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Accelerator physics relies on numerical algorithms to solve optimization problems in online ac-
celerator control and tasks such as experimental design and model calibration in simulations. The
effectiveness of optimization algorithms in discovering ideal solutions for complex challenges with
limited resources often determines the problem complexity these methods can address. The ac-
celerator physics community has recognized the advantages of Bayesian optimization algorithms,
which leverage statistical surrogate models of objective functions to effectively address complex
optimization challenges, especially in the presence of noise during accelerator operation and in
resource-intensive physics simulations. In this review article, we offer a conceptual overview of
applying Bayesian optimization techniques towards solving optimization problems in accelerator
physics. We begin by providing a straightforward explanation of the essential components that
make up Bayesian optimization techniques. We then give an overview of current and previous work
applying and modifying these techniques to solve accelerator physics challenges. Finally, we explore
practical implementation strategies for Bayesian optimization algorithms to maximize their per-
formance, enabling users to effectively address complex optimization challenges in real-time beam
control and accelerator design.

I. INTRODUCTION

Future accelerator-based experiments serving the high-
energy physics, nuclear physics, and photon science com-
munities will require a considerable increase in the capa-
bilities of accelerator facilities to achieve the research as-
pirations of the next decade [1]. Higher energy and higher
brightness particle beams with more stringent require-
ments on reproducibility will unavoidably require com-
plex accelerator operation stemming from an increase of
nonlinear phenomena, stringent beam parameter require-
ments, machine protection limits, and the varied needs
of different user communities. Additionally, accelerator
scientists designing future state-of-the-art accelerator fa-
cilities will need to explore and configure combinations
of increasingly nonlinear and specialized accelerator el-
ements to reach accelerator design goals, all while re-
specting practical constraints and minimizing construc-
tion costs.

∗ rroussel@slac.stanford.edu

Central to both of these challenges is the need to op-
timize a set of free parameters to attain a predefined
objective. Examples of this include, varying accelerator
control parameters during operations to maximize per-
formance (online tuning/optimization), identifying opti-
mal parameters during the accelerator design process (of-
fline simulated optimization), and matching simulated
beam dynamics to experimental measurements (model
calibration). Advancements in optimization algorithms
enable us to tackle more challenging optimization prob-
lems (ones with more free parameters or more complex
behaviors), which in turn, improves the performance and
capabilities of accelerators.

Numerical optimization algorithms have long been
used to address these challenges, but often suffer from
slow convergence to optimal parameter sets, are unsta-
ble in noisy environments, and can get trapped in lo-
cal extrema, making them difficult to apply in practice
while limiting the complexity of optimization tasks that
can be addressed. Recently, a particular class of algo-
rithms known as Bayesian optimization (BO) [2–4] has
gained popularity inside the accelerator field as an effi-
cient approach for solving both online and offline opti-
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mization problems. These algorithms’ inherent flexibil-
ity, low initialization effort, fast convergence, and robust-
ness to noisy environments make them particularly useful
for accelerator physics applications. Multiple groups in-
side the accelerator physics community have investigated
the advantages and disadvantages of these algorithms for
solving various accelerator physics problems. Further-
more, accelerator physics-specific modifications of basic
BO components have been developed to leverage beam
physics information, tailor optimization to maintain ma-
chine stability, and take advantage of high performance
computational clusters. With these developments, the
study of BO techniques in the context of accelerator
physics has matured to the point that these techniques
are usable in regular accelerator operations and as a gen-
eral high performance optimization tool in simulation.

This review article aims to inform and facilitate the
wider use of BO techniques in accelerator physics by pro-
viding an easily accessible guide and reference for this
class of optimization algorithms. We begin with a discus-
sion of the optimization challenges faced by the accelera-
tor physics community in regards to both online control
of accelerator facilities and offline optimization of simu-
lations for beam dynamics and equipment design, which
motivates the use of BO algorithms. We then discuss
basic and advanced approaches to the principal compo-
nents of BO algorithms: the Gaussian-process surrogate
model most commonly used in BO; the definition of BO
acquisition functions; and how the acquisition function is
maximized to choose the next set of measurements. Fi-
nally, we conclude with a discussion that places BO in
the context of other optimization algorithms, describes
best-practices for applying BO algorithms to solving op-
timization challenges, and future directions for research
in this area.

II. BACKGROUND AND MOTIVATION

Optimization algorithms aim to solve the general prob-
lem

x∗ =argmax f(x) (1)

s.t. ci(x) ≤ 0 ∀i ∈ [1, . . . ,m] (2)

In the above formulation, Equation 1 represents the ob-
jective function, wherein we seek a parameter set x∗ that
optimizes the function f(x) subject to the m constraints
specified in Equation 2. These constraints may be bounds
on the parameter set x, or observables, such as safety and
performance requirements. The formulation can be triv-
ially transformed into a minimization problem by negat-
ing the objective function.

Iterative optimization algorithms are a popular choice
used to find solutions to Eq. 1. Given an initial point
in parameter space, the algorithm generates a point or
set of points which are evaluated using the objective and

constraining functions. Results from the evaluations are
then passed back to the algorithm to generate the next
point(s) to be evaluated. The final solution is determined
once the algorithm reaches a termination condition, for
example, a fixed number of iterations or a satisfactory
objective function value. Selecting the right algorithm
for a given optimization task is critical to success, as it
directly influences the quality of the final solution, the
relative speed (number of iterations) needed to identify
the optimum parameter set, and resource efficiency of the
applied routine (e.g., required beam time, computational
resources).

The difficulty of finding a solution of a generic opti-
mization problem is influenced by the number of opti-
mization parameters and the complexity of the objective
and constraining functions. The so-called “curse of di-
mensionality” describes the exponential growth of possi-
ble parameter states with increasing parameter space di-
mensionality. As a result, optimization algorithms that
perform well when optimizing a small number of param-
eters (such as the fitting of three beam matrix elements
to quadrupole scan data) can fail to find a solution in
a reasonable amount of time when applied to higher di-
mensional problems (such as tuning the parameters of an
entire accelerator beamline).

If the gradients of the objective function with respect
to optimization parameters are known, then they can be
used in “gradient descent”-based algorithms that can sig-
nificantly reduce the number of iterations needed to con-
verge. However, for most cases in accelerator physics the
gradient is not known or easily measured via finite dif-
ference methods. Thus we are often limited to so-called
“black box” algorithms which do not incorporate gra-
dient information into the selection of future points in
parameter space, resulting in poorer performance (see
Sec. ?? for an in-depth discussion).

The complexity of the objective functions also plays a
role in the performance of optimization algorithms. Ob-
jective functions that are not convex have a number of lo-
cal extrema, only one of which is the global optimum. De-
pending on their construction, optimization algorithms
can converge to a local extremum near the initial start-
ing parameter set, so-called local optimization. Global
optimization algorithms on the other hand, are designed
to escape local extrema and explore the entire parame-
ter space in search of the global optimum. For complex
objective functions, finding the global optimum is often
much more challenging [5].

A. Optimization Challenges in Accelerator Physics

In addition to these general optimization challenges,
online optimization of accelerators and offline optimiza-
tion of physics simulations adds further, unique compli-
cations that need to be considered when selecting an ideal
optimization algorithm.
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1. Online Accelerator Control

Particle accelerators are challenging systems to opti-
mize and control in practice, and potential optimization
algorithms need to address these challenges. An illus-
tration of some of these challenges is shown in Fig. 1.
Typically, there are a large number of possible settings
that can be adjusted across multiple sub-systems to
achieve the optimal beam parameters. Measurements
of beam qualities that serve as objective functions dur-
ing optimization are often destructive and can be time-
consuming, leading to losses in beam time available for
experiments. Furthermore, these measurements are sub-
ject to a variety of systematic and stochastic uncertain-
ties, as well as time-dependent drifts due to external fac-
tors. There are also multiple aspects of the beam and
operational behavior that need to be optimized simul-
taneously (e.g. balancing competing beam parameters).
Additionally, accelerators operate under a set of tight
constraints that need to be satisfied to maintain safe op-
erations and protect sensitive equipment. Finally, main-
taining the stability and repeatability of accelerators dur-
ing optimization is also a critical aspect of online opera-
tions.

Typically, detailed beam distribution information is
only available at a few locations in the accelerator, via de-
structive diagnostics that can be inserted into the beam-
line. In some cases, information about the beam can
only be inferred from multiple destructive measurements
(such as quadrupole scans) which can be time-consuming
to perform. Reducing the quantity of destructive mea-
surements that need to be made to optimize beam per-
formance is critical for increasing beam time availability
for experimentation.

Accelerator measurements are also often subject to
aleatoric (random noise) or epistemic (systematic) uncer-
tainties. Random noise in accelerators makes it difficult
for iterative algorithms to maintain stability throughout
the optimization process. This noise can also change in
amplitude (e.g. heteroskedastic) as a function of acceler-
ator parameters or changing environmental factors. The
amplitude of noise can also be considered as an optimiza-
tion objective or constraint, given that it is often optimal
to find solutions that lead to a relatively stable objective
function value. Additionally, the limited resolution of ac-
celerator diagnostics introduces systematic uncertainties
in the objective function value. Despite this, uncertain
measurements can still provide useful information to op-
timization algorithms if handled appropriately. Finally,
intermittent jumps (e.g. a spike in RF power, dip in
beam charge, momentary fault from the machine protec-
tion system) in parameters need to be recognized and
considered in automated optimization routines.

Particle accelerators are not stationary systems; they
have time-dependent behavior on multiple timescales
ranging from sub-milliseconds to hours. These behaviors
include both expected time-dependent processes (such as
slow loss of beam in a storage ring) or the combined effect

of slow, unintended changes in the system (also known
as “drift”) that changes the relationship between settings
and observed beam output. Drift can come from many
sources, such as changes in materials (e.g. loss of quan-
tum efficiency in a photocathode) and the impact of daily
and seasonal changes in temperature and humidity. Ad-
ditionally, not all sources of drift are well-characterized
or measured.

Optimizing accelerator control parameters is often
framed as a multi-objective problem, where the goal of
optimization is to find a collection of potential solu-
tions that balance trade-offs between competing objec-
tives. For example, many photoinjectors aim to simulta-
neously minimize both transverse beam emittances and
bunch length of beams for high brightness applications
[6]. However, due to space charge effects, reducing the
bunch length often increases the transverse beam emit-
tance. Multi-objective optimization identifies a set of
parameter configurations that provide ideal trade-offs be-
tween objectives, known as the Pareto front (PF). Once
the PF has been identified, a single point on this PF can
be selected based on objective preferences as a fixed oper-
ating point, or the entire front can be utilized to provide
multiple operating modes for different applications.

Accelerators often operate in tightly constrained pa-
rameter spaces that limit beam losses that contribute
to accelerator downtime, radiation generation, and hard-
ware degradation. This is especially important for high-
power beams, since even the lower-density edges of the
beam distribution (or “halo”) can damage equipment if
the trajectory is not carefully controlled. These limits
are often unknown prior to performing optimization, so
algorithms must learn valid and invalid regions of pa-
rameter space that satisfy the constraints on-the-fly dur-
ing optimization. On the other hand, there are cases
where operational constraints are not as strict, such as
beam losses in lower power facilities or non-safety related
beam quality constraints (maximum beam emittance or
energy spread). In these cases, occasional violations of
the constraints can be tolerated if they lead to increased
convergence speed to optimal values. Algorithm design
for online accelerator operations needs to balance con-
servative adjustments of accelerator parameters to avoid
constraint violations with the need to explore the input
space to find optimal solutions.

The type of operating conditions for a particular accel-
erator also impacts how challenging it is to arrive at an
optimal configuration. Some particle accelerators deliver
highly customized beams to their users, which requires
a new combination of accelerator settings for each re-
quest, however often. Large changes in machine setup
introduce additional challenges, such as the need to deal
with path-dependent processes like magnetic hysteresis
and mechanical backlash. Additionally, rapid changes to
accelerator parameters can lead to instabilities in the ma-
chine due to interacting feedback algorithms in multiple
accelerator sub-systems. The degree to which these pro-
cesses need to be considered depends in part on whether
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FIG. 1. Overview of challenges in using optimization algorithms for online accelerator control. Accelerator control algorithms
make decisions about setting a wide variety of accelerator parameters in order to control beam parameters at target loca-
tions. Optimal decision making takes into account limited online accelerator measurements, as well as various sources of prior
knowledge about the accelerator, including previous measurements, physics simulations, and physics principals. Optimization
must also consider complicated aspects of realistic accelerator operation including external conditions, feedback systems, safety
constraints, and repeatability errors.

the accelerator must undergo somewhat global optimiza-
tion frequently, as opposed to keeping a single configura-
tion stable for long periods of time.

Altogether, the large number of parameters to adjust,
the changing conditions, and any subtle or nonlinear in-
teractions between variables make online accelerator op-
timization a challenging task. While human operators
are often highly skilled, the scale and complexity of many
challenging operational tasks warrant new approaches to
achieve the highest beam quality and operational effi-
ciency. The use of high-performance numerical optimiza-
tion algorithms can enhance the ability of human opera-
tors to address increasingly challenging accelerator con-
trol tasks while removing the burden of repetitive tasks
through automation. This leads to improvements in ac-
celerator capabilities and an increase in available run
time for scientific experiments at accelerator facilities.
Maximizing the benefits of autonomous optimization al-
gorithms requires careful consideration of practical as-
pects and challenges of online particle accelerator opti-
mization.

2. Simulation-Based Optimization of Accelerator Systems

Optimization algorithms are also used in simulation
to design new accelerator components and facilities, as

well as calibrate physics models to experimental mea-
surements. Simulated optimization shares some of the
challenges as online optimization, namely balancing the
trade-offs between multiple competing objectives.

Detailed physics simulations are often used in the de-
sign of new particle accelerators and new experimental
setups. To include the full detail of nonlinear beam
dynamics or collective effects, computationally intensive
particle-in-cell simulations are often used to accurately
make predictions of real-world beam dynamics. However,
running these simulations consumes a significant amount
of computational resources and run time. Algorithms
that reduce the number of simulation evaluations neces-
sary to solve optimization problems reduces the signifi-
cant resource expenditure of using high-fidelity physics
simulations.

To speed up optimization, multiple simulations can be
performed in parallel on high performance computing
clusters. Additionally, reducing the cost of simulations
by making approximations or neglecting higher order ef-
fects can speed up the optimization progress, but at the
cost of predictive accuracy. In an ideal scenario, multiple,
inexpensive evaluations of an approximate model would
be used to identify promising regions of parameter space
before evaluating expensive, high-fidelity simulations us-
ing those parameters. At present, accelerator scientists
implement this strategy manually by choosing a suitable
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FIG. 2. Overview of optimization challenges in accelerator
physics simulations. Ideal algorithms aim to minimize the
computational cost of performing optimization by orchestrat-
ing parallel simulation evaluations at multiple fidelities rang-
ing from analytical models to high fidelity (computationally
expensive) simulations. Correlations between simulation pre-
dictions at different fidelities can be leveraged to reduce the
number of high fidelity simulation evaluations needed to find
an ideal solution at the highest fidelity level.

balance between simulation precision and computational
costs. Optimization algorithms could automate this pro-
cess by evaluating multiple simulations at different fi-
delities simultaneously in order to reduce run time and
computational costs, as is shown in Fig. 2.

Due to the computational expense of evaluating high
fidelity simulations, optimization problems in acceler-
ator physics are often divided into smaller-scale indi-
vidual problems to reduce optimization complexity and
the number of variables to adjust. For example, the
optimization of larger beamlines might be divided into
smaller sections, or the placement and control parameters
of individual accelerator elements (magnets, RF cavities,
etc.) are optimized independently. Previous work has
shown this piecemeal approach to design optimization
yields sub-optimal results [7], which may miss some of
the detailed interactions between various settings on the
accelerator and leave more optimal configurations undis-
covered.

