
mergers for galaxy evolution, the galaxy-galaxy merger fraction and
rate are crucial for constraining the predicted supermassive black
hole (SMBH) merger rate. The SMBH merger rate will be measured
by upcoming gravitational wave observatories such as the (evolved)
Laser Interferometer Space Antenna (eLISA, LISA), which is antic-
ipated to detect SMBH mergers out to 𝑧 ∼ 10 (Amaro-Seoane et al.
2017; Mueller & Gravitational Observatory Advisory Team 2016;
Arun et al. 2022), and indirectly measured by pulsar timing arrays
through the gravitational wave background (e.g. Hobbs et al. 2010;
NANOGrav Collaboration et al. 2015; Arzoumanian et al. 2020),
which is dominated by the signal from binary SMBHs, which form
following major galaxy mergers, with masses 𝑀𝑆𝑀𝐵𝐻𝐵 > 107 𝑀�
out to 𝑧 ∼ 2 (e.g. Sesana 2013; Simon & Burke-Spolaor 2016).

The galaxy-galaxy merger rate is also important for breaking de-
generacies in the gravitational wave signal. For instance, Siwek et al.
(2020) find that the chirp mass of SMBH binaries is degenerate with
the merger rate, so separately constraining the galaxy-galaxy merger
rate can complement gravitational wave background measurements,
break these degeneracies, and constrain SMBH accretion models. A
strength of the LDA technique used in this work to identify mergers is
that it is created from detailed temporal simulations of mergers, hence
we have a solid understanding of the merger observability timescale.
In future work (Simon et al. 2023, in prep), we plan to combine the
observability timescales from this work with the merger fractions
also measured in this work to derive the galaxy-galaxy merger rate
and make predictions for the expected gravitational wave background
signal from merging binary SMBHs in the local universe.

In this paper, we address the above challenges using a statistical
learning tool calibrated on well-understood hydrodynamical mod-
els of merging galaxies from Nevin et al. (2019) (henceforth N19).
We apply this automated merger classification technique to the 1.3

million galaxies in the Sloan Digital Sky Survey (SDSS) DR16 pho-
tometric sample (§2). The strength of this approach lies in the massive
statistical sample of mergers identified using a morphological-based
technique that exceeds previous morphological techniques in accu-
racy and completeness to classify different types of mergers (§3).
The focus of this paper is twofold: 1) We present publicly-available
catalogs of different types of mergers identified by both stage and
mass ratio (major/minor, early, late, and post-coalescence) and 2)
We estimate the galaxy merger fraction as a function of mass ratio,
mass, and redshift (§4). We end by discussing our results in the con-
text of cosmological models, past empirical studies of the merger
fraction, and future directions (§5). A cosmology with Ω𝑚 = 0.3,
ΩΛ = 0.7, and ℎ = 0.7 is assumed throughout.

2 DATA

Here we present an overview of the data set. We describe how we
create image cutouts and the properties of the photometric sample in
§2.1. We present our process for measuring imaging predictor values
from these image cutouts in §2.2.

2.1 Creating image cutouts of galaxies in SDSS

The Sloan digital sky survey (SDSS, Gunn et al. 2006) is an all-sky
spectroscopic and imaging survey. To construct our sample of galax-
ies, we use the 𝑟−band imaging data from data release 16 (DR16,
Ahumada et al. 2020), which is the fourth data release of SDSS-IV
(Blanton et al. 2017). Using CasJobs, we select all galaxies from
the DR16 photometric catalog that have an 𝑟−band magnitude less
than or equal to 17.77, the completeness limit of SDSS. We do not
restrict the selection to objects that also have a spectroscopic object
ID, maximizing the number of objects in the sample. We also do
not restrict the sample by redshift. The redshift range of the mass
complete sample (described in §3.6) is 0.03 < 𝑧 < 0.19.

The exact SQL search is as follows:

select po.objID, po.ra, po.dec,
(po.petroMag_r - po.extinction_r) as dered_petro_r

into MyDB.five_sigma_detection_saturated_mode1
from PhotoObj as po
where (po.petroMag_r)<=17.77 and po.type = 3

and ((flags_r & 0x10000000) != 0)
and (flags_r & 0x40000) = 0 and mode=1

This query restricts the search to galaxies (po.type=3), eliminates
galaxies that are detected at less than 5𝜎 (flags_r 0x10000000!=0)
and galaxies for which no petrosian radius could be determined in the
𝑟−band (flag_r 0x40000 = 0), and removes duplicates using mode=1.
This search returns 1393923 galaxies.

We use the Skycoords utility from astropy to create 80.′′0 by
80.′′0 square cutout 𝑟−band images for each galaxy from the frame
images. After eliminating a small fraction (∼0.4%) of the cutouts
that are blank, corrupted, or at the edge of the frame, we have a total
of 1388533 galaxy cutout images.

2.2 Measuring predictor values from the SDSS cutout images

For each galaxy image, we measure seven imaging predictor val-
ues: 𝐺𝑖𝑛𝑖, M20, Concentration (𝐶), Asymmetry (𝐴), Clumpiness
(𝑆), Sersic index (𝑛), and shape asymmetry (𝐴𝑠). We use the same
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procedure as N19 to measure the imaging predictors, which incor-
porates SourceExtractor (Bertin & Arnouts 1996), GALFIT (Peng
et al. 2002, 2010), and statmorph (Rodriguez-Gomez et al. 2019).
We also use statmorph to measure the average S/N value (<S/N>)
within the segmentation maps. After extracting the imaging predic-
tors, the sample size is 1344677 galaxies; we lose about 3% of the
sample due to either GALFIT or statmorph failing to converge on a
good fit.

We next flag galaxies for unreliable predictor values; these galaxies
are included in both the predictor and the classification tables but are
excluded from our analysis of the merger fraction. Excluding the
galaxies with one or more flags, there are 938892 galaxies with clean
photometry. We employ three separate flags:

(i) The ‘low S/N’ flag is thrown when the average S/N value is
below 2.5, which is the cutoff value quoted in N19 below which the
classification is significantly different.

(ii) The ‘outlier predictor’ flag is thrown when one or more imag-
ing predictors are outside the range of predictor values from the simu-
lated galaxies. The range of simulated values is: 0.44 < 𝐺𝑖𝑛𝑖 < 0.72,
−2.70 < 𝑀20 < −0.50, 1.32 < 𝐶 < 5.57, −0.24 < 𝐴 < 0.76,
−0.24 < 𝑆 < 0.16, 0.47 < 𝑛 < 5.14, and 0.0 < 𝐴𝑠 < 1.21.

(iii) The ‘segmap’ flag is thrown when the segmentation map
does not include the central pixel or for when the segmentation map
extends beyond the edge of a clipped image. This identifies images
for which the predictor values are actually measuring a brighter
foreground galaxy or star.

We present the predictor values for six galaxies in Table 1. We
plot the distributions of predictor values for the full sample in Figure
1 alongside the six example galaxies from Table 1 identified with
capital letters A-F.

3 METHODS

With predictor values in hand for 1.344 million galaxies, we are
ready to classify the galaxies using the LDA imaging classification
technique (Nevin et al. 2019). We review the classification technique
and discuss some relevant changes in §3.1. We describe how we
further split the classification by merger stage in §3.2. We apply
the different classifications to the measured predictor values in §3.3
and describe how we account for all possible merger priors in §3.4,
which is critical for the direct comparison of 𝑝merg values across
the different classifications as well as the calculation of the merger
fraction. We present the MergerMonger suite in §3.5. Finally, we
describe how we create a mass-complete sample in §3.6.

3.1 Review of the LDA merger identification technique

The merger classification technique is built on a Linear Discriminant
Analysis (LDA) framework that is trained to separate mock images
of simulated nonmerging from merging galaxies using their imaging
predictors. The full details of the technique are presented in Nevin
et al. (2019) and Nevin et al. (2021) (henceforth, N19 and N21).
N19 presents the imaging side of the approach, and N21 presents
the kinematic side of the approach and some relevant changes to the
N19 method. Here we will briefly review the results of these earlier
papers.

The classification was trained using a suite of five
SUNRISE/GADGET-3 simulations of merging galaxies. The galaxies
in this suite are best described as initially disk-dominated interme-
diate mass galaxies (3.9 − 4.7 × 1010 M�). They span a range of

stellar mass ratios (𝜇∗ = 0.1, 0.2, 0.333, 0.333, 0.5), have gas frac-
tions of 0.1 and 0.3, and have initial bulge-to-total-mass ratios of 0
and 0.2. While the simulated training set is limited in morphological
parameter space, this does not significantly affect our main results
(see §5.6).

Each simulation spans 3-10 Gyr and contains a total of 100-200
snapshots in time, with a spacing of ∼10 Gyr. For each snapshot in
time, we sample the merger at seven isotropically spaced viewpoints.
We show example snapshots from the 𝜇∗ = 0.5 major merger and the
𝜇∗ = 0.1 minor merger in Figure 2, where 𝜇∗ is the stellar mass ratio
of the two merging galaxies.

In order to build the classification, we also required a set of sim-
ulated nonmerging galaxies which consist of isolated galaxies that
were matched in gas fraction and stellar mass to each simulated
merger as well as merging snapshots before first pericentric passage
and 0.5 Gyr after final coalescence (pre- and post-merger snapshots).

We created mock images from the simulated galaxies that match
the specifications of SDSS 𝑟−band images and measured the seven
imaging predictors from the mock images. We trained seven separate
LDA classifiers to identify mergers (one each for the five simulations
and one each for a combined major and combined minor merger
simulation).

Relevant details of the LDA classification include:

• The LDA relies on a prior to correct for the larger fraction of
merging relative to nonmerging galaxies in the simulations. In N19,
we use fiducial merger fraction priors of 𝑓merg = 0.1 and 0.3 for
the major and minor merger classifications, respectively. We explore
how changing the merger fraction prior affects our measured posterior
merger fraction in §4.7.

• We include interaction terms to explore correlations between
predictors.

• We use 𝑘-fold cross-validation to obtain 1𝜎 errors on the pre-
dictor coefficients and to measure the performance statistics of the
classifications.

• In order to select which coefficients are necessary for the clas-
sification, we use a forward step-wise selection technique, which
orders and includes only the relevant terms and interaction terms.

For complete details, including the full mathematical formulation
for the LDA, see N19 and N21.

There are two key differences between the imaging LDA presented
in N19 and the classification we use in this work that result in slightly
different merger classifications and performance metrics. First, up-
dates to the scikit-learn software (we are now using version
0.24.2, Pedregosa et al. 2011) including bug fixes and enhancements
to the modeling logic result in classifications with different coeffi-
cients, terms, and slightly different performance metrics. Second, the
training sets are slightly different from those used in N19; in N21 and
here, we use the predictor values from all of the simulated snapshots
that have measured values of imaging and kinematic predictors.

After rerunning the analysis from N19 with all of the above up-
dates, the major merger classification is:

LD1major =+13.9 𝐴𝑠−8.0 𝐶 ∗ 𝐴𝑠 − 5.4 𝐴 ∗ 𝐴𝑠+5.1 𝐴

+4.8 𝐶−2.9 𝐺𝑖𝑛𝑖 ∗ 𝐴𝑠+0.6 𝑀20 ∗ 𝐴

+0.4 𝑀20 ∗ 𝑛 + 0.4 𝐺𝑖𝑛𝑖 − 0.6
(1)

Terms with positive/negative contributions to the LD1 value are
blue/red.

MNRAS 000, 1–30 (2022)
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Predictor Values𝑏 Flags𝑑
SDSS ObjID𝑎 𝐺𝑖𝑛𝑖 𝑀20 𝐶 𝐴 𝑆 𝑛 𝐴𝑠 S/N𝑐 low S/N outlier predictor segmap

1237665179521187863 (A) 0.54 -2.15 3.62 -0.04 -0.01 1.49 0.13 9.98 0 0 0
1237661852010283046 (B) 0.69 -0.96 3.59 0.22 0.01 1.32 0.78 12.49 0 0 0
1237648720718463286 (C) 0.56 -1.0 3.66 0.43 -0.16 0.58 0.89 6.4 0 0 0
1237662306186428502 (D) 0.56 -2.16 3.59 0.14 0.02 1.38 0.57 16.35 0 0 0
1237653589018018166 (E) 0.56 -2.07 3.53 0.02 0.01 1.47 0.40 14.31 0 0 0
1237654383587492073 (F) 0.58 -0.81 1.61 0.54 0.06 0.97 0.12 54.27 0 0 0

Table 1. Six galaxies from the table of predictor values alongside their identification letters (A-F) that will be used throughout this paper.
𝑎The SDSS photometric object ID from DR16
𝑏The pre-standardized predictor values
𝑐Average S/N for the area of the galaxy enclosed by the segmentation mask
𝑑Flags have a value of 1 when activated

Figure 1. Distributions of predictor values for the full SDSS DR16 sample of galaxies (top, grey distribution), the simulated galaxies (black contours), and the
selected non-flagged sample of galaxies (color distribution). We show six example galaxies with predictor values and segmentation maps (bottom) and overplot
the locations of these galaxies on the top panels. All galaxy image panels are 80.′′0 × 80.′′0.
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Figure 2. Snapshots from the 𝜇 = 0.5 major merger (top row) and 𝜇 = 0.1 minor merger (bottom row) with merging snapshots in pink and orange, respectively,
and non-merging snapshots in blue. The non-merging snapshots include the pre-merger snapshots (before first pericentric passage), the post-merger snapshots
(> 0.5Gyr after coalescence), and the matched isolated galaxies (right column), which are matched to the initial conditions of each merger simulation in mass
and gas fraction.

