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Abstract

We find the leading electroweak corrections to the Lagrangians of heavy-quark effective theory and
nonrelativistic QCD. These corrections appear in the Wilson coefficients of the two- and four-quark
operators and are considered here at one-loop order through O(1/m3) and O(1/m2), respectively.
The two-quark operators through this order include new parity violating terms, which we derive
analogously to the parity preserving QCD result at one-loop order.

1 Introduction

Effective field theories (EFTs) are important tools in elementary particle physics and, in particular, in
quantum chromodynamics (QCD). They allow for an economic, yet precise treatment of problems that
involve widely separated mass scales. In many important applications of QCD, the mass of a heavy quark
(top, bottom, or charm) is much larger than the remaining dynamical scales of the problem considered.
Heavy-quark effective theory (HQET) and nonrelativistic QCD (NRQCD), which are among the most
frequently used EFTs of QCD, are tailored for such systems. It is the purpose of this paper to extend
HQET and NRQCD from pure QCD to the full Standard Model (SM).

More specifically, HQET has mainly been employed to study systems involving one heavy quark
Q [1,2,3]. In these studies, when considering heavy-light systems, the authors reduce the problem down
to one with two dynamical scales: the heavy-quark mass, m, and the scale of the rest, which is chosen
to be the quark confinement scale, ΛQCD. One then constructs the HQET Lagrangian as a power series
in the inverse heavy-quark pole mass. One can then estimate the size of each term by assigning the
scale ΛQCD to every parameter present other than the heavy-quark mass. One is thus left with operators
exhibiting two distinct structures: terms containing light degrees of freedom describing gluons and light
quarks and terms that are bi-linear in the heavy-quark fields.

On the other hand, NRQCD is mostly employed to study systems involving a heavy quark-antiquark
bound state, QQ̄ [4,6]. In NRQCD, one usually takes into account two additional dynamical scales: the
relative momentum, |q| ∼ mv, where v is the relative velocity of Q and Q̄ in the QQ̄ rest frame, and the
binding energy, E ∼ mv2, of the QQ̄ bound state. These extra scales add increased complexity to the
power counting rules. Thus, the size of each term in the NRQCD Lagrangian is no longer unique, but
depends on the system under consideration. One can, however, still provide reasonable estimates of the
leading size of each term by means of velocity scaling rules [5,6,7,8].

The difference between HQET and NRQCD is immediately clear by considering the first two bi-linear
terms in the effective Lagrangian,

L = ψ†

(

iD0 +
D2

2m

)

ψ . (1)

To compare the two theories, one can observe that, in HQET, the first and second terms are of orders
O(ΛQCD) and O(Λ2

QCD/m), respectively, while, in NRQCD, they are both of order O(mv2). Thus, one
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can immediately understand that the heavy-quark propagator in HQET is i/(k0+iǫ) and in NRQCD it is
i/(k0−k2/2m+iǫ). The NRQCD Lagrangian mimics the HQET Lagrangian in that it consists of terms in
a power series expansion in the heavy-quark mass. It contains two- and four-quark operators, i.e. terms
bi-linear in the heavy-(anti)quark fields and terms bi-linear in both heavy-quark and heavy-antiquark
fields, respectively.

Our work is focused on calculating the primary building block of an EFT, the EFT Lagrangian, and
its matching to the full-theory Lagrangian. The matching process is achievable by making sure that the
full-theory and EFT S matrix elements are equal. Both the NRQCD and HQET matching conditions are
computed in the same way, and the Lagrangians are thus identical [9]. The parameters that are modified
by the matching procedure are called the matching (or Wilson) coefficients, which multiply the respective
operators in the EFT. The matching in NRQCD is then achieved order by order in the strong-coupling
constant, αs, and the inverse heavy-quark mass [10].

In this paper, we will extend the NRQCD Lagrangian by taking into account the leading electroweak
(EW) corrections to the two- and four-quark operators of NRQCD at one-loop order, retaining terms
through orders O(α/m3) and O(α2/m2) respectively. Although the Wilson coefficients are known in the
EFT through O(α2

s/m
2) [11] and O(αs/m

5) [12], the EW corrections have not yet been considered in full
detail. They must be incorporated, since, at leading order, they start altering the matching coefficients by
amounts comparable to the higher-order QCD terms. Therefore, we study the effect of incorporating the
EW contributions at leading order and notice how the matching coefficients are improved. Moreover, the
Lagrangian itself must be extended to include parity violating operators to enable the matching to the SM,
as parity symmetry holds for QCD, but not for the full SM. The usefulness of our efforts lies in the prolific
use of heavy-quark EFTs for high-precision predictions of observables at threshold energies, which would
be the primary purpose of a future e+e− collider [13]. In particular, this includes the top-quark mass
determination, which is crucial for understanding the stability of the EW vacuum [14,15,16]. Many so-
called threshold quark mass definitions [17,18,19] have arisen from the heavy-quark EFT frameworks, and
we know that the EW sector plays a crucial role in determining the MS mass of the top quark [20,21,22].
Thus, it stands to reason that the same is true for the threshold mass definitions.

This paper is organized as follows. In Section 2, we introduce our notation and write down the
effective Lagrangian. In Section 3, we consider the bi-linear operators, evaluate the various form factors,
and perform the matching to find the Wilson coefficients. In Section 4, we study the four-quark operators
and extract their Wilson coefficients for the cases of unequal and equal quark masses. In Section 5, we
undertake a detailed numerical analysis of the EW radiative corrections and compare them with the pure
QCD ones. In Section 6, we present our conclusions.