B. Optimization Algorithm Selection

Selecting an optimization algorithm for a specific prob-
lem aims to minimize the overall cost needed to reach a
given optimization goal. Costs associated with optimiza-
tion can be characterized in a variety of ways, for exam-
ple: beam time at an accelerator, computational assets
at a computing cluster, personnel time resources, or fi-
nancial expenditure. These costs depend on four factors
that make up the optimization process, including (1) the
number of steps required to reach an optimization goal,
(2) the cost of evaluating objectives (and potentially con-
straints), (3) the cost of decision-making inside the opti-
mization algorithm (i.e. selecting the next point in pa-
rameter space to evaluate), and (4) the initialization cost
associated with setting up the optimization algorithm.
Choosing the correct algorithm for solving an opti-

mization problem requires balancing the trade-offs be-
tween the different costs associated with performing op-
timization. To observe these effects we consider a toy
model of the total cost of solving a single optimization
problem. We start by assuming that the steps of per-
forming iterative optimization are done sequentially with
a single evaluation of the objective function at a time.
We also assume that an optimization algorithm A, takes
N(A) steps to find a solution that meets a predefined op-
timization goal. Evaluating the objective and constraint
functions has a constant cost E and the algorithm makes
measurement decisions with a constant cost D(A). Fi-
nally, preparing the algorithm to perform optimization
has a one-time initialization cost I(A). With these as-
sumptions, the total cost T of reaching the predefined
optimization goal is given by

T = N(A)[E +D(A)] + I(A). (3)

While this view ignores many potential strategies for
reducing optimization costs (such as parallel evaluation,
asynchronous generation and evaluation, etc.), it pro-
vides a rough illustration of how individual components
of the optimization process contribute to the total cost of
optimization. We now examine how each of these costs
contribute to total optimization cost:
a. Number of iterations needed to reach optimization

goal(s): As discussed in Sec. II A, the number of itera-
tions needed to converge to an optimal point in parameter
space is generally dependent on the number of optimiza-
tion parameters, the objective function convexity, and
the algorithm used to solve the problem. Brute force al-
gorithms, such as grid-based or random sampling, often
require the most number of iterations to identify optimal
points, especially in high-dimensional parameter spaces.
More intelligent or “efficient” algorithms evaluate points
in parameter space based on heuristics, local approxi-
mate behavior, or global models to reduce the number
of iterations needed to find optimal points. This addi-
tional complexity can lead to increasing decision-making
costs, but can substantially reduce the number of itera-
tions needed to find a solution. In our toy demonstra-
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FIG. 3. Illustrative example of how different aspects of per-
forming optimization effect total optimization costs using a
toy problem. Assuming an exponentially decaying relation-
ship between the decision cost D(A) of the algorithm A and
the number of iterations needed to reach a solution N(A) (in-
set), we plot the total cost T (A) of solving an optimization
problem as a function of D(A) and the evaluation cost E. In
this example we assume that algorithms have no initialization
cost.

tion, we assume an exponentially decaying relationship
between decision-making cost and number of iterations
needed to reach an optimization goal, as shown in Fig. 3.

b. Objective function evaluation cost Evaluating op-
timization objectives and constraints can have widely
varying costs. Measuring transverse beam size on a diag-
nostic screen in an accelerator or computing beam dy-
namics using analytical physical models can take less
than a second. Simple measurement procedures like
quadrupole emittance scans or low-fidelity Particle-In-
Cell (PIC) beam dynamics simulations can take several
minutes to complete. Finally, complicated experiments
or highly detailed beam/plasma physics simulations re-
quire significant amounts of time (hours to days) and re-
sources to evaluate. As shown in Fig. 3, the total cost of
optimizing a problem in our simplified example increases
with increasing evaluation costs.

c. Decision-making costs Balancing the number of
iterations needed to achieve an optimal solution vs. the
decision making cost of each iteration is an essential com-
ponent to consider when choosing an algorithm. This
choice is heavily influenced by the evaluation costs of
particular problem, as shown in Fig. 3. Random or mesh
sampling inside the parameter space essentially incurs
zero decision-making cost. While these brute-force op-
timization algorithms minimize the cost of addressing
problems with low-cost evaluations of the objective func-
tion, such as inexpensive analytical calculations, their ef-

fectiveness wanes as the evaluation cost of the objective
function increases. In scenarios where objective function
measurements carry a high cost, opting for an algorithm
that reduces the number of evaluations can significantly
curtail the overall optimization expense. However, choos-
ing algorithms where D(A) ≫ E may not be ideal, since
the total cost of optimization will be dominated by the
decision-making costs and higher decision-making costs
can yield diminishing returns in terms of reducing the
number of iterations required to find the optimum.
An exception to this rule is when suboptimal parame-

ter selections lead to the violation of safety-critical con-
straints. For instance, in cases where inadequate choices
result in beam losses and potential machine damage, the
importance of robust decision-making that avoids violat-
ing constraints is greater than reducing the overall opti-
mization cost.
d. Initialization and Preparation costs Preparing

or initializing algorithms for performing optimization
can also incur variable costs depending on the type of
algorithm used. Some algorithms, such as Nelder-Mead
[8] and L-BFGS [9] only require the specification of an
initial starting point near the extremum to converge.
Other algorithms can take advantage of domain-specific
prior knowledge of the objective function to inform
optimization, thus reducing the number of steps needed
to reach convergence. However, depending on the
algorithm, integrating this prior information can be
comparable to or greater than the cost of performing the
optimization itself. An extreme example of initialization
cost would be found in types of Reinforcement Learning
(RL) algorithms. These algorithms can significantly
reduce the number of steps needed to reach optimiza-
tion goals and decision-making costs relative to other
algorithms. However, they incur substantial up-front
costs associated with gathering data and training
policies required to be successful. While algorithms
with large upfront initialization costs, like RL, are not
necessarily ideal for solving novel problems that require
re-initialization and/or re-training, they are well-suited
for solving the same (or similar) problems repeatedly. In
this case, the up-front investment of resources reduces
longer term optimization costs.

In summary, selecting the best algorithm for solving
accelerator physics problems in both experiment and sim-
ulation requires careful consideration of the costs associ-
ated with algorithm initialization, algorithmic decision-
making, objective function evaluation, and the number
of iterations predicted to be necessary in order to reach
desired optimization goals.

C. Bayesian Optimization

Bayesian optimization (BO) is an iterative, model-
based optimization algorithm that is particularly well-
suited for efficient optimization of noisy, expensive-to-
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evaluate black-box functions. In general, BO consists of
three steps, as illustrated in Figure 4 and is summarized
in Algorithm 1. The first is the construction of a statis-
tical surrogate model of the objective and constraining
functions based on measured data, often using Gaussian
process (GP) modeling [4]. The second step is the defi-
nition of an acquisition function based on the GP model,
which defines the relative “value” of potential future mea-
surements in input space in order to achieve optimization
goals. The final step solves for the point (or set of points)
that maximize the acquisition function and are thus pre-
dicted to provide the most value towards optimization
goals. Points that are selected in the last step are then
passed to the objective and constraint function(s) to be
evaluated; the results of which are then passed back to
the algorithm to be incorporated into the model data set.
This process repeats until an optimization criteria is met.

An additional benefit of BO is that the model created
and trained during the optimization process can also be
used outside of the context of optimization. For exam-
ple, the model can provide information about objective
function sensitivities to accelerator parameters, be inte-
grated as a fast-executing surrogate into other models of
the accelerator, and be used to identify unknown param-
eters of the beamline, such as element misalignments or
hysteresis effects. Finally, as a result of the BO sam-
pling process, these models are most accurate in regions
of parameter space that are often of the highest interest,
namely regions of parameter space that are near optimal
parameter sets.

D. Demonstrations of BO in Accelerator Physics

Bayesian optimization has already been used to solve
a wide variety of optimization problems in accelerator
physics. These demonstrations include:

• Single-objective, online optimization, e.g. of mag-
netic optics parameters in conventional linear [10–
13] and circular [14] accelerators, as well as novel
accelerator concepts [15–19].

• Time-dependent optimization to maintain optimal
tuning configurations in problems subject to drift
[12, 20, 21] (Sec. III C 2).

• Online optimization that leverages prior
physics knowledge or simulations [11, 22]
(Sec. III C 1, III C 3).

• Online optimization subject to repeatability errors
(hysteresis, motor backlash) [23] (Sec. III C 6).

• Autonomous characterization of objective func-
tions in experiment [24] (Sec. IVB1).

• Optimization with unknown constraints [25–27]
(Sec. IVB2).

• Multi-objective optimization to discover ideal
trade-offs between competing objectives in experi-
ments [19, 28] and simulations [29, 30] (Sec. IVB3).

• Bayesian algorithmic execution, e.g. optimization
of beam emittance using virtual quadrupole scans
[31] (Sec. IVB4).

• Multi-fidelity optimization, e.g. of beam dynam-
ics and plasma wakefields in simulations [30, 32]
(Sec. IVB6).

In the following sections we describe BO techniques
in detail; first by providing an accessible basic tutorial
of common approaches and methods for each step. We
then describe advanced modifications of basic techniques
that have been shown to be advantageous towards solving
accelerator physics problems.

III. GAUSSIAN PROCESS MODELING

Bayesian optimization uses a computational surrogate
model of the objective function in order to inform the
selection of new measurement points in input space. In
practice, the surrogate model should use data collected
during optimization to make predictions of the objective
function value as well as provide an estimate of corre-
sponding uncertainties with those predictions. While any
surrogate model with these properties could potentially
be used in this context, models known as “Gaussian Pro-
cesses” (GPs) [4] are often used.

A. Bayesian Inference

Before starting a discussion of models used in BO, it
makes sense to first develop a conceptual understand-
ing of Bayesian statistics. A Bayesian interpretation of
probability expresses a degree of belief in an event, or a
probability distribution, based on prior knowledge of that
event. This is different than a frequentest view of prob-
ability which reflects the measured outcomes of many
trials. Bayesian statistics uses Bayes’ rule to predict the
conditional likelihood of an event A occurring given an
event B happened as

p(A | B) =
p(B | A)p(A)

p(B)
(4)

where p(B | A) is known as the likelihood function, p(A)
is the prior probability distribution, p(B) is the marginal
likelihood or the evidence, and p(A | B) is the posterior
probability.
To make the interpretation of Bayes’ rule more con-

crete, imagine attempting to fit a linear model f(x) =
w0x+w1 to experimental measurements of a linear func-
tion corrupted by noise y = f(x)+ ϵ as is shown in Fig.5.
The goal of this analysis is to determine the likelihood
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FIG. 4. Illustration of the Bayesian optimization process to find the maximum of a simple function. A Gaussian process (GP)
model makes predictions of the function value (solid blue line) along with associated uncertainties (blue shading) based on
previously collected data. An acquisition function then uses the GP model to predict the “value” of making potential future
measurements, balancing both exploration and exploitation. The next observation is chosen by maximizing the acquisition
function in parameter space. This process is repeated iteratively until optimization goals have been reached.

Algorithm 1 Bayesian Optimization

Require: Objective function f , observation dataset DN , GP
prior M = GP(µ(x), k(x,x′)), acquisition function A(·).

1: for t = 1, 2, . . . do
2: Decide a new sample point xnew = argmaxx α(x).
3: Query the objective ynew = f(xnew) + ϵ.
4: Update DN and the GP model.
5: end for

of the two model parameters {w0, w1} given a collection
of experimental measurements D = {x,y}. Using Bayes’
rule, the posterior probability distribution of these pa-
rameters is given by

p(w0, w1|D) =
p(D|w0, w1)p(w0, w1)

p(D)
. (5)

where the likelihood p(D|w0, w1) captures how well the
linear model with the given parameter values {w0, w1}
represents the measured data, and p(w0, w1) represents
the prior probability distribution of the weights. In this
case, the prior distribution of the weights is a multivariate
Gaussian distribution centered at the origin. This prior
distribution is equivalent to adding a regularization term
to least-squares curve fitting, which aims to prevent over-
fitting by penalizing large parameter values.

After a single observation, the posterior probability
distribution of the weights is shown in Fig. 5(a). Based
on the single measured data point Bayes’ rule predicts
a positive correlation between the y-intercept (w0) and
the slope (w1). This is evident in function samples drawn
from the posterior distribution shown in Fig. 5(b). These
samples can be collected into a distribution that predicts
the mean value of the function and associated uncertainty
as is shown in Fig. 5(c).

As additional measurements are introduced into the

model, Fig. 5(d-i), the likelihood and posterior probabil-
ity distributions become sharper since a smaller range of
parameters leads to accurate models of the experimental
data. How rapidly the posterior probability distribution
shrinks according to new evidence depends on the rela-
tive “strengths” of the prior and likelihood distributions.
A strong prior probability distribution on the weights
(one that is highly peaked in a small local region) will re-
sult in a similar posterior distribution unless significant
experimental evidence that is contrary to the prior is in-
corporated into Bayes’ rule via the likelihood. On the
other hand, if the prior distribution is relatively weak
(ie. nearly uniform across parameter space) then it has
relatively little impact on the posterior distribution.
The process of determining the posterior probability

distribution of model parameters based on observed data
and Bayes’ rule is referred to as Bayesian inference. In
most cases, determining the exact posterior probability
distribution for the entire parameter space requires per-
forming integrals that are computationally intractable to
compute, specifically when evaluating the evidence term
in Bayes’ rule p(D). Rather than directly assessing the
posterior probability distribution, a variety of alterna-
tive analytical techniques are used to perform inference.
First is maximum likelihood estimation (MLE), which es-
timates point-like values of the model parameters θ by
solving for the point θ∗ that maximizes the likelihood
term (which ignores any priors on the parameters)

θ∗MLE = argmax
θ

p(D|θ). (6)

If the likelihood takes the form of a Normal distribution,
this is equivalent to performing mean squared error curve
fitting.
The second analysis method is maximum a posteriori

(MAP), which also determines point-like values of the
parameters θ, this time by maximizing a quantity that is
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FIG. 5. Illustration of Bayesian regression using a linear model f(x) = w1x + w0. (a,d,g) Posterior probability density of the
linear weights {w1, w0} conditioned on N observations of the function y = f(x) + ϵ. (b,e,h) Model predictions using random
samples of {w1, w0} drawn from the posterior probability distribution. (c,f,i) Predictive mean (solid line) and 90% uncertainty
intervals (shading) of the posterior model. Red cross and black dashes denote true parameters and values of the function f(x)
respectively. Reproduced with permission from [33].

the mode of the posterior distribution

θ∗MAP = argmax
θ

p(D|θ)p(θ). (7)

which incorporates the prior without having to compute
the full posterior probability distribution. Finally, we
can also determine an approximate posterior probability
distribution of θ using variational inference, which uses
optimization to fit a computationally tractable distribu-
tion to values of the exact posterior distribution in order
to minimize the evidence lower bound (ELBO) in terms
of the Kullback-Leibler divergence (see [34] for details).
Depending on the application, any of these three meth-
ods can be used to estimate posterior parameter values
using Bayesian inference, albeit with varying computa-
tional costs required to solve the respective optimization
problems.

B. Gaussian Process Modeling Basics

Gaussian process models [4] are non-parametric mod-
els that use Bayes’ rule to describe unknown functions

by leveraging high level functional behavior to establish
correlations between function values at points in objec-
tive space. As opposed to parametric models, which use
Bayes’ rule to identify probability distributions of model
parameters, GP models use Bayes’ rule to predict prob-
ability distributions of function values at arbitrary loca-
tions in parameter space using measured data.
We start by assuming that the output y of a function

f at input parameter x is given by

y = f(x) + ϵ (8)

where corrupting noise is given by ϵ ∼ N (0, σ2
ϵ ). A GP

model is a distribution of possible functions

f(x) ∼ GP(m(x), k(x,x′)) (9)

where m(x) = E[f(x)] is referred to as the prior mean
function, and k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))]
is commonly called the covariance kernel function. Fi-
nally, the probability distribution of the observable y is
given by our assumed likelihood, which in this case is a
Normal distribution p(y|f(x)) = N (f(x), σ2

ϵ ). To sim-
plify calculations the prior mean function is often spec-
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ified to be m(x) = 0, although a fixed non-zero prior
mean can also be learned from the data.

