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We present the first fully differential predictions for tau neutrino scattering in the energy region
relevant to the DUNE experiment, including all spin correlations and all tau lepton decay channels.
The calculation is performed using a generic interface between the neutrino event generator Achilles
and the publicly available, general-purpose collider event simulation framework Sherpa.

I. INTRODUCTION

The tau neutrino is commonly considered to be the least well known elementary particle. The first experimental
direct evidence for tau neutrinos was provided about two decades ago by the DONuT experiment [1]. Major limitations
on the dataset came from a small cross section, the large mass of the tau lepton, and the large irreducible backgrounds.
As of today, there are still very few positively identified tau neutrino events from collider based sources, with 9 detected
by DONuT [2], and 10 detected by OPERA [3]. The SuperK [4], and IceCube [5, 6] experiments have identified 291
and 1806 tau neutrino candidates from atmospheric and astrophysical sources. New experiments are expected to come
online soon, among them DUNE [7, 8] and the IceCube upgrade [9], which will improve the precision on the νµ → ντ
appearance measurement. The forward physics facility [10] will use the large forward charm production rate at the
LHC to perform precision studies with collider neutrinos. Ultra-high energy neutrino telescopes will set limits on
ντ self-interactions (which are currently unconstrained [11]) and flavor ratios (which are an important observable to
constrain new physics [12]). With all of these novel experiments, the tau neutrino dataset is expected to grow quickly
in the coming years, creating new opportunities for measurements and searches for physics beyond the standard
neutrino paradigm [13].

DUNE is especially important to the tau neutrino program, since it will be the only accelerator based experiment
able to collect and accurately reconstruct a sample of oscillated ντ charged current (CC) events, with about 130 ντ
CC events per year in CP-optimized neutrino mode, 30 ν̄τ events per year in CP-optimized antineutrino mode and
about 800 ντ CC events per year in tau-optimized neutrino mode [13]. To make the most of these events, accurate
theory predictions are required. One key observation to help separate the signal from the irreducible background is
the fact that the tau is polarized, leading to correlations in the outgoing pions. However, the produced outgoing tau
lepton is not fully polarized for DUNE energies [14, 15]. Additionally, the cross section is dominated by quasielastic
and resonance scattering. Computational tools that model both the intricate aspects of nuclear physics involved in ν-
nucleus interactions and the effects of polarized scattering and decay are vital for experimental success [16]. However,
the existing neutrino event generators GENIE [17], NuWro [18], NEUT [19], and GiBUU [20] generate ντ interactions
in the same manner as νe and νµ events. They then assume that the outgoing τ is purely left-handed and simulate its
decay with the help of TAUOLA [21]. We will address this shortcoming by constructing an event generator based on
a state-of-the art nuclear physics model, in combination with a general-purpose tau decay simulation including spin
correlations between the production and all subsequent decays.

Various theoretical calculations have also addressed nuclear effects on the polarization of the tau in neutrino
scattering. However, the previous works either do not include tau decays [14], or they only include the one-body
decay of the tau (i.e. τ− → ντπ

−) [15]. They demonstrate the dependence of the nuclear effects on the polarization
and the impact on observables, respectively. Here, we extend these studies to include all possible decay channels of
the tau, while maintaining complete polarization information, and we provide a publicly available simulation package
to generate fully differential final states. The calculation is performed using Achilles [22] to handle the nuclear physics
effects and Sherpa [23–25] to perform the leptonic calculation and the decay of the tau. This interface extends the
one developed in Ref. [26], which also allows to perform the calculation in nearly arbitrary new physics models by
means of FeynRules [27, 28].