2 Lagrangian

The continuum NRQCD Lagrangian, up to the order of interest here, has previously been computed [9,10]
using dimensional regularization for the infrared (IR) and ultraviolet (UV) divergences and taking the
external states to be on mass shell. To construct the NRQCD Lagrangian, one must consider heavy
quarks and antiquarks, with mass m≫ ΛQCD, coupled to non-Abelian gauge fields, enforcing Hermicity,
parity, time-reversal, and rotational invariance. One can further perform heavy-quark field redefinitions
to eliminate time derivatives acting on the heavy-quark fields at higher orders in 1/m. This is known
as the canonical form of the heavy-quark Lagrangian [23]. Notice that, when employing the NRQCD
Lagrangian, which we define below, NRQCD has UV cut-offs, νp and νs, satisfying mv ≪ νp, νs ≪ m,
which corresponds to integrating out the hard modes of QCD to obtain NRQCD [24]. Specifically, νp is
the UV cut-off for the relative three-momentum exchanged between the heavy quark and antiquark, and
νs is the UV cut-off for the three-momenta of the gluons and light quarks. Up to field redefinitions, the
NRQCD Lagrangian including light quarks reads [4,25,5]:

L = Lψ + Lχ + Lψχ + Lg + Ll , (2)

where ψ and χ are the Pauli spinor fields that annihilate a heavy quark and create a heavy antiquark,
respectively. Specifically, Lψ and Lχ include the terms bi-linear in the heavy-quark fields, Lψχ accom-
modates the four-quark operators, and Lg and Ll represent the Yang-Mills and light-quark parts of the
QCD Lagrangian, respectively. We are mainly interested in the first three terms on the right-hand side
of Eq. (2), as they attain the leading EW corrections to their matching coefficients.
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More explicitly, working in a reference frame where vµ = (1,0), up to the order of interest here, we
have [4,9,26],

Lψ,χ = ψ†

{

ic0Dt + c2
D2

2m
+ c4

D4

8m3
+ cF gs

σ ·B
2m

+ cDgs
[D ·E]

8m2
+ icSgs

σ · (D ×E −E ×D)

8m2

+ cW1
gs

{D2,σ ·B}
8m3

− 2cW2
gs

Diσ ·BDi

8m3
+ cqgs

σ ·DB ·D +D ·Bσ ·D
8m3

+ icMgs
D · [D ×B] + [D ×B] ·D

8m3

}

ψ + (c.c., ψ ↔ χ) +O
(

1

m4
,
g2s
m3

)

, (3)

where gs is the QCD gauge coupling and c.c. stands for charge conjugate. The terms in Eq. (3) require
some unpacking. We decompose the covariant derivative, Dµ = ∂µ+ igsA

a
µT

a ≡ (Dt,D), with gluon field
Aaµ and Gell-Mann matrices T a, into time and spacial components, iDt = i∂t− gsA0 and iD = i∂+ gsA.

Then, the combinations E = − i
gs
[Dt,D] and Bi = i

2gs
ǫijk[Dj , Dk] are the QCD analogues of the electric

and magnetic fields, respectively. The subscripts F , S, and D on the Wilson coefficients stand for Fermi,
spin-orbit, and Darwin, respectively. We use the common summation convention, X iY i ≡

∑3
i=1X

iY i,
and define [X,Y ] ≡ XY − Y X and {X,Y } ≡ XY + Y X to denote commutators and anticommutators,
respectively. Equations (3) and (4) represent the most general expressions that can be constructed from
all possible rotationally invariant, Hermitian combinations of iDt, D, E, iB, and iσ, with parity requiring
even numbers of factors of D and E.

Furthermore, we have [27]

Lψχ =
dss

m1m2
ψ†
1ψ1χ

†
2χ2 +

dsv
m1m2

ψ†
1σψ1χ

†
2σχ2 +

dvs
m1m2

ψ†
1T

aψ1χ
†
2T

aχ2 +
dvv
m1m2

ψ†
1T

aσψ1χ
†
2T

aσχ2 ,(4)

where we have allowed for different quark flavors, with masses m1 and m2. The matching coefficients,
dxy, contain subindices which label the quark-antiquark states. Specifically, the first index corresponds
to color (s for singlet and v for octet) and the second index refers to spin (s for singlet and v for triplet).

In fact, one can always rewrite the terms in Eq. (4) via identified Fiertz transformations [29]. In this
way, Lψχ can be cast into the alternative form

Lψχ =
dcss

m1m2
ψ†
1χ2χ

†
2ψ1 +

dcsv
m1m2

ψ†
1σχ2χ

†
2σψ1 +

dcvs
m1m2

ψ†
1T

aχ2χ
†
2T

aψ1 +
dcvs
m1m2

ψ†
1T

aσχ2χ
†
2T

aσψ1 ,(5)

where the new basis of coefficient functions emerges from the old one via the transformation

dss = − dcss
2Nc

− 3dcsv
2Nc

− N2
c − 1

4N2
c

dcvs − 3
N2
c − 1

4N2
c

dcvv,

dsv = − dcss
2Nc

+
dcsv
2Nc

− N2
c − 1

4N2
c

dcvs +
N2
c − 1

4N2
c

dcvv,

dvs = −dcss − 3dcsv +
dcvs
2Nc

+
3dcvv
2Nc

,

dvv = −dcss + dcsv +
dccs
2Nc

− dcvv
2Nc

. (6)

Both bases of Lψχ will be employed in this study for convenience. The Lagrangian in Eq. (5) is more
convenient for matching with annihilation processes, while that in Eq. (4) is advantageous for bound
state calculations.

3 Bi-linear operators

Any loop diagram in a perturbative quantum field theory evaluated using dimensional regularization
can be written as a function, F ({p}, {m}, µ, ǫ), where {p} are the external four-momenta, {m} are the
external and internal masses, µ is the ’t Hooft mass, and d = 4− 2ǫ is the space-time dimension.

Let us then consider the radiative corrections to the quark-gluon three-point vertex. In QCD, this
vertex can be expressed fully in terms of two form factors, F1(q

2) and F2(q
2), defined by the irreducible

three-point function,

ΓQCD
3 = −igsT aū(p′)

[

F1(q
2)γµ + iF2(q

2)
σµνqν
2m

]

Aaµ(q)u(p) , (7)
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γ,W, Z H, φ

Figure 1: Feynman diagrams contributing to the quark self energy at one loop in the SM.

where p and p′ are the four-momenta of the incoming and outgoing quarks, q = p′ − p is the four-
momentum transfer from the gluon, and σµν = − i

4 [γ
µ, γν ]. We have just two form factors, as γµ and

σµνqν are the only Lorentz structures that appear in QCD due to its nonchiral nature. On the other
hand, if one considers Γ3 in the full SM, two additional chiral Lorentz structures, with form factors F3(q

2)
and F4(q

2), emerge,

ΓSM
3 = ΓQCD

3 − igsT
aū(p′)

[

F3(q
2)γµγ5 + F4(q

2)
qµγ5
2m

]

Aaµ(q)u(p) . (8)

Moreover, the quark-photon three-point function will appear, albeit at sub-leading order, when consid-
ering the full SM with its associated form factors. As the methods for obtaining bi-linear nonrelativistic
Lagrangian operators are analogous in both cases, we will focus our analysis on the leading quark-gluon
vertex function and its associated bi-linear terms.