Given a set of n collected data samples D = {X,y},
we can make predictions for the probability distribution
of the function value evaluated at n∗ test points using
Bayesian inference. The resulting posterior distribution
p(y∗|X∗,D) = N (µ∗, σ

2
∗) with the mean and variance

given by [35]

µ∗ = K(X∗, X)[K(X,X) + σ2
ϵ I]

−1y (10)

σ∗
2 = K(X∗, X∗)− (11)

K(X∗, X)[K(X,X) + σ2
ϵ I]

−1K(X∗, X)T

where K(X,X) is an n × n covariance matrix between
each data set element locations, K(X∗, X) is an n∗ ×
n covariance matrix between test points and data set
element locations, K(X∗, X∗) is an n∗ × n∗ covariance
matrix between test point locations, and I is the identity
matrix.

An example of GP predictions is shown in Fig. 6, as-
suming that the noise parameter σϵ = 0. Figure 6(a)
shows the prior mean and confidence bounds (equal to
2σ above and below the mean) of the observable y for
a set of 100 test points in the domain x∗ ∈ [0, 1]. At
an arbitrary point in parameter space, the GP prior dis-
tribution p(y|x∗) is a Normal distribution with a mean
of zero and a unit variance. By adding a data set D to
the GP, the model predictions are updated to form the
posterior predictive distribution as shown in Fig. 6(b).
Posterior predictions at a single test point also take the
form of Normal distributions with predictive means and
variances conditioned on the data set according to Eq. 10
and 11. We can also draw individual function samples at
points in parameter space from the posterior distribu-
tion, as shown in Fig. 6(c). These function samples are
generated by drawing multiple random values from the
Normal distribution at every point in input space.

Conceptually, GP models use Bayes’ rule to derive a
posterior probability distribution of the function value
f(x) conditioned on the observed data set and covari-
ances in function values between observed data and test
points. These covariances are defined by the kernel func-
tion k(x,x′) and a likelihood function (which describes
probabilities due to measurement noise). A physical ana-
log of GP modeling is a vibrating string with a collection
of fixed nodes along the string length. The possible loca-
tions of the string at any point along its’ length is con-
strained by where the nodes are located on the x−y plane
(observed data) and the elasticity of the string (kernel
function). For a given string we can be quite confident
where the string is in space close to fixed nodes. However,
far away from any nodes the string position possibilities
can vary widely. Increases in the elasticity of the string
creates more uncertainty in both of these cases owing to
its’ ability to stretch; this corresponds to weaker covari-
ances between function values.

1. Kernel function definition

By defining the covariances of function values between
different locations in parameter space, the kernel function
dictates the overall functional behavior of the predictive
model. Selection of a particular kernel function is usually
based on prior knowledge of the real function’s behavior
in parameter space and is critical to creating accurate
models with limited amounts of data. Kernel functions
are often contain hyperparameters, which alter the high
level functional behavior of the GP posterior, and can
be specified prior to modeling or inferred from training
data. Kernels are generally divided into two categories,
stationary and non-stationary.
Stationary kernels are invariant under translations of

the input space k(x,x′) = kS(||x− x′||), which means it
only depends on the relative positions of its two inputs
x and x’, and not on their absolute positions. This fea-
ture makes stationary kernels a popular choice for mod-
eling arbitrary functions when limited prior information
is present.
One of the most basic stationary kernels is the Radial

Basis Function kernel (RBF). The RBF kernel is defined
as:

kRBF(x,x
′) = exp

(
−||x− x′||2

2l2

)
(12)

where l is the length scale hyperparameter of the kernel.
While the RBF kernel’s simplicity makes it easy to use
and adapt to specific purposes (see Sec. III C 1), it results
in predictions that are infinitely differentiable, which are
generally too smooth for describing realistic functions.
A more generalized version of the RBF kernel is the

Matérn kernel [4]. The Matérn kernel is defined as:

kMA(x,x
′) =

21−ν

Γ(ν)

(√
2ν

d

l

)ν

Kν

(√
2ν

d

l

)
(13)

Here, d = ||x − x′|| represents the Euclidean distance
between inputs, Γ is the gamma function, and Kν is the
modified Bessel function of the second kind. The length
scale of the kernel is denoted by l, and ν controls the
smoothness of the resulting function. As ν → ∞, the
Matérn kernel converges to the RBF kernel.
Commonly used values for ν are ν = 1.5 for once dif-

ferentiable functions and ν = 2.5 for twice differentiable
functions. Limiting the differentiability enables GP mod-
els with Matérn kernels to accurately predict realistic
physical processes. As a result, the Matérn kernel with
ν = 2.5 is often employed as a starting point for modeling
physical functions in the absence of prior information.
For modeling functions that are expected to be pe-

riodic, a periodic kernel can be used to increase model
accuracy containing small data sets. A periodic kernel,
also called a Exp-Sine-Squared kernel, is defined as:

kPER(x,x
′) = exp

(
−2 sin2(||x− x′||/p)

l2

)
(14)



11

FIG. 6. Illustration of GP model predictions. (a) Prior model prediction of the function mean (solid blue line) and confidence
interval (blue shading) at a set of test points in parameter space. The probability of the output value y at any given test point
x∗ is a Normal distribution. (b) The posterior GP model also predicts Normal probability distributions at each test point,
conditioned on the data set D. (c) Individual function samples can also be drawn from the posterior GP model and can be
used for Monte Carlo computations of function quantities.

where l is the length scale of the kernel, and p is the
periodicity of the kernel.

Hyperparameters of these kernels control high-level
model behavior by modifying the covariance between
function values at different points in parameter space.
For example, Fig. 7 shows how the length scale hyper-
parameter of a stationary kernel effects GP predictions.
Models that contain kernel functions with short length
scales vary rapidly to precisely match the training data.
As the length scale increases the smoothness of the model
prediction increases, capturing more of the general trend
of the training data with a reduction in accuracy. Se-
lecting hyperparameter values depends on improving the
accuracy of the GP model while reducing the complexity
of the model, thus preventing over fitting of the data (see
the next section for a detailed discussion). Other hyper-
parameters, such as the period in the periodic kernel and
the offset in the polynomial kernel, have similar macro-
scale effects on model behavior, and thus significantly
effect the accuracy of model interpolation and extrapo-
lation.

One straightforward modification of stationary ker-
nels often used in practice is replacing the scalar length
scale hyperparameter with a vector of independent length
scales corresponding to each optimization parameter. In
this case, the RBF kernel for example can be specified by

k(x,x′) = exp
(
− 1

2
(x− x′)TM(x− x′)

)
(15)

with M = diag(l)−2 where l is a vector of positive real
values. This technique is often referred to as automatic
relevance determination [36] and can be used to identify
the sensitivity of the objective function to each optimiza-
tion parameter. A long length scale implies weak depen-
dence of the objective function on a particular parameter
while a small length scale implies strong dependence.

The flexibility of this approach can be expanded even

further by specifying a full positive semi-definite matrix
M = ΛTΛ + diag(l)−2, where Λ is an upper triangular
matrix, often referred to as factor analysis distance due
to the analogy with factor analysis methods used to find
low rank decomposition of the data along arbitrary axes
in parameter space. This parameterization is used less
often in practice due to the large data sets necessary to
learn the covariances on-the-fly during optimization. It
can however be useful in cases where the decomposition
can be determined prior to conducting optimization and
the low rank behavior is not aligned with individual pa-
rameter axes, as is often the case when tuning quadrupole
parameters (see Sec. III C 1). Automatic relevance deter-
mination and factor analysis distance methods allow the
GP model to represent low dimensional structure within
high dimensional optimization spaces, increasing model
accuracy with fewer data points.
Non-stationary kernels depend explicitly on the loca-

tions of the two inputs x and x′. Using non-stationary
kernels can provide more accurate predictions with fewer
data points, at the cost of reduced model flexibility. A
commonly used non-stationary kernel is the polynomial
kernel [37]. A polynomial kernel of degree p is defined as:

kPOL(x,x
′) = (xTx′ + c)p (16)

where c ≥ 0 is a constant offset parameter. Using a poly-
nomial kernel in a GP model is equivalent to performing
Bayesian regression of data using the same-order polyno-
mial. Functional samples drawn from the GP model are
then also polynomial functions of the same order as the
kernel.

2. Determining model hyperparameters

The hyperparameters of the GP kernel can be learned
from training data gathered during optimization or spec-
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FIG. 7. Visualization of how the length scale hyperparameter
l effects GP modeling. Three GP models are trained on the
same data set using a Matérn kernel with fixed length scales
of (a) 0.1, (b) 1.0, and (c) 10.0. Remaining hyperparameters
are trained by maximizing the marginal log-likelihood.

ified a priori using prior knowledge of the objective func-
tion. A common strategy for learning the hyperparame-
ters from experimental data is maximizing the marginal
log-likelihood (MLL) of the GP model with respect to
the hyperparameter values. While in most cases calcu-
lating the marginal likelihood requires performing ana-
lytically intractable integrals, the marginal likelihood of
GP models with Gaussian likelihoods can be calculated
analytically, and is given by

log p(y|X, θ) = −1

2
yTK−1

y y−1

2
log |Ky|−

n

2
log 2π. (17)

where θ is the set of GP model hyperparameters con-
tained in Ky = K(X,X) + σ2

ϵ I. The MLL has three
terms, each having an interpretable role. The first term,
which is the only term that contains training data, is
the data fit term which is maximized when model pre-
dictions accurately predict experimental data. The sec-
ond term describes model complexity and is maximized

given the simplest model, ie. models whose kernel matri-
ces have determinants close to zero. The final term is a
normalization constant based on the number of training
points in the data set. Maximizing the MLL naturally
regularizes fitting of the GP, resulting in model hyperpa-
rameters that create the simplest model which accurately
reproduces the training data. For relatively small data
sets (< 300 data samples), maximizing the MLL takes a
few seconds on most modern CPU’s, making it feasible
to perform this process during each iteration of BO (see
Sec. VI F for details).

Alternatively, fixed individual hyperparameter values
can be specified before modeling occurs, based on prior
knowledge of the function, either from previous sets of
data or physics knowledge. While fixing hyperparameter
values circumvents the need for retraining the model at
each optimization step during BO, this limits the ability
of BO to adapt to novel functional behavior that is not
well characterized by the fixed hyperparameter values.

Since maximizing the MLL is itself an optimization
problem, this process suffers from the same complexities
and challenges associated with solving general optimiza-
tion problems in practice. A wide variety of numerical op-
timization algorithms can be used for this purpose, given
that the number of hyperparameters that are included
inside the GP model is generally small (< 5− 10). Cur-
rent state-of-the-art software packages developed for GP
modeling (see Sec. VIE) employ two strategies to maxi-
mize speed and robustness when optimizing the MLL.

The first strategy uses of so-called differentiable cal-
culations, which allow cheap computation of the MLL
gradient with respect to the hyperparameters. This en-
ables the use of gradient-based optimization algorithms
that scale well towards performing optimization given a
large number of hyperparameters. Since gradient descent
optimization algorithms often converge to local extrema,
optimization can be repeated in parallel, starting with
randomly chosen initial points in hyperparameter space
to improve the chances of finding a global extrema.

The second strategy used to improve MLL maximiza-
tion robustness is training data normalization and stan-
dardization. As is common in other machine learning
disciplines, it is recommended that training data sets are
transformed such that they are near unity value when
passed to the model, thus preserving unit scale gradients
with respect to hyperparameters. For GP modeling, it
is common to normalize input data into the unit domain
[0, 1] and standardize the outcome data such that it has
a mean of zero and a standard deviation of one (to match
the default zero prior mean and unit standard deviation
in most GP modeling frameworks).

These two strategies make maximizing the MLL fairly
robust in practice, such that monitoring and customiz-
ing the fitting of model hyperparameters in BO is only
necessary in specialized cases.
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3. Observation noise and heteroskedasticity

One of the major benefits of using GP models for
describing experimental accelerator measurements is its
treatment of noise and uncertainty. Depending on the
application, GP models can be tailored to account for
measurement uncertainty in a variety of ways.

The most straightforward method for representing
measurement uncertainty uses a noise hyperparameter
σϵ that is incorporated into Eq. 10 and 11 by assuming
a fixed Gaussian model of the uncertainty for all mea-
surements. This homoskedastic uncertainty assumption
adds σ2

ϵ terms to the diagonal elements of the kernel
matrix, in what is commonly referred to as Tikhonov
regularization or ridge regression [38]. In cases where
no noise is present, for example in deterministic simu-
lations, this parameter can be set to zero, resulting in
GP models that exactly match training data, as is shown
in Fig. 8(a). In the case of experimental measurements
containing noise, the noise hyperparameter can be deter-
mined during optimization alongside other model hyper-
parameters by maximizing the MLL. This process serves
to regularize the GP model, mitigating high-frequency
behavior and treating it as uncertainty at measurement
locations, as exemplified in Fig. 8(b).

In some situations, observation uncertainty is known
beforehand either from systematic uncertainties or
stochastic noise. Furthermore, this uncertainty can be
different for each measurement, or heteroskedatic in na-
ture. If the observation uncertainty can be estimated,
e.g. by taking repeat measurements to estimate stochas-
tic noise, or by specifying systematic measurement un-
certainty, this information can be included for each point
individually in a heteroskedastic model. In this case, dif-
ferent values of σ2

ϵ,i can be added to the diagonal elements
of the covariance matrix for each data point yi. This
allows for individual measurement uncertainty to be ac-
counted for explicitly in the GP model, as illustrated in
Fig. 8(c). An alternative approach is to use a second GP
to model the variance (or log-variance) over the parame-
ter space and use this model to provide the weighting of
the GP of the observations.

4. Computational costs

If the likelihood of the GP model is a Normal distri-
bution then calculating the posterior distribution is ana-
lytical via matrix computations. However, for more com-
plex models the posterior cannot be obtained analytically
and may require the use of a sampling algorithm such as
Markov Chain Monte Carlo (MCMC) [39] to estimate the
posterior, which are known to be more computationally
intensive.

Calculation of the GP posterior can become a signifi-
cant bottleneck given a large dataset of training points.
The computational cost of evaluating GP model predic-
tions is primarily due to the matrix inversion operations

FIG. 8. Examples of GP modeling with varying treatment
of measurement noise. (a) Shows a GP model containing
zero noise, forcing the GP prediction to fit experimental data
exactly. (b) Shows a GP model trained on the same data
with a fixed (homoskedastic) noise parameter. (c) Illustrates
a GP model incorporating heteroskedastic noise, where the
data variance for each point is explicitly specified.

in Eq. 10 and Eq. 11 which has a computational cost of
O(n3) where n is the number of training points (note that
it is independent of the dimensionality of x). As a result,
the decision making cost can increase substantially as the
number of optimization iterations increases due to the
need to train and evaluate GP models (bench-marking of
these computational costs on modern hardware architec-
tures can be found in Sec. VI F). Thus, when using BO,
it is advantageous to find strategies that reduce the num-
ber of training data points needed to make an accurate
model of the objective function. This is where advanced
modeling techniques come into play.
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C. Advanced Gaussian Process Modeling
Techniques

The goal of advanced modeling techniques is to encode
prior information into the GP model such that it makes
more accurate predictions with smaller sets of data. Im-
proving the predictive accuracy of GP models prior to
starting optimization allows BO to select more optimal
points to measure at each step, reducing the average
number of iterations needed to reach convergence. Fur-
thermore, reducing data requirements for accurate mod-
eling reduces the computational cost of evaluating the
GP model, enabling faster decision making. Here we de-
scribe advanced techniques that can be used to improve
model accuracy with smaller data sets.