The outline of this paper is as follows. In Sec. II, we review analytic results on the production and decay of the
tau, with a focus on the effects of nuclear physics and the high energy limit. The implementation of tau decays within
the Sherpa framework and the interface between Achilles and Sherpa is described in Sec. III. Comparisons for purely
left-handed and the correct polarization is shown for various monochromatic neutrino beam energies as well as for a
realistic tau-optimized DUNE neutrino flux in Sec. IV.
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II. POLARIZATION IN TAU LEPTON PRODUCTION AND DECAY

This section provides a brief overview of the main analytic results on the effect of polarization in τ decays and
production. The collinear limit, which provides both theoretical insight and a useful benchmark for the validation of
Monte-Carlo simulations, is discussed in some detail. Furthermore, the dependency of the polarization of the τ on
the hadronic tensor is reviewed.

A. Tau Decays in the Collinear Limit

The dominant decay channels of the τ are into a single pion, leptons, or into a vector meson resonance. In these
channels, ignoring the decays of the vector mesons, the distribution of the final state momenta can be determined in
the collinear limit (i.e. pτ →∞). These results are useful for the validation of more detailed theoretical predictions.

The rate of the τ∓ → π∓ντ decay in the rest frame of the tau is given as [29]

1

Γτ

dΓπ
d cos θπ

=
1

2
Bπ (1± Pτ cos θπ) , (1)

where Bπ is the branching fraction of τ → πντ , Pτ is the polarization of the τ , and θπ is the angle between the pion
momentum and the tau spin axis, which coincides with the τ momentum in the lab frame. For a purely right-(left)-
handed τ−, the polarization is Pτ = +1(−1). In terms of the momentum fraction, xπ = Eπ/Eτ , the polar angle is
given as

cos θπ =
2xπ − 1− a2
β(1− a2)

, (2)

where a = mπ/mτ and β is the velocity of the τ . In the collinear limit, β → 1, and making the approximation a = 0,
one obtains

1

Γτ

dΓπ
dxπ

= Bπ (1± Pτ (2xπ − 1)) . (3)

In this limit, we obtain the prediction for the differential decay rate shown in Fig. 1.
Additionally, for the case of leptonic decays in the collinear and massless limit (me = mµ = 0) the tau decay to

leptons is the same for electrons and muons. The differential decay rate is given by [29]

1

Γτ

dΓ`
dx`

=
1

3
B`(1− x`)

((
5 + 5x` − 4x2`

)
∓
(
1 + x` − 8x2`

))
, (4)

where x` = p`/pτ , and B` is the branching ratio into a given lepton. The rate for leptons is shown in Fig. 1.
Similarly, the decays for the vector meson decay modes τ → vντ , with v = ρ or a1 are calculated in Ref. [29]

and the results are reproduced here for convenience. The mesons are separated into the transverse and longitudinal
components in the calculation, since the decays ρ→ 2π and a1 → 3π depend on the polarization of the vector mesons.
The angular distribution in the rest frame of the tau is given as:

1

Γτ

dΓTv
d cos θv

= Bv
m2
v

m2
τ + 2m2

v

(1∓ Pτ cos θv) , (5)

1

Γτ

dΓLv
d cos θv

= Bv

1
2m

2
v

m2
τ + 2m2

v

(1± Pτ cos θv) , (6)

where again v = ρ or a1, Bv is the branching ratio for τ∓ → v∓ντ , and θv is the same angle defined in the pion
case. It is important to note that for the case of the longitudinal state the polarization dependence is the same as
Eq. (1), while for the transverse state the polarization enters with the opposite sign. Therefore, if the polarization
of the vector meson is not measured, then Eqs. (5) and (6) need to be averaged. This suppresses the sensitivity to
the polarization of the tau by a factor of (m2

τ − 2m2
v)/(m

2
τ + 2m2

v), which is about 0.46 for the case of the ρ and
approximately 0.02 for the case of the a1 meson.