Evaluating the vertex and wave-function renormalization (WFR) Feynman diagrams in dimensional
regularization, one finds that the form factors F1(q

2) and F2(q
2) are UV and IR divergent [9]. We can

always expand our form factors, Fi(q
2/m2, µ/m, ǫ), as power series in q2/m2 at fixed value of ǫ and then

take the limit ǫ→ 0 to obtain an expression of the form

Fi(q
2) = Fi

[

A0

ǫUV
+
B0

ǫIR
+ (A0 +B0) ln

µ

m
+D0

]

+
q2

m2
F ′
i

[

A1

ǫUV
+
B1

ǫIR
+ (A1 +B1) ln

µ

m
+D1

]

+O
(

q4

m4

)

,

(9)
where we have introduced the short-hand notation

Fi ≡ Fi(0) , F ′
i ≡

dFi
d(q2/m2)

∣

∣

∣

∣

q2=0

. (10)

As usual, we label ǫ with the subscripts UV and IR to indicate whether the divergence is ultraviolet or
infrared, respectively. UV divergences are canceled by renormalization counterterms, while IR divergences
cancel when a physical observable is considered.

The coefficients of the effective Lagrangian may be determined from the difference between the form
factors in the full theory and the EFT. More specifically, the nonanalytic terms in the form factors cancel
in the difference, while the analytic ones determine the Wilson coefficients of the effective Lagrangian.
By inspection of the terms in the effective Lagrangian in Eq. (3), all of them contain at least one power
of the gauge field, Aµ. Thus, the form factors at one loop are attainable by computing the three-point
scattering amplitudes with external quark lines on mass shell.

3.1 Form factors

At one loop in the SM, the vertex in Eq. (8) is endowed with an on-shell WFR contribution as

Γ̂SM
3 = ΓSM

3 − igsT
aū(p′)γµ (δZV − γ5δZA)A

a
µu(p) , (11)

where [30]

δZV = −ΣV (m
2)− 2m2

[

Σ′
V (m

2) + Σ′
S(m

2)
]

,

δZA = ΣA(m
2) , (12)

are defined in terms of the three scalar functions appearing in the self-energy of the heavy quark,

Σ(p) = /pΣV (p
2) + /pγ5ΣA(p

2) +mΣS(p
2) , (13)
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which arises from the Feynman diagrams shown in Fig. 1.
The total on-shell form factors at one-loop can be calculated from the Feynman diagrams depicted in

Fig. 2. We only present F1, F2, and F4, as F3 is related to F4 via

F3(q
2) = F

(0)
3 (q2)− δZA = − q2

4m2
F4(q

2), (14)

which is also enforced by current conservation.
We present our results in the limit of large external on-shell top-quark mass, mt, small internal

bottom-quark mass from flavor changing, mb, and small momentum squared, q2, required for matching
through O(1/m3

t ). Specifically, we have

F1(q
2) = 1− δZV + F

(a)
1 (q2) + F

(b)
1 (q2)

= 1 +
αs
π

q2

m2
t

[

−CA
8

(

5

3εIR
+

5

6
ln
µ2

m2
t

+
1

2

)

− CF

(

1

3εIR
+

1

6
ln
µ2

m2
t

+
1

8

)]

+
α

π

q2

m2
t

{

− 2

27

(

2

ǫIR
+ ln

µ2

m2
Z

)

− 1

144c2w

(

17

3
ln
m2
Z

m2
t

+
13

2

)

+
1

192s2w

[

4

(

m2
t

m2
W

+ 3

)(

ln
m2
b

m2
t

+ iπ

)

− 4 ln
m2
Z

m2
t

− 4
m2
t − 3m2

H

m2
W

ln
m2
H

m2
t

− m2
t −m2

H

m2
W

+ 9π
mtmH

m2
W

− 10

]}

,

F2(q
2) = F

(a)
2 (q2) + F

(b)
2 (q2)

=
αs
π

[

CA
2

(

1

ǫIR
+

1

2
ln
µ2

m2
t

+ 1

)

+
CF
2

]

+
αs
π

q2

m2
t

[

CA
2

(

1

ǫIR
+

1

2
ln
µ2

m2
t

+
1

6

)

+
CF
12

]

+
α

π

{

1

144c2w

(

9 ln
m2
Z

m2
t

+ 35

)

+
1

16s2w

[(

3
m2
H

m2
W

+ 1

)

ln
m2
Z

m2
t

− 6
m2
H

m2
W

ln
m2
H

m2
t

+
m2
t

m2
W

− 2π
mtmH

m2
W

+ 7

]}

+
α

π

q2

m2
t

{

13

432c2w
+

1

96s2w

[

−2
m2
t

m2
W

(

ln
m2
b

m2
t

+ iπ

)

− 6
m2
H

m2
W

ln
m2
H

m2
t

+
m2
t

m2
W

− 3
m2
H

m2
W

− 3π
mtmH

m2
W

+ 2

]}

,

F4(q
2) = F

(a)
4 (q2)

=
α

π

{

5

144c2w

(

6 ln
m2
Z

m2
t

+ 7

)

− 1

48s2w

[

4

(

m2
t

m2
W

− 1

)(

ln
m2
b

m2
t

+ iπ

)

+ 6 ln
m2
Z

m2
t

+ 3
m2
t

m2
W

+ 27

]}

+
α

π

q2

m2
b

1

60s2w

(

m2
t

m2
W

− 1− m2
W

m2
t

)

+
α

π

q2

m2
t

{

1

288c2w

(

10 ln
m2
Z

m2
t

+ 21

)

− 1

480s2w

[

2

(

7
m2
t

m2
W

+ 12

)(

ln
m2
b

m2
t

+ iπ

)

+ 10 ln
m2
Z

m2
t

+ 19
m2
t

m2
W

+ 85

]}

, (15)

where we relate the Yukawa couplings to the EW coupling, α, and the quark masses in the standard
way [31], and we define the EWmixing angle as cw = cos θw = mW /mZ and sw = sin θw. The superscripts
(a) and (b) of the form factors indicate the Abelian and non-Abelian contributions, respectively (see
Fig. 2).