1. Kernel customization

a. Combining kernels For more expressive behavior,
multiple kernels can be combined into a single kernel
through addition, multiplication, and tensor products.
This combines the high level functional behavior of ex-
pected phenomena into a single model. For example,
modeling the temperature as a function of time at a fixed
location in the presence of a changing climate combines
a periodic kernel to describe the seasonal fluctuations of
temperature with the slower increase in average temper-
ature over many years (see [4] Ch. 5 for an example).
When GP models are used to describe functions of mul-
tiple parameters, specific kernels can be applied indepen-
dently to each parameter based on their expected depen-
dence. For example, when modeling beam size squared
as a function of beamline parameters, the second-order
dependence of beam size on quadrupole strength can be
captured by a polynomial kernel, while a more general
Matérn kernel can be used for other beamline parame-
ters whose effect on beam size is less well known.

b. Hyperparameter priors Kernel functions can also
be customized by specifying prior distributions for kernel
hyperparameters. Incorporating priors into the hyper-
parameter training process, biases MLL hyperparameter
training towards certain values according to the prior dis-
tribution. This provides a convenient middle ground be-
tween fixing hyperparameter values during optimization
and training from scratch. Depending on the relative
maximum likelihood of the prior probability distribution,
hyperparameter values can remain at the maximum prior
likelihood value until sufficient measurements are gath-
ered that “disagree” with the maximum a priori value.
An excellent example of this is the Sparse Axis Aligned

Sub-spaces (SAAS) kernel [40], which places strong, Half-
Cauchy distribution priors on the inverse length scales
for each optimization parameter. In the absence of ex-
ternal data, this kernel expresses the prior notion that
the objective function is independent with respect to all
optimization parameters (corresponding to a large ker-
nel length scale). The length scale is allowed to decrease

only once data is added to the model that demonstrates
an strong dependence of the objective function on the
given parameter. Incorporating this assumption into the
kernel rapidly speeds up convergence in objective func-
tions that are only strongly dependent on a small subset
of optimization parameters by reducing the effective di-
mensionality of the problem. This can be used in the
context of accelerators in cases where a large subset of
parameters do not strongly effect tuning objectives, such
as in the case of optimizing beam emittance in a beam-
line that contains a large number of quadrupoles (which
minimally effect beam emittance).

c. Kernel estimation from Hessian Another way of
encoding prior information of an objective function into
the kernel can be specifying fixed kernel function hyper-
parameters that express expected functional correlations
in a local region around the expected optimal point. For
example, objective functions that depend on quadrupole
strengths often contain cross-correlation structure, sim-
ilar to what is shown in Fig. 9(a), between adjacent
quadrupoles due to the focusing-defocusing nature of first
order beam dynamics. These cross correlations are dif-
ficult to learn on-the-fly without making a large num-
ber of measurements, as shown in Fig. 9(b). Adding
information about cross correlated structure in the ob-
jective function can significantly increase the accuracy of
the GP model in high dimensional spaces without having
to make a large number of measurements. An efficient
method for doing this is to compute the Hessian matrix of
the objective function near the predicted optimal point
in parameter space x∗ [41]. This can then be used as
the factor analysis distance metric described in Eq. 15,
where M = Hf (x

∗). As shown in Fig. 9(c), incorpo-
rating the Hessian matrix into the RBF kernel improves
the accuracy of the GP model with fewer training data
points. Identifying this low dimensional structure in the
objective leads to faster convergence speeds during op-
timization, especially in high-dimensional optimization
problems [11].

d. Deep kernel learning Neural networks (NN) can
also be used as drop-in replacements for kernel functions
in what is often referred to as Deep Kernel Learning
(DKL) [42]. Neural networks can be incredibly powerful
when modeling complex features in data such as images
and signals. However, they require large or information-
rich training data sets to accurately predict functional co-
variances between points in parameter space. As a result,
learning kernel functions specified by NN on-the-fly dur-
ing optimization is impractical for cases where measure-
ments are expensive. Furthermore, for most optimiza-
tion cases in accelerator physics the objective functions
are relatively smooth, thus much simpler kernel functions
can reasonably predict accurate covariances without the
cost of training a NN representation. As a result, there
has been limited work in accelerator physics towards in-
vestigating the use of NN models in kernel functions for
the purpose of conducting optimization. On the other
hand, NN models have been investigated for use in other
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FIG. 9. Illustration of the improvement in sample efficiency
that can be gained by including expected correlations, such
as those that arise from adjacent quadrupoles, into the GP
kernel design. Here, a 2D function has input correlations
that are similar to what one might observe between adja-
cent quadrupoles (a). For a given set of training data points
(shown in orange), the GP that is provided with the correct
correlated kernel (c) is able to learn a substantially more accu-
rate model than the one that is provided with an uncorrelated
kernel (b). In the context of BO, learning a more accurate
model with fewer data training points translates to faster con-
vergence in optimization.

aspects of GP modeling, see Sec. III C 3 for details.

2. Time-dependent modeling

In practical applications, the accelerator systems under
consideration are often affected by factors beyond those
represented in the input space, such as incoming beam
parameters or drifts in auxiliary equipment due to exter-
nal factors. While these factors cannot be controlled and
changed explicitly by the optimization process, they can
be incorporated into the GP model to improve the model
predictive power and thus the convergence speed of BO.

Using above-described approach of kernel multiplication,
the standard model can be extended with time and other
contextual dimensions to represent a modified system

y = f(x, ϕ) + ε, (18)

where ϕ represents the contextual parameters. A classic
use of such GP models has been in time-series predictions
(i.e. stock prices), where ϕ contains the time dimension
t. This method is referred to as adaptive BO (ABO) [43]
or contextual BO [44], and can be used to compensate
for changes in the accelerator as long as they can be cor-
related to an observable. Note that to use such extended
GP models in Bayesian optimization, all contextual pa-
rameters will need to be specified explicitly for the next
point(s) and then held fixed during acquisition function
optimization.
Incorporating additional dimensions into the GP

model will increase the amount of data required for a
good fit and thus slow down initial BO convergence (but
not as much as a regular input parameters). ABO should
only be used if the impact of contextual variables is signif-
icant relative to the noise in the objectives. Otherwise,
it is advisable to use standard BO which will incorpo-
rate small drifts into the fitted noise parameter. For the
most common case of time-adaptive BO, there are several
choices of auxiliary variables that can be used - only time
(which correlates to all drift sources, but potentially has a
complicated relationship that cannot be represented well
by GP), time and specific drift sources, or only specific
drift sources. Where possible, specific sources should be
used to simplify the model. For example, if it is known
that only room air and cooling water temperatures con-
tribute to time-dependent drifts in RF cavities, it is best
to only include temperature values as contextual vari-
ables instead of time. However, using time permits ABO
to be very flexible with little to no tuning, or when drift
sources are distributed over too many dimensions.
Regardless of the choice of contextual variables, to

achieve good model fit with standard local kernels like
RBF the perturbations must be slow enough such that
BO loop can sample the highest-frequency features of the
drift with at least a few points, by analogy to Nyquist’s
theorem. This requirement can be relaxed somewhat if
a custom kernel is used that can account for long-range
structure in the data. Experimentally, many drift signals
are either directly correlated to something or have peri-
odic structures. To avoid excessive hyperparameter tun-
ing, special kernels like the Spectral Mixture kernel [45]
can be used for cases where the exact number and peri-
odicity of oscillatory signals are not known, but require
more data to achieve a good initial fit. A more advanced
strategy is to use the rate-of-change of GP model param-
eters, such as length scales, with time to choose the most
appropriate kernel so as to ensure an acceptable trade-
off between worst-case performance and convergence. In
Fig. 10 an example application to a linac trajectory sta-
bilization problem is demonstrated. Performance of the
more advanced methods strongly depends on drift mag-
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FIG. 10. Simulated application of standard and time-aware
BO in a drifting trajectory stabilization problem. BO settles
on the mean value of the oscillations. ABO-ISO (isotropic)
follows the changes but lags them because it only uses
isotropic (local) kernel. ABO-SM (spectral mixture) captures
long-range correlations and eventually correctly predicts nec-
essary future changes in-phase. By default, ABO-SM con-
tinues to explore around maximum value for optimization,
producing a small step jitter. It can be eliminated by using
posterior mean as the acquisition function at cost of conver-
gence speed.

nitude, sampling rate, and measurement noise levels - it
is suggested to perform similar simulations to evaluate
suitability of contextual methods to specific tasks.

Both time and generic ABO has been demonstrated
experimentally at the APS linac [20] and in the KARA
storage ring [12]. Extensions of ABO to constrained
problems with robustness requirements and dynamic ker-
nel selection have also recently been tested at APS [21].

3. Non-constant prior means

A standard approach for basic GP modeling is to fit
a constant prior mean based on the data, which would,
in the limit of many observations, approach the expecta-
tion value of the data distribution. However, if we have a
strong prior belief on the objective functions’ dependance
on input parameters, either from experiment or simula-
tion, an a priori mean can be used to improve model’s
predictive accuracy before measurements are made and

FIG. 11. Illustration of non-zero prior mean. In the absence
of local data, the mean of the posterior distributions reverts to
(a) zero or (b) the non-zero prior mean. The variance remains
unchanged.

thus increase BO convergence speed.
Incorporating a non-zero prior mean function m(x)

into a GP model re-incorporates an extra term ignored
in Eq. 10, producing posterior mean function values at
the test points X∗

f∗ = m(X∗) +K(X∗, X)K−1
y (y −m(X)) (19)

with Ky = K(X,X) + σ2
ϵ I. For test points that are

far away from previous measurements in parameter space
(K(X∗, X) → 0), the posterior mean function values f∗ is
equal to the prior mean values at the test points m(X∗).
This effect is illustrated in Fig. 11, where the mean of
the posterior distribution reverts back to the prior mean
as the distance between test points and training data
increases. Thus, if the prior mean function accurately
predicts the objective function, the GP model can make
similarly accurate predictions of the objective without
any data. Conversely, if portions of the prior mean in-
correctly make predictions, the posterior predictions of
the GP model will reflect updated values from training
data. In this way, the GP can be interpreted to only
model the difference to the prior mean function m(x)
instead of the full objective.
A custom mean function can be parameterized in a

number of different ways, with the only requirement be-
ing that it maps parameter values to function values. For
example, prior mean functions can be analytic functions,
surrogate models, or even full particle dynamics simula-
tions. However, for the best performance in the context
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of BO, prior mean functions should be differentiable (i.e.
support backwards automatic differentiation) and rela-
tively inexpensive to evaluate, as many evaluations of
the prior mean will be done during acquisition function
optimization (see Sec. V for details).

For the purposes of online optimization in accelera-
tors, neural network (NN) surrogate models have been
identified as promising prior mean functions. Neural
networks of sufficient complexity are known as universal
function approximators [46] and typically execute much
faster than conventional physics simulations [47]. Fur-
thermore, NN models are generally differentiable due to
training requirements, making them ideal for represent-
ing prior mean functions. Most importantly, unlike GP
models which scale poorly with data set size, NN surro-
gate model execution time is independent of the size of
the data set used to train the surrogate. This allows large
amounts of historical measurement and simulation data
to be incorporated into the GP model without hurting
online performance.

Incorporating NN surrogate models as prior mean
functions inside GP models has a substantial impact
on BO convergence speed. If the NN prior mean ex-
actly matches the true objective function, convergence
can happen immediately depending on the ratio of the
objective function’s ideal value with respect to the prior
model uncertainty and which acquisition function is cho-
sen to perform BO. Offline studies using simulated objec-
tives similar to those of the LCLS injector demonstrates
that prior mean functions which have positive correla-
tions with the true objective function also improve con-
vergence speed of BO to optimal values [22].

This benefit was also observed experimentally at the
ATLAS accelerator [48] at Argonne National Laboratory.
In this example, BO was used to tune the strengths of
5 quadrupole magnets to maximize the beam transmis-
sion through a beamline. They repeated the optimiza-
tion multiple times starting with the same initial point
using a constant prior mean function and 3 different NN
surrogate models based on previous experimental data
such that the models have varying correlations with the
true objective function. Figure 12 shows that using a
prior mean that has a high correlation with the ground
truth resulted in better BO performance than standard
GP models with constant priors. However, if the prior
model is poorly correlated with the true objective func-
tion then BO performance can suffer. Although measures
can be taken to mitigate these effects [48], the quality of
the prior mean is critical to improving the performance
of BO when using a non-zero prior mean. Additional
work at the LCLS photoinjector has demonstrated sim-
ilar benefits to using NN surrogate models as priors in
GP modeling up to 9 free optimization parameters [48].

FIG. 12. Transmission optimization at ATLAS using BO with
prior mean functions with varying correlations with observed
objective function values. Solid lines depict the mean and the
shaded areas one sigma deviation across 10 to 20 runs.

4. Modeling in transformed spaces

In some cases it is advantageous to transform input or
output data into an intermediate space before training
hyperparameters and making model predictions. This
strategy is useful when modeling objectives according to
known physical principles or constraints. For example,
a number of objectives in accelerator physics are strictly
positive, such as beam size and emittance. In order to
restrict the range of GP predictions to positive values,
data can be transformed into log space before fitting
the GP model, as is shown in 13. Samples drawn from
the GP model in log-space are then transformed back
into real space, resulting in model predictions that follow
a Log-Normal distribution, respecting the requirement
that model predictions are strictly positive.
The Bilog transform [49] can improve modeling accu-

racy near zero by magnifying output values near zero
and damping output values far away from zero. Apply-
ing this transform to data that is used to model con-
straint functions helps improve constrained optimization
(see Sec. IVB2), since constraints are generally defined
with respect to zero, see Eq. 2. The Gaussian copula
[50] has also been proposed as a useful transformation
for magnifying objective function values that are on the
edges of the observed range – namely maximum or min-
imum values.
While in principle a variety of transformations can be

used to achieve different effects, their use can degrade
computational performance. For many acquisition func-
tions, GP model predictions should be mapped back into
real space in order to calculate the acquisition function
value. Most transformations do not provide an analyti-
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FIG. 13. Example of using Log-transformations in GP mod-
eling for strictly positive output values. Data in real space
(a) is transformed to log space before fitting a GP model
(b). Samples drawn from the GP model in log-space are then
transformed back into real space to make GP predictions. The
resulting likelihood in real space is then a Log-Normal distri-
bution which is strictly positive.

cal mapping of posterior predictive means and variances
back to un-transformed space, meaning that samples
must be drawn from the GP posterior and then trans-
formed back into real space before being passed to the ac-
quisition function. This can increase the computational
cost of making GP model predictions and prohibit the
use of analytical acquisition functions, which are gener-
ally faster than sample-based acquisition functions.

5. Multi-fidelity modeling

In some cases, it may be possible to obtain data about
the behavior of the accelerator from different sources
of information. For instance, we may have access to
data from both experimental measurements and numeri-
cal simulations, or from numerical simulations using dif-
ferent computational models and/or different resolutions.
In these cases, it is desirable for the GP model to be able
to learn from these different sources of data, while keep-
ing track of their respective origin and evaluating their
respective trustfulness.