In the case of the vector mesons, care has to be taken when boosting to the lab frame since the polarizations are
not summed over. First, a Wigner rotation [30] is used to align the spin axis. The angle of rotation is given in the
collinear limit by [29]

cosω =
1− a2 + (1 + a2) cos θ

1 + a2 + (1− a2) cos θ
, (7)
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FIG. 1. The decay distributions vs the fractional momentum of a given particle to the τ momentum for a left-handed τ− in
the collinear limit going to single pions (blue), ρ mesons (red), a1 mesons (purple), or leptons (green). The vector mesons (ρ
and a1) can be either transversely polarized (solid lines) or longitudinally polarized (dashed lines). Additionally, the vector
mesons are not stable and the effect of their widths are included, which is set to 0.1474 GeV and 0.420 GeV for the ρ and a1
respectively.

where a = mv/mτ . Rewriting in terms of the momentum fraction (xv = Ev/Eτ ), the decay distributions can be
expressed as

1

Γτ

dΓv
dxv

= BvH
α
v (xv,m

2
v) , (8)

where α = T or L and the expressions for HT,L
v are given in Eqs. (2.16) and (2.17) of Ref. [29] respectively. The results

for the decay distribution including the width for a left-handed τ− decay are shown in Fig. 1. These distributions
provide the main analytic benchmark points for tests of our Monte-Carlo implementation.

B. Production of the tau lepton

The unpolarized differential cross-section for CC interaction ντA → τ−X can be expressed as the product of a
leptonic and hadronic tensor as shown in Ref. [26]. In the case of a massive lepton, there are six nuclear structure
functions that appear in the hadronic tensor with an associated Lorentz structure [15]

Wµν

2MA
= −gµνW1 +

PµP ν

M2
A

W2 + i
εµνγδPγqδ

2M2
A

W3 +
qµqν

M2
A

W4 +
Pµqν + P νqµ

2M2
A

W5 + i
Pµqν − P νqµ

2M2
A

W6 , (9)

where MA is the mass of the nucleus, Pµ is the initial momentum of the nucleus, qµ is the momentum transfer, and
εµνγδ is the fully anti-symmetric tensor with ε0123 = +1.

The unpolarized, longitudinal, and transverse components for the production of the τ can be expressed as different
linear combinations of the hadronic structure functions. These are given in Eqs. (2), (5), and (6) of Ref. [31] and are
reproduced here for completeness.

F =

(
2W1 +

m2
l

M2
A

W4

)
(El − |~pl| cos θ) +W2 (El + |~pl| cos θ)−W5

m2
l

MA
(10)

∓ W3

MA

(
EνEl + |~pl|2 − (Eν + El) |~pl| cos θ

)
,

PL = ∓
((

2W1 −
m2
l

M2
A

W4

)
(|~pl| − El cos θ) +W2 (|~pl|+ El cos θ)−W5

m2
l

MA
cos θ (11)

∓W3

MA

(
(Eν + El) |~pl| −

(
EνEl + |~pl|2

)
cos θ

))
/F ,
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PT = ∓ml sin θ

(
2W1 −W2 −

m2
l

M2
A

W4 +W5
El
MA
∓W3

Eν
MA

)
/F , (12)

where El,ml, ~pl is the outgoing lepton energy, mass, and three momentum, respectively. Additionally, cos θ is the
outgoing lepton angle with respect to the neutrino direction and Eν is the energy of the incoming neutrino. It is
important to note that the above equations are insensitive to the W6 structure function. Furthermore, the structure
functions W4 and W5 are proportional to the mass of the lepton and are only weakly constrained due to the limited
statistics on tau-neutrino-nucleus scattering. The limits DUNE can set on the structure functions, from using the
combination of both inclusive and differential rates, would provide valuable constraints on nuclear models used to
describe neutrino-nucleus interactions [15]. Additionally, DUNE will be the first experiment to provide measurements
of the W4 and W5 structure functions in the quasielastic region, directly testing the partially conserved axial current
and the pion-pole dominance ansatz [13].