The minor merger classification is:

LD1minor =−10.4 𝐶 ∗ 𝐴𝑠+8.8 𝐶 ∗ 𝐴−7.8 𝐺𝑖𝑛𝑖 ∗ 𝑆 − 7.8 𝐴

+6.6 𝐴𝑠 + 6.5 𝐺𝑖𝑛𝑖 ∗ 𝑀20−6.0 𝑀20 ∗ 𝑆
−5.7 𝑀20 ∗ 𝐴𝑠+4.9 𝑆−4.4 𝑀20+3.7 𝐺𝑖𝑛𝑖 ∗ 𝐶
−2.9 𝑆 ∗ 𝑛 − 1.0 𝑛 ∗ 𝐴𝑠 − 0.2 𝐴 ∗ 𝑆 − 0.7

(2)

We present the four leading coefficients for each LDA run along-
side their uncertainties in Table 2.

We quantify the observability timescales and performance metrics
for the LDA classifications using the cross-validation set of simulated
mergers. We measure the observability timescale by applying each
classification to the corresponding simulation and determining the
length of time where the average LD1 value for consecutive snapshots
is greater than zero. The observability timescale of the major/minor
merger classifications is 2.31/5.36 Gyr. It is important to empha-
size that the observability timescale is a performance metric that is
measured by applying the derived LDA classifications applied to the
simulated images. This is why the observability timescales from the
early and late stage classifications do not sum to the observability
timescale of the pre-coalescence classification.

Accuracy (𝐴) is the fraction of true positive (TP) and true negative
(TN) classifications relative to all classifications:

𝐴 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

where FP are false positive and FN are false negative classifications.
Precision (𝑃) quantifies the fraction of true positive classifications

to all positive classifications:

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Recall is also known as the completeness and quantifies the ability
of the classifier to retrieve mergers:

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

The F1 score is the harmonic mean of precision and recall:

𝐹1 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃

The major merger combined simulation has an accuracy of 0.86, a
precision of 0.96, and a recall of 0.83. The minor merger combined
simulation has an accuracy of 0.77, a precision of 0.93, and a recall
of 0.63. We present these performance metrics and the observability
timescales for all classifications in Table 3.

3.2 Classifying by Merger Stage

In N19, the classification is applied to the entire duration of
the merger (from early to post-coalescence stages). In this work,
we further split the classification into multiple different stages
(pre-coalescence, further subdivided into early and late, and post-
coalescence). Splitting the classification by merger stage will en-
able other work to address if and how galaxy mergers drive time-
dependent evolutionary processes.

Our definitions of merger stage are based on previous theoretical
and observational work that define merger stages using both morpho-
logical and evolutionary (i.e. star formation) properties. Moreno et al.
(2015) establish a sequence of merger stages for the pre-coalescence
stages of the merger based on triggered star formation: a) Incom-
ing, b) First pericentric passage, c) Apocenter, and d) Second ap-
proach. Other theoretical work to identify mergers in cosmological
simulations such as IllustrisTNG is limited in temporal sampling
and tends to distinguish more coarsely between pre-coalescence and
post-coalescence mergers, where the time since merger varies based
on the study (Hani et al. 2020; Bickley et al. 2021).

Observational work most often defines merger stage based on
projected separation. Ellison et al. (2013) distinguish between pre-
and post-coalescence mergers in a sample of 10,800 spectroscopic
close pairs in SDSS, where pre-coalescence mergers have projected
separations less than 80 kpc. Pan et al. (2019) define a merger se-
quence based on morphological disturbance and separation; 1) well-
separated pairs without disturbance, 2) close pairs with strong inter-
action signs, 3) well-separated pairs with weak distortion (apocenter),
and 4) strong distortion (final coalescence) and single galaxies with
morphological remnants from merging (post-mergers).

We divide our classification into pre- and post-coalescence stages
to match the methodology of cosmological merger identification

MNRAS 000, 1–30 (2022)
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Classification Term 1 Term 2 Term 3 Term 4

All Major Mergers 13.9 ±1.0 𝐴𝑠 -8.0 ± 0.7 𝐴𝑠 ∗𝐶 -5.4 ± 0.4 𝐴𝑠 ∗ 𝐴 5.1 ± 0.4 𝐴

Major, pre-coalescence 10.0 ± 0.6 𝐴𝑠 7.5 ± 0.2 𝐴 -6.3 ± 0.2 𝐴𝑠 ∗ 𝐴 -6.1 ± 0.5 𝐴𝑠 ∗𝐶
Major, early stage 9.1 ± 0.4 𝐴𝑠 -5.8 ± 0.4 𝐴𝑠 ∗𝐶 5.3 ± 0.6 𝐶 4.9 ± 0.5 𝐴

Major, late stage -8.9 ± 0.8 𝐴𝑠 ∗ 𝐴 7.9 ± 0.4 𝐴𝑠 7.2 ± 0.7 𝐺𝑖𝑛𝑖 ∗ 𝐴 1.2 ± 0.2 𝐴 ∗ 𝑆
Major, post-coalescence (0.5) -10.8 ± 0.9 𝐴𝑠 ∗ 𝑀20 10.1 ± 1.1 𝐶 ∗𝐺𝑖𝑛𝑖 -10.0 ± 1.1 𝐴𝑠 ∗𝐶 5.0 ± 0.9 𝐺𝑖𝑛𝑖 ∗ 𝑀20
Major, post-coalescence (1.0) -14.3 ± 0.9 𝐶 ∗ 𝑛 11.7 ± 1.4 𝐶 5.9 ± 0.9 𝐺𝑖𝑛𝑖 ∗ 𝑛 -1.3 ± 0.2 𝐴𝑠 ∗ 𝑀20

All Minor Mergers -10.4 ± 1.9 𝐴𝑆 ∗𝐶 8.8 ± 0.7 𝐴 ∗𝐶 -7.8 ± 3.3 𝐺𝑖𝑛𝑖 ∗ 𝑆 -7.8 ± 0.6 𝐴

Minor, pre-coalescence -31.3 ± 7.7 𝐺𝑖𝑛𝑖 ∗ 𝑆 -28.6 ± 6.0 𝐺𝑖𝑛𝑖 ∗ 𝑛 27.4 ± 5.7 𝑛 21.0 ± 2.8 𝐶

Minor, early stage 20.8 ± 3.6 𝐶 -20.5 ± 5.4 𝐺𝑖𝑛𝑖 ∗𝐶 -18.0 ± 2.2 𝑛 ∗ 𝑀20 -16.7 ± 2.2 𝑛 ∗𝐶
Minor, late stage 10.1 ± 1.4 𝐴𝑠 ∗𝐶 -5.3 ± 1.0 𝐴𝑠 ∗𝐺𝑖𝑛𝑖 1.9 ± 0.1 𝐴𝑠 ∗ 𝐴 –

Minor, post-coalescence (0.5) 2.3 ± 0.2 𝐴𝑠 – – –
Minor, post-coalescence (1.0) 2.0 ± 0.1 𝐺𝑖𝑛𝑖 -1.1 ± 0.1 𝐴 ∗ 𝑆 0.6 ± 0.1 𝑛 –

Table 2. The four leading coefficients and terms and for each classification. The LD1 value for each classification is constructed by multiplying the standardized
predictor value by each coefficient and summing all terms. We distinguish between the post-coalescence classifications with a 0.5 Gyr and 1.0 Gyr cutoffs after
coalescence.

Classification Accuracy Precision Recall F1 𝑡obs

All Major Mergers 0.86 0.96 0.83 0.89 2.31
Major, pre-coalescence 0.87 0.96 0.83 0.89 2.16

Major, early stage 0.86 0.95 0.78 0.86 1.72
Major, late stage 0.94 0.97 0.84 0.90 0.83

Major, post-coalescence (0.5) 0.84 0.89 0.65 0.75 0.40
Major, post-coalescence (1.0) 0.90 0.94 0.85 0.89 1.26

All Minor Mergers 0.77 0.93 0.63 0.75 5.36
Minor, pre-coalescence 0.80 0.89 0.71 0.79 5.75

Minor, early stage 0.83 0.89 0.73 0.80 3.11
Minor, late stage 0.93 0.79 0.79 0.79 5.85

Minor, post-coalescence (0.5) 0.85 0.53 0.60 0.56 0.19
Minor, post-coalescence (1.0) 0.85 0.84 0.71 0.77 0.96

Table 3. Accuracy, precision, recall, F1 score, and observability timescale for each classification measured from the cross-validation sample of simulated
mergers.

schemes. The early and late stages roughly correspond to the stages
from Moreno et al. (2015) and Pan et al. (2019) of first pericentric
passage and apocenter (early) and final approach (late). We also im-
plement a sliding timescale for the definition of the post-coalescence
stage; we use the time cutoff of 0.5 Gyr after coalescence and then
additionally implement a time cutoff of 1 Gyr. The 1 Gyr cutoff is
motivated by the work of Bickley et al. (2021), who find that the
morphology of IllustrisTNG galaxies is disturbed for up to 2.5 Gyr
following a merger.

To reconstruct the separate classifications, we eliminate all merger
snapshots that are not from the stage in question. For example, for the
major merger combined early stage classification, we eliminate all
of the merger snapshots belonging to the late and post-coalescence
stages, but we retain the pre- and post-merger snapshots as examples
of nonmergers. In this way, we are training the classification to rec-
ognize traits of a specific stage while discouraging it from learning
a strict cutoff between stages.

It is important to mention that since the merger stage classifications
are all trained separately, there may be overlap between stages, i.e.
certain galaxies will have high probabilities of belonging to multiple
merger stages. We discuss how to directly compare 𝑝merg values from
different classifications in §4.3 and quantify this overlap in §4.7.

We present the accuracy, precision, recall and F1 score for the new
classifications in Table 3 and the four leading coefficients for each
new classification in Table 2.

3.3 Classifying SDSS image cutouts

The next step is to measure the LD1 values for each SDSS galaxy
and to assign each galaxy a probability of merging for each merger
classification. To calculate LD1 for each galaxy, we standardize the
measured predictor values using the mean and standard deviation
for each classification. We then determine the value of LD1 for
each galaxy by summing the coefficients and standardized predictor
values for each classification. We present a schematic of this process
in Figure 3, which demonstrates how this process works for one
example image for the major merger combined classification.

We assign a probability of merging to each galaxy. From N19, the
probability of a galaxy belonging to the merging class is:

𝑝merg =
𝑒𝛿merg

𝑒𝛿merg + 𝑒𝛿nonmerg
(3)

where 𝛿merg/𝛿nonmerg is the score of a galaxy for the merg-
ing/nonmerging class.

Linear discriminant axis 1, or LD1, can be written in terms of
𝛿merg and 𝛿nonmerg:

LD1 = 𝛿merg − 𝛿nonmerg (4)

where the decision boundary is at LD1 = 0 and if 𝛿merg > 𝛿nonmerg,
then the galaxy will be classified as merging.

MNRAS 000, 1–30 (2022)
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Figure 3. Schematic showing the classification steps for an example galaxy (left). Our first step is to measure the imaging predictor values (top middle). We then
standardize these values and plug them into each LD1 formula. We show this (top right) for the major merger classification. The LD1 value for this galaxy is
4.781, which places it to the right of the decision value in the histogram of LD1 values (right). Our final step is to assign each galaxy a probability value (bottom
left).

Using equation 4, equation 3 can be re-written in terms of LD1:

𝑝merg =
1

1 + 𝑒−LD1 (5)

For the 1344677 galaxies in SDSS DR16, we calculate the
value of LD1 and the merger probability for the major and minor
merger classifications and for all of the stage-specific classifications
(early/late/pre-coalescence/post-coalescence). We present these re-
sults in §4.1.

3.4 Marginalizing the calculation of the merger fraction over
all merger priors

Critical to this paper is a discussion of the merger fraction priors
(𝜋) that are incorporated into the calculation of the 𝑝merg values.
In N19, we adopt a fiducial merger fraction prior of 𝜋 = 0.1 for
the major merger classifications and 𝜋 = 0.3 for the minor merger
classifications, meaning that we expect 10% and 30% of galaxies
in the local Universe to be experiencing major and minor mergers,
respectively. These priors are based on observations and simulations
(e.g. Rodriguez-Gomez et al. 2015; Lotz et al. 2011; Conselice et al.
2009; López-Sanjuan et al. 2009; Shi et al. 2009; Bertone & Con-
selice 2009).

The fiducial priors are used to measure the LD1 and the 𝑝merg
values in the previous section. The choice of this input prior affects the
distribution of LD1 and 𝑝merg values for the full sample and therefore
also affects the individual values. It is therefore particularly important
to consider which 𝜋 value is used when comparing 𝑝merg values
between classifications and when calculating the merger fraction
𝑓merg, which is the focus of this paper.

To approach the comparison of 𝑝merg values and the calculation of
𝑓merg in the cleanest and most agnostic (to input prior) way possible,
we perform a Bayesian marginalization where we re-calculate the
𝑝merg values for all possible input priors in a range 0.05 < 𝜋 < 0.5
(we fully justify this range of priors in §4.7). The implication is that
we redo the previous 𝑝merg calculation for 46 different input priors,
returning 46 different 𝑝merg values for each galaxy in SDSS. From
these, we calculate the 16th, 50th (median), and 84th percentile of the
posterior distribution for each galaxy, which we present in §4.1. We

present the results for the overall merger fraction calculation based
on these measurements in §4.7.

3.5 The MergerMonger Suite

We prepare a suite of tools § (MergerMonger)1 that applies the
LDA method to classify major and minor merging galaxies from
optical images. MergerMonger includes four main utilities:

(i) GalaxySmelter: A tool for measuring imaging predictors
from simulated or observed galaxy images.

(ii) Classify: A tool that creates the LDA classification using
the predictor values from the simulated training set.

(iii) MergerMonger: A tool that applies the LDA classification to
observed galaxies, measuring merger probabilities.

(iv) Utilities that help with the interpretation of the predictor and
probability values for each galaxy.

In this work we apply the MergerMonger suite to SDSS 𝑟−band
imaging. However, the classification is designed with broader use in
mind. The classification can be re-created using new sets of simu-
lated images (i.e. simulated images created to match the specifica-
tions of LSST or DESI imaging) or new imaging filters. For example,
to apply the classification to LSST images, one could design their
own set of mock LSST mergers and extract the training data us-
ing GalaxySmelter. Then, they could use Classify to train their
own LDA classification and finally classify LSST galaxies using
MergerMonger.