In this context, the source of the data is encoded by
assigning a fidelity value s to each data point in the
data set. Depending on the context, this fidelity pa-
rameter may take discrete values or continuous values.
For instance, when combining experimental and simula-
tion data (discrete fidelity), one may assign s = 0 to data
points coming from simulations, and s = 1 to data points
from experimental measurements. When combining sim-

ulations at different resolutions (continuous fidelity), one
may assign s = 0 to data points from low-resolution sim-
ulations, s = 1 to data points from high-resolution simu-
lations, and an intermediate value of s to simulations at
intermediate resolutions.
A GP can then be trained on this combined data set,

taking x and s as input and predicting the associated y.
In the case where s takes continuous values, the fidelity
dimension is simply treated as another input dimension
to the GP [51], with its associated kernel and hyperpa-
rameters. It is common to choose the kernel for s and
x to be separable (see III C 1), and to use a stationary
kernel for s [51]:

k((s,x), (s′,x′)) = κ̃(||s− s′||)κ(x,x′)

In this case, the lengthscale hyperparameter l for the
kernel κ̃ quantifies the extent to which similar fidelities
give similar results. For instance, a large lengthscale l
would cause the GP to predict similar output y even
for relatively different values of the fidelity s. As usual,
during training, this hyperparameter is often learned on-
the-fly using hyperparameter tuning, and thus the GP
automatically learns how much the prediction y varies
with the fidelity s. Or, in other words, the GP learns to
which extent the low-fidelity data can be relied on when
trying to predict high-fidelity data.
In the case where the fidelity s is discrete, one type

of multi-fidelity GP is the multi-task GP [52], where the
kernel is expressed in a similar manner:

k((s,x), (s′,x′)) = κ̃s,s′κ(x,x
′)

where κ̃s,s′ is a positive semi-definite matrix (given that
s and s′ take discrete values). The values of the entries
of this matrix are obtained by hyperparameter tuning,
and they, again, quantify the extent to which low-fidelity
and high-fidelity data are related.
This is illustrated with an example in Fig. 14, where

low and high fidelity versions of an objective function
can be evaluated with corresponding evaluation costs.
Fig. 14(a) shows a conventional GP model that predicts
the output of the high-fidelity objective trained solely on
a small, high-fidelity data set. Instead of continuing to
evaluate the expensive high-fidelity objective function, a
multi-fidelity modeling approach incorporates inexpen-
sive, low-fidelity data into the model of the high-fidelity
objective. If the low-fidelity data serves as a good ap-
proximation of (ie. is highly correlated with) the high-
fidelity objective function, adding this data will reduce
the uncertainty of the multi-fidelity model and increase
its accuracy, as shown in Fig. 14(b). However, if the low
fidelity data is largely uncorrelated with the high fidelity
data, as in Fig. 14(c), the model prediction of the high-
fidelity objective function is weakly influenced by the low
fidelity data.
Multi-fidelity GPs have been used in the context of

simulation-based design optimization for laser-plasma ac-
celerators [30, 32]. In these instances, the fidelity was ei-
ther continuous and corresponded to the resolution of the
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FIG. 14. Illustration of the prediction of a multi-fidelity
Gaussian Process, by comparing (a) a single-fidelity Gaus-
sian Process trained only on high-fidelity data, and (b-c) a
multi-fidelity Gaussian Process trained on both high-fidelity
and low-fidelity data, in the case where (b) high-fidelity and
low-fidelity data are highly correlated, as well as (c) high-
fidelity data and low-fidelity data are largely uncorrelated. In
this particular example, the multi-fidelity GP is a multi-task
GP [52], as implemented in the library BoTorch. Dashed lines
denote ground truth values of the low and high fidelity func-
tions.

simulation grid [30], or discrete and corresponded to dif-
ferent simulation codes making different approximations
[32]. In both cases, the ability of multi-fidelity GP to
partially rely on cheap, low-fidelity simulations (either
low-resolution simulations, or approximated simulation
codes) significantly reduced the cost of performing opti-
mization. These examples are discussed in more detail in

Sec. IVB6.

6. Embedding complex modeling processes

As relatively fast executing surrogate models, GPs can
be used as a drop-in replacement for other numerical
models when creating multi-component models of com-
plex systems. This can add flexibility, a robust treatment
of uncertainty, and data-efficiency to arbitrary models of
accelerator physics. These hybrid models, in turn, can in-
crease the interpretability of GP modeling, and in some
cases expand the applicability of GP modeling to new
domains.

For example, basic GP modeling is insufficient when
describing systems that exhibit path-dependent physical
processes, most notably, mechanical and magnetic hys-
teresis. Hysteresis is a path dependent process such that
beam properties depend not only on the current state
of the machine but also on the historical path taken to
get to the current state. This creates repeatability issues
when optimizing accelerator parameters in magnetic and
mechanical systems.

Basic GP modeling, see Fig. 15(a), interprets this er-
ror as stochastic noise, reducing the accuracy of model
predictions, underestimating measurement uncertainty
in some regions of parameter space, and overestimating
uncertainty in others. However, if a GP model is com-
bined with a numerical model of hysteresis, the hybrid
model can make predictions with higher accuracy and
better calibrated uncertainty estimates. In Fig. 15(b), a
Preisach hysteresis model [53] is used to map the control
parameter (magnet current) to magnetic field, while the
GP model represents the mapping of magnetic field to
beam dynamics [23]. Both hysteresis model parameters
and the GP hyperparameters are trained simultaneously
on the data using MLL. The resulting hybrid model has a
higher predictive accuracy and provides uncertainty esti-
mates that are well calibrated to stochastic experimental
noise. As a result, the hybrid model improved optimiza-
tion convergence, mitigating the detrimental effects of
hysteresis on optimization when using basic GP models.

A key factor that enabled the simultaneous training of
both hysteresis model parameters and GP hyperparam-
eters was that calculations in both models were differen-
tiable, allowing the use of gradient descent to maximize
the MLL. Combining differentiable models of other non-
repeatable processes with GP models can extend the ap-
plicability of BO techniques to a wider range of optimiza-
tion problems. Using GP models to represent smaller
units of accelerator processes, as is done in the case here,
increases their accuracy with smaller data sets and im-
proves their interpretability.
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FIG. 15. Demonstration of combining GP models with a dif-
ferentiable physics model of magnetic hysteresis. (a) Mea-
sured beam charge after passing through a linac section at
APS is plotted over three cycles of varying the current in
an upstream quadrupole. Transmitted beam charge mea-
surements are not repeatable due to hysteresis effects in the
upstream quadrupole. (b) GP modeling with differentiable
hysteresis model included accurately predicts beam charge
over multiple hysteresis cycles with improved (reduced) un-
certainty predictions. Reproduced from [23].

IV. ACQUISITION FUNCTION DEFINITION

The definition of an acquisition function α(x) guides
the Bayesian optimization process by defining the poten-
tial value of future measurements given a predictive sur-
rogate model. During BO, input parameters that maxi-
mize the acquisition function will be chosen for evaluation
during the next iteration.

Almost all acquisition functions aim to perform global
optimization by balancing two optimization strategies,
often referred to as “exploration” and “exploitation”.
Exploration refers to placing high value on choosing
points in parameter space that will add information to
the GP surrogate model, often in regions of parameter

space where the model has high uncertainty. Exploita-
tion on the other hand, places a high value on points
in parameter space that the surrogate model predicts to
be optimal. By balancing the weighting between these
two strategies in the acquisition function (either implic-
itly or explicitly) during optimization, BO can increase
the chances of efficiently finding global solutions to the
optimization problem, instead of being stuck in local ex-
trema.
As opposed to other standard optimization algorithm

definitions, acquisition functions in BO are often defined
with the assumption that objective functions are to be
maximized. In order to use these acquisition functions
for objective function minimization, transformations are
applied to the model predictions before they get passed
to the acquisition function. This approach is preferable
to modeling negated objective values with the GP, as it
makes model interpretation more challenging.
In this section, we first describe basic acquisition func-

tions used for general purpose optimization. Then we
describe complex acquisition functions and modifications
used to solve accelerator physics problems in online con-
trol and simulation.

A. Basic Acquisition Functions

The two most commonly used acquisition functions for
performing optimization are Expected Improvement (EI)
and Upper Confidence Bound (UCB) [54]. These simple
acquisition functions, illustrated in Fig. 16, are often the
starting point for optimizing general problems and gen-
erally provide similar convergence speeds.
As its’ name suggests, EI uses the GP model to cal-

culate an expectation value of the improvement I(x) =
max{f(x) − f(x∗), 0} over the optimal previously ob-
served value of the objective function f(x∗). For a GP
model with a Gaussian likelihood, the expected improve-
ment can be calculated analytically:

EI(x) = E[I(x)]
= σ(x)(zΦ(z) + ϕ(z))

z =
µ(x)− f(x∗)

σ(x)

where Φ(·) and ϕ(·) denote the Cumulative Density Func-
tion (CDF) and Probability Density Function (PDF) of a
Normal distribution. As shown in Fig. 16, EI emphasizes
choosing observations that are predicted to be optimal,
have large variance, or a combination of both, thus bal-
ancing exploration and exploitation.
UCB explicitly specifies a trade-off between exploita-

tion and exploration by using a linear combination of the
predicted mean and variance from the GP model with a
weighting factor β:

UCB(x) ≡ µ(x) + βσ(x) (20)
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FIG. 16. Examples of the EI and UCB acquisition functions
for objective function maximization given the same GP model
and training data. (a) EI acquisition function, where the
dashed horizontal line denotes the best previously observed
value f(x∗). (b) UCB acquisition function.

For most optimization problems, a default value of β =
2 works well to balance exploitation and exploration.
Defining UCB with a larger β value favors exploration,
while smaller values of β prioritize exploitation. If the
objective function is expected to be convex or unimodal,
smaller values of β may speed up convergence by priori-
tizing exploitation (often referred to as “greedy optimiza-
tion”).

EI and UCB often provide similar levels of perfor-
mance in terms of convergence speed for most optimiza-
tion problems. However, EI can sometimes become diffi-
cult to numerically optimize if large regions of the input
space have zero probability of improving over the best
observed point. In this case gradient based optimization
of the acquisition function (see Section V) can struggle
to escape regions with zero gradients, often referred to as
the “vanishing gradient problem”. However, it has been
suggested that taking the log of the EI acquisition func-
tion before optimizing can address this issue [55]. On the
other hand, UCB can create problems when using it in
combination with advanced acquisition function modifi-
cations since it is not a strictly positive function.

B. Advanced Acquisition Functions

Here we describe definitions and modifications that tai-
lor the behavior of BO in order to solve problems in accel-
erator physics. In some cases, these acquisition functions
are not analytically tractable, and are thus evaluated by
using Monte Carlo sampling. Calculations of the acqui-
sition function in these cases is done by drawing function
samples from the GP model and averaging over their in-
dividual contributions. A detailed discussion of this for-
malism can be found in [56].

1. Unknown function characterization

While BO is often used to solve optimization problems,
so-called “active learning” acquisition functions can be
defined to choose points that optimally characterize an
unknown function instead of finding the extrema. A sim-
ple example of this is known as uncertainty sampling or
“Bayesian Exploration” (BE) [24]. In this case, the ac-
quisition function is defined as

αBE(x) = σ(x). (21)

When using this acquisition function, BO will sample lo-
cations where the model uncertainty is maximized, usu-
ally at points in parameter space that are farthest from
previous evaluation locations, as shown in Fig. 17(a).
Combining this acquisition function with a GP model
that uses automatic relevance determination (see III B 1)
makes this technique especially powerful for performing
high dimensional characterization of previously unknown
functions. In this case, the sampling pattern will change
as the relative sensitivities of the target function with
respect to each optimization parameter are learned, as
shown in Fig. 17(b). Bayesian exploration and similar
active-learning techniques have been used to perform a
wide variety of characterization studies in both acceler-
ator experiments and simulations [24], as well as in au-
tomating experiments at free electron lasers [57, 58], and
performing material discovery [59].

2. Incorporating unknown constraints

Constraints play a crucial role in accelerator opera-
tion for guaranteeing safe operation, without damage of
expensive equipment or waiting time due to interlocks.
If the constraints are known, they can be incorporated
by constraining optimization to a feasible subdomain of
parameter space [62, 63]. However, if the constraint func-
tions ci(x) are unknown (as is often the case in acceler-
ator physics), they need to be actively learned alongside
the objective function f(x) during optimization.
Several approaches have been developed in order to

tackle the task of constrained optimization. These ap-
proaches aim to limit the number of times that con-
straints are violated during optimization, with varying
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FIG. 17. Example of sampling behavior of Bayesian explo-
ration (BE). (a) The BE acquisition function is maximized at
locations in parameter space where the model uncertainty is
highest, usually at locations farthest away from previous mea-
surements. (b) In cases where the function is less sensitive to
one parameter (x2 in this example) the model uncertainty is
smaller along that axis, resulting in less frequent sampling
along that dimension.

degrees of “safety”. This refers to the likelihood that
constraints are violated during optimization (“safer” al-
gorithms are less likely to violate constraints). A review
regarding safe optimization techniques, inside and out-
side the context of BO, is given in [64]. Two approaches
of interest that have been used in accelerators are as fol-
lows.

The first approach is to modify the acquisition func-
tion by biasing it against selecting points that violate
the set of constraints. This is done by weighting the ac-
quisition function by the probability that the constraints
are violated, calculated by integrating over GP models
of the constraining functions [60]. While this method
is straightforward to implement and interpret, it does
come with some disadvantages. First, it requires that
the unconstrained acquisition function is strictly positive
(which can be achieved via a transform or offset) such
that the constrained acquisition function has a minimal
value of zero when constraints are not satisfied. Second,
in tightly constrained spaces there are large regions of

parameter space where the constrained acquisition func-
tion is nearly zero, thus resulting in large areas where
the derivative of the acquisition function is also nearly
zero, making it difficult to optimize with gradient descent
methods. This issue can also potentially be addressed by
taking the log of the acquisition function prior to opti-
mization, as is suggested in [55]. Finally, while biasing
the acquisition function in this way does minimize the
probability that parameters which violate the constraint
are chosen for future measurements, it is possible using
this technique that constraints are violated during opti-
mization. This technique has been applied towards both
online and offline accelerator optimization problems with
a variety of unconstrained acquisition functions, includ-
ing Bayesian exploration [24, 65] and multi-objective BO
[29],

The second approach was originally presented under
the name SafeOpt in [61, 63]. Instead of modifying the
acquisition function, predictions from the GP models of
the constraints are used to define an arbitrarily shaped
but compact safe set, within which the constraints are
predicted to be satisfied with a desired confidence level
under the assumption of Lipschitz continuity and knowl-
edge of an upper bound of the Lipschitz constant [66].
Slightly less conservative but less intuitive conditions for
the safety guarantees are given in the respective papers
[61, 63]. The acquisition function is then optimized in-
side this safe set, guaranteeing safety at a chosen con-
fidence level. While in the original work, only one-
dimensional constraint functions were considered, mul-
tiple constraints can also be incorporated [63].

The safety guarantees, achieved by the constrained op-
timization problem for evaluating the acquisition func-
tion come at a cost however, as defining and optimizing
over the irregular valid sub-domain of parameter space
is difficult, especially in high dimensional spaces. Differ-
ent paths have been taken in order to increase the effi-
ciency. The high dimensionality issue was addressed by
LineBO, where the global BO problem is decomposed
into a sequence of one-dimensional sub-problems [25].
Stage-based procedures, i.e., StageOpt and MoSaOpt,
where the expansion of the safe set (exploration), and
exploitation phases are staged [27, 67]. This allows ad-
justment of hyperparameters in exploitation while still
guaranteeing safety. Efficiency can be further improved
by using goal-oriented safe exploration (GOOSE) where
expansion only takes place if necessary [68].

Given the safety guarantees, this branch of approaches
originated in safety-critical fields such as robotics, but
has also been successfully applied in the control of ac-
celerators starting with [25]. Here, SafeOpt was applied
for the beam intensity optimization at SwissFEL for up
to 40 optimization variables. A lower threshold on pulse
energy was considered for safety and the high dimension-
ality was addressed by using LineBO. Defining the valid
sub-domain in a 1D space greatly simplified the problem
and provided useful visual feedback to operators during
optimization, without significantly degrading optimiza-
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FIG. 18. Comparison between different constrained Bayesian optimization algorithms. (a) Weighting the acquisition function
by the probability of satisfying the constraining function [60]. (b) Acquisition function optimization within a safe set using
MoSaOpt in exploitation mode [27] and (c) SafeOpt [61]. (d) The constraint function, where valid regions satisfy c(x) > 0.

tion performance.

Further adaptions to this application are made in [26],
where in addition application results to the High Inten-
sity Proton Accelerator (HIPA) are presented targeting
to minimize the overall beam losses around the machine
using 16 optimization variables and ensuring safety via
224 constraints coming from different interlocks. The
stage-wise procedure MoSaOpt was applied in simulation
to the optical synchronization system as well as a labo-
ratory setup at the European XFEL in [27] in order to
minimize the timing jitter by tuning up to 10 controller
variables as optimization variables and ensuring an up-
per threshold on the timing jitter in order for the lasers
to not lose the lock.

A comparison of the algorithms used for performing
constrained BO on a simple test problem is shown in
Fig. 18. Figure 18(a) shows that weighting the acqui-
sition reduces the chances of violating the constraint,
although there are no guarantees the constraint viola-
tions will not occur. On the other hand, methods that
restrict the optimization of the acquisition function to
within a valid sub-domain of the parameter space, such
as MoSaOpt (Fig. 18(b)) and SafeOpt (Fig. 18(c)), do not
allow points that are predicted to violate the constraint
to be sampled, ensuring safety.