III. MONTE-CARLO SIMULATION

In this section we will review our approach to the simulation of the scattering and decay processes. We make use
of the fact that the reaction factorizes into a leptonic and a hadronic component. We employ the neutrino event
generator Achilles [22] to handle the nuclear physics effects and the general-purpose event generation framework
Sherpa [23–25] to perform the leptonic calculation and the decay of the tau. The Sherpa framework includes two
modules to simulate decays of unstable particles: one for prompt decays of particles produced in the hard scattering
process perturbatively, and one for the decay of hadrons produced during the hadronization stage of event generation.
The tau lepton plays a special role, as it can be produced in the hard scattering process, but is the only lepton that
can decay into hadrons. For a good modeling of tau decays and also for the hadronic decay modes we thus employ
the hadron decay module [32, 33]. It enables us to use elaborate form factor models, accurate branching fractions
for individual hadronic final states, and spin correlation effects for the decaying tau lepton. We briefly describe these
features in the following.

A. The decay cascade

With the observed tau decay channels in the PDG [34] accounting for roughly 100% of the tau width, we use these
values directly for the simulation by choosing a decay channel according to the measured branching fractions. This
can include fully leptonic decay channels as well as decays into up to 6 hadrons.

Matrix elements are used to simulate the kinematical distribution of the decay in phase space. In the case of weak

tau decays, these matrix elements will always contain a leptonic current L
(τ→ντ )
µ involving the τ and ντ leptons, and

a second current involving either another lepton pair or hadronic decay products. Due to the low tau mass and the
low related momentum transfer Q2 � m2

W , the W propagator between these currents can be integrated out into the
Fermi constant

M =
GF√

2
L(τ→ντ )
µ Jµ . (13)

For currents Jµ involving hadronic final states, these matrix elements can not be derived from first principles, but
are instead based on the spin of the involved particles and include form factors to account for bound-state effects and
hadronic resonances within the hadronic current in particular.

B. Form factor models in hadronic currents

While the current for the production of a single meson is trivial and determined fully by the meson’s decay constant,
the currents in multiple-meson production can contain resonance structures. For example, in the production of pions
and kaons the main effects stem from intermediate vector mesons with a short life time, like ρ or K∗. In the Sherpa
simulation, the currents are thus supplemented with form factors that parametrize these effects using one of two
approaches [32].

The Kühn-Santamaria (KS) model [35] is a relatively simple approach modeling resonances based on their Breit-
Wigner distribution. Multiple resonances can contribute to the same current and are weighted with parameters that
are fit to experimental data. The width in the Breit-Wigner distribution is calculated as a function of the momentum
transfer.
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Another approach for the form factor is based on Resonance Chiral Theory (RχT) [36], an extension of chiral
perturbation theory to higher energies where resonances become relevant. Also here an energy-dependent width is
used for the implementation of the resonances. This form factor model is superior for final states dominated by one
resonance but cannot model multiple resonances. It will thus yield significant differences with respect to the KS model
for any channel where the lower-lying resonances are kinematically suppressed, e.g. two-kaon production.

C. Spin correlations

The implementation of spin correlations in the Monte-Carlo simulation of particle decays is described in detail in
Ref. [37]. This algorithm uses spin-density matrices to properly track polarization information through the decays.
Here we summarize only its main features. Firstly, the matrix element is evaluated for all possible spin states for the
initial and final state (Mκ1κ2;λ1...λn), where κi is the spin of the spin of the ith incoming particle and λj is the spin
of the jth outgoing particle in a 2→ n scattering process. The matrix element squared involved in the calculation of
the differential cross-section can be obtained as

ρ1κ1κ′1
ρ2κ2κ′2

Mκ1κ2;λ1...λnM∗κ′1κ′2;λ′1...λ′n
∏
i=1,n

Di
λiλ′i

, (14)

where ρiκiκ′i
is the spin density matrix for the incoming particles and Di

λiλ′i
is the spin-dependent decay matrix for the

outgoing particles. Before any decays occur, the decay matrix is given as Di
λiλ′i

= δλiλ′i and the spin density matrix

is given as ρiκiκ′i
= 1

2δκiκ′i for unpolarized incoming particles. Secondly, one of the unstable final state particles is

selected at random to decay and the spin density matrix is calculated as

ρλjλ′j =
1

Np
ρ1κ1κ′1

ρ2κ2κ′2
Mκ1κ2;λ1...λnM∗κ′1κ′2;λ′1...λ′n

∏
i6=j

Di
λiλ′i

, (15)

where Np is a normalization factor to ensure that the trace of the spin density matrix is one. The decay channel is
then selected according to the branching ratios and the new particle momenta are generated according to