3.6 Galaxy stellar masses

To measure the stellar masses for the SDSS galaxies, we use the
empirical relation from Bell et al. (2003) that relates the SDSS 𝑢, 𝑔,
𝑟 , 𝑖, and 𝑧 band luminosities and colors to the stellar mass-to-light
(M/L) ratio using the k-correction: 𝑙𝑜𝑔10 (𝑀/𝐿) = 𝑎𝜆+(𝑏𝜆×𝑐𝑜𝑙𝑜𝑟),
where the color in units of AB magnitudes and the luminosity is in
solar units. We use the values for SDSS 𝑔 − 𝑟 color because Du
et al. (2019) find that the 𝑔 − 𝑟 color provides an almost unbiased

1 https://github.com/beckynevin/MergerMonger
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Figure 4. Comparing the stellar masses derived from the Mendel et al. (2014)
method (x-axis) to those derived from using the empirical color method from
Zibetti et al. (2009).

𝑀/𝐿 value for many different galaxy types and regions. We use
the 𝑎𝑟 = −0.840 and 𝑏𝑟 = 1.654 from Zibetti et al. (2009), which
incorporates an TP-AGB star correction and revised SFHs for bursty
galaxies, improving upon the prescription from Bell et al. (2003).

To conduct this calculation, we rely on photometric-based red-
shifts, which are available for the full SDSS sample (1035607 avail-
able photometric redshifts versus 437094 spectroscopic redshifts). In
Appendix A we further explore the differences between using pho-
tometric and spectroscopic redshifts to determine the stellar mass.
Although there are biases inherent to using the photometric-based
redshifts (especially at low redshift), we find that our results remain
unchanged when we measure the merger fraction as a function of
redshift (§4.8).

Our method for measuring stellar mass shows good agreement with
the SED-based approach of Mendel et al. (2014), which uses a stellar
population synthesis approach to measure the stellar mass using
SDSS SEDs and Sérsic models of the bulge and disk components.
We present this comparison in Figure 4, where the mean stellar
masses agree above a stellar mass of ∼ 109.

Next, we determine the mass completeness limit as a function of
redshift using the technique from Darvish et al. (2015). For each
redshift bin2, we compute the lowest stellar mass (𝑀lim) that could
be detected for each galaxy given the magnitude limit of SDSS
(𝑟 = 17.77): 𝑙𝑜𝑔(𝑀lim) = 𝑙𝑜𝑔(𝑀) + 0.4 × (𝑟 − 17.77), where 𝑟

is the apparent (rest-frame) 𝑟−band magnitude of each galaxy and
𝑀 is the stellar mass. The mass completeness limit at each redshift
bin is the mass at which 95% of the limiting masses are below the
mass completeness limit, meaning that only 5% of galaxies would
be missed in the lowest mass end of the mass function.

Our final step is to eliminate all galaxies below the mass complete-
ness limit at each redshift bin. We show this process in Figure 5. This
reduces our sample by roughly a factor of three from 958840 photo-
metrically clean galaxies with measured masses to 362216 galaxies
in a mass-complete sample. The factor of ∼3 reduction in sample
size induced by the mass completeness correction is similar to the
sample reduction in Cebrián & Trujillo 2014, which applies a similar

2 We use the redshift bins presented in §4.8.

Figure 5. Mass completeness as a function of redshift for redshift bins with
spacingΔ𝑧 = 0.02. For each redshift bin, we determine the 95% completeness
limit (pink line) and eliminate all galaxies below this point. For the distribution
of masses at each redshift bin, see Appendix A.

mass completeness correction to the NYU-VAGC catalog of SDSS
DR7 galaxies.

4 RESULTS

We present the classification results in §4.1, and provide a guide for
interpreting the predictors that influence the classification in §4.2. We
also provide a guide for deciding between merger stages and types in
§4.3 and a guide for dealing with cases where by-eye classification
and the LDA classification are in conflict in §4.4.

We then analyze the properties of the merger sample in §4.5 and
compare our results to previous SDSS merger selections in §4.6.

We constrain the observed merger fraction using all of the different
merger classifications in §4.7 and explore how the major merger
fraction varies as a function of galaxy mass and redshift in §4.8. We
explore if S/N or galaxy morphology (bulge-to-total mass ratio and
color) are confounding the redshift-dependent major merger fraction
in §4.9 and 4.10, respectively. We explore how the minor merger
fraction varies as a function of stellar mass and redshift in §4.11.
We discuss the influence of contamination of the major and minor
merger fraction calculations by mergers of the opposite type (minor
and major, respectively) in §4.12. We run numerous sanity checks
in §4.13 (more details can be found in Appendix B) to confirm the
main result of how the major merger fraction trends with mass and
redshift. Finally, we end with a discussion of the importance of mass
binning to our result in §4.14, where we find a different result in the
absense of mass binning.
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ID LD1 𝑝𝑚𝑒𝑟𝑔 CDF Leading term 1 Leading coef 1 Leading term 2 Leading coef 2 Leading term 3 Leading coef 3 segmap

1237665179521187863 (A) -4.137 0.016 0.510 𝐴𝑠 -11.3 𝐴 -3.8 𝐶 -0.5 0/0/0
1237661852010283046 (B) 4.781 0.992 0.919 𝐴𝑠 31.8 𝐴 5.2 𝐺𝑖𝑛𝑖 0.9 0/0/0
1237648720718463286 (C) 2.081 0.889 0.839 𝐴𝑠 39.4 𝐴 12.4 𝑛 ∗ 𝑀20 0.5 0/0/0
1237662306186428502 (D) 4.235 0.986 0.907 𝐴𝑠 17.9 𝐴 2.2 𝑛 ∗ 𝑀20 0.2 0/0/0
1237653589018018166 (E) 1.784 0.856 0.830 𝐴𝑠 6.9 𝐴𝑠 ∗ 𝐴 2.2 𝐴 ∗ 𝑀20 0.2 0/0/0
1237654383587492073 (F) 0.678 0.663 0.792 𝐴 16.0 𝐴𝑠 ∗𝐶 9.1 𝐴𝑠 ∗𝐺𝑖𝑛𝑖 2.4 0/0/0

Table 4. Classification results for the six galaxies presented in Figure 1. Here we provide the LD1 value and corresponding 𝑝merg value for the major merger classification. We also list the leading (most influential)
term in each classification and the contribution from this term, which is the product of the standardized predictor value and the LD1 coefficient for that term. We bold the classifications where a galaxy is classified
as a merger (𝑝merg > 0.5). The online-available tables provide these values for all six merger classifications (major, major pre-coalescence, major post-coalescence, minor, minor pre-coalescence, and minor
post-coalescence).
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4.1 LDA classification results

Here we present three data products:

(i) For each galaxy in the 1,344,577 DR16 sample, we provide all
of the predictor values and the flag values. This table was previously
described in §2 and presented in Table 1.

(ii) For each merger classification, we provide the fiducial LD1,
𝑝merg, and CDF (described below) values for each galaxy in the
1,344,577 SDSS DR16 galaxy sample accompanied by explanatory
information such as the most important (leading) terms in the classi-
fication and the coefficients associated with these leading terms. Our
intent is that these tables can be used to ascertain why a galaxy is clas-
sified as a merging or non-merging galaxy according to the different
fiducial classifications. We describe how this explanatory analysis
might work in §4.2. Table 4 presents the major merger classification
results for the six galaxies from Figure 1.

(iii) We also provide a table (Table 5) that presents the 16th,
50th, and 84th percentile of the posterior 𝑝merg distribution (and
accompanying CDF value) for all photometrically clean galaxies
(958,840) from the marginalization analysis described in §3.4. This
single table includes these results for all of the merger classifications.
Using this table, the user can directly compare 𝑝merg,50 values across
different classifications.

In Figure 6, we present histograms of the fiducial LD1 values
and the corresponding 𝑝merg values for the training set of simulated
galaxies and the SDSS galaxies classified by the major and minor
merger classifications. Since the LDA technique is designed to find
the hyperplane of maximal separation between two populations, the
distribution of probability values in the bottom panels of Figure 6
peak very near to 0 and 1. This makes direct interpretation of these
probability values very difficult. We therefore provide a complemen-
tary cumulative distribution function (CDF) analysis (which is part
of data products 2 and 3) to compare individual 𝑝merg values to the
the 𝑝merg values of all SDSS galaxies for a given classification. For
instance, if we examine the major merger classifications in Table 4,
galaxy A has a 𝑝merg value of 0.016, which corresponds to an CDF
value of 0.510, meaning that 51% of galaxies in SDSS have a lower
𝑝merg value. In Table 6, we list the 𝑝merg values that correspond
to the 5%, 10%, 90%, and 95% values of the CDF for the fiducial
merger classifications.

Finally, we provide visual examples of a randomly selected sample
of merging galaxies (Figure 7) and non-merging galaxies (Figure 8)
according to the fiducial major merger LDA classification.

4.2 A guide for interpreting classification results

The LDA classification method was designed with the interpretability
of individual results as one of its central goals. In this section, we
discuss how to use the additive linear terms that compose LD1 to
understand why a galaxy is classified as merging or non-merging.
To assist users with this interpretation, we provide Table 4, which
lists the 𝑝merg and CDF values for the major merger classification
for individual galaxies alongside the most influential predictors and
coefficients.

We include an utility within MergerMonger that calculates CDF
values for 𝑝merg values and vice versa. This is useful if the user
wants to create a ‘superclean’ merger sample that has minimal non-
merger contamination. They could either do this by defining an CDF
threshold or by deciding on a 𝑝merg threshold (i.e. 𝑝merg > 0.95)
and using Table 6 or the MergerMonger utility to determine the
corresponding 𝑝merg or CDF value. It is then possible to re-run the

LDA classifications using MergerMonger and a different 𝑝merg value
as the threshold to identify mergers.

We also provide a diagnostic tool within MergerMonger
(find_galaxy.py) that accepts single or multiple galaxy SDSS
Object ID(s) as input. This utility then presents the predictor values,
the most influential predictors in the classification, and the classi-
fication results in a diagnostic diagram that includes the individual
galaxy image and segmentation map. We show an example of two di-
agnostic diagrams in Figure 9 for the major (top) and minor (bottom)
merger classifications for galaxy F from Figure 1.

This galaxy is classified as a merger by both major and minor
merger fiducial classifications, with high LD1 and corresponding
𝑝merg values in the upper left informational panel. The lower panel
on the left hand image lists the three leading terms and their corre-
sponding contribution to the value of LD1; here, shape asymmetry
and asymmetry are important predictors for both classifications. The
inset informational panel for the right hand segmentation maps lists
all of the pre-standardized predictor values.

These diagnostic diagrams can help the user interpret why the
classifications have determined that this galaxy is likely to be a
merger. Looking first at the major merger panels, shape asymmetry
followed by the 𝐴𝑠 ∗ 𝐴 cross term are the most influential terms.
In the right panel, the asymmetry for this galaxy is low while the
shape asymmetry is high. This is due to the low surface brightness
of the shell feature. Since the coefficient of the 𝐴𝑠 term is positive in
Equation 1, this boosts the LD1 score. The coefficient of the 𝐴𝑠 ∗ 𝐴

term is negative in Equation 1. This coefficient will be multiplied
by the standardized 𝐴𝑠 and 𝐴 values, which will be positive and
negative respectively (recall, the 𝐴 value is relatively low). The net
result will be a positive contribution to LD1, meaning that this galaxy
is even more likely to be detected as a merger. In this case, the 𝐴𝑠 ∗ 𝐴
term allows the LDA to better distinguish between asymmetric bright
features such as spiral arms and low surface brightness asymmetric
features that are more likely to be caused by a merger.

For the minor merger classification, the 𝑀20 ∗ 𝐴𝑠 cross term is
influential; this term has a negative coefficient in Equation 2, so for
this term to have a large positive influence, either the standardized
value of 𝑀20 or 𝐴𝑠 must be very negative (meaning relatively low
for SDSS galaxies). Here, this is because 𝑀20 is quite negative,
meaning that the light is concentrated. By eye, this galaxy looks like
a post-coalescence merger with a shell from the merger event; the
minor merger technique is relying both upon the high concentration
(also measured by 𝑀20) and the shell feature to identify it as a merger.
This galaxy and others like it demonstrate that the LDA classification
succeeds in the case of concentrated early-type galaxies.

4.3 A guide for distinguishing between merger types and stages

Here we discuss the overlap between different merger stages and types
and how to directly compare 𝑝merg values across different classifica-
tions. Directly comparing 𝑝merg values between the fiducial runs is
not encouraged, especially between minor and major classifications.
These different classifications were prepared assuming different pri-
ors, meaning that the distribution of 𝑝merg values will be affected by
this choice. We also do not recommend directly comparing the 𝑝merg
values from Table 4 between different stages of the same merger
type (i.e. early versus late stage major mergers) because these tables
assume the same fiducial merger prior. As we will show in §B6, this
is not a safe assumption.