It is important to note that both of these approaches
to constrained optimization rely on accurate models of
the constraining functions to effectively reduce the num-
ber of violations during optimization. As a result, most
constraint violations happen during the initial stages of
optimization, where few observations of the constraining
functions are available to create an accurate GP model.
In order to prevent this, it is critical to start with a valid
point in parameter space and conservatively explore the
local region in the initial first steps or include prior in-
formation about the constraining functions into the GP

model of the constraints.

Finally, it is reasonable to expect that concepts from
the two methods currently used for constraining BO in
accelerator physics can be combined into a single algo-
rithm that contains the benefits provided by both meth-
ods. Additionally, characterization of the trade-offs be-
tween safety tolerance and optimization speed should also
be investigated.

3. Multi-objective optimization

In accelerator physics, it is often the goal of optimiza-
tion to simultaneously minimize or maximize more than a
single objective, referred to as multi-objective optimiza-
tion. These objectives often compete with one another,
requiring trade-offs between objectives to reach an op-
timal solution. For example, it is difficult to simulta-
neously maximize the lifetime and dynamic aperture of
electron storage rings [69], or minimize the bunch size and
beam emittance in a photoinjector due to space charge
[6, 47]. One strategy to solve this problem is to com-
bine the objectives into a single objective by weighting
the contribution of each objective to a single term, a pro-
cess known as scalarization. However, the goal of multi-
objective optimization is to determine what is known as
the Pareto front (PF). A PF represents a set of non-
dominated solutions, where no other solution can im-
prove one objective without degrading at least one other
objective. These solutions are considered Pareto-optimal
because they form the best compromise among the mul-
tiple conflicting objectives.

One of the most popular methods for solving multi-
objective optimization problems is the use of evolution-
ary algorithms [70], which use evolutionary heuristics to
generate a large population of candidate points in pa-
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rameter space from the previous generation to search for
the PF. While these algorithms are easy to implement
and use, they are incredibly inefficient, requiring the use
of massively parallelized evaluation of many candidate
points to converge to a solution set. As a result, multi-
objective optimization is computationally expensive in
the case of simulated optimization of beam dynamics and
nearly impossible to use during beamline operations.

Special acquisition functions in BO have been de-
veloped to quickly identify the PF solution in multi-
objective optimization problems. These acquisition func-
tions rely on a metric known as the PF hypervolume (de-
noted H), shown in Fig. 19(a). The hypervolume is a
widely used quality indicator in multi-objective optimiza-
tion and is particularly useful for problems with more
than two objectives. It measures the size of the domi-
nated space, i.e., the portion of the objective space that
is not covered by the PF. The larger the hypervolume,
the better the set of solutions is considered because it
indicates a better coverage of the objective space and a
higher degree of Pareto optimality. To calculate the hy-
pervolume, a reference point is specified in the objective
space, typically set to be a point with worst values for
all objectives. Then, for each non-dominated solution
in the PF, the hypervolume is computed as the volume
of the space dominated by the reference point and the
current solution. The total hypervolume of the entire
PF is the sum of these individual hypervolumes. Once
additional observations of the objective values no longer
increase the hypervolume then the current PF is said to
have been identified.

The Expected Hypervolume Improvement (EHVI) [72]
acquisition function uses the notion of an increase in PF
hypervolume to select points in parameter space. Start-
ing with a PF containing previous measurements of the
objectives, EHVI predicts the average expected increase
in hypervolume (as shown in Fig. 19) as a function of
optimization parameters using GP models for each ob-
jective. As a result, BO using EHVI will select points
that are more likely to maximally increase the hyper-
volume of the PF than other algorithms, whereas ge-
netic algorithms select points only based on their opti-
mality. When applied to identifying the PF of the AWA
photoinjector containing 7 objectives (beam sizes, beam
emittances, and energy spread), EHVI was able to con-
verge to a maximum hypervolume several orders of mag-
nitude faster than evolutionary algorithms, as shown in
Fig. 19(b).

EHVI is able to increase the PF hypervolume through
two means, shown in Fig. 19(c). One method “fills-in”
the multi-dimensional surface of the PF, leading to hy-
pervolume increase that improves the detail described by
the Pareto set. The second method increases the hyper-
volume by selecting observations that will likely dominate
current non-dominated points in the PF.

A major advantage of EHVI over genetic algorithms
is that it can be used in serial optimization contexts
where objectives cannot be evaluated in parallel, for ex-

FIG. 19. Summary of multi-objective BO (MOBO) using ex-
pected hypervolume improvement (EHVI). (a) Given Pareto
front P and corresponding hypervolume H, the increase in
hypervolume HI due to a new measurement y is given by the
shaded green area. (b) Comparison between multi-objective
optimization algorithms for optimizing the AWA injector
problem. NSGA-II is a standard evolutionary algorithm [71],
I-NN is surrogate model assisted NSGA-II [47]. (c) Projected
hypervolume after a set number of MOBO iterations with in-
sets showing hypervolume improvement due to fill in points
(i) and measurement of newly dominant points (ii). Repro-
duced from [29].
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ample, determining the PF during online accelerator op-
erations, as was done at the SLAC MeV-UED beamline
[28]. However, a downside of EHVI acquisition function
is the computational expense associated with calculating
the hypervolume improvement. The cost of partitioning
the PF hypervolume into hyper-rectangles scales expo-
nentially with the number of objective functions. As a
result, this can be a significant roadblock towards us-
ing EHVI in practice when a large number of objectives
are to be optimized. This motivates the use of alternate
acquisition function optimization algorithms in certain
instances when a large number of objectives are present
(see Sec. V for details).

A final consideration when using EHVI is the specifica-
tion of the reference point. The reference point specifies
the worst case value for each objective, thus any objec-
tive observations that are worse than the corresponding
reference point values will not contribute to the PF hy-
pervolume. As a result, the PF explored by EHVI will
be limited to within the boundary specified by the ref-
erence point, thus ignoring objective function values be-
yond the reference point. However, specifying a reference
point that is too far from perceived optimal values of the
objective functions will reduce the detail of the PF as
different points will have vanishingly small contributions
to the total hypervolume.

4. Multi-point optimization and virtual objectives

In some optimization tasks, each acquisition requires
a secondary scan in a separate domain to calculate the
objective function. In engineering, this type of measure-
ment process is referred to as a multi-point query (see
e.g. [73]). Consider, for example, the task of minimiz-
ing beam emittance. The optimization routine involves
adjusting a set of devices which impact the emittance,
but in addition each emittance evaluation involves a sec-
ondary scan of the beam size with respect to the focus-
ing strength of a designated “measurement quadrupole.”
Multi-point optimization is challenging for two reasons;
each acquisition requires many secondary measurements
(making the acquisition costly), and there is loss of in-
formation during the reduction of the many secondary
(beam size) measurements into a single objective (emit-
tance) value. Therefore, for emittance optimization and
multi-point problems of a similar nature, an alternative,
information-maximizing search strategy, called Bayesian
Algorithm Execution (BAX) [74, 75] is more efficient.

Whereas BO typically models and optimizes the same
parameter, BAX generalizes the BO concept to include
optimizing the output of an algorithm calculated on the
model, as described in Fig. 20(a). The acquisition func-
tion selects the measurement which provides the most
information gain about the argmax of the algorithm out-
put. In the emittance multi-point example, rather than
modeling the emittance directly, BAX uses a model of
the beam size as a function of both measurement and

optimization parameters, as shown in Fig. 20(b). Beam
size measurement scans can be performed on this surro-
gate model—similarly to how they might be performed
on the real machine—to produce “virtual” measurements
of the emittance as a function of optimization parame-
ters, shown in Fig. 20(c). This information is then used to
predict optimization parameters that might produce min-
imum emittances. The distribution of parameters that
lead to emittance minimization is shown in Fig. 20(d).
Taking additional measurements of the beam size as a
function of the optimization and measurement parame-
ter improves the accuracy and reduces the uncertainty of
the GP model of the beam size. As a result, the esti-
mation of the optimization parameter set that gives rise
to the minimum emittance becomes more accurate and
hence more certain.
While any additional beam size observations will im-

prove the model, BAX is specially designed to select,
at each iteration, the particular beam size measurement
that is expected to maximally reduce the uncertainty
in the parameter configuration that minimizes the emit-
tance. This is done by quantifying the expected informa-
tion gain, namely, the average reduction in uncertainty
of the optimal parameter set, as a function of poten-
tial future beam size measurements. Selecting the beam
size measurement that maximizes the expected informa-
tion gain can be thought of as choosing the point that,
according to the current model, would most effectively
narrow down the possible solutions given by the virtual
optimization results. The reduction in posterior uncer-
tainty of the ideal parameter set after 10 BAX iterations
is shown in Fig. 20(d).
Successful demonstrations of BAX as a means of opti-

mizing the emittance have been performed at both LCLS
and FACET-II [31]. At FACET-II, BAX was able to
match the best emittance found by hand-tuning, while
at LCLS, the solution found by BAX produced about
25% lower emittance than hand-tuning. In simulation
studies, BAX minimizes the emittance using 20 times
fewer beam size evaluations than traditional BO. The
dramatic improvement results from both increased sam-
pling efficiency (by selecting single beam-size measure-
ments at each acquisition) and from modeling the beam-
size function rather than the noisier emittance values.
Other beam-related optimization problems that require
multi-point measurements, such as the task of aligning a
beam through a quadrupole or optimizing dynamic aper-
ture in a storage ring, are likely to similarly benefit from
using BAX, and will be the subject of future work.

5. Proximal Biasing

Unlike many other complex optimization problems, on-
line particle accelerator optimization sometimes requires
incremental traversal of parameter space to maintain ac-
celerator stability. Accelerator facilities often have many
interconnected subsystems that are independently con-
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FIG. 20. Illustration of the BAX acquisition process for minimizing beam emittance in a synthetic problem. (a) Overview of
the BAX algorithm for minimizing beam emittance using virtual emittance scans. During the BAX algorithm, only the beam
size is measured experimentally (blue box). (b) A GP model is trained on observations of the beam size squared σ2 (blue
circles) as a function of a measurement parameter and a tuning parameter. Samples drawn from the GP model are shown as
surfaces. Cross sections of each surface at a fixed tuning parameters are second order polynomial functions (shown in orange).
(c) Samples drawn from the beam size model are used to predict the median (solid blue line) and 95% confidence interval (blue
shading) of emittance values as a function of tuning parameter. Samples drawn from the emittance model are individually
minimized to find the tuning parameter that corresponds to the minimum emittance (green crosses). (d) Distribution of tuning
parameter values that minimize the beam emittance after 20 random beam size observations (green) and 10 additional BAX
iterations (red).

trolled through feedback systems to maintain accelerator
parameters, such as water temperature, RF phase, and
beam steering. As a result, making rapid changes in ac-
celerator parameters can negatively affect these feedback
loops, causing instabilities in accelerator operation that
can ultimately shut down the accelerator. One possible
strategy for mitigating this issue is to place a strict upper
bound on the travel distance from the current location
in parameter space. Unfortunately, this in turn limits
the exploration of parameter space needed to success-
fully find global extrema in BO. While it is possible (and
sometimes necessary in sensitive systems) to place this
hard limit on the maximum travel distance during each
optimization step, it is sometimes more useful to bias
the acquisition function towards making smaller steps in
parameter space. This can be done through a technique
known as “proximal biasing” [76]. Proximal biasing mod-
ifies a base acquisition function by adding a multiplica-
tive term

α̃(x) = α(x) exp
(
− (x− x0)

2

2l2

)
(22)

where x0 was the last location in parameter space to be
observed and l is an algorithm parameter that controls
how strongly biased the acquisition function is towards
making small steps in parameter space. This formalism
does place a restriction on the base acquisition function,
requiring that α(x) ≥ 0, however is satisfied for most ac-
quisition functions (with the notable exception of UCB).

A visualization of how proximal biasing effects BO is
shown in Fig. 21. In this case, the goal is to charac-
terize the first objective of the TNK test function [71]
so the base acquisition function is Eq. 21. Figure 21(a)
demonstrates that without proximal biasing the explo-
ration process makes large steps in parameter space in or-
der to aggressively explore the objective function within
the valid region. On the other hand, adding proximal
biasing to the acquisition function significantly reduces
the average step size, resulting in a smoother exploration
of the parameter space, as shown in Fig. 21(b). In addi-
tion, proximal biasing does allow for larger steps in pa-
rameter space when necessary, as evidenced by the step
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FIG. 21. Demonstration of proximal biasing effects during
Bayesian Exploration (BE) of the constrained TNK test prob-
lem. (a) Normal BE. (b) BE using proximal biasing with
l = 0.1. The green arrow highlights a step where a larger
jump in parameter space was allowed by proximal biasing.

highlighted by the green arrow in Fig. 21. If instead of
proximal biasing, a hard limit on travel distance was set
for this algorithm, it’s likely that this larger travel dis-
tance would not have happened, resulting in a lack of
exploration of the southernmost region of the valid do-
main.

6. Multi-fidelity optimization

In the case where data can be queried at different fideli-
ties (quantified by a parameter s ; see section III C 5), the
BO algorithm needs to choose both the input parameter
x and the fidelity s for each evaluation of the objective
function. In addition to balancing exploration and ex-
ploitation, the algorithm must also balance the cost of
an evaluation at a given fidelity with the corresponding
information gain at the target (highest) fidelity. For in-
stance, in the case where s represents the resolution of
a numerical simulation, there is a trade-off between low-
resolution simulations that provide low-fidelity informa-
tion at a reduced computational cost, and high-resolution
simulations that provide high-fidelity information at an
increased computational cost. If low-fidelity objective
function values are strongly correlated with high-fidelity
objective function values, BO can leverage low-fidelity
approximations of the objective function to reduce the
cost of optimization.

One simple way to handle this trade-off is to opt
to use repeated fixed-size batches of low-fidelity and
high-fidelity evaluations [77]. For instance multi-fidelity
Bayesian optimization was run with repeated batches
of 96 low-cost, low-fidelity simulations and 3 high-cost,
high-fidelity simulations, in order to optimize the perfor-
mance of a laser-plasma accelerator [32]. In this case,
the acquisition function was a modified version of EI
[77], whereby only the highest-fidelity evaluations are
considered when determining the optimal previously ob-
served point f(x∗). In this particular example, the multi-
objective Bayesian optimization was observed to require
7× less computational resources to find an optimal accel-
erator configuration, compared to single-fidelity Bayesian
optimization based only on high-cost, high-fidelity simu-
lations [32].

However, in many cases, instead of using fixed-size
batches of low-fidelity and high-fidelity evaluations, the
fidelity s is dynamically decided by the algorithm for each
evaluation. Typically, one would want the algorithm to
mostly use low-fidelity evaluations early on in the opti-
mization (to get a cheap, coarse picture of the overall
objective landscape) and to progressively use more high-
fidelity evaluations as it narrows down on the optimal
point. It is also desirable that the algorithm rapidly stops
using low-fidelity evaluations, if the underlying multi-
fidelity Gaussian Process model determines that low-
fidelity evaluations are not representative of high-fidelity
data (see section III C 5). This behavior can be obtained
by using acquisition functions that incorporate both the
cost and the information gain of an evaluation at a given
fidelity; examples of such acquisition functions include
multi-fidelity versions of Upper Confidence Bound [51]
and Knowledge Gradient [78]. An alternative to these
modified acquisition function is to instead cast the multi-
fidelity optimization as a multi-objective optimization
problem [30, 79]. In this scenario, a user-defined func-
tion assessing the reliability of a fidelity, denoted as s, is
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included as one of potentially multiple objectives. The
Expected Hypervolume Improvement (EHVI) acquisition
function, explained in section IVB3, is used to solve this
multi-objective problem, with an added penalty for the
evaluation cost [79]. This multi-objective, multi-fidelity
algorithm resulted in lower optimization costs when used
in simulation-based design optimization of laser-plasma
accelerators [30].