ρλ0λ′0
Mλ0;λ1...λkM∗λ′0;λ′1...λ′k

∏
i=1,k

Di
λiλ′i

, (16)

where λ0 is the helicity of the decaying particle and λi is the helicity of the decay products. If there are any unstable
particles in the above decay, they are selected as before and a spin density matrix is calculated and the process is
repeated until only stable particles remain in the given chain. At this point, the decay matrix is calculated as

Dλ0λ′0
=

1

ND
Mλ0;λ1...λkM∗λ′0;λ′1...λ′k

∏
i=1,n

Di
λiλ′i

, (17)

where ND is chosen such that the trace of the decay matrix is one. Then another unstable particle is selected from
the original decay and the process is repeated until the first decay chain ends in only stable particles. At this point,
the next unstable particle is selected in the hard process and the above procedure repeats. Once there are only stable
particles left, the procedure terminates.

D. Achilles–Sherpa Interface

Employing a dedicated version of the general-purpose event generator Sherpa [23–25], we construct an interface to
the Comix matrix element generator [38] to extract the leptonic current. This interface has been described in detail in
Ref. [26]. In order to provide the hard scattering amplitudes, Mκ1κ2;λ1...λn , needed for the spin correlation algorithm
in Sec. III C, we make use of the methods developed in Ref. [39]. This allows us to extract a spin-dependent leptonic
current from Comix, which can be contracted with the hadronic current obtained from Achilles. Schematically this
can be written as

Mκhκν ;λhλl...λn = gµν
∑
i

L
(i)µ
κν ;λl...λn

W
(i) ν
κh;λh

, (18)
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where we have extended the notation of Ref. [26] to include spin labels. As the spin states of the initial- and final-state
hadrons are not observed experimentally, they can be averaged and summed over, leading to the final expression

Mκν ;λl...λnM∗κ′ν ;λ′l...λ′n =
1

2
gµνgµ′ν′

∑
i,i′

L
(i)µ
κν ;λl...λn

L
(i′)µ′

κ′ν ;λ
′
l...λ

′
n
W

(i) ν
κh;λh

W
(i′) ν′

κ′h;λ
′
h
δκhκ′h δλhλ′h . (19)

The resulting tensor is inserted into the event record of Sherpa and used to seed the event generation algorithms
described in Ref. [32, 39], which accounts for all spin correlations along all decay chains. We note that this procedure
is independent of the physics model for the short-distance interactions, and that arbitrary beyond Standard Model
scenarios can easily be implemented by providing the corresponding UFO output [40] of FeynRules [27, 28].

IV. RESULTS

We consider the scattering of a tau neutrino off an argon nucleus through the use of a rescaled carbon spectral
function for both a monochromatic beam (for validation) and for a realistic flux at DUNE. For this study, we focus
only on the quasielastic region for the nuclear interaction, as implemented in Ref. [22], and we neglect final state
interactions. Final state interactions will modify the 2 and 3 pion distributions and investigating the size of the
changes is left to a future work. For reference, all tau lepton decay channels with a branching ratio above 0.5% are
given in Tab. I. However, all possible decays are actually included in our simulation.

Decay mode Branching ratio (%)

Leptonic decays 35.21
e−ντ ν̄e 17.85
µ−ντ ν̄µ 17.36

Hadronic decays 64.79
π−π0ντ 25.50
π−ντ 10.90

π+π−π−ντ 9.32
π−π0π0ντ 9.17

π+π−π−π0ντ 4.50
π−π0π0π0ντ 1.04

K−ντ 0.70
π+π−π−π0π0 0.55

other 3.11

TABLE I. Decay channels of the tau lepton with branching fractions greater than 0.5%. All other channels are grouped into
the “other” category.