Best practice is therefore to use the marginalized 𝑝merg values
from Table 5 to decide which stage or which merger type is most
likely for a given galaxy. This table includes the 𝑝merg values that
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𝑝merg,16/𝑝merg,50/𝑝merg,84 (CDF)
ID Type All Pre-coalescence Post-coalescence (1.0)

1237648720718463286 Major 0.84/0.99/1.0 (0.96) 0.67/0.88/0.99 (0.85) 0.0/1.0/1.0 (0.99)
Minor 0.0/0.12/1.0 (0.51) 0.0/0.04/0.84 (0.44) 0.46/1.0/1.0 (0.98)

1237653589018018166 Major 0.79/0.88/0.92 (0.89) 0.81/0.89/0.94 (0.85) 0.88/0.97/0.99 (0.83)
Minor 0.88/0.95/0.98 (0.88) 0.88/0.96/0.99 (0.87) 0.74/0.93/1.0 (0.74)

1237654383587492073 Major 0.52/1.0/1.0 (0.98) 0.96/1.0/1.0 (0.97) 0.0/0.0/0.0 (0.0)
Minor 0.0/0.0/0.91 (0.18) 0.0/0.0/1.0 (0.17) 0.1/0.89/1.0 (0.7)

1237661852010283046 Major 0.93/0.98/0.99 (0.94) 0.99/1.0/1.0 (0.94) 0.02/1.0/1.0 (0.92)
Minor 0.04/0.89/1.0 (0.85) 0.33/0.98/1.0 (0.89) 0.19/1.0/1.0 (1.0)

1237662306186428502 Major 0.99/1.0/1.0 (0.98) 0.99/1.0/1.0 (0.95) 0.98/1.0/1.0 (0.93)
Minor 0.78/0.98/1.0 (0.91) 0.71/0.99/1.0 (0.91) 0.63/0.98/1.0 (0.84)

1237665179521187863 Major 0.03/0.09/0.17 (0.56) 0.01/0.02/0.07 (0.51) 0.29/0.63/0.76 (0.68)
Minor 0.13/0.36/0.56 (0.67) 0.18/0.37/0.57 (0.68) 0.17/0.46/0.62 (0.55)

Table 5. Marginalized 𝑝merg values and accompanying CDF values for the six galaxies from Figure 1. We list the 𝑝merg corresponding to the 16th, 50th (median),
and 84th percentiles of the marginalized posterior 𝑝merg distributions for each galaxy using each classification. We also list the CDF value that corresponds to
the 50th percentile in parenthesis. For each galaxy, we list only the combined minor/major merger classifications and the pre- and post-coalescence (1.0) results.
In the online-available table, we also include the early, late, and post-coalescence (0.5) results. In the online-available table, each of the 16/50/84 percentile
values is its own column.

Figure 6. Distribution of LD1 values for the simulated suite (top panel) and the SDSS sample (middle panel) and the corresponding distribution of 𝑝merg values
for the SDSS sample (bottom panel) for the major (left) and minor (right) merger classifications. In all cases, the y-axis is the number of galaxies. In the bottom
panels, we zoom in on the distributions and the inset numbers give the number of galaxies in the largest bin.

CDF threshold value
Classification 0.01 0.05 0.1 0.25 0.5 0.75 0.9 0.95 0.99

Major merger 3.2e-8 1.6e-7 3.2e-7 7.4e-7 0.01 0.39 0.9891260 0.999999353 0.9999998720
Minor merger 5.6e-8 2.8e-7 5.7e-7 0.02 0.24 0.79 0.996 0.99999950 0.99999989

Table 6. Probability of merging (𝑝merg) that correspond to different thresholds of the CDF for all of the merger classifications. This table is provided to enable
user interpretation of individual 𝑝merg values, which evolve exponentially and their interpretation can be assisted with careful consideration of the CDF values.
For instance, if a galaxy has a 𝑝merg value of 0.01 for the major merger classification, this corresponds to a CDF value of 0.5, meaning that about half of our
SDSS sample is more likely to be a non-merger.

corresponds to the 16th, 50th , and 84th percentile of the posterior
distribution of 𝑝merg for each galaxy for the major, minor, and pre-
and post-coalescence (1.0 Gyr) stages. The online-available table
also includes the early, late and post-coalescence (0.5) stage results.

Here we walk the user through the process of distinguish-
ing between merger types and stages using Table 5 and the
(compare_classifications.py) utility within MergerMonger,

which plots an image of a galaxy and compares the 𝑝merg values
between different classifications.

Using galaxy E from Figure 1 and Table 5, we show a diagnostic di-
agram in Figure 10 created using compare_classifications.py
as an informative example for how to decide between merger type and
stage for an individual galaxy. The compare_classifications.py
utility decides the most likely classifications in a hierarchical man-
ner; first, it determines if the galaxy is more likely to be a major or
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Figure 7. Merging galaxies (𝑝merg > 0.5) according to the major merger
LDA technique. The inset panels list the LD1 value and its accompanying
𝑝merg value and CDF value. All panels are 80.′′0 × 80.′′0.

minor merger by directly comparing the 𝑝merg,50 values from each
classification. The utility then decides whether the galaxy is more
likely to be a pre-coalescence merger or a post-coalescence (1.0 Gyr)
merger. It does this for both the major and minor classifications. All
of these rankings occur regardless of if the 𝑝merg,50 values are greater
than 0.5.

For galaxy E using the major and minor merger 𝑝merg,50 values,
we are able to conclude that it is more likely a minor merger. We
can then further distinguish between the minor merger stages, finding
that it is more likely a pre-coalescence minor merger.

In general, we recommend following the hierarchical frame-
work of compare_classifications.py; first decide between the
all-inclusive major and minor merger classifications and then de-
cide between the sub-stages of each. We also recommend using
the post-coalescence (1.0) classification as opposed to the post-
coalescence (0.5) classification, which has lower performance statis-
tics due to its short observability timescale. If the use case is
to identify all early-stage major and minor mergers, then we rec-
ommend creating a new process using the code framework of
compare_classifications.py that requires that 𝑝merg,50 from
the early stage classifications is greater than the 𝑝merg,50 values cor-
responding to the late and post-coalescence (1.0) stage classifications.
In this case, we recommend comparing the stages of the major/minor
merger classification directly to one another (i.e. major merger early
is compared to major merger late and post-coalescence).

Figure 8. Non-merging galaxies (𝑝merg < 0.5) according to the major merger
LDA technique. The inset panels are described in Figure 7.

We also provide the 16th and 84th percentile values if the user
wants to develop a more conservative sample, i.e. requiring that
𝑝merg,major,16 > 𝑝merg,minor,84 would be a more conservative way
to compare the classifications. However, there is significant overlap
between different classification samples when using the full range
(16th and 84th percentiles), so we recommend using the 50th per-
centile (median) values for simplicity. For instance, in Figure 10, if we
were to use the more conservative technique, all of the classifications
and stage-specific classifications would overlap.

Note that there is overlap between stages and/or merger types, i.e.
there will be many galaxies that have 𝑝merg,50 values that are greater
than 0.5 for multiple different classifications. We discuss this overlap
in more detail in §4.7, where we measure the merger fraction.

4.4 Interpreting cases where the LDA classification disagrees
with by-eye classification

We acknowledge that as with any merger identification approach
that relies on imaging predictors, the individual classifications may
disagree with by-eye decisions. We therefore recommend that if the
user is working with a relatively small sample they also examine the
classifications by eye to identify potential misclassifications.

A failure mode of the LDA major merger combined classification,
for instance, is classifying equal mass major mergers that happen
to be in a symmetric configuration as non-merging. This happens
when the merging galaxies also have a low overall concentration.

MNRAS 000, 1–30 (2022)



Mergers in SDSS 13

Figure 9. Diagnostic classification diagrams for the major (top) and minor
(bottom) merger classification results for galaxy E. The three most influential
terms and their contribution to LD1 are given in the bottom left panels. We
describe how to interpret these leading terms in the text.

This is relatively rare and can be understood by running the in-
terpretive MergerMonger utilities which reveals which predictors
are responsible for the non-merger classification. We also recom-
mend running galaxies with surprising classifications through the
compare_classification.py utility in order to examine the re-
sults of the different merger stage classifications. Obvious early or late
stage equal mass major mergers might be classified as having a low
probability of being a major merger by the overall classification (due
to the unlikely combination of imaging predictor values) often have
a high probability of being a major merger in the pre-coalescence
stage.

The combined LDA classifications (major and minor) are trained
from an ensemble of images, meaning that they are optimized for
high accuracy for all stages of the merger. The implication is that
the combined classifications are best for determining bulk sample
properties such as the overall merger fraction, while the individual
stage classifications may be better suited for understanding smaller
samples of mergers or for cases where determining the merger stage
is important.

4.5 Properties of the LDA mergers

The challenge we face in validating our sample of merging galaxies
is that there is no gold standard to rely upon for which galaxies
are truly mergers. We therefore take the approach of checking for
large systematic issues by investigating the global properties of the
merger samples. We carry out this analysis in two parts: first, here
we compare the properties of the (mass-complete) parent sample to
those of the merger samples. Second, in §4.6, we will compare the
properties of the merger samples to those of other merger selection
techniques.

In Figure 11 we compare the probability density functions (pdfs)

for the major (pink) and minor (yellow) merger samples to that of the
parent SDSS sample (white) using average S/N, 𝑟−band magnitude,
color (𝑔 − 𝑟), stellar mass, and redshift. The pdfs are normalized so
that all bins from a given distribution sum to a value of one.

The mergers have properties that span the full range of properties
of the parent distribution. This is a major success when we consider
that our training sample of galaxies was limited in these spaces. For
instance, the training set of galaxies spanned 3.9 − 4.7 × 1010𝑀�
in stellar mass and all galaxies in the training set had their surface
brightnesses and apparent sizes adjusted to a redshift of 𝑧 = 0.03.
The fact that the LDA techniques identify mergers over a large range
in surface brightness, stellar mass, and redshift indicates that the
LDA method is successfully able to adjust to a wider span of galaxy
properties.

Furthermore, we run two-sample Kolmogorov-Smirnov (KS) tests
to compare the cumulative distribution functions (constructed from
the pdfs) for each property and find that the distributions are statis-
tically indistinguishable. Specifically, we are unable to reject the KS
null hypothesis (that the distributions are identical) when we com-
pare the parent distribution to the major and minor merger selection
and when we compare the major and minor merger distributions. The
implication is that while the major and minor merger classifications
are using different imaging properties to identify mergers, they are
not significantly biased in any of these properties.

This is a massive success of the method; previous studies have
uncovered significant biases, especially related to S/N. For instance,
Bickley et al. (2021) train a Convolutional Neural Network (CNN) to
identify post-merger galaxies in Illustris TNG100. When they test the
performance on galaxies in the Canada-France Imaging Survey, they
find a deficit of very faint galaxies in the post-merger sample. Their
merger technique is slightly biased towards identify more massive,
brighter, and higher redshift galaxies (due to the volume-limited
nature of the survey, more massive galaxies are more likely to appear
at higher redshift).

Despite the KS test revealing that the distributions are statistically
indistinguishable, we do notice some slight by-eye differences. The
major and minor classifications have slight excesses at low (brighter)
𝑟−band magnitudes compared to the parent distribution. To quantify
this, we measure the offset in the median value of each major/minor
distribution compared to the parent distribution and find values of
Δ𝑟 = 0.11/0.12, where the major and minor merger distributions are
slightly brighter than the parent distribution. The distributions also
differ at low redshift, where the major and minor merger distributions
tend towards lower redshift values (Δ𝑧 = 0.002/0.005). In terms of
mass, the major mergers tend to have higher masses (Δ𝑙𝑜𝑔𝑀∗ (𝑀�) =
0.06).

The brighter major mergers constitute two populations; one is more
massive and at higher redshift, while one is less massive and at lower
redshift. Both of these populations have slightly lower S/N ratios than
the parent sample. These properties could reflect a slight bias for the
merger classifications to identify galaxies with lower S/N ratios as
mergers, which is the opposite bias as that identified in work such as
Bickley et al. (2021). We investigate this potential bias in more depth
in §4.9, where we show that the merger fraction does increase with
decreasing S/N when we control for mass and redshift. However, we
also show in this section that this trend does not change our finding
of a decreasing merger fraction with increasing redshift.
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Figure 10. Diagnostic diagram for determining the most likely merger type (major or minor) and the most likely merger stages for galaxy E from Figure 1. This
diagram is produced by the compare_classifications.py utility. The top left panel shows the galaxy, segmentation map (yellow), and imaging predictor
values. The top right panel runs through a diagnosis of merger type, beginning with diagnosing whether 𝑝merg,maj,50 or 𝑝merg,min,50 are greater than 0.5. If so,
then the galaxy is identified as a merger. The next step is to identify which is more likely (a major or minor merger), which is determined using the 𝑝merg,50 values
from each classification. We provide the 𝑝merg,50 values for all classifications along with the 𝑝merg,16 and 𝑝merg,84 values in the following format: 𝑝merg,50
(𝑝merg,16,𝑝merg,84). Finally, this diagnostic diagram decides which stage is more likely for the major followed by the minor merger classifications. Here, the
post-coalescence stage is more likely for the major merger and the pre-coalescence stage is more likely for the minor merger classification. In the bottom panel,
the y-axis is used to order the classification results, where different colors correspond to the median, 𝑝merg,50 values for each classification and the error bars
give the the range between the 16th and 84th percentile of the 𝑝merg value for each classification.

4.6 Properties of LDA mergers compared to previous merger
samples in SDSS

In order to better understand the biases of our technique, we compare
the mergers selected using the LDA major merger classification with
those from two large SDSS merger samples: GalaxyZoo and the
Ackermann et al. (2018) technique (from here on, A18).

First, we compare our SDSS merger catalog to the GalaxyZoo
selection of mergers in SDSS imaging, which is a large publicly-
available catalogs of mergers (Lintott et al. 2008, 2011). We cross-
match the GalaxyZoo catalog from DR8 (893,163 galaxies) with
our clean DR16 sample and find 570,455 matches. The GalaxyZoo
catalog provides 𝑝, or probability values, for four morphological cat-
egories (mergers, ellipticals, combined spirals, and ‘don’t know’),
corresponding to the percentage of users that selected each morpho-
logical category. We identify the morphological category with the
highest 𝑝 value for each galaxy. We then identify the number of
galaxies in each category that have a fiducial major merger prob-
ability greater than 0.5 from our classification. We use the major
merger classifications from our technique for comparison because

the GalaxyZoo classifications are based on visual inspection, which
is more likely to identify the more obvious major mergers.

The results are as follows: for the GalaxyZoo merger category,
6626/10433 (64%) are LDA major mergers, for the combined spi-
rals, 25467/176213 (14%) are LDA major mergers, for the ellipticals,
54431/378993 (14%), and for the ambiguous category, 1413/4816
(29%). We also build a ‘clean’ sample of GalaxyZoo mergers, where
the fraction of users that classify galaxies as mergers is greater than
95%. Of these, 30/34 (88%) are classified as mergers by our classi-
fication.