Although the form factors in the limit presented above provide an adequate approximation for mt ≫
mW ,mZ ,mH ≫ mb, q

2, another appropriate limit for the SM is mt ∼ mW ,mZ ,mH ≫ mb, q
2. We

(a) (b)

Figure 2: Feynman diagrams yielding (a) Abelian and (b) non-Abelian contributions to three-point
matching coefficients in the SM. Wavy lines represent SM bosons.
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leave a comparison of the various limits to future numerical studies. The full expression, without any
approximations, is included in an ancillary file posted along with our arXiv submission.

3.2 Matching

To find the relationship between the full-theory form factors and the Wilson coefficients for the scat-
tering of a low-momentum heavy quark off a background vector potential, we expand Eq. (8) in the
nonrelativistic limit and multiply by a factor of

√

m/E for both the incoming and outgoing quarks.
Adopting the momentum assignments from Eq. (7), we are then left with the effective interaction

operator,
−igsT au†NR(p

′)
(

Aa0j
0 −Aa · j

)

uNR(p) , (16)

with current jµ = (j0, j). This can thus be compared to the scattering amplitude of the effective La-
grangian to relate the Wilson coefficients to the form factors. We recalculate the nonrelativistic expansion
of Eq. (16) in QCD and confirm the well-established result [9,26], i.e. we find the time component of the
current to be

j0 = F1(q
2)

[

1− 1

8m2
q2 +

i

4m2
σ · (p′ × p)

]

+ F2(q
2)

[

− 1

4m2
q2 +

1

2m2
σ · (p′ × p)

]

, (17)

and its spatial component to be

j = F1(q
2)

[

1

2m
(p+ p′) +

i

2m
σ × q − i

8m3
(p2 + p′2)σ × q − 1

16m3
(p′2 − p2)q +

i

16m3
(p2 − p′2)σ × (p+ p′)

− 1

8m3
(p′2 + p2)(p′ + p)

]

+ F2(q
2)

[

i

2m
σ × q − i

16m3
q2σ × q − 1

16m3
q2(p+ p′)− 1

16m3
(p′2 − p2)q

− i

8m3
(p′2 − p2)σ × (p′ + p) +

i

8m3
σ · (p′ + p)(p′ × p)

]

. (18)

This can then be compared with the relevant subset of the Hamiltonian in Eq. (3),

Hψ,χ ⊃ ψ†
[

gsA
0 − c2

gs
2m

A · (p′ + p)− cD
gs
8m2

q2A0 − icF
gs
2m

A · (σ × q)− cD
gs

16m3
(p′2 − p2)q ·A

+ icS
gs
4m2

σ · (p′ × p)A0 + icS
gs

16m3
(p′2 − p2)A · σ × (p′ + p) + i(cW1

− cW2
)
gs
8m3

(p′2 + p2)A · (σ × q)

+ icW2

gs
8m3

q2A · (σ × q)− cM
gs
8m3

(p′2 − p2)A · q − icq
gs
8m3

σ · (p′ + p)A · (p′ × p)

+ cM
gs
8m3

q2A · (p′ + p)
]

ψ + (c.c., ψ ↔ χ)

≡ gsψ
†
(

A0j0 −A · j
)

ψ + (c.c., ψ ↔ χ) . (19)

Matching the Lorentz structures provides one with the following relations between the Wilson coefficients
and the form factors:

c0 = c2 = c4 = F1 ,

cF = F1 + F2 ,

cD = F1 + 2F2 + 8F ′
1 ,

cS = F1 + 2F2 ,

cW1
= F1 +

1

2
F2 + 4F ′

1 + 4F ′
2 ,

cW2
=

1

2
F2 + 4F ′

1 + 4F ′
2 ,

cq = F2 ,

cM =
1

2
F2 + 4F ′

1 . (20)
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Moreover, re-parametrization invariance imposes constraints on the Wilson coefficients [32],

c0 = c2 = c4 = F1 ,

cS = 2cF − 1 ,

cW2
= cW1

− 1 ,

cq = cF − 1 ,

2cM = cD − cF , (21)

which are satisfied by Eq. (20) and also reflected by the numbers in Table 1 to be discussed in Section 5.
The relations between the form factors and Wilson coefficients remain unchanged upon allowing

further interactions from the SM. To see this, we take the small-q2 limit of Eq. (8), after substituting
Eq. (14), by expanding the form factors in q2. Retaining terms through O(q2/m3), we thus have

ΓSM
3 = −igsū(p′)

[(

F1 +
q2

m2
F ′
1

)

γµ +
i

2m

(

F2 +
q2

m2
F ′
2

)

σµνqν +
1

2m
F4

(

qµ − q2

2m
γµ

)

γ5 +
q2

2m3
F ′
4q
µγ5

]

×Aµ(q)u(p) , (22)

where we have used the notation of Eq. (10). Upon expansion, a low energy EFT can be deduced by
comparison with the expanded vertex in Eq. (22). At LO in q2, the EFT has the form

L(0)
rel = Q̄

(

i /DF1 −mren + igsF2
σµν

2m
Gµν −

gs
4m2

F4DµG
µνγνγ

5

)

Q , (23)

with field strength Gµν ≡ i
gs
[Dµ, Dν ], F1 = 1, and F2, F4 = O(αs, α). Moreover, using the gluonic

equations of motion, which dictate conservation of color charge,

[Dµ, G
µν ] = gs

∑

i

q̄iγ
νT aqiT

a , (24)

the last term in Eq. (23) can be re-written as a four-quark operator,

L(0)
rel ⊃ − g2s

4m2
F4

∑

i

q̄iγνT
aqiQ̄γ

νγ5T
aQ . (25)

Similarly, at O(q2), one can deduce the EFT Lagrangian by comparison with the expanded vertex and
so obtains

L(1)
rel = Q̄

{

1

m2
gsDµG

µνγνF
′
1 + igsF

′
2

σµν

2m3
(iDρ [iD

ρ, Gµν ] + [Gµν , iD
ρ] iDρ)

− gs
4m4

F ′
4

(

iDµ

[

iDµ, DµG
µνγνγ

5
]

+
[

DµG
µνγνγ

5, iDµ
]

iDµ

)

}

Q . (26)

Again using Eq. (24), one may re-express the last operator in Eq. (26) as a four-quark operator, thus
eliminating it from the current. One can next employ the HQET expansion of the bi-spinors to obtain
the nonrelativistic Lagrangian. Starting from the relativistic Lagrangian,