The spectral function used in this calculation was obtained within the correlated basis function theory of Ref. [41].
Electron scattering data is used to constrain the low momentum and energy contributions in the mean-field calcu-
lations. The correlated component is obtained within the Local Density Approximation. The normalization of the
spectral function is taken as∫

dkh
(2π)3

dESh(~kh, E) =

{
Z, h = p ,

A− Z, h = n ,
(20)

where kh is the momentum of the initial nucleon, E is the removal energy, Sh is the spectral function, and Z(A)
denotes the number of protons (nucleons) in the nucleus.

In this work, we consider the Kelly parametrization for the electric and magnetic form factors [42], and use a dipole
axial form factor with gA = 1.2694 and MA = 1.0 GeV. Additionally, the pseudoscalar form factor is obtained through
the use of the partially conserved axial current ansatz and assumptions about the pion-pole dominance, i.e.

FAP (Q2) =
2m2

N

Q2 +m2
π

FA(Q2) , (21)

where FAP is the pseudoscalar axial form factor, mN ,mπ are the masses of the nucleon and pion, respectively, Q2 = −q2
is the momentum transfer, and FA is the axial form factor.
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FIG. 2. Momentum fraction of the outgoing pion for τ− → π−ντ decays of various incoming neutrino energies. Results are
shown for the full polarization calculation on the left and the left-handed polarization approximation (PTL = 1, PTT = 0) on the
right.
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FIG. 3. Momentum fraction of the π−π0 system for τ− → π−π0ντ decays of various incoming neutrino energies. Results are
shown for the full polarization calculation on the left and the left-handed polarization approximation (PTL = 1, PTT = 0) on the
right.

A. Monochromatic beam

In order to validate our results, we first consider monochromatic beams. We compare our calculations to the results
from Ref. [15] for the single pion production channel. However, instead of the momentum of the outgoing pion, we
analyze the momentum fraction of the outgoing pion (xπ = pπ/pτ ). This allows us to include multiple neutrino
energies in the same plot. The results from Achilles+Sherpa are shown in Fig. 2, with the appropriate handling of the
tau polarization on the left and assuming the tau to be purely left-handed on the right. From this, we see that our
results are consistent with those from Ref. [15]. Additionally, we see that as the neutrino energy increases the results
approach those found in Fig. 1 for the collinear limit, as expected.

We next consider the decays of the tau into the two pion and three pion states, which are dominated by the decay
chain τ− → ντρ

−(ρ− → π−π0) and τ− → ντa
−
1 (a−1 → π−π−π+ or a−1 → π−π0π0) respectively.

For the case of the ρ channel, we analyze the momentum fraction of the hadronic system (xρ = pρ/pτ ) as well as
the momentum fraction of the π− with respect to the ρ (zπ = pπ−/pρ). The results are shown in Fig. 3 and Fig. 4
respectively. Again, the full calculation is on the left of each plot and the assumption of a purely left-handed tau is
on the right. We can see that there is a significant impact from including the correct polarization in the calculation.
In the case of the ρ momentum fraction, we see that our results approach the transverse curve for the ρ from Fig. 1
as Eν increases. This is expected since we are summing over the polarizations of the ρ, which are dominated by the
transverse polarization.

As mentioned in Sec. II A, summing over the polarizations of the a1 removes any sensitivity to the polarization of
the τ . Therefore, the a1 momentum as a fraction of the τ momentum (xa1 = pa1/pτ ) should not show any difference
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FIG. 4. Ratio of the π− momentum to the ρ− momentum for τ− → π−π0ντ decays of various incoming neutrino energies,
where zπ denotes this ratio. Results are shown for the full polarization calculation on the left and the left-handed polarization
approximation (P TL = 1, PTT = 0) on the right.
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FIG. 5. Momentum fraction of the π+π−π− system for τ− → π+π−π−ντ decays of various incoming neutrino energies. Results
are shown for the full polarization calculation on the left and the left-handed polarization approximation (P TL = 1, PTT = 0) on
the right.

between the full calculation and the left-handed only calculation. This is supported by Figs. 5 and 6, with the left
and right panel being statistically consistent with each other. Figure 5 shows the decay to the π+π−π− final state
and Fig. 6 shows the decay to the π−π0π0 final state. Furthermore, the curves approach the result of the collinear
limit as Eν increases, as seen by comparing to the transverse a1 curve of Fig. 1.