These results are reassuring in two ways: first, the LDA classifi-
cation returns ∼2/3 of mergers identified in GalaxyZoo, and second,
the fraction of spirals and ellipticals that are identified as mergers
by the LDA method are not significantly different. This tells us that
the LDA method is not significantly biased as a function of galaxy
morphology.

We visually inspect mergers according to GalaxyZoo that we clas-
sify as nonmergers and find that many of them can be described as
double nuclei galaxies without noticeable tidal tails. Some of these
galaxies may be nonmergers that are superimposed along the line of
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Figure 11. Probability density functions (pdfs) of the properties of the parent sample of SDSS gal axies (white) compared to properties of the 𝑝merg > 0.5 major
merger sample (pink) and the minor merger sample (yellow). All histograms are normalized so that all bins sum to a value of one. Left to right: the distributions
for average S/N ratio, 𝑟−band magnitude, color (𝑔 − 𝑟 ), log stellar mass, and redshift. Using the two-sample KS test, we confirm that the all distributions are
statistically indistinguishable.

sight and some of them may be very early stage mergers (approach-
ing for a first encounter) or gas poor mergers. For these galaxies, the
most important major merger predictors, such as shape asymmetry,
have low values, resulting in a non-merger identification from the
LDA technique. We discuss this particular failure mode of the LDA
classification in §4.4.

We next compare the properties of mergers from our classification
technique to those identified in the SDSS sample using the A18
technique, which uses transfer learning to retrain a convolutional
neural network (CNN) on the Darg et al. (2010) sample of merging
galaxies (from GalaxyZoo). A18 use the 3003 merger objects from
Darg et al. (2010) as merger examples (0.005 < 𝑧 < 0.1) and 10,000
GalaxyZoo galaxies with 𝑓𝑚 < 0.2 as examples of nonmergers,
where 𝑓𝑚 is the fraction of users who identify a galaxy as a merger.
We cross-match the results from the A18 catalog, which is mass
complete down to 1010𝑀� , with those of our mass-complete LDA
classifier (we calculate completeness as a function of redshift, Figure
5), and find an overlap of 98,645 galaxies. From these, we use the
same method as A18 to identify galaxies with an average 𝑝𝑚 value
above 0.95 as merging, where 𝑝𝑚 is the output of the CNN classifier.

We first compare the overlap of the merger samples. When we
measure the performance statistics of our merger sample relative
to the A18 classifications (assuming the A18 classifications to be
correct), we find an accuracy of 0.85, a precision of 0.11, a recall of
0.78, and an F1 score of 0.20. The precision is low because there are
a large number of galaxies that we identify as mergers that A18 does
not.

We present a few examples of galaxies that we classify as major
mergers that A18 does not in Figure 12. Using visual inspection, one
of the galaxies in this example (top right) looks like a faint major

merger, three appear to be minor mergers (top left3, top middle, and
bottom left), and two appear to be post-merger remnants (bottom
middle and bottom right).

Figure 12 demonstrates something fundamental about the differ-
ences between techniques that are trained using visually-identified
samples and the LDA technique presented here; techniques trained
using mergers identified by eye are biased towards identifying major
mergers in the early or late stages. The LDA technique on the other
hand will identify a greater variety of merger stages (including the
post-coalescence stage, see the result of longer merger observability
timescale from N19).

We next use the color-mass diagram (Figure 13) to compare the
properties of galaxies selected as mergers by the LDA technique
(𝑝merg > 0.5) to those of the galaxies selected as mergers by the A18
technique (𝑝merg > 0.95). The cross-matched sample is incomplete
at low galaxy stellar mass (𝑀∗ < 1010𝑀�) due to the A18 sample,
meaning that the parent sample is almost entirely composed of red
sequence galaxies. However, over the extent of the cross-matched
sample, it is clear that the mergers identified using the LDA method
span the same regions of color-mass space as those identified us-
ing the A18 method, further verifying that the LDA technique does
not introduce significant morphological biases relative to the A18
method.

We next bin the color-mass diagram by both stellar mass and
color to compare the colors and stellar masses, respectively, of our
sample of mergers to the A18 mergers. Using the KS test to compare
the merger distributions, we find mergers identified using the LDA
technique have similar stellar masses (for a fixed color) and are

3 This merger and others like it could be chance projections along the line of
sight. We discuss this caveat of the method in more detail in §5.8.
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Figure 12. Galaxies classified by the LDA classification as major mergers that are classified by the A18 major merger classification as nonmerging. The yellow
line marks the edge of the segmentation mask and the inset panels provide the LD1, 𝑝merg and CDF values for each galaxy. The LDA technique identifies a large
fraction of SDSS galaxies as mergers that the A18 technique does not; this is the case even when the A18 threshold is adjusted to a lower value.

Figure 13. Color-mass diagram. We cross-match the merger catalog from
A18 with the LDA catalog; the parent distribution is shown in black contours.
We compare mergers selected using the LDA technique (green) to those
selected using the A18 technique (orange). The mergers identified using the
LDA technique span the same color and mass ranges as those identified using
the transfer learning technique, indicating that the LDA technique does not
introduce significant morphological biases in its merger identification.

slightly bluer (for a fixed stellar mass) relative to mergers identified
using the A18 method. Ackermann et al. (2018) compare their sample
of mergers to those of their training set (Darg et al. 2010) and find that
their sample tends towards redder colors relative to the GalaxyZoo-

identified mergers. We also find that the A18 sample is redder relative
to our galaxies.

4.7 Merger fraction

We measure the merger fraction ( 𝑓merg), which is the fraction of
galaxies that have a 𝑝merg value greater than 0.5. We do this for both
the major and minor merger classifications, focusing mostly on the
major merger fraction in our analysis. For the remainder of the paper,
𝑓merg or ‘merger fraction’ refers to the major merger fraction. We
will specify if we are referring to the minor merger fraction.

More specifically, a given output merger fraction 𝑓merg, is com-
puted from an individual LDA classification that is calibrated using
an input prior 𝜋 and then applied to all of the galaxies in SDSS.
Our fiducial values of 𝜋 for the major/minor merger classifications
are 0.1/0.3, respectively. Therefore, the measured (output) merger
fraction for the fiducial major merger classification is:

𝑓merg, 𝜋=fiducial =
𝑁𝑝merg>0.5

𝑁all

where 𝑝merg is the merger probability for each SDSS galaxy calcu-
lated using the major merger classification created using the fiducial
prior of 𝜋 = 0.1, 𝑁𝑝merg>0.5 is the number of SDSS galaxies with
probability values greater than the threshold of 0.5, and 𝑁all is the
number of SDSS galaxies in the sample. We perform this calcula-
tion for the 363,644 galaxy subset that are photometrically clean and
mass-complete.

As we discuss in §3.4, adjusting the input prior affects the LDA
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classification and distribution of LD1 and 𝑝merg values. We demon-
strate this in Figure 14, where adjusting the prior (𝜋, x-axis) affects
our measurement of the posterior (merger fraction, 𝑓merg). In order
to calculate the overall posterior probability, we employ the Bayesian
approach described in §3.4, marginalizing over the prior probability.
The marginalized output merger fraction is the median of the indi-
vidual merger fractions from each of the 46 priors shown in Figure
14. The error on 𝑓merg is calculated from the standard deviation of
the 𝑓merg values for each input prior.

Figure 14 demonstrates a flattening of the relationship between
the input prior and the output posterior between the range 0.05 <

𝜋 < 0.25 for both the major and minor merger fraction. On the
upper end, we rerun this calculation for major merger priors 𝜋 > 0.5
and find a similar flattening in the relationship between the prior
and posterior. Furthermore, we find that the median major merger
fraction is unchanged when we widen the prior to 0.05 < 𝜋 < 0.85.
This further justifies the 0.5 cutoff of the uniform prior that we
introduced in §3.4 and assures us that we have used the appropriate
prior range to recover the true merger fraction.

For each merger classification, we calculate the fiducial values of
𝑓merg (which do not have associated errors) and the marginalized
value of 𝑓merg (uses the full posterior distribution of 𝑝merg) for
both the clean and the clean and mass-complete samples of SDSS
galaxies. We present these results in Table 7 for the major and minor
combined classification and the pre- and post-coalescence (1.0 Gyr)
classifications for each.

Finally, it is important to note that some galaxies will be counted
multiple times in this approach to calculating merger fraction. For
instance, many galaxies that are classified as major mergers are also
classified as minor mergers. The opposite is slightly less common and
may be due to an increased minor merger fraction. Quantifying the
overall major merger fraction (requiring that 𝑝merg,50,maj > 0.5), we
find a major merger fraction of 0.21. When we remove all galaxies that
are more likely to be minor mergers (𝑝merg,50,min > 𝑝merg,50,min),
we find a clean major merger fraction of 0.12. We repeat this calcu-
lation for the minor merger fraction and clean minor merger fraction
and find values of 0.28 and 0.24, respectively. We find that these
contamination fractions remains the same when we adjust the 𝑝merg
threshold value we use to define mergers.

We also investigate this overlap as it pertains to the calculation
of the merger fraction trends with stellar mass and redshift in more
depth in §4.12. We ultimately find that the contamination of minor
mergers in the major merger sample does not affect our results about
the merger fraction trends.

We also find that many galaxies are classified as multiple different
stages of mergers. For instance, users should be aware that if they
select for major mergers in the early stage (𝑝merg,maj,early,50 > 0.5),
many of these galaxies will also be included when they select for
major mergers in the late stages (𝑝merg,maj,late,50 > 0.5).

Quantitatively, we find that 0.18 of galaxies are major mergers in
the early stage and that this fraction drops to 0.03 after eliminating
galaxies that are more likely to be late and post-coalescence stage ma-
jor mergers. Similarly, 0.19 of galaxies are major mergers in the late
stage; when we consider the clean late stage major merger fraction,
this fraction drops to 0.13. The post-coalescence stage has a major
merger fraction of 0.35, which drops to 32% when only considering
clean post-coalescence mergers. The implication is that a significant
fraction of early stage mergers are likely to be identified as mergers
in other stages. This result also holds for the merger stages of the
minor mergers. The unclean/clean early stage minor merger fraction
is 0.28/0.14. This figure is 0.24/0.16 for the late stage and 0.44/0.32
for the post-coalescence stage.

Figure 14. Measured merger fraction as a function of the input prior for the
major (pink) and minor (yellow) merger classifications for the mass complete
sample. We marginalize over the posterior probability (y-axis) to account for
the effects of multiple possible input priors (prior probability, x-axis). The
horizontal lines and shaded regions show the median and standard deviation
of the merger fraction when marginalized over all input priors. The slope of
this relationship is flat between a prior range of 0.05 < 𝜋 < 0.25 and that
the slope flattens out beyond 𝜋 > 0.5. This justifies the chosen prior range
of 0.05 < 𝜋 < 0.5 and assures us that this range most likely covers the true
merger fraction.

4.8 Dependence of the major merger fraction on stellar mass
and redshift

In this section, we explore how the measured major merger fraction
changes with galaxy stellar mass and redshift. In §4.13 and §B, we
further explore if these dependencies reflect biases of the classifica-
tion or of the galaxy mass selection.

First, in Figure 15, we separate the mass-complete sample into
15 evenly-sized bins in stellar mass (meaning there are the same
number of galaxies in each one-dimensional bin) and bins of Δ𝑧 =

0.02 in redshift. After binning the distribution, we eliminate bins
where the median values of redshift and mass for the galaxies in that
bin are significantly different from the bin centers, which we define
as > 1𝜎 above or below the bin center, where 𝜎 is the standard
deviation of the values for the galaxies in the bin. This eliminates bins
where incompleteness in redshift and/or mass could bias our results.
We show the final binning scheme with the number of galaxies in
each complete bin in Figure 15. All bins (red) have at least 1000
galaxies. This conservative approach restricts the final sample to
310,012 galaxies.

We determine the median and standard deviation of the 𝑓merg value
in each bin by marginalizing across all priors. Next, for each redshift
bin, we fit a line to the data points at each stellar mass by running a
Markov Chain Monte Carlo (MCMC) analysis; we add the standard
deviation (error bar) multiplied by a value drawn from a random nor-
mal distribution to each 𝑓merg value and use statsmodels to fit a
linear regression. We show the key results for the major merger clas-
sification in Figure 16 and 17, where we find a positive slope of 𝑓merg
with stellar mass and a negative slope with redshift, respectively.

The slope of the major merger fraction with mass (Figure 16) is
mostly positive; for 6/8 bins this is a significantly positive slope to
1𝜎, where 𝜎 is the variation in the slope value found via the MCMC
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Priors Major Major Major Minor Minor Minor
All Pre-coalescence Post-coalescence (1.0) All Pre-coalescence Post-coalescence (1.0)

Fiducial𝑎 , all clean SDSS 0.18 0.18 0.30 0.37 0.27 0.39
Flat [0.05, 0.5], all clean SDSS 0.22±0.04 0.22 ± 0.03 0.36 ± 0.05 0.31±0.08 0.29 ± 0.09 0.46 ± 0.04

Fiducial, mass complete 0.20 0.20 0.47 0.41 0.29 0.53
Flat [0.05, 0.5], mass complete 0.28±0.07 0.24 ± 0.03 0.53 ± 0.06 0.35±0.09 0.32 ± 0.10 0.60 ± 0.04

Table 7. Merger fraction for the full sample of SDSS galaxies using different classification thresholds.
𝑎The fiducial model is when 𝑝merg > 0.5 and the priors are 𝜋 = 0.1 and 0.3 for the major and minor mergers, respectively.