Lrel = Q̄
(

i /D −m+ iX
)

Q , (27)

where X are virtual corrections from the full theory at O(αs, α), decomposing the four-component spinor
field Q = e−imv·x(hv +Hv) into the large upper and small lower components hv = eimv·xP+Q and Hv =
eimv·xP−Q, where P± = (1± /v)/2, so that /vhv = hv and /vHv = −Hv, and defining Dµ

⊥ = Dµ − vµv ·D,
we obtain

L = h̄vi(v ·D +X)hv − H̄v[i(v ·D −X) + 2m]Hv + h̄vi( /D⊥ +X)Hv + H̄vi( /D⊥ +X)hv . (28)

Notice that Eq. (28) implies a decomposition of X ,

X = X++ +X+− +X−+ +X−− , (29)
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where Xab = PaXPb with a, b = +,−. Plugging the equation of motion for H̄v,

Hv =
1

i(v ·D −X−−) + 2m
i( /D⊥ +X−+)hv , (30)

into Eq. (28), we find

L = h̄vi(v ·D +X++)hv + h̄vi( /D⊥ +X+−)
1

i(v ·D −X−−) + 2m
i( /D⊥ +X−+)hv

= h̄vi(v ·D +X++)hv +
1

2m

∞
∑

n=0

h̄vi( /D⊥ +X+−)

(

i(−v ·D +X−−)

2m

)n

i( /D⊥ +X−+)hv . (31)

We focus on the F4 contribution to X , whose structure is unfamiliar from pure QCD. It comes as the
O(α, 1/m2) term iXch ≡ −gsF4DµG

µνγνγ
5/(4m2) in Eq. (23), where the subscript “ch” is to indicate its

chiral nature, involving γ5. Inserting this term in Eq. (31) and expanding through O(1/m3), one obtains
the covariant chiral extension,

Lch = h̄vX
ch
++hv +

1

2m
h̄v

(

i /D⊥X
ch
−+ + iXch

+−
/D⊥

)

hv +O
(

1

m4

)

= h̄v

(

− F4

m2
gsDµG

µν +
F4

8m3
gs{iD⊥,ρ, DµG

µνvν}
)

γρ⊥γ5hv , (32)

with

iXch
++ = iXch

−− = − F4

4m2
gsDµG

µνγ⊥,νγ5 ,

iXch
+− = −iXch

−+ = − F4

4m2
gsDµG

µνvνγ5 , (33)

where γ⊥,µ = γµ− vµ/v and the chirality is made explicit by the appearance of the factor γ5 in each term.
Note that the contributions proportional to F ′

4 in Eq. (26) lead to O(α, 1/m4) terms. In the reference
frame where vµ = (1,0),

Lch
ψ,χ = ψ†

(

− F4

m2
gsDµG

µi +
F4

8m3
gs{iDi, DjG

j0}
)

σiψ + (c.c., ψ ↔ χ) +O
(

1

m4
,
g2s
m3

)

. (34)

Thus, to completely account for leading EW corrections, the bi-linear Lagrangian Lψ,χ in Eq. (3) must
be modified as

Lψ,χ → Lψ,χ + Lch
ψ,χ, (35)

and the Wilson coefficients of Lψ,χ have to be endowed with their EW corrections, which enter through
the form factors F1 and F2. The additional operator in Eq. (34) leads to additional EFT vertices. Using
the notation of Ref. [28], we illustrate the single gluon emission rules in Fig. 3.

Notice that we have written the chiral-symmetric HQET Lagrangian in the special frame, with vµ =
(1,0), and employed the notation of Ref. [26]. However, one can also rewrite Eq. (3) in an arbitrary
frame as

Lv = h̄v

{

c0iD · v − c2
D2

⊥

2m
+ c4

D4
⊥

8m3
− gscF

σµνG
µν

4m
− gscD

vµ[Dν
⊥Gµν ]

8m2
+ igscS

vλσµν{Dµ
⊥, G

νλ}
8m2

+ gscW1

{D2
⊥, σµνG

µν}
16m3

− gscW2

Dλ
⊥σµνG

µνD⊥λ

8m3
+ gscq

σµν(Dλ
⊥GλµD⊥ν +D⊥νGλµD

λ
⊥ −Dλ

⊥GµνD⊥λ)

8m3

− igscM
D⊥µ[D⊥νG

µν ] + [D⊥νG
µν ]D⊥µ

8m3

}

hv . (36)

Alternatively, one can then proceed as in Eq. (16) with the nonrelativistic expansion and deduce the
nonrelativistic Lagrangian along with Wilson coefficients in terms of F4 and F ′

4 up to O(1/m3). The
current is shifted as j → j + j′, where j′ includes the new form factor, F4, and its extended Lorentz
structures. For the time component of the current extension, one so obtains

j′0 = F4(q
2)

[

− q2

8m3
σ · (p′ + p)− 1

8m3
σ · q(p′2 − p2)

]

, (37)

and for its spatial component

j′ = F4(q
2)

(

q2

4m2
σ − 1

4m2
qσ · q

)

. (38)
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β α

p p′

q

−igs
F4

m2q
0q · σT a

αβ

a, 0

β α

p p′

q

−igs
F4

8m3 (p
′ + p) · σq2T a

αβ

a, 0

β α

p p′

q

−igs
F4

8m3 (p
′ + p) · σq0qjT a

αβ

a, j

β α

p p′

q

−igs
F4

m2

(

q2δij − qiqj
)

σiT a
αβ

a, j

Figure 3: Additional NRQCD vertices from EW corrections in Feynman gauge with q = p′ − p. The
dotted and wavy lines correspond to transverse and longitudinal gluons. In Coulomb gauge the

bottom-right vertex vanishes.

4 Four-quark operators

To achieve the four-quark matching, we follow a procedure originally outlined for the QCD case in
Ref. [10], reproduce the results obtained there, and extend them to the EW case. In fact, owing to the
absence of derivative terms in the four-quark portion of our effective Lagrangian, in Eqs. (4) and (5),
we are entitled to consider the dimensionally regulated S matrix elements with the four external heavy
quarks being exactly on mass shell and at rest.