Finally, we consider the leptonic decay channel. Here we will focus on the decays to electrons due to the possible
experimental relevance at DUNE for ντ detection, but note that up to corrections from the muon mass and the
difference in the branching ratios the predictions would be identical. The comparison for various neutrino energies is
given in Fig. 7. Again, we can see a difference between the full calculation in the left panel and the purely left-handed
calculation in the right panel. The latter result approaches the expected prediction for large Eν as shown in Fig. 1.

B. Realistic beams

To investigate the impact of spin-correlations in a more realistic setting, we consider the τ -optimized flux mode for
the DUNE experiment [43]. The oscillated far detector flux is shown in Fig. 8. The oscillation parameters are fixed
to the values from the global fit [44]:

δm2
21 = 7.50× 10−5 eV2, δm2

31 = 2.55× 10−3eV2,

s212 = 0.318, s223 = 0.574, s213 = 0.0220, δCP = 1.08π .
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FIG. 6. Momentum fraction of the π−π0π0 system for τ− → π−π0π0ντ decays of various incoming neutrino energies. Results
are shown for the full polarization calculation on the left and the left-handed polarization approximation (PTL = 1, PTT = 0) on
the right.
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FIG. 7. Momentum fraction of the outgoing electron for τ− → e−ντ ν̄e decays of various incoming neutrino energies. Results
are shown for the full polarization calculation on the left and the left-handed polarization approximation (P TL = 1, PTT = 0) on
the right.
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FIG. 8. Neutrino flux in the far detector of DUNE. The flux is generated from running in τ -optimized mode. The unoscillated
fluxes are obtained from Ref. [43].
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FIG. 9. Momentum fraction distribution for the decay of the τ into a single pion is shown on the left and momentum fraction
distribution for the decay into an electron is shown on the right. The full polarization handling is shown in red with the
approximation that the τ is purely left-handed in blue. The predictions are folded over the DUNE far-detector flux running in
the τ -optimized mode given in Fig. 8.

The results are given using the flux averaged cross-section, defined as

〈σ〉 =

∫
dEνΦ(Eν)σ(Eν)∫

dEνΦ(Eν)
, (22)

where Φ(Eν) is the neutrino flux and σ(Eν) is the neutrino energy dependent cross- section.

While all possible decay channels are implemented, we consider here only those most affected by correctly handling
polarization. Furthermore, only decay channels with sufficiently large branching ratios such that the differences are
experimentally relevant are shown.

We first consider the single pion decay channel, since it is a clean channel to reconstruct at DUNE. The results of
the calculation are shown in the left panel of Fig. 9. Here we see that in the full calculation, the outgoing pion tends
to be more energetic than in the fully left-handed case.

The case of leptonic decays is shown in the right panel of Fig. 9, and is calculated in the massless limit for both
the electron and the muon. In this case, the two decays are identical. The effect of including the full polarization
information makes the outgoing lepton softer compared to the fully left-handed calculation. While the chance of
detecting the muon channel is extremely difficult, there is a chance to detect the electron channel due to the low νe
flux at the far detector as seen in Fig. 8.

Another interesting decay channel to consider is the two pion final state, which has the largest branching fraction
of all decay channels. For this decay channel, we consider the momentum of the sum of the two pions as a fraction of
the τ momentum (xππ) and the momentum of the negatively charged pion as a fraction of the momentum sum (zπ).
Figure 10 shows the difference between the full calculation in red and the fully left-handed approximation in blue. In
the case of the xππ distribution, the total momentum is harder in the full calculation compared to the left-handed
assumption. Additionally, there is a significant difference in zπ between the full calculation and the left-handed only.
The full calculation is relatively flat over the full range, while the left-handed only calculation is peaked around 0.6.
This shift is significant, and will be important for any detailed study on using the two pion channel to detect tau
neutrino events.