Figure 15. Redshift and mass distribution of all galaxies in the mass-complete
sample. For the analysis in this section, we select mass and redshift bins that
have > 1000 galaxies and where the mass and redshift distributions are
complete (the medians are aligned with the bin center). We outline the final
selected bins used for the analysis and annotate the number of galaxies in
each bin.

iterative analysis. In 2/8 cases, the slope is significantly positive to
2𝜎, and in 3/8 cases, it is significantly to 3𝜎. The slope of the major
merger fraction with redshift (Figure 17) is significantly negative in
13/13 bins to 1𝜎 confidence.

Considering only the bins that have statistically significant slopes,
we find that the value of the slope ranges between 0.31 < 𝛼 < 0.53
with mass (for the 𝑧 bins) and between −3.35 < 𝛼 < −1.08 with
redshift (for the mass bins). Generally, the trend is more steeply
positive towards higher redshift and more steeply negative towards
low and intermediate masses.

4.9 Is S/N confounding the redshift-dependent major merger
fraction?

A statistical confound is a variable that distorts the apparent causal
relationship between the independent and dependent variables be-
cause it is independently associated with both. To investigate if S/N
is a confound that is causing the apparent negative slope in the major
merger fraction with redshift, stratify, or bin, by S/N. We first restrict
the S/N range to 0 < S/N < 50 because galaxies with S/N > 50
have a sparse distribution in the 3D parameter space. This restricts
the sample from 363,644 to 305,321 galaxies.

We present our results in Figure 18, where redshift is the target
independent variable and S/N and mass bins are the y and x-axis
of the figure, respectively. We demonstrate that for almost all 2D

bins (in mass and S/N), the slope of 𝑓merg is significantly negative
with increasing redshift. In many cases, the slope is slightly more
negative than the 2D binning analysis with mass and redshift. We can
conclude that a projection of the S/N-dependence of 𝑓merg does not
explain the negative slope with redshift; when the sample is stratified
by S/N, the slope of the major merger fraction is even more negative
with redshift.

We also run this analysis with S/N as the independent variable
of interest and find that when we stratify by mass and redshift that
the major merger fraction has a mostly negative trend with S/N,
meaning that we find higher merger fractions for lower S/N galaxies.
This trend is not well fit by a linear relationship; the slope is either
flat or negative but very close to flat. This result is distinct from
many studies that find a positive trend of merger fraction with S/N,
where they are biased to detect brighter galaxies due the merger
identification technique’s reliance on faint tidal features (e.g. Bickley
et al. 2021).

4.10 Are morphology (bulge-to-total mass ratio) or color
confounding the redshift-dependent merger fraction?

We investigate if the negative slope of the major merger fraction
with redshift could be attributed to a sensitivity to galaxy type. For
instance, some studies find a different evolution of the merger fraction
with redshift for early-type galaxies (ETGs) and late-type galaxies
(e.g. Lin et al. 2008; López-Sanjuan et al. 2012). In some cases, the
ETGs have a negative slope with increasing redshift (Lin et al. 2008;
Groenewald et al. 2017).

To conduct this analysis, we repeat the analysis of the previous
section, this time treating bulge-to-total mass ratio (B/T) and color
(𝑔−𝑟) as the suspect confounding variables. This 3D binning analysis
is identical to the S/N investigation we describe in §4.9; here we
replace S/N with B/T and 𝑔 − 𝑟 color and re-calculate the major
merger fraction. By stratifying by these nuisance parameters, we
remove their influence from the other parameters of interest (stellar
mass and redshift). We find that the slope of the major merger fraction
with mass and redshift does not significantly change as a function of
galaxy color or B/T mass ratio. This is strong evidence that neither
color nor B/T are responsible for the mass and redshift trends. The
exception is our reddest bin, where the slope of the major merger
fraction with redshift is flat or positive.

It is important to make the distinction that while B/T and color
are not a confounding variables that are responsible for the negative
redshift dependence, they can still have independent influence on the
merger fraction. For instance, when we stratify by mass, redshift, and
B/T, we find that the major merger fraction is mostly flat as a function
of B/T but increases with B/T for some bins, peaking around a B/T
mass ratio of 0.7. When we stratify by mass, redshift, and color, the
major merger fraction is positive with 𝑔−𝑟, meaning the major merger
fraction increases for redder galaxies at high masses and redshifts. At
low masses and redshifts, the slope is instead negative or flat. This is

MNRAS 000, 1–30 (2022)



Mergers in SDSS 19

Figure 16. Linear fits to the binned 𝑓merg values for the major merger classification as a function of stellar mass for bins at fixed redshift (bin spacing is
Δ𝑧 = 0.02). We show the average line fit in color and the MCMC iterative fits in grey. We conclude that 𝑓merg has a positive relationship with increasing mass
for the majority of the redshift bins. All panels have the same y range.

consistent with a picture where the major merger fraction increases
with B/T and 𝑔 − 𝑟 mostly for higher mass galaxies.

4.11 Dependence of the minor merger fraction on stellar mass
and redshift

Here we repeat the analysis, instead using the minor merger clas-
sification to identify merging galaxies. We show the results for the
binned analysis in Figures 19 and 20 for the slope of the merger
fraction with mass and with redshift, respectively. We find that the
slope of the merger fraction is mostly flat with stellar mass except
for two redshift bins where it is negative. The slope of the merger
fraction with redshift is flat for all mass bins. In other words, the
minor merger fraction shows little dependence on mass or redshift.
We discuss the implications of this in §5.5.

4.12 Accounting for contamination in the major/minor merger
samples by minor/major mergers

In §4.8 and 4.11, we empirically measure the merger fraction as a
function of stellar mass and redshift for the major and minor merger
classifications, respectively. These results include overlap between
classifications, since we consider all galaxies with median 𝑝merg
values greater than 0.5 as mergers. Here we investigate if these results
change when we calculate the merger fraction for the sample of major
and minor mergers without overlap between classification.

To calculate the clean major and minor merger fraction, we require

that 𝑝merg,med > 0.5 and 𝑝merg,med,maj > 𝑝merg,med,min for the ma-
jor mergers and 𝑝merg,med > 0.5 and 𝑝merg,med,min > 𝑝merg,med,maj
for the minor mergers. The second requirement significantly reduces
the sample size of major mergers from 86,843 galaxies to 53,573
galaxies and reduces the sample size of minor mergers from 103,907
to 86,837 galaxies. The major merger sample therefore has a greater
contamination contribution from minor mergers, which is to be ex-
pected given the larger overall merger fraction for minor mergers.

When we re-calculate the mass- and redshift-dependent merger
fraction for the clean samples, we find similar results. The clean
major merger fraction has a positive slope with mass and a negative
slope with redshift for all bins. Most slopes are slightly flatter than the
not clean case; however, this difference is not statistically significant
(to 1𝜎 errors). This slight flattening could be due to a contamination
from the minor mergers, where the trend with mass and redshift is
flatter. The clean minor merger fraction slopes are consistent to 1𝜎
with the not clean minor merger fraction slopes.

In conclusion, while double counting in the major and minor
merger samples has a significant effect on the overall number of
mergers, double counting does not affect our conclusions about the
slope of the major and minor merger fraction with redshift and mass.
The implication is that the slope of the merger fraction is robust to
these levels of contamination (38% and 16% of the major and minor
merger samples, respectively, are contaminated).
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Figure 17. Same as Figure 16 but analyzing the slope of the major merger fraction with redshift for bins of fixed stellar mass. Here the slope is significantly
negative with redshift for all mass bins.

4.13 Sanity checks

As we will address in the discussion section, the result of increasing
merger fraction with stellar mass has precedent in the literature.
However, the result of decreasing merger fraction with redshift is
unprecedented. Given this surprising result, we explore in Appendix
B whether the result of decreasing merger fraction with increasing
redshift is physical (real) or whether we can attribute it to sample
systematics (i.e. mass incompleteness at higher redshift or errors in
the mass calculation or determination of the photometric redshift).

After running our merger sample through multiple sanity checks
in Appendix B, we can conclude that the trend of the major merger
fraction increasing with stellar mass (for constant redshift) and de-
creasing with 𝑧 for constant stellar mass is robust to changes in how
we measure redshift and stellar mass. It is also robust to changes
in how we bin the data for this analysis and how we compute the
mass completeness. These steps were all taken to rule out the leading
culprits of systematic bias in the sample that could lead to our sur-
prising result of the negative evolution of the major merger fraction
with redshift.

Finally, we compare our major merger sample to a different merger
sample (A18). We find a mostly flat result with redshift for the A18
merger sample. Since we use the same cross-matched sample to rerun
the LDA classification and still find a negative trend with redshift for
the cross-matched sample, we are able to conclude that this result

is not due to peculiarities of the galaxy sample but instead can be
attributed to differences due to the merger selection itself.

4.14 In the absence of mass binning the major merger fraction
has an artificial positive trend with redshift

We have taken one final step towards understanding the negative
trend of the major merger fraction with redshift in the context of
other work. Here we run our analysis without mass binning, as other
work has done in the past in the absence of enough data to bin and
still retrieve a statistically significant result.

We re-run the analysis without mass bins to determine the con-
founding role of the positive mass trend in the redshift slope when
we do not control for mass. We additionally experiment with elim-
inating the completeness correction (of Figure 15) and with using
spectroscopic redshifts.

We present our results in Figure 21. We find a significant positive
slope of the major merger fraction with redshift in all cases where we
do not bin for mass. This includes the sample that is mass complete
with photometric redshifts (top), the sample that is mass incomplete
with photometric redshifts (middle), and the sample that is mass
complete with spectroscopic redshifts (bottom). All of plots in this
figure use color-derived masses, but we find similar results with SPS-
derived stellar masses. Figure 21 is therefore an important reminder
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Figure 18. The slope of the major merger fraction with redshift (inset subplot x-axis) for almost all S/N (figure y-axis) and mass (figure x-axis) bins is significantly
negative. This indicates that the negative redshift trend for 𝑓merg cannot be attributed to increasing S/N with increasing redshift.

that what looks like a positive slope with redshift is actually the
projection of a positive slope in mass onto redshift.

This figure additionally highlights that while the overall trend
is positive, there are different features in each plot produced by
the slightly different sample selections. For instance, the peak at
low redshift can most likely be attributed to the bias produced by
photometric redshift that artificially increases the stellar masses of
low mass galaxies. Additionally, the peak at higher redshift in the
middle plot (mass incomplete sample) can most likely be attributed
to the mass incompleteness of the sample.

The conclusions from this section can be directly connected to our
overall conclusions from this work. While we cannot completely rule
out that our negative trend with redshift is not the result of some other
systematic bias or a combination of biases (i.e., confounding factors
like mass incompleteness and redshift bias), we can at least clearly
show the most simple and likely scenario: that mass binning versus no
mass binning produce dramatically different trends of the evolution
of the major merger fraction with redshift. This demonstrates the
importance of running this type of analysis on large samples of
galaxies and with a merger classification technique such as the LDA
that demonstrates broad reliability across a range of galaxy types.

Both of these elements of this paper were essential to be able to bin
the sample in both redshift and mass and do a careful completeness
correction.

5 DISCUSSION

Our mass-complete binning analysis of a large sample of galaxies
using a carefully calibrated set of classification techniques allows us
to make clear conclusions about the evolution of the merger fraction
locally (0.03 < 𝑧 < 0.19). The additional novelty of this study is that
the large sample size allows us to do this over a finely spaced grid of
redshift and mass bins.

Here we discuss our measurements of the mass and redshift-
dependent merger fraction in the broader context of previous work.
We focus all discussion on predictions and measurements of the
merger fraction and reserve all discussion of the merger rate for fu-
ture work (Simon et al. 2023, in prep). We begin with a brief review
of predictions for the local merger fraction from cosmological mod-
els (§5.1) and a review of recent empirical estimates of the merger
fraction (§5.2). We then discuss the implications of our findings of
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Figure 19. Same as Figure 16 but for the minor merger fraction.

the mass and redshift dependence of the major merger fraction for
galaxy evolution in the local Universe (§5.3 and §5.4, respectively).
We also discuss the implications of the distinct results we find for
the minor merger fraction evolution (§5.5). We summarize our pre-
cautions throughout this paper to prevent morphological biases in
the results in §5.6. We end with a discussion of the relative strengths
of the methodology presented here (§5.7) as well as the caveats and
future work motivated by this study (§5.8).

5.1 Predictions of the redshift and mass-dependence of the
merger fraction from cosmological models

The ΛCDM model of structural assembly (e.g. White & Rees 1978)
predicts hierarchical, or bottom-up assembly, meaning that mergers
assemble smaller halos first followed by more massive halos at later
times (e.g. Blumenthal et al. 1984). This predicts a merger rate that
evolves with the density of galaxies and space in the Universe. The
measured fraction of merging galaxies should therefore increase with
redshift back to 𝑧 ∼ 2 - 3. Additionally, the merger fraction should
have a steep dependence on mass in the local Universe, since the
most massive galaxies are predicted to assemble at later times.

An alternate assembly scenario is cosmic downsizing, where the
largest galaxies form early and then stall (e.g. Cowie et al. 1996;
Juneau et al. 2005; Treu et al. 2005; Cowie & Barger 2008). Mergers
have been invoked as a mechanism to drive this compact star forma-
tion followed by rapid quenching. While Bridge et al. (2010) invoke

downsizing as a mechanism to drive a negative mass dependence
in the merger fraction between redshifts 0.2 < 𝑧 < 1.2, Estrada-
Carpenter et al. (2020) show that the phenomenon of downsizing
has a minimum redshift that ranges between 1.5 < 𝑧 < 8. The im-
plication is that this assembly scenario does not apply to the local
Universe.

Baryonic evolutionary processes (i.e. feedback) play an important
role in galaxy assembly. Simulation work finds that when baryonic
feedback is combined with the bottom-up formation model (hierar-
chical assembly), this can manifest as top-down assembly, i.e. down-
sizing (Stringer et al. 2009 and references therein). Baryonic feedback
suppresses the growth of stellar mass in galaxies above and below
∼ 1011𝑀� . This results in a higher number of intermediate mass
galaxies. If this effect is strong, it could result in more major mergers
between equal-mass galaxies locally.