Thus, in the leading nonrelativistic limit considered, the external four-component spinors can be
written as

u(p) =
√
2m

(

ψ
0

)

, v(−p) =
√
2m

(

0
χ

)

, (39)

with Pauli spinors ψ (χ) representing a heavy quark (antiquark) and the usual normalization as given in
Ref. [33]. Thus, unlike the bi-linear EW corrections up to O(1/m3), new explicit operators induced by
chirality are not yet apparent in the four-quark matching at O(1/m2).

We exclusively use the MS scheme to regularize the appearing singularities, which are of UV and IR
types. At first sight, one would also expect Coulomb singularites to emerge. In fact, S matrix elements of
such heavy-heavy systems are known to exhibit a unique IR behavior, which gives rise to Coulomb poles
and the standard nonrelativistic weak-coupling bound states. However, this is only true if the Coulomb
singularity is regularized by the relative momentum of the heavy quarks or by assigning an infinitesimal
mass to the exchange gluon. However, this odd powerlike IR divergence does not surface in dimensional
regularization. The EFT exhibits an identical IR behavior, which is consistently quenched by dimensional
regularization.

We also use the MS scheme to renormalize the basic parameters. However, we use the on-shell scheme
to define the WFR constants, as in Eq. (12), to comply with the Lehmann-Symanzik-Zimmermann [34,35]
condition for asymptotic states in the first place, without having to apply finite adjustments.

4.1 Equal-mass case

In the equal-mass case of QCD, The Feynman diagrams which contribute to the matching and are not
already taken into account by the bi-linear Lagrangian in Eq. (3) are the QCD box diagrams of Fig. 4 and
Fig. 5. Thus, there are both scattering contributions given by dxy with m1 = m2 = m and annihilation
contributions to dcxy, already starting at tree level. We recover the annihilation matching coefficients in
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pure QCD obtained in Ref. [10],

dcss = α2
sCF (−CA + 2CF )

(

ln 2− 1− i
π

2

)

,

dcsv = 0 ,

dcvs = α2
s

(

3

2
CA − 4CF

)

(

ln 2− 1− i
π

2

)

,

dcvv = −παs + α2
s

[

1

6

(

−11

2
CA + nf + 1

)

ln
µ2

m2
− 109

36
CA + 4CF − nf

3

(

ln 2− 5

6
− i

π

2

)

+
4

9

]

, (40)

and our results agree with previous calculations [6,10]. The O(α) and O(ααs) EW corrections to these
coefficients, denoted as ∆dcxy, are presented below in the limit mt ≫ mW ,mZ ,mH ≫ mb, for the sake of
compactness. We have through O(MEW/mt,mb/MEW),

∆dcss = −πα m2
t

4s2wm
2
W

− ααs
CF
2s2w

[

3

8

(

2
m2
t

m2
W

+
1

2c2w

)

ln
µ2

m2
t

− m2
t

2m2
W

+
1

4c2w

]

,

∆dcsv = −πα 1

16

(

25

9c2w
+

1

s2w

)

+ ααs
CF
4

(

25

9c2w
+

1

s2w

)

,

∆dcvs = ααs
1

4

(

25

9c2w
+

1

s2w

)

(

1 + i
π

2
− ln 2

)

,

∆dcvv = −ααs
{

ln 2

3s2w

[

1

m2
W

(

m2
t −

m2
H

4

)

− 1

]

− m2
H

4m2
Ws

2
w

ln
m2
H

m2
t

− 1

4

[

25

9c2w
+

5

3s2w
+

7m2
t

3m2
W s

2
w

]

+π

[

1

s2w

(

− 7mW

192cwmt

+
5mt

24cwmW

+
157m3

H

768mtm2
W

+
im2

H

24m2
W

+
m3
t

2mHm2
W

− 11mHmt

48m2
W

− im2
t

3m2
W

)

+
113m3

Z

1728mtm2
W

+
2mtmZ

9m2
W

− 11mZ

27mt

− 8mt

9mZ

]}

. (41)

The imaginary parts in ∆dcvs and ∆dcvv displayed above are related to the tree level cross-sections tt̄ →
gγ + gZ and tt̄ → gH + gZ respectively by the optical theorem. We have checked that the expected
relations hold.

Additionally, in the SM, scattering amplitudes contribute to the matching coefficients dxy as shown
in Fig. 4, and through is given by,

∆dss = πα
m2
t

m2
W

[

1

s2w

(

m2
t

m2
H

+
1

4

)

− 16

9
c2w +

4

9

]

− ααsCF
m2
t

m2
W

m2
t

m2
Hs

2
w

{

1− 3

2
ln
µ2

m2
t

}

,

∆dsv = −πα m2
t

4s2wm
2
W

+ ααsCF
m2
t

4s2wm
2
W

,

∆dvs = −ααs
{

8

9

(

1

ǫIR
+ ln

µ2

m2
t

)

− 16

27
− 5

24s2w
+

19

216c2w
+

m2
H

10m2
W s

2
w

− m2
t

m2
W s

2
w

(

5

6
− 1

2
ln
m2
H

m2
t

)

+π

[

1

s2w

(

2m5
t

m3
Hm

2
W

+
3m3

t

4mHm2
W

− 9mHmt

64m2
W

+
m3
t

2m2
WmZ

+
5mtmZ

16m2
W

− 5m3
H

512mtm2
W

− 21mZ

256mt

)

+
8m3

t

9m2
WmZ

− 32m3
t

9m3
Z

+
mtmZ

9m2
W

− 4mt

9mZ

− 5mZ

4mt

− 101m3
Z

256mtm2
W

]

+
1

9

(

9

8s2w
+

25

8c2w
− 8

)

ln
m2
Z

m2
t

}

,

∆dvv = −ααs
{

1

72

(

35

c2w
+

19

s2w

)

+
5m2

H

36m2
Ws

2
w

+
m2
t

2m2
W s

2
w

− m2
H

12m2
W s

2
w

ln
m2
H

m2
t

+
1

24c2ws
2
w

ln
m2
Z

m2
t

+π

[

1

s2w

(

3m3
H

128mtm2
W

− m3
t

3mHm2
W

− mHmt

8m2
W

− 32mtm
2
W

27m3
Z

− 8mtmZ

27m2
W

− 9mZ

128mt

+
40mt

27mZ

)

1

s4w

(

5cwmt

24mW

− 5mt

24cwmW

)

− 9m3
Z

128m2
Wmt

+
32mt

27mZ

]}

. (42)

The IR poles appearing in ∆dvs should cancel against UV poles in the non-relativistic effective theory
calculation in physical amplitudes. We have checked that this is actually so. We have also checked that
the remaining µ-dependence (unrelated to IR poles) in ∆dss and ∆dcss corresponds to the running of
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Figure 4: Scattering diagrams relevant for the matching to the nonrelativistic four-quark operators at
O(1/m2) up to one-loop order in the SM. Wavy lines represent bosons and dashed lines exclusively

massive bosons. The incoming and outgoing quarks are on mass shell and exactly at rest.

the top Yukawa coupling and fixes it to the scale mt, much in the same way as the µ-dependence in
(40) corresponds to the running of αs and fixes it to the scale mt [10]. The full result through O(α2) is
included as an ancillary file in our arXiv submission.