The last decay channel considered in this work is the decay to three pions. In this case, the decay is dominated by
the a1 meson as discussed in Sec. II A, and since we are not separating out the a1 polarization should not be sensitive
to the polarization of the τ . This can be seen in Fig. 11, where the decay a1 → π0π0π− can be seen on the left
and the decay a1 → π+π−π− can be seen on the right. The full calculation and the left-handed only calculation are
statistically consistent with each other, as expected.

Finally, we perform the analysis proposed in Ref. [16]. The comparison between the full calculation and the left-
handed polarization assumption is shown in Fig. 12 for the energy of the leading pion. There is a shift in the energy
distribution of the pion when correctly handling the tau polarization, making the pion slightly harder. The study on
the impact of this in the separation from the neutral current background is left to a future work. Since the final state
interactions are turned off in this analysis, the other distributions given in Ref. [16] would not be accurate. Therefore,
they are not included here but will be included in a detailed study on separating the τ decays from the background.
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FIG. 10. Momentum fraction distribution for the decay of the τ into a pair of pions is shown on the left. The momentum of
the negatively charged pion as a fraction of the sum of the pion momenta is given on the right. The full polarization handling
is shown in red with the approximation that the τ is purely left-handed in blue. The predictions are folded over the DUNE
far-detector flux running in the τ -optimized mode given in Fig. 8.
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FIG. 11. The full calculation (red) and the purely left-handed calculation (blue) are given for the momentum fraction of the
three pions as a fraction of the total τ momentum for the decay of the a1, with the π0π0π− channel on the left and the π+π−π−

channel on the right. The predictions are folded over the DUNE far-detector flux running in the τ -optimized mode given in
Fig. 8.
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FIG. 12. Energy of the leading pion in ντA → τX events, in which all possible decays of the τ are included. These results do
not include the production of pions from the intranuclear cascade.
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V. CONCLUSIONS

Due to the limited number of identifiable tau neutrino events, the tau neutrino is typically considered the least
understood fundamental particle in the Standard Model. Current and next-generation experiments will collect a large
number of tau neutrino events, opening the door to detailed study of this particle.

One of the most important experiments for studying the tau neutrino will be the DUNE experiment. It will be
the only experiment using accelerator neutrinos for measuring properties of the tau neutrino. At DUNE energies,
the quasielastic scattering component is the dominant contribution. In this energy region, there is an irreducible
background from neutral current resonance interactions. Therefore, it is vital to understand the most optimal way to
separate the signal from the background. Traditionally, in neutrino event generators the outgoing τ is assumed to be
fully left-hand polarized. This assumption is poor for DUNE energies.

In this work, we demonstrate the appropriate way of calculating the polarization of the tau and propagating this
information through the full decay chain within an event generator framework. The simulations were performed
with a publicly available version of Achilles interfaced with Sherpa. For validation, we showed that the distributions
for single pion are consistent with Ref. [15] for monochromatic beams. We additionally showed strong shifts in the
momentum distributions for the two pion decay channel and found insignificant shifts (as expected) in the three pion
decay channels from the fully left-handed assumption. We also considered the decay in the leptonic channel, and
found a slight shift when correctly handling the polarization.

While the study with monochromatic beams allows for validation of the calculation, all current and future experi-
ments have a broad spread in the neutrino energies. We therefore investigated the changes in the same distributions
integrated over the τ -optimized running mode for DUNE. Again we find significant changes from the traditional fully
left-handed assumption in the lepton, single pion, and two pion channel. As expected, there were no significant
modifications in the three pion channel.

Finally, while the distributions shown here demonstrate the importance of properly handling the polarization of
the tau, they are not necessarily the optimal variables for separating the tau from the neutral current background.
The investigation of how to optimally separate the charge current tau neutrino interactions from the SM background
is left to a future work.
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