In reality, the picture is probably far more complicated than any one
of the above formation scenarios. Different processes likely dominate
for different mass scales and at various epochs over the age of the
Universe. Directly observing the galaxy-galaxy merger fraction as
a function of redshift and mass and separating major from minor
mergers is therefore critical for constraining the relative contributions
of these competing processes.
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Figure 20. Same as Figure 17 but for the minor merger fraction.

5.2 Reviewing past empirical measurements of the mass- and
redshift-dependent merger fraction

Characterizing the mass-dependence of the major merger fraction
can help us understand how elliptical galaxies and the bulges of
galaxies are being built up over different mass ranges. Accurately
measuring the mass-dependent merger fraction locally is especially
important for anchoring the redshift-dependent merger fraction and
directly testing the hierarchical assembly prediction that the most
massive galaxies are assembled locally.

As with the redshift-dependent merger fraction, previous work in
this area relies on either close pair methods (e.g. Xu et al. 2004; Patton
& Atfield 2008; Domingue et al. 2009; Xu et al. 2012) or morpholog-
ical studies (e.g. Bridge et al. 2010; Casteels et al. 2014) to measure
the mass-dependent merger fraction. Most studies find a constant or
slightly increasing merger fraction with mass (e.g. Xu et al. 2004; Pat-
ton & Atfield 2008; Domingue et al. 2009; Xu et al. 2012; Robotham
et al. 2014). Of particular note is the work of Robotham et al. (2014),
which focuses on galaxies in the GAMA survey (0.05 < 𝑧 < 0.2).
They find that the merger fraction increases with mass by a factor of
∼3 between stellar masses of 109 < 𝑀∗ (𝑙𝑜𝑔 𝑀�) < 1011.

Other work finds a decreasing fraction with mass (e.g. the mor-
phological studies of Bridge et al. 2010 and Casteels et al. 2014).
Bridge et al. (2010) (0.2 < 𝑧 < 1.2) claim that the decreasing fraction
with mass is due to cosmic downsizing, while Casteels et al. (2014)
(0.001 < 𝑧 < 0.2) argue that the decrease is due to an increasing
observability timescale for lower mass galaxies.

A number of studies have measured the major merger fraction and
how it trends with redshift. It is important to note that most of the
past work that has examined the redshift-dependence of the merger
fraction has done so for redshift intervals that do not overlap with
our study. The consensus among these studies is mostly for a higher
merger fraction at higher redshift (Lin et al. 2008; Conselice et al.
2009; López-Sanjuan et al. 2012; Robotham et al. 2014; Mundy
et al. 2017; Mantha et al. 2018; Snyder et al. 2019; Kim et al. 2021),
although some studies find a relatively flat merger fraction (Bundy
et al. 2009; Jogee et al. 2009; Keenan et al. 2014).

Only the GAMA-focused studies of Robotham et al. (2014) and
Keenan et al. (2014) have more than one redshift bin below 𝑧 = 0.2.
Additionally, due to small sample sizes, the above work is often
unable to bin finely in both stellar mass and redshift, and therefore
unable to explore both simultaneously. Our study is unique in that we
have a large enough sample size to create bins in both stellar mass
and redshift and this is the first study to do so for fine redshift bins
locally (0.03 < 𝑧 < 0.19).

5.3 Implications of a positive mass dependence of the major
merger fraction

We find a positive relationship between the major merger fraction and
stellar mass between a range 10.5 < 𝑀∗ (𝑙𝑜𝑔 𝑀�) < 11.5. This is
consistent with a hierarchical assembly picture, where more massive
halos (hence galaxies) are assembling locally. In this case, since we
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Figure 21. Slope of the major merger fraction with redshift when we do not bin
for mass. We show the results for the mass complete sample with photometric
redshifts (top), for the mass incomplete sample with photometric redshifts
(middle), and for the mass complete sample with spectroscopic redshifts
(bottom). The black data points and accompanying error bars give the average
and standard deviation of the merger fraction for each redshift bin, the red
lines show the linear fits under the MCMC realizations (as outlined in §4.8),
and the red line is the average line fit with slope and error given at the bottom
of the plot. The average slope is positive for all samples, yet experiences
a significant downturn at redshifts 𝑧 < 0.1 for the two top plots, which
measure redshift using the photometric redshifts. These plots demonstrates
the importance of binning for mass; if this is not considered, the positive
trend of the major merger fraction with mass is projected onto the redshift
axis resulting in an artificial positive trend of the major merger fraction with
redshift.

observe this trend for all redshift bins, we can conclude that this
trend holds for the last ∼2 Gyrs of galaxy evolution. As mentioned
in §5.1, if baryonic processes such as feedback are coupling with
hierarchical assembly, this could manifest as top-down assembly
(cosmic downsizing). While we cannot rule this scenario out entirely,
we can conclude that if this is happening, it is not strong enough to
invert or flatten our observed positive trend for the major merger
fraction.

5.4 Implications of a negative redshift dependence for the
major merger fraction

Our key result is a decreasing major merger fraction with redshift
over the range 0.03 < 𝑧 < 0.19 (Figure 17). The implication is
that major mergers become more important in the nearby Universe.
This result cannot be explained by either hierarchical assembly or
cosmic downsizing. Hierarchical assembly predicts an increase of
the merger fraction out to high redshifts, while cosmic downsizing
likely does not operate in the local Universe and does not make
explicit predictions for the merger fraction. We find it most likely
that baryonic feedback is dominating locally, overriding the positive
slope predicted by hierarchical assembly.

Here we focus mostly on the implications of our finding in the
context of past studies and how these results merit a revision of the
current techniques used to measure the evolution of the major merger
fraction.

Most other close-pair studies find a positive trend of major merger
fraction with redshift, yet it is important to note that the majority of
these studies do not cover the same redshift range as this work (𝑧 <
0.2) and that none of these studies control for both mass and redshift
simultaneously. As we have shown, the major merger fraction varies
as a function of both mass and redshift and the mass dependence
can project onto the redshift axis, resulting in an artificial positive
relationship with redshift.

Our recommendation is for the community to: 1) Revisit past anal-
yses of the redshift-dependence of the major merger fraction using
a careful mass and redshift binning analysis, and 2) Design future
studies that cohesively span the local Universe and the higher red-
shift Universe. Currently, it is unclear if our findings represent a local
inversion in the higher redshift (𝑧 > 0.2) trend of a positive evolu-
tion of the major merger fraction with redshift or if higher redshift
studies will be inverted when mass binning and mass completeness
are accounted for.

Additionally, many of the past close-pair studies that find a positive
slope with redshift for the major merger fraction are sampling from
a severely restricted volume. For a more in-depth analysis of the vol-
ume probed by various merger fraction studies, see the discussion of
the role of cosmic variance in the calculation of the merger fraction in
López-Sanjuan et al. (2014). Furthermore, Patton & Atfield (2008)
find that the cosmic variance from the SDSS survey is negligible.
While cosmic variance is one important consideration, surveys that
are limited in volume due to survey size, depth, or additional mass
selections, will suffer from the inability to achieve statistically mean-
ingful results from their decreased number statistics because they are
unable to finely bin in mass and/or redshift.

5.5 Implications of distinct trends for the minor merger
fraction

It is noteworthy that the minor merger fraction shows remarkably
different mass- and redshift-evolution relative to the major merger
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fraction. The minor merger fraction has a flat dependence on both
of these properties. While the slope is flatter, the error bars on the
minor merger fraction tend to be larger than those on the major merger
fraction for each bin. This could reflect the decreased accuracy of the
minor merger classification.

We explore a few explanations for the flat trends: 1) the minor
mergers are subject to different structural assembly processes in the
local universe (relative to major mergers), 2) the error bars on the
minor merger fraction are obfuscating trends that are positive with
stellar mass and negative with redshift, or 3) there are some system-
atic biases at play in the minor merger classification.

First, we consider option 1. If this result is not due to a bias but
is a physical finding, this demonstrates that minor mergers are about
equally important for the assembly of all galaxy masses locally as well
as all redshifts within our range. This could further motivate the above
explanation explanation that a baryonic process such as feedback is
driving the negative redshift trend for the major merger fraction. A
process like feedback that increases the fraction of intermediate mass
galaxies (hence, increasing the major merger fraction locally) could
also lead to a relatively smaller fraction of minor mergers.

We next consider options 2 and 3. We observe underlying structure
in the mass-dependent minor merger fraction (a peak at intermedi-
ate masses). In our analysis of the properties of the different merger
classifications (§4.8), we find that minor mergers have a tendency
towards intermediate masses. This could reflect a bias against iden-
tifying low mass and high mass galaxies, which could result in a
flatter trend for the minor merger fraction since we should expect
to miss both low and high mass galaxies. This makes sense given
that the minor merger classification relies upon shape asymmetry to
identify faint tidal tails or faint companions. In the case of a bright
primary galaxy, this task becomes much more difficult for the clas-
sification. This bias is also related to a lower accuracy for the minor
merger classification (explanation 2). Our hypothesis is that while
this slight bias could exist, we find it unlikely that this slight bias
alone is driving the flat evolution. In future work, it would be worth
exploring the biases related to the minor merger classification; here
we choose instead to focus on the biases related to the major merger
classification.

Regardless of whether it is a physical trend or related to classi-
fication biases, the flatness of both of these relations for the minor
merger sample further motivates the importance of separating minor
mergers from major mergers; if there is significant minor merger
contamination in a major merger sample, this would act to flatten
out both the mass- and redshift-dependence, resulting in a flat rela-
tionship for both. While we find that this does not have a significant
influence on our results (§4.12), we recommend that future studies of
the redshift dependence of the major merger fraction take this result
into consideration.

5.6 Do the limitations of the simulated training set affect the
robustness of these results?

The LDA training set consists of intermediate mass, initially disk-
dominated simulated galaxies with initial stellar masses 3.9×1010 <

𝑀∗ (𝑀�) < 4.7×1010 and initial B/T mass ratios 0.0 < 𝐵/𝑇 < 0.2. 4

Since this training set is limited, we have taken measures to minimize

4 The stellar masses and B/T mass ratios evolve throughout the time duration
of the simulations. For instance, the simulated mergers increase in mass and
the major mergers remnants are bulge-dominated (N19).

potential biases and find no significant impact on our main result of
the mass- and redshift-dependence of the major merger fraction.

To minimize potential morphological biases, the SDSS galaxies
used in our merger fraction analysis are restricted to regions familiar
to the LDA classifier using the ‘outlier predictor’ flag (Figure 1).
While the classifier may be morphologically biased for galaxy mor-
phologies outside of the training set, this does not concern the results
presented here, which are limited to morphologies that are familiar
to the LDA classifier.

To assess if the galaxies we classify are morphologically biased
despite the above precaution, we explore the properties of the SDSS
merger sample in §4.5 and find no distinction in S/N, 𝑟−band mag-
nitude, 𝑔− 𝑟 color, stellar mass, and redshift between the merger and
parent samples. This reflects a major success or our method; that
the merger classifications are not biased by galaxy property. In §4.6
when we compare the fraction of ellipticals and mergers in Galaxy-
Zoo classified as LDA major mergers, we find the same fraction
(14%), which is further evidence that the technique does not retain a
morphological bias.

In §4.10, we confirm that the major merger fraction trends with
redshift and stellar mass persist when we control for galaxy morphol-
ogy (𝑔 − 𝑟 color or B/T ratio). This means that our results hold for
all galaxy morphologies in the photometrically clean sample.

Fully investigating the mass and morphological biases of the clas-
sification, especially for galaxies with the ‘outlier predictor’ flag are
beyond the scope of this work. Future work could investigate the
performance of the classifier across different galaxy morphologies.

5.7 Strengths of this approach

For many past studies that focus on measuring the major merger
fraction, small number statistics are a concern. Cosmic (or sample)
variance due to small fields (i.e. see the discussion of Xu et al. 2012)
can result in large error bars, leading to a conclusion of flat redshift or
mass evolution of the merger fraction. Of additional concern, many
of the close pair studies (which constitute the bulk of this literature)
suffer from spectroscopic incompleteness at small angular separa-
tion, while morphological methods suffer from surface brightness
limitations, and as a result are biased towards identifying high mass
gas-rich major mergers only. Many morphological methods also suf-
fer from small sample sizes and with a variety of systematics related
to different methodologies.

In this work, we begin from a merger identification technique that
is based on a set of well-understood simulations of mergers. This
technique has four distinct advantages over past merger identification
techniques.

(i) We are able to calibrate our methodology, which will become
critically important in future work (Simon et al. 2023, in prep), where
we plan to constrain the merger rate. In order to determine the merger
rate, the merger observability timescale is important, which we are
able to measure from the set of simulated mergers.

(ii) Since the technique does not rely on spectroscopic detections,
we apply the method to the full SDSS photometric dataset and return
the largest-yet sample of merging galaxies. With this large sample,
we are able to control for both mass and redshift when we measure
the merger fraction as a function of both of these quantities, which
we have shown is essential.

(iii) Our technique spans a variety of merger stages, including
pre- and post-coalescence stages. It therefore overlaps in stages with
both close-pair and morphological studies, which will be crucial for

MNRAS 000, 1–30 (2022)



26 R. Nevin et al.

comparing different types of studies when we measure the merger
rate.

(iv) Our technique shows significant gains in accuracy and com-
pleteness relative to past work, allowing us to build a more complete
(and larger) sample of merging galaxies.

5.8 Caveats and future work

There are three types of double counting of mergers that can occur
under this classification technique: 1) The overlap between major
and minor mergers, 2) The overlap between merger stages, and 3)
Sometimes in the early stage of the merger, the technique identifies
both galaxies as mergers, which is double counting compared to a
close-pair technique.

We have already discussed the overlap between merger stages and
types in previous sections (§4.3 and 4.12, respectively). In §4.3 we
find that the early and late stages have significant overlap in classi-
fications but the post-coalescence stage tends to have less overlap;
we discuss the implications of this in terms of classification inter-
pretation. In §4.12 we conclude that the slope of the merger fraction
with mass and redshift is unchanged when we account for the double
counting of major and minor mergers.