V. ACQUISITION FUNCTION OPTIMIZATION

Conducting BO involves addressing a nested numeri-
cal optimization challenge to determine the point in pa-
rameter space that maximizes the acquisition function.
The computational demands of numerically optimizing
the acquisition function make it the most resource-
intensive step in the BO process. This process necessi-
tates repetitive evaluations and/or sampling from the GP
surrogate model posterior, incurring computational ex-
penses—albeit generally less than those associated with
evaluating the objective function directly. Adding to the
complexity, acquisition functions are often non-convex
and may exhibit numerous local extrema [80]. As a re-
sult, the selection of the numerical optimization algo-
rithm employed to optimize the acquisition function be-
comes pivotal in achieving optimal performance in BO.

In scenarios where several points, or multiple objec-
tives and constraints can be measured concurrently, BO
can also be used to propose multiple measurement can-
didates. This is accomplished by identifying multiple pa-
rameter sets that collectively maximize the acquisition
function.

In this section, we highlight a variety of approaches to
optimize acquisition functions, which affect the execution
speed, improve performance of BO algorithms, and tailor
BO to specific use-cases.

A. Basic Algorithms

The simplest approaches to optimizing acquisition
functions are brute-force methods, such as random sam-
pling or sampling on a mesh grid of points. These algo-
rithms are usually poor choices for maximizing the ac-
quisition function, due to their performance scaling to
even modest numbers of free parameters. However, in
low-dimensional parameter spaces (1-2 dimensions) the
number of acquisition function evaluations necessary to
maximize the acquisition function can be similar to other
iterative methods due to their complex nature (non-
convexity). Given that the acquisition function can be
evaluated in parallel through the use of batched compu-
tations, using random or grid based sampling strategies
can sometimes be faster than iterative optimization al-
gorithms.

Iterative, black-box optimization algorithms, such as
Nelder-Mead simplex and RCDS can also be used to max-

imize the acquisition function. However, in most cases,
maximizing the acquisition function is often best done
using gradient-based optimization algorithms. The most
straightforward example of this is gradient descent algo-
rithms such as Adam [81]. Higher order gradient algo-
rithms, such as limited-memory-BFGS (L-BFGS) which
uses an implicit estimation of the inverse Hessian, are also
often commonly used to further speed up convergence. In
both cases, accurate calculations of the gradients can sig-
nificantly reduce the number of iterations needs to reach
convergence. Acquisition function calculations that are
differentiable can be used to quickly calculate accurate
gradients to speed up optimization. This is usually done
by implementing the GP model and acquisition functions
in a machine learning library that supports differentia-
bility, such as PyTorch [82]. Unfortunately, these algo-
rithms are themselves local optimization algorithms. To
improve chances of finding the global maximum of the
acquisition function, parallel optimization from multiple
random starting points is often used to explore diverse
regions of parameter space.

B. Trust region optimization

One disadvantage of BO is that common acquisition
functions tend to over-prioritize exploration over ex-
ploitation in high dimensional parameter spaces. This
is due to the relatively large posterior uncertainties of
GP models that result from the exponential growth of
parameter space volume with dimensionality (models in
high dimensional space need more data to update prior
function distributions). As a result, BO tends to pick
points at the extremes of the domain in high dimensional
parameter spaces even if optimal points are found in a
local region. In addition, GP models used in BO aim
to create a global description of the objective function,
which may not be appropriate for functions that have
varying local characteristics in different regions of pa-
rameter space.
Trust region BO (TurBO) [83] aims to address both

of these issues by restricting optimization of the acquisi-
tion function to within a so-called “trust region” around
previous measurements where the model is expected to
be the most accurate. The trust region is a local region
centered at the best previously observed measurement
so far during optimization, with side lengths equal to a
base length L multiplied by the relative length scale of
the GP model along each axis in parameter space. As op-
timization progresses, the location and size of the trust
region is continuously updated to be centered at the best
measured point in parameter space and scaled to match
length scales of the GP model. Additionally, the base
length of the trust region is increased or decreased based
on the number of consecutive successes (improvements in
the solution) or failures (no improvement) respectively.
As a result, the trust region shrinks in cases where the
model does not correctly identify the location of optimal
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solutions or expands the trust region when the model is
making accurate predictions that result in continuous im-
provements in the objective function value. By limiting
exploration of the parameter space within a local region,
TurBO transforms BO from a global optimization algo-
rithm into a local one, resulting in substantially faster
convergence to local extremum in high-dimensional pa-
rameter spaces than conventional BO.

A 1-dimensional example of TurBO applied to a test
minimization problem is shown in Fig. 22. Despite large
model uncertainties at the edge of the domain, which
would normally cause BO to sample points on the bound-
ary, TurBO chooses observations that are in the local
trust region around the best observed solution. In cases
where the new observations do not improve over the best
solution, the trust region contracts around the optimal
point to increase model accuracy. If new observations do
improve over the previous optimal point, the trust region
is re-centered at the location of those observations and
expanded to find potential new solutions. Throughout
the course of optimization, TurBO will develop a locally
accurate BO model near observed optimal solutions, in-
stead of trying to accurately describe the global function
behaviour. While in this example TurBO shrinks and
expands the trust region after every step, a threshold for
successes and failures is usually set such that multiple
failures or successes in a row are necessary to change the
overall trust region size.

TurBO was used on the ESRF-EBS storage ring [84] for
the optimization of lifetime and compared to the exist-
ing optimization procedure. The 192 sextupoles and 64
octupoles available for the optimization of lifetime have
been sorted and selected into 24 tuning parameters. To
have fast and reproducible values for the optimization the
sum of all signals from the 128 beam loss detectors was
used as objective of the minimization rather than the life-
time value itself. Figure 23 shows the resulting lifetime
during the optimization process performed with: TurBO,
simplex and UCB. The same parameters and procedure
for optimization are used in all cases, only the optimiza-
tion algorithm is changed. More details on the measure-
ment can be found in [85]. The TurBO optimization was
repeated three times and led in all cases to similar life-
time values within the same optimization time and with
comparable final sextupole and octupole settings. Also
starting from degraded storage ring conditions, TurBO
could quickly recover the optimal set point for the mag-
nets.

TurBO can also be slightly modified to improve explo-
ration of tightly constrained problems where a majority
of the input space violates one or more constraining func-
tions. In this case, the goal is to reduce the number of
constraint violations during optimization through the use
of a conservative trust region. Instead of centering the
trust region at the best observed solution, this approach
centers the trust region at the average value of valid ob-
servations. Then the trust region side lengths are var-
ied depending on the frequency of constraint violations

FIG. 22. One dimensional visualization of trust region BO
(TurBO) applied to a minimization problem with the UCB
acquisition function. (a-d) Sequential evolution of the GP
model and sampling pattern. Orange circles denote objective
function measurements and green circles denote the most re-
cent sequential measurement at each step.

observed during optimization or exploration. This pre-
vents sampling at the extremes of the parameter space,
which often results in measurements that violate the con-
straints.

C. Parallelized optimization

While in most cases BO is used in the context
of serial optimization (one evaluation of the objec-
tives/constraints is done at a time), it is possible for BO
to propose a set of promising points that can be evalu-
ated in parallel. We describe three distinct strategies here
that are relevant to generating small (n < 10), medium
(10 < n < 100), or large (n > 100) sets of candidate
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FIG. 23. Trust region BO (TurBO), simplex, and UCB ap-
plied to the minimization of total losses (maximization of life-
time) at the ESRF-EBS storage ring.

points to evaluate in parallel.

1. q-Sampling

This strategy aims to generate a set of candidate points
in parameter space that jointly optimize given acquisition
functions [86]. Many common acquisition functions (EI,
UCB) can be expressed as the expectation of some real-
valued function outputs at some designed input space
[56]. Evaluating the acquisition function in the context
of parallel selection of candidate points requires evaluat-
ing integrals over the posterior distributions. However,
this makes evaluating parallelized versions of acquisition
functions analytically intractable.

An alternative is to use Monte-Carlo (MC) sampling
to approximate the integrals. An MC approximation of
acquisition function α at input space x using N MC sam-
ples given the data observed so far is

α(x) ≈ 1

N

N∑
i=1

a(ξi) (23)

where a(·) is a real valued function and the samples
ξi are drawn from the posterior predictive distribution
p(y|x,D).
To see this in action, we can examine the definition

of parallelized Expected Improvement (qEI) [56, 87–89]
which generates q candidates that jointly optimize the EI
acquisition function:

qEI(x) ≈ 1

N

N∑
i=1

max
j=1,...,q

{max(ξij − f∗, 0)} (24)

ξi ∼ p(f |D)

where f∗ is the best observed objective value so far.
To maintain the inexpensive computation of gradients

for MC-based acquisition functions using automatic dif-
ferentiation, a technique known as the “‘reparameteriza-
tion trick” [56] is used. Instead of sampling directly from
the posterior of the GP model, samples are drawn from
a unit Normal distribution, then scaled and shifted such
that the distribution matches GP predictions. This pre-
serves differentiability by sidelining the stochastic gener-
ation of random samples.

2. Local Penalization Techniques

Local penalization is proposed as an alternative
method for performing batched BO [90]. Instead of max-
imizing the joint distribution as in the q-sampling ap-
proach, it selects the samples in the batch sequentially
and thus scales better with the input dimensions and
batch sizes. The i-th sample is selected by maximizing
the product of the acquisition α and the penalization

ϕ =
∏i−1

1 ϕj , where ϕj ∈ (0, 1] denotes the local pe-
nalization function around a previously selected point xj

in the batch. It effectively excludes the region around
previously chosen points and goes to 1 elsewhere. The
behavior of the penalization is governed by the Lipschitz
constant of the objective function, which could be in-
ferred from the GP model.
The local penalization method has been used in the

simulation study at the linear accelerator FLUTE for ra-
diation optimization [91]. It enabled an efficient selec-
tion of parameters to run parallelized simulations in a
high-performance computing cluster, resulting in better
performance compared to using the genetic algorithm.

3. Large scale parallelization

In cases where objective functions can be evaluated
in a massively parallelized fashion (> 100 simultaneous
evaluations), i.e. in simulation on high performance com-
puting clusters, optimizing the acquisition function us-
ing the strategies outlined above may exceed the com-
putational cost of evaluating the objective itself. As
a result, it makes sense to use alternative methods for
acquisition function optimization. Evolutionary or ge-
netic algorithms are extensively employed towards solv-
ing optimization problems using large-scale paralleliza-
tion. These algorithms use simple heuristics to generate
candidate points, which is much cheaper than repeatedly
numerically optimizing an acquisition function. Thus, it
is advantageous to generate a large number of candidate
points using a genetic algorithm and then determine a
subset of those candidate points using a model-based ac-
quisition function to be evaluated in BO. Combining ge-
netic algorithms with BO takes advantage of both of their
strengths, generating large sample sizes in a relatively
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short amount of time while still incorporating model in-
formation and acquisition function definitions into the
selection of candidates for evaluation.

The Multi-Objective Multi-Generation Gaussian Pro-
cess Optimizer (MG-GPO) represents one such algorithm
that takes advantage of this combination [92, 93]. This
algorithm attempts to solve multi-objective optimiza-
tion problems by first generating a number of candi-
date points using evolutionary heuristics (mutation [94],
crossover [95], and flocking operations). A subset of can-
didate points are then selected to be evaluated on the
real objective by using a GP surrogate model (based on
previous measurements or simulation results) to predict
which candidate points are likely to dominate over pre-
vious measurements. By leveraging information in the
learned GP surrogate model, the candidate points gener-
ated by MG-GPO are more likely to improve the Pareto
optimal set when compared to model-free evolutionary
algorithms (such as NSGA-II).

A slight modification can be made to MG-GPO to
improve its performance by choosing a subset of candi-
dates based on expected hypervolume improvement (as
is done in conventional multi-objective BO) instead of
predicted Pareto-optimality. This has the added bene-
fit of selecting candidates that not only will improve the
Pareto front, but will maximize improvement according
to the predicted increase in hypervolume once observed.

The MG-GPO method has been applied to design op-
timization of storage ring lattices [69]. It has also been
applied experimentally to the SPEAR3 storage ring and
the APS accelerator complex to demonstrate its online
optimization capability with several important problems,
including storage ring vertical emittance minimization
with skew quadrupoles [93], nonlinear beam dynamics
optimization with sextupoles [93, 96], and linac front-
end transmission tuning with steering and optics param-
eters [97]. In each case it was shown that the algorithm
can effectively improve the performance of the machine
when compared to other algorithms.

VI. DISCUSSION

In this section we discuss several aspects of BO that
are relevant to its use in accelerator physics. We first de-
scribe the relationship between BO algorithms and other
algorithms currently used in accelerator physics for opti-
mization and control. We then discuss how to interpret
and monitor BO performance during optimization and
general best practices for improving optimization per-
formance. Additionally, we highlight software packages,
both inside and outside the accelerator physics field, that
are used to implement BO algorithms. Furthermore, we
provide estimations of run time and computational mem-
ory usage for BO algorithms. Finally, we describe future
research avenues in BO methods for accelerator physics.

A. BO in relation to other optimization algorithms

Here, we describe how classical BO relates to various
other types of optimization and control algorithms. We
also highlight the conceptual differences and similarities
between online optimization and continuous control. Fi-
nally, we discuss the impact of different function approx-
imations and ML model choices within those paradigms.
Note that we cannot make definitive, general state-

ments about algorithm performance. The performance
of a particular algorithm on a given accelerator problem
is dependent on numerous factors, including, but not lim-
ited to, the specific algorithmic hyperparameters chosen,
as well as the problem dimensionality, nonlinearity, con-
vexity, multi-modality, and noise.

1. Episodic optimization

Typically when describing “optimization,” we mean an
episodic process of adjusting settings to reach an optimal
combination, that then ideally remains fixed for some pe-
riod of time. Aside from BO, various other optimization
algorithms have been developed and are actively used
in the accelerator physics domain. Generally, these al-
gorithms can be split into gradient-based and gradient-
free (black box) algorithms, and, additionally, algorithms
which learn some underlying representation of the system
and those that do not.
Gradient-based algorithms use direct information

about the gradient of the cost function, or approxi-
mations of it (for example via finite difference meth-
ods), to determine setting changes during optimization.
Gradient approximations on non-differentiable systems
(whether in simulation or on an experiment) can be time-
consuming to obtain, particularly as the number of vari-
ables increases. In some instances in accelerators, gra-
dient information has been approximated from machine
jitter, allowing small, minimally-invasive setting changes
to slowly compensate for drift or move toward an op-
timum [98]. Gradient-based algorithms can also easily
become stuck in local minima, although techniques do
exist to work around this (e.g. providing warm starts
from a system model or previously-known global solu-
tion, restarting the algorithm several times at different
random starting points).
Gradient-based algorithms, such as stochastic gradi-

ent descent and variants (e.g. Adam, RMSProp [81, 99,
100]), can scale well to higher dimensions particularly in
cases where the evaluation of the objective function is
fast and gradients are directly available. Consequently,
they are used frequently in ML for training neural net-
works. In that context, updates to model parameters
using small batches of data help to avoid local minima
by adding noise to the gradient.
Gradient-based methods can also be used in conjunc-

tion with differentiable models, e.g. through differen-
tiable physics simulations [23, 101–103], codes such as
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Bmad-X [104] or Cheetah [105], or surrogate models
based on function approximators such as neural net-
works [23? ].

Nelder-Mead Simplex (NM) [106] is a gradient-free
heuristic method that has been used extensively in accel-
erators for tuning [107–111]. It does not learn a model
or use curve fitting, but adjusts a “simplex” in search
space at each iteration. NM requires very little prepa-
ration prior to use and is typically computationally in-
expensive. For examples of studies that have run NM
and BO on the same problem, see [11, 31, 41, 112, 113].
Theoretically speaking, NM is best suited to convex and
noise-free objective functions [114], but it is difficult to
assess how this translates to real-world experience in ac-
celerators, where NM has performed well in practice even
on quite noisy objectives.

Robust conjugate direction search (RCDS) [115] has
been used for numerous accelerator tuning problems, par-
ticularly in rings for nonlinear dynamics optimization. In
RCDS, local curve fitting at each iteration is used to aid
estimation of the curvature of the objective function and
the corresponding optimal direction in which to move
settings. The addition of curve fitting adds robustness in
the face of measurement noises and occasional machine
failures. A successor variant RCDS-S [116] takes safety
constraints and machine drifts into consideration.