Notice that imaginary parts frequently appearing in Wilson coefficients are related by the optical
theorem to inelastic cross sections, which are unattainable from nonrelativistic theory alone. In particular,
the partial widths of the decays of heavy-quarkonium states into light hadrons are also implicated in such
imaginary parts.

4.2 Unequal-mass case

As for the unequal quark mass case in QCD, annihilation diagrams do not contribute. Thus, the Feynman
diagrams which contribute to the matching and are not already taken into account by the bi-linear
Lagrangian in Eq. (3) are the QCD box diagrams of Fig. 4. We recalculate the matching coefficients
appearing in Eq. (4) at one loop in QCD and confirm the results of Ref. [10],

dss = CF

(

CA
2

− CF

)

α2
s

[

1

ǫIR
+ ln

µ2

m1m2
− 1

3
+

m2
1 +m2

2

2 (m2
1 −m2

2)
ln
m2

1

m2
2

]

,

dsv = CF

(

CA
2

− CF

)

α2
s

m1m2

m2
1 −m2

2

ln
m2

1

m2
2

,

dvs = α2
s

{(

−3

4
CA + 2CF

)[

1

ǫIR
+ ln

µ2

m1m2
− 1

3
+

m2
1 +m2

2

2 (m2
1 −m2

2)
ln
m2

1

m2
2

]

− CA
4m1m2

[

(

m2
1 +m2

2

)

(

1

ǫIR
+ ln

µ2

m1m2
− 10

3

)

+
m4

1 +m4
2

2 (m2
1 −m2

2)
ln
m2

1

m2
2

]}

,

dvv = α2
s

{

−CA
4

[

1

ǫIR
+ ln

µ2

m1m2
− 3 +

m2
1 +m2

2

2 (m2
1 −m2

2)
ln
m2

1

m2
2

]

+

(

−3

4
CA + 2CF

)

m1m2

m2
1 −m2

2

ln
m2

1

m2
2

}

.(43)

In the full SM, the quarks can no longer be generic, and we thus calculate the leading EW corrections
specifically for the heaviest quarks, top and bottom. The matching coefficients are now determined by all
Feynman diagrams in Figs. 4 and 5 since annihilation through W -exchange can occur. However, due to
the fact that mb ≪ MEW, the binding energy of the system is much less than the top quark width, and
thus, a bound state will not form before top decay. In light of this, we restrict ourselves to presenting
solely the tree-level contribution for illustration purposes. At LO the unexpanded coefficients are given
by,

∆dss = πα
mtmb

m2
W

{

1

s2w

(

mtmb

m2
H

− 1

4

)

+
8

9
c2w +

1

9

}

,

∆dsv = πα
mtmb

4s2wm
2
W

,

∆dvs = dvv = 0. (44)
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Figure 5: Annihilation diagrams relevant for the matching to the nonrelativistic four-quark operators at
O(1/m2) up to one-loop order. Wavy lines represent SM bosons. The incoming and outgoing quarks are

on mass shell and exactly at rest.

Moreover, in the SM, annihilation amplitudes are permitted through W boson exchange and contribute
to the matching coefficients, dcxy, as shown in Fig. 5, and are given by,

∆dcss = −πα mtmb

2s2wm
2
W

,

∆dcsv = −πα mtmb

2s2w((mb +mt)2 −m2
W )

,

∆dcvs = dcvv = 0. (45)

5 Discussion

As in the original studies within pure QCD, our final results for the matching coefficients still contain
IR divergences, extracted as poles in ǫIR using dimensional regularization. These IR divergences will
be canceled by similar corrections due to the real radiation of soft gluons and photons when specific
physical observables are considered. Of course, the real radiative corrections need to be evaluated using
dimensional regularization as well. To be able to separately study the numerical sizes of the universal
and process dependent corrections, it is useful to perform an MS subtraction of the IR divergences, which
boils down to dropping the 1/ǫIR terms in our expressions. In the following, it is understood that this
manipulation has been carried out.

The EW expansion is different from the QCD one—the expansion parameter being α, rather than
αs—and its IR safety is indeed guaranteed by itself. The IR divergences of EW origin present in the
various coefficient functions are due to virtual photons. They will be cancelled by similar corrections due
to real soft-photon radiation once particular processes are calculated using the Feynman rules derived
from the extended NRQCD Lagrangian. This is analogous to the pure QCD case considered so far,
where real soft-gluon corrections to specific processes cancel the IR singularities in Eqs. (15), (43), and
(40). While the IR cancellations proceed independently in the QCD and EW sectors at the lowest
nontrivial orders, they become intertwined at higher orders when gluons and photons can become soft
simultaneously. Specifically, the IR divergences displayed in Eqs. (44) and (42) are mixed QCD and EW
effects, proportional to ααs. The purely weak contributions, involving W and Z boson exchanges only,
given in Eqs. (45) and (41), respectively, are IR safe as expected. Notice also that the matching coefficient
of the only parity violating operator we find at this order, given in Eq. (25), is also IR safe; see F4(0) in
Eq. (15).