While splitting mergers by stage was not a primary focus of the
merger fraction analysis in this work, in future work (Simon et al.
2023, in prep), we plan to compare our galaxy sample with the close-
pair sample from Simon et al. 2022, in prep, in order to constrain the
absolute merger fraction. This will be especially important for the
early stage mergers, which are most similar to close pair studies.

In addition, in this work we conduct a brief analysis of the overlap
of merger type classifications, in other words, the contamination of
the major merger fraction by minor mergers. Our focus is primarily
on if this affects our findings related to the merger fraction slope with
stellar mass and redshift. In future work we plan to characterize the
overlapping merger populations.

In future work it will also be necessary to further address the third
type of double counting. For early stage mergers, we find that the LDA
method sometimes (but not always) identifies both galaxies in a pair
as merging galaxies. This represents a double count relative to close-
pair studies where the duo of merging galaxies would be considered
to be one ‘pair’. On the other hand, the LDA method also identifies
mergers in the late and post-coalescence stages, which boosts our
derived merger fraction relative to that of close-pair methods. Both
of these considerations mean that directly comparing our method to
close-pair studies is difficult. For this reason, in this work, we have
not attempted to directly compare the absolute number of mergers
and have instead compared the slope of 𝑓merg with stellar mass and
redshift. In Simon et al. 2023, in prep, we plan to compare our galaxy
sample with the close-pair sample from Simon et al. 2022, in prep,
in order to constrain the absolute merger fraction. In this future work
(Simon et al. 2023, in prep), we will also be able to determine the
calibration factor, 𝐶merg, to convert between the close pair fraction
and the fraction of close pairs that will ultimately merge.

It is also important to mention a fundamental difference between
morphologically-reliant merger identification techniques like the
LDA technique and spectroscopic-based techniques like the close-
pair method. Galaxies like those shown in the top left panel of Figure
12 that are identified as mergers by the LDA technique may in fact be
chance projections of unrelated galaxies along the line of sight. Fully
characterizing the expected frequency of these chance projections
is beyond the scope of this work, although we plan to discuss this
in more depth in Simon et al. 2022, in prep, when we compare our
merger sample to that of the close pair method.

6 CONCLUSIONS

In this work we apply the merger classification method from Nevin
et al. (2019) to the 1.3 million galaxies in the Sloan Digital Sky Sur-
vey DR16 photometric catalog. We additionally expand the merger
classifications from N19 to include the different stages of the merger
in addition to major versus minor classifications. This results in
twelve different merger classifications: major and minor and then we
further split by stage: early, late, pre-coalescence (includes early and
late), and two different post-coalescence classifications (one extends
to 0.5 Gyr post-merger, one extends to 1.0 Gyr).

We apply all of these classifications to image cutouts from SDSS,
calculate the 𝑝merg values and repeat this process for a range of
different input priors, marginalizing over these priors to retrieve the
posterior distribution of 𝑝merg values for all galaxies for all classifi-
cations. We provide these classifications to the reader in the form of
online-available tables in addition to an interpretable classification
repo known as MergerMonger. In the text we provide examples for
how to interpret the results and distinguish between different merger
types.

We next analyze the properties of the merger samples and com-
pare these properties to other merger samples in the literature. We
conclude that the properties of the different types of mergers span
the full range of properties of the parent SDSS distribution (in S/N,
𝑟−band magnitude, color, stellar mass, and redshift), which is a major
success of the method. We also find that the LDA technique retrieves
the majority of the GalaxyZoo and Ackermann et al. (2018) merg-
ers and further identifies a large sample of galaxies as mergers that
were missed by these techniques, demonstrating its success in finding
less-obvious mergers than visually identified samples.

The main goal of this paper is to retrieve the merger fraction ( 𝑓merg)
as a function of galaxy properties, which we do by measuring stellar
masses, carefully building a mass-complete sample (our final sample
is 310,012 galaxies), and binning by both stellar mass and redshift.
For the major merger sample we find a significantly positive trend
(1-3𝜎 confidence) between 𝑓merg and stellar mass and a significantly
negative (to 1𝜎 confidence) trend with redshift. We show these key
results in Figures 16 and 17, respectively. This trend is robust between
stellar masses of 10.5 < 𝑀∗ (𝑙𝑜𝑔 𝑀�) < 11.6 and redshifts of 0.03 <

𝑧 < 0.19. We show that when we do not correct for completeness or
bin for mass, the strong dependence of the major merger fraction on
mass results in a positive redshift slope, underscoring the importance
of a careful binning analysis with a large sample size to recover this
result.

Examining these results in the context of past theoretical and ob-
servational work, we find that the positive trend of the major merger
rate with stellar mass agrees with past results and is consistent with a
hierarchical assembly scenario for the Universe. On the other hand,
this is the first time a study has focused on the measuring the merger
fraction locally (𝑧 < 0.2) for finely spaced mass and redshift bins,
which underscores the uniqueness of the finding of a negative trend
for the major merger fraction with redshift.

In future work (Simon et al. 2023, in prep) we plan to use these
results in combination with the SDSS-derived close pair fraction
from Simon et al. 2022, in prep to calculate a merger rate. From this,
we can constrain the gravitational wave background from SMBH
mergers.
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All data products detailed in §4.1 are available on Zenodo5. For the
MergerMonger code, see the Github repo § . This includes all of
the analysis utilities used to generate the results of this paper.
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astropy (Astropy Collaboration et al. 2013), pandas (pandas develop-
ment team 2020), seaborn (Waskom 2021), scikit-learn (Pedregosa
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APPENDIX A: PHOTOMETRIC VERSUS
SPECTROSCOPIC REDSHIFTS

Here we explore the effect of using photometric redshifts on the
mass calculation and subsequent mass-completeness cut. While we
ultimately find that the merger fraction evolution as a function of
redshift is unchanged by using spectroscopic masses, we nevertheless
find that the mass distributions as a function of redshift bin (Figure
A1) are different.

Figure A1 shows the mass distribution and 95% completeness
cut for five redshift bins with spacings Δ𝑧 = 0.02 for color-based
stellar masses measured using photometric (left) and spectroscopic
redshifts (right). The distributions on the left are distinctly double-
peaked which leads us to conclude that photometric-based redshifts
are biasing a population of low-redshift galaxies towards higher
masses. When we directly compare photometric-based redshift mea-
surements to spectroscopic-based redshift measurements, we find a
bias towards higher redshifts among the photometric measurements
at low redshift, which could be resulting in a population of boosted
masses, hence the artificial double-peaked profile.

Figure A1. Mass distribution by redshift bin for stellar masses derived using
photometric redshifts (top) and spectroscopic redshifts (bottom). Our ultimate
results are unchanged, yet we note that the mass distributions have very
different shapes depending on which redshift prescription we use.

APPENDIX B: SANITY CHECKS FOR THE RESULT OF A
NEGATIVE SLOPE OF THE MAJOR MERGER FRACTION
WITH REDSHIFT

As we will address in the discussion section, the result of increasing
merger fraction with stellar mass has precedent in the literature.
However, the result of decreasing merger fraction with redshift over
the range 0.03 < 𝑧 < 0.19 is relatively unprecedented. Given this
surprising result, we use this section to explore whether this result
of decreasing merger fraction with increasing redshift is physical
(real) or whether we can attribute it to sample systematics (i.e. mass
incompleteness at higher redshift or errors in the mass calculation or
determination of the photometric redshift).

To test the result of a negative trend with redshift for the major
merger fraction, we re-run the major merger fraction measurement
in several ways: 1) Using the full, mass-incomplete sample (§B1), 2)
Adjusting the redshift binning scheme (§B2), 3) Using spectroscopic
redshifts (§B3), 4) Using SPS-derived stellar masses (§B4), 5) Run-
ning the analysis with the A18 mergers (§B5), and 6) Re-running the
analysis with different merger classifications (§B6). We conclude in
§4.13 by arguing that the decreasing merger fraction with redshift is
not a result of sample systematics and is instead a physical result.
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B1 Mass incompleteness

We run the major merger fraction calculation for the full sample (i.e.
mass incomplete) and find that the trends persist. In this case, the
slope of the major merger fraction with mass and redshift are less
steep in both cases. Additionally, visually, the trend with redshift is
very steep at low redshift followed by a flattening out of the redshift
trend at redshifts 𝑧 > 0.1. We hypothesize that this flattening could be
due to significant mass incompleteness at high redshift. We discuss
this trend in §4.14.

B2 Changing bins

We adjust the redshift bin sizes and use these new binning
schemes to re-create the mass complete sample and re-calculate
the mass- and redshift-dependence of the merger fraction. We use
five different linear spacing schemes for the redshift bins (Δ𝑧 =

0.01, 0.02, 0.03, 0.04, 0.05). We also use an adaptive binning scheme
where the redshift bin spacing is determined using a k-means ap-
proach; this constructs redshift bins that have the same number of
galaxies in each bin. We also rerun all of these calculations for the
mass incomplete sample. For all binning schemes we still find a
positive slope with mass for the majority of the redshift bins and a
negative slope with redshift for the majority of the mass bins. This
confirms that the redshift bin spacing and/or the associated number
of galaxies in each bin are not responsible for the negative trend of
the major merger fraction with redshift.

B3 Spectroscopic redshifts

As described in §3.6, we cross-match our clean (no photometric
flags) merger sample with the Mendel et al. (2014) catalog, which is
mass-incomplete. We then use the spectroscopic redshifts from this
sample to re-run the color-based mass measurement and redo the
mass completeness calculation. Finally, we re-run the major merger
fraction analysis. We find that the photometric-based redshifts, which
are available for our full sample, exhibit a bias towards higher red-
shifts (as described in Appendix A), which shifts some galaxies at
low redshift out of their redshift bins and results in higher stellar
mass estimates. Despite these biases, we still find a significant pos-
itive trend for 𝑓merg with mass and a negative trend for 𝑓merg with
redshift for the majority of the mass and redshift bins.

B4 Mendel masses

To test the robustness of this result with respect to the mass calcu-
lation, we re-run the analysis from the previous section, but instead
of color-based stellar masses, we use the stellar masses from Mendel
et al. (2014), which are derived using a Sérsic decomposition cou-
pled with an SPS-based approach. We also use the spectroscopic
redshifts for this analysis. We find that the negative slope of the ma-
jor merger fraction with respect to redshift is maintained even for the
different method of mass measurement, meaning that the color-based
approach to mass calculation is not responsible for the negative trend.

B5 A18 mergers

To explore whether the negative trend with redshift is a peculiarity
of the sample or due to the merger classification, we re-run the
analysis with the merger classification of A18. Cross-matching the
A18 sample with the SDSS sample reduces the sample size to 97k
galaxies. Since the sample size is significantly reduced, we adjust the

mass binning to include fewer bins. Due to this reduced sample size,
our investigation spans a smaller range in redshift (0.02 < 𝑧 < 0.08)
and stellar mass (10.5 < 𝑀∗ (𝑙𝑜𝑔 𝑀�) < 11). We first verify that the
positive slope with stellar mass and the negative slope with redshift
persist for the LDA merger classifications.

When we use the A18 mergers instead (using a threshold of 0.95),
we find that the slope is positive with mass for the three redshift
bins but that the slope is no longer universally negative with redshift
for the mass bins. Instead, it is positive for two of the mass bins,
flat for two of the bins, and negative for the two highest mass bins.
By using the same cross-matched galaxy subsample with both the
LDA classification and the A18 classification, we can confirm that
the negative trend we observe for the LDA sample of mergers is
due to the merger classification and not a peculiarity of the sample
selection.

Given that we have not conducted a full analysis focusing on A18
mergers and are simply comparing them to our merger sample, an
explanation of why the merger fraction trends differ for the A18
sample is outside the scope of this paper. However, we can speculate
on some differences in merger selection that could lead to these
different conclusions. Examining the properties of the two different
merger samples, we find some notable differences: The A18 sample
of mergers have lower concentrations, higher 𝐴 values, lower 𝐴𝑆
values, tend to be at higher redshifts, and are redder than the LDA
sample. As discussed in §4.6, in most other properties (i.e. S/N and
stellar mass), the merger samples are similar. The A18 sample may
be slightly biased towards identifying redder galaxies with higher
redshifts, which may result in a higher merger fraction at higher
redshifts for some of the mass bins.

B6 Different classifications

Here we calculate the dependence of the merger fraction on mass
and redshift for the different merger classifications, including the
major merger pre- and post-coalescence classifications and the mi-
nor merger combined and pre- and post-coalescence classifications.
All variants of the major merger classification give similar results;
both pre- and post-coalescence have positive slopes for how the
merger fraction trends with mass. The pre-coalescence major merger
fraction has a negative evolution with redshift. In the case of the
post-coalescence major merger classification, the slope of 𝑓merg with
redshift is mostly negative and flat for some mass bins.

The minor merger classifications give very different results; as
presented in §4.11, the slope of the combined minor merger fraction
with mass is flat (often with a peak at intermediate masses) and it
is flat with redshift. The same goes for the pre-coalescence minor
mergers and early stage minor mergers. The late stage minor mergers
are positive with mass and negative with redshift for most bins,
just like the major mergers. The post-coalescence minor mergers are
positive with mass and negative or flat with redshift, so very similar
to the post-coalescence major mergers.

There are two important lessons here. First, that minor mergers do
not show mass-dependent or redshift-dependent evolution. We will
discuss the physical implications of this in §5.5. Second, the depen-
dence of 𝑓merg on stellar mass and redshift is affected by merger
stage as well as mass ratio. The implication is that studies that iden-
tify mergers should pay careful attention to the biases of the merger
sample. However, it is important to note that the different stage clas-
sifications of the major merger fraction give similar results. Our find-
ing of the negative trend of the major merger fraction with redshift
therefore cannot be attributed to a difference in merger observability
timescale of our method relative to close pair techniques.
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