We are now in a position to explore the numerical significance of our results. We consider the full set
of EW corrections to the matching coefficients of the two- and four-quark operators in Eqs. (3) and (4),
focusing on their real parts, and compare with the well-known QCD results; our results are presented
in Tables 1 and 2, respectively. To maximize the accuracy, we avoid taking any limits, but use the
full expressions through the considered order. We choose the renormalization scale to be µ = mZ , put
m1 = mt(mZ), m2 = mb(mZ), and αs = αs(mZ), and adopt the SM parameter values from the latest
Review of Particle Physics [36]. We recall that
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Coeff. c0,2,4 cF cD cS cW1
cW2

cq cM F4

QCD 1 1.0447 1.1935 1.0893 0.9809 −0.01909 0.0447 0.0744 0
EW 0 0.0007 −0.0870 0.0015 −0.0172 −0.0172 0.0007 −0.0439 0.0143

Table 1: Matching coefficients of the bi-linear quark operators in Eq. (3) for the top quark, evaluated at
renormalization scale µ = mZ using SM parameter values from Ref. [36].

Coeff. (m1 = m2) dss dsv dvs dvv dcss dcsv dcvs dcvv
QCD (LO+NLO) 0.0019 0.0031 0.0833 0.0617 −0.0019 0 −0.0036 −0.3592

EW (LO) 1.0180 −0.1290 0 0 −0.1290 −0.0121 0 0
EW (NLO) −0.0704 −0.0168 −0.3794 0.0622 0.0099 0.0004 0.0006 −0.0289

EW (LO+NLO) 0.9476 −0.1458 −0.3794 0.0622 −0.1191 −0.0117 0.0006 −0.0289

Coeff. (m1 6= m2) dss dsv dvs dvv dcss dcsv dcvs dcvv
QCD (LO+NLO) 0.0171 0.0006 −0.8997 -0.0076 0 0 0 0

EW (LO) −0.0004 0.0036 0 0 −0.0073 −0.0018 0 0

Table 2: Matching coefficients of the four-quark operators in Eq. (4), for tt̄→ tt̄ (m1 = m2) and tb̄→ tb̄
(m1 6= m2), evaluated at renormalization scale µ = mZ using SM parameter values from Ref. [36].

We begin by considering the Wilson coefficients ci and F4 of the two-quark operators, in Table 1.
Inspecting Table 1, we observe that the EW corrections alter the Wilson coefficients significantly at
the chosen renormalization scale. Moreover, these corrections widely vary in size depending on the
coefficient under consideration, and this provides further credence to the lack of reliability of naive order-
of-magnitude estimates. As for the new parity violating operators, they come equipped with nonnegligible
matching coefficients, of order of magnitude similar to the ones of the parity preserving operators. On
the other hand, the matching coefficients of the four-quark operators vary even more strongly in both
the QCD and EW sectors, as is evident from Table 2. This is exemplified in the equal-mass case of
tt̄ → tt̄, where EW corrections dominate in a majority of the matching coefficients. This is mainly
due to the appearance of tree-level EW contributions. For instance, in the case of dss, the dominant
EW contribution arises from tree-level Higgs boson exchange. We note, however, that these coefficients
are heavily suppressed in the Lagrangian by the 1/m2

t prefactor. Thus, the bi-linear QCD/QED terms
dominate at the level of the EFT when considering 2 → 2 processes.

The EW corrections to top-quark pair production in e+e− annihilation at threshold have been con-
sidered at NNLO in Ref. [37]. Our results not only provide necessary ingredients for the full NNNLO
calculation, but also show that the size of some of those ingredients is comparable to the size of the NNLO
corrections, and in some cases even larger, for instance in the coefficients dss and dvs. Notice also that,
if one counts α ∼ α2

s, our results for the Wilson coefficients match the precision of the QCD two-loop
calculation of Ref. [11].

If one instead considers bb̄ → bb̄, the difference between QCD and EW corrections becomes far more
pronounced due to the lack of explicit numerator factors ofmt in the full-theory amplitudes. The effect of
mt is already apparent in the unequal-mass case of tb̄→ tb̄, where the matching coefficients are more than
one order of magnitude suppressed versus the tt̄ → tt̄ case. However, in QCD, annihilation diagrams
are forbidden in this case, and thus dcxy obtains only EW contributions through W boson exchange.
Thus, in the nonrelativistic regime, our results further justify the necessity of EW corrections in precision
calculations, in particular when considering processes involving the top quark.

We end by noting that our results have been obtained with the help of the programming language
Mathematica accompanied by the package FeynCalc [38] to compute the necessary amplitudes and to
deal with the algebra. Furthermore, we employed subpackages of FeynCalc, such as FeynHelpers [39],
which reduces the amplitudes and provides explicit expressions for one-loop scalar integrals by connecting
the reduction package fire [40] with the analytic scalar-integral program Package-X [41]. Lastly, we
employed the FeynOnium subpackage, which comes equipped with functions for dealing with calculations
in the nonrelativistic limit [42].
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6 Conclusion

In this paper, the matching coefficients of the NRQCD Lagrangian were computed at one loop, through
orderO(1/m3) for the bi-linear operators and through orderO(1/m2) for the four-quark operators, within
QCD as the full theory, confirming previous results. The Lagrangian was then extended to include the
leading QCD plus EW and purely EW corrections at one loop, of which various limits were presented and
discussed. Extending the NRQCD Lagrangian into the EW, just the photon appears as an additional field
propagating relativistically, besides the gluon and the light quarks. All the other EW fields, including
the H , W , and Z bosons, only show up in the coefficient functions. By the same token, the covariant
derivatives receive an additional term proportional to the photon field. The additional Feynman rules
thus generated are shown in Fig. 3. The velocity counting rules for the operators go unchanged, but the
relative sizes of v, αs(mt), α, and other EW parameters must be properly accommodated in the counting;
see, e.g., Ref. [37].

A crucial result of our paper is that the terms of the original NRQCD Langrangian are not enough to
capture all the new EW features, because certain symmetries that are manifest in QCD, such as parity
and charge conugation, are broken in the SM. This makes it necessary to extend the original NRQCD
Lagrangian by structures that are not amenable from within pure QCD. Specifically, new parity violating
operators were found to be necessary for the two-quark terms in the effective Lagrangian. The new terms
arose due to the SM being parity violating, and new Lorentz structures emerged that are not present
in the nonrelativistic limit of QCD. Thus, the matching coefficients accompanying the parity violating
terms exhibited EW corrections in pure form. In the study of the four-quark operators, both the cases
of equal and unequal external-heavy-quark masses were considered.

We rounded off by comparing all the matching coefficients for a particular renormalization scale with
and without EW corrections, and found the contributions from the EW regime to be relevant. Therefore,
we recommend that these contributions be included in future high-precision studies that employ heavy-
quark effective theories.
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