A similar approach is taken in the BOBYQA algo-
rithm, which constructs a second-order local model of
function values near a candidate set of optimal parame-
ters [117]. This algorithm has been used to perform opti-
mization in simulation [118, 119]. These approaches are
similar to BO in the way that they create local models of
the objective function to inform parameter selection for
episodic optimization.

From the domain of feedback and control, Extremum
Seeking (ES) has been applied to many accelerator prob-
lems [120–122]. ES adjusts settings with specific ampli-
tudes and frequencies to approximate the gradient of the
cost function and gradient descent. It scales very well
with the number of tuning dimensions and works well
as a local feedback algorithm. Furthermore, ES param-
eter selection is much less expensive than BO methods,
allowing it to be used to provide faster feedback than
ABO approaches discussed in Sec. III C 2. However, ES
can become stuck in local minima if not provided a suf-
ficiently good starting point (e.g. provided by a system
model [123]), and it does require careful adjustment of
the main hyperparameters (the dither amplitude and fre-
quency).

Finally, Deep Reinforcement Learning (RL) has also
found application in the accelerator domain [124–128].
While RL is traditionally used to train dynamic feedback
controllers, it can also be used to train domain-specific
optimization algorithms. In the case of RL, this may be
referred to as Reinforcement Learning-trained Optimisa-
tion (RLO) [129]. Deep RL is computationally cheap and
sample efficient at application time, but requires signif-
icant upfront engineering effort to train. A case study

comparing RL and BO on an accelerator tuning problem
was conducted in [112].

2. Relation to Continuous Control and Time-Dependent
Control

By “continuous control”, we refer to processes that are
adjusting settings continuously as the accelerator is run-
ning (e.g. orbit feedback, corrections to LLRF phases
and amplitudes to maintain the beam energy, etc). A
further distinction can be made between algorithms that
take into account the sequential nature or time-evolution
of a problem and those that do not. In some classi-
cal control techniques such as model predictive control
(MPC) [130] and in reinforcement learning (RL) [131],
the sequentially-dependent nature of a system is formal-
ized as a Markov Decision Process [132], in which an ob-
served system “state” is sufficient to predict the following
system evolution. MPC and RL include direct considera-
tion of the dynamic evolution of the system over a future
time horizon when making decisions in the present. To
accomplish this, these algorithms have access to or learn
the dynamics of the system, and/or approximate solu-
tions to the dynamic optimal control problem.
In contrast, classical BO assumes a stationary (i.e.

non-drifting) system where the sequence of control ac-
tions is not taken into account in decision making. For
example, when magnets are not affected by hysteresis,
the problem of tuning magnets can be treated as non-
sequential. When hysteresis effects are present, the se-
quence of magnet current settings affects the resultant
magnetic field; as a result, the problem becomes sequen-
tial and this state information should be taken into ac-
count in decision making. Additionally, because BO is
learning a stationary model of the objective function,
its performance can degrade when being run on a non-
stationary (i.e. drifting) system; this is why adjustments
such as the adaptive BO approaches described in earlier
sections are needed in order to run BO continuously as a
feedback.

3. Relation to Feed-forward Corrections and Warm Starts

“Warm starts” or feed-forward corrections from
learned models can be used both in continuous control
and optimization in accelerators. For example, learned
models can be used to provide fast setting changes when
different setups are desired (e.g. see [123, 133]), followed
by fine-tuning with optimization algorithms such as BO.
Indeed, the system model that provides the warm start
can even be the GP model obtained from previous BO
runs. Continuously-running feed-forward corrections us-
ing ML models have also been used in accelerators; for ex-
ample, this type of approach has been used for source size
stabilization in light sources by compensating for optics
deviations induced by different insertion devices [134].
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B. Model Choices

Bayesian optimization takes advantage of Gaussian
Process models, which can learn functions that are suit-
able for interpolation from very few samples and provide
fairly robust uncertainty estimates, to perform efficient
optimization of expensive objective functions. However,
GP models do not scale as well as other model types,
such as neural networks, to large data sets often required
to solve high dimensional optimization problems. As a
result, they are more computationally expensive and typ-
ically slower to execute when solving high dimensional
optimization problems. For high-dimensional optimiza-
tion and faster execution, BO can use other types of ML
models so long as an uncertainty estimate is also avail-
able, including, but not limited to, Bayesian neural net-
works, quantile regression with neural networks or neu-
ral network ensembles [42, 99, 135, 136]. Using different
types of surrogate models inside BO can also facilitate in-
clusion of high-dimensional contextual information (such
as initial beam images), which can improve convergence
speed.

C. Interpreting BO Performance

Unlike other optimization algorithms commonly used
in accelerator physics, basic BO algorithms are designed
to solve global optimization problems. This can some-
times lead to behaviors (shown in Fig. 24) that are un-
familiar to users expecting to see strong convergence to
optimal values during optimization. Local optimization
algorithms, such as Nelder-Mead simplex, often mono-
tonically improve the objective function value, with small
excursions around a local optimum to explore the objec-
tive function, as shown in Fig. 24(a,d). As we see in
Fig. 24(a) this can sometimes lead to converging to a
local optimum instead of the global one.

In contrast, BO algorithms often explore the domain
to build a global model of the objective function in pa-
rameter space before sampling in a local region around
the predicted optimal point. The number of iterations
needed to perform this exploration can depend on the
relative weighting of exploration vs. exploitation in the
acquisition function, the dimensionality of the parame-
ter space, and characteristics of the objective function.
For example, when the UCB acquisition function is used
with roughly even weighting between exploration and
exploitation (β = 2), BO briefly explores parameter
space before exploiting regions the GP model predicts
are likely to be optimal, as shown in Fig. 24(b,e). In-
creasing weighting towards exploration, Fig. 24(c,f) in-
creases the number of iterations used to explore the ob-
jective function before it samples in the globally opti-
mal region of parameter space. If the amplitude of the
objective function far exceeds the predicted uncertainty
by the GP model, exploration of the parameter space
can cease relatively quickly compared to when optimiz-

FIG. 24. Comparison of optimization performance between
a local optimization algorithm (Nelder-Mead simplex), BO
using the UCB acquisition function (β = 2), and BO using
the UCB acquisition strongly weighted towards exploration
(β=100). All algorithms are initialized with a single obser-
vation at x = 0.75 and aim to minimize the objective func-
tion. (a-c) Observations of the objective function in param-
eter space for each algorithm. The dashed line denotes the
true objective function. (d-f) Objective function values as a
function of algorithm iteration. Red shading in (e-f) denotes
iterations that are used to explore the objective function, ie.
points where βσ(x∗) > |µ(x∗)| and x∗ is the maximum loca-
tion of the acquisition function. Note that simplex terminates
after reaching a convergence criteria.

ing more smoothly varying functions. Conversely, if the
optimum of the objective function is comparable to the
predicted uncertainty, strong convergence to the optimal
value will only occur once all other areas of parameter
space have been explored. Increasing the dimensionality
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of input space further increases the number of iterations
used to explore the objective function to build a global
GP model.

As a result of the trade-off between exploration and
exploitation, new users of BO algorithms who are used
to seeing nearly monotonic improvements in the objec-
tive value might infer that BO optimization is perform-
ing poorly. However, it is important to keep in mind
that this is a direct result of continuously searching for
global extremum and does not signify an issue with the
optimization algorithm. If the objective function is ex-
pected to be strongly convex, ie. having a single global
extremum, BO can be strongly biased towards exploita-
tion through a variety of methods, most notably TuRBO
(see Sec. VB). In this case, strong convergence to a fixed
location in parameter space is expected.

D. Practical strategies for best performance

Here we discuss some best practices to improve the
performance of BO methods in the field.

a. Normalizing training data As is standard in most
machine learning algorithms, it is critical that input data
passed to the GP model is transformed prior to training
in order to maintain stability of hyperparameter opti-
mization. It is standard practice to normalize the pa-
rameter space to the unit domain [0, 1] and to standard-
ize objective function values such that they have a mean
of zero and a unit standard deviation. There are two
major benefits to this. First, transforming training data
in this way conditions the derivatives of the marginal log
likelihood with respect to hyperparameters to be of unit
magnitudes, increasing the stability of gradient descent
optimization of the hyperparameters.

Second, data that has been normalized and standard-
ized is more consistent with prior notions incorporated
into GP models. The prior of a GP model is often stated
as a distribution of functions with a zero mean and unit
standard deviation. Having data that agrees with this
initial prior assumption also improves the robustness of
maximizing the marginal log likelihood as well as ensur-
ing that covariance matrices are well-conditioned. Fi-
nally, it is often advantageous to place reasonable priors
on hyperparameters such as the kernel length scale and
likelihood noise to regularize hyperparameter training.
Applying these priors to arbitrary modeling problems re-
quires that incoming data is normalized and standard-
ized.

b. Defining smoothly varying objectives and con-
straints The accuracy of GP predictions relies on
learned correlations between function values at differ-
ent points in parameter space. This implies that when
defining objective functions and constraining functions
for BO, it is crucial to ensure that these correlations ex-
ist. An example of where this becomes relevant in accel-
erator physics is maintaining a beam distribution inside
a region of interest (ROI) on a diagnostic screen. One

way to define this constraining function is to return a
value of one if the beam is fully within the ROI and a
zero otherwise. However, this is not ideal since it is dif-
ficult for the GP model to predict where the boundary
between valid and invalid measurements is given a lim-
ited set of data values (since function values in space are
poorly correlated), as demonstrated in Fig. 25(a). On the
other hand, if the constraining function measures how
close the beam is to violating the constraint, as shown in
Fig. 25(b) and discussed in [65], the GP model can accu-
rately predict extrapolated constraining function values
with fewer measurements, which reduces the number of
constraint violations during optimization.

FIG. 25. Comparison between GP modeling of hard and soft
constraining functions. (a) GP modeling of a heaviside con-
straining function does not accurately predict constraint val-
ues due to a single sharp feature that cannot be learned with-
out dense sampling on either side of the constraint boundary.
(b) Smooth constraining functions with a single characteris-
tic length scale are more accurately modeled with GP model-
ing. Inset: Visualization of bounding box constraint function
f(x) = maxi{||C − Si(x)||} used to keep beam distributions
inside an ROI, where r is the radius of a circular ROI, C is the
center coordinates of the ROI, and Si are corner coordinates
of a bounding box around the beam.

c. Leveraging batch computations To address mod-
ern challenges in high performance computation, signifi-
cant effort by those in the machine learning community
has focused on developing hardware and software that en-
ables fast matrix manipulations. For example, GPUs are
specifically designed to perform difficult matrix compu-
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tations extremely quickly due to massive hardware paral-
lelizations. Bayesian optimization computations are well
suited to take full advantage of these developments as
most computations involved in making GP predictions
or computing acquisition function values involve matrix
manipulations. Extending the evaluation of GP models
or acquisition functions in parallel using batched com-
putations (which adds new dimensions to matrices used
in evaluations) plays a critical role in leveraging mod-
ern computing hardware and software to improve perfor-
mance.

A core application of batched computation is acquisi-
tion function optimization. Optimizing acquisition func-
tions is often a challenging problem, since they usually
are not convex and can contain many local extrema.
Multi-restart optimization can be used in this case to
improve the search for a global maximum by restart-
ing optimization at a number of different initial start-
ing points. Batched computation allows this process to
happen in parallel, significantly reducing the computa-
tion time needed to maximize the acquisition function
while leveraging the advantages provided by fast matrix
computational techniques. As a result, high performance
software libraries that implement BO take advantage of
this technique (see Sec. VIE).

E. Implementations of BO

There are several open-source software packages that
implement GP modeling and BO, mostly using the
Python programming language for API and C/C++ for
computations. It is strongly recommended that practi-
tioners of BO do not “reinvent-the-wheel” when trying to
implement BO algorithms to solve their specific optimiza-
tion problems. Current implementations of BO (as de-
scribed below) have capabilities that cover a wide range
of accelerator physics problems and applications. If fur-
ther modifications are needed to tackle a specific problem
it is strongly recommended that these modifications are
built from existing software packages with the intent to
contribute back to the existing package for others in the
community to use. This will accelerate the state-of-the
art for all parties, and prevent a fractured landscape of
competing implementations that hinder algorithmic de-
velopment and application to optimization problems.

a. Scikit-learn The Scikit-learn general machine
learning package [137] provides a simple implementation
of basic GP modeling and BO while also providing good
documentation, making it a good resource for gaining
experience using basic BO algorithms.

b. BoTorch and GPyTorch This set of open source
packages are developed and maintained by Meta [138]
and provide implementations of state-of-the-art GP mod-
eling and BO. They are built upon the PyTorch [82]
machine learning language that implements automatic
differentiation and GPU computing, both of which sig-
nificantly improve the speed and performance of BO.

BoTorch relies on a lower level package, GPyTorch [139],
to implement GP models, allowing significant customiza-
tion of all aspects of GP modeling, including custom
kernels, priors and likelihoods. BoTorch also takes ad-
vantage of batched Monte Carlo sampling to maximize
performance when computing and optimizing acquisition
functions. With recent improvement in PyTorch like the
JIT compiler, BoTorch stack is very competitive in per-
formance benchmarks and is highly amenable to GPU
acceleration. BoTorch is complemented by Ax, which
provides a simplified user interface to BoTorch.

c. Xopt The Xopt Python package [140] is a high-
level optimization package developed at SLAC that con-
nects advanced optimization algorithms to arbitrary op-
timization tasks (in both simulations and experiments),
with a focus on solving problems in accelerator physics.
The object-oriented structure of Xopt allows for signif-
icant flexibility in defining and executing optimization
processes, including specification of optimization runs
through simple text files (YAML,JSON), asynchronous
evaluation of objective functions, model introspection
during optimization, and human-in-the-loop optimiza-
tion. Xopt implements a number of algorithms for easy
off-the-shelf use, including most of the BO algorithms
and techniques discussed in this review. These algo-
rithms can be easily tailored towards solving specific opti-
mization problems through the use of sub-classing. Xopt
has been developed by the SLAC machine learning (ML)
group specifically to address optimization problems in ac-
celerator science, with the ability for extension and cus-
tomization for other scientific fields. It has been used to
perform online accelerator control at a number of facili-
ties including LCLS, LCLS-II, FACET-II (SLAC), AWA,
ATLAS (Argonne), FLASH, FLASHForward, European
XFEL, Petra-III (DESY), ESRF, NSLS-II (BNL), and
LBNL. It has also been used to perform optimization in
simulation at Cornell University, University of Chicago,
and on high performance computing (HPC) clusters such
as NERSC.

d. Badger The Badger package [108, 141], also de-
veloped by the SLAC ML group as a successor to DESY’s
Ocelot Optimizer [109], provides an easy to use graphical
user interface for accelerator control rooms to interface
with algorithms implemented by Xopt. It provides an
extendable interface for communicating with a variety of
accelerator control systems and can be customized with
extensions to provide online analysis of optimization per-
formance and algorithm introspection.

e. Optimas The Optimas package [32], focuses on
optimization workflows using numerical simulations on
high-performance computing platforms. Optimas relies
on the library libEnsemble [142] to orchestrate multiple
simulations running concurrently as part of the optimiza-
tion, and to allocate appropriate multi-CPU and multi-
GPU resources to each of these simulations (as well as
GPU resources, if needed, for the Bayesian optimizer).
Optimas has been used on large-scale clusters such as
Perlmutter (NERSC) and JUWELS (JSC), and is devel-



36

oped by a collaboration between DESY, Lawrence Berke-
ley National Laboratory, and Argonne National Labora-
tory. Similarly to Xopt, Optimas supports several well-
known optimization methods, including Bayesian opti-
mization methods.

f. APSopt The APSopt package [143] is being de-
veloped by the APS accelerator physics and operations
group to integrate internally and externally developed
BO, RL, and classical methods into a robustly tested
tool for both API-based use by physics experts and GUI-
only use by operators. It aims to provide a coherent op-
timization environment through a number of advanced
features for data management, distributed client-server
operation, automatic initialization with machine-tuned
algorithms, parameter hints, and human-in-the-loop in-
teractive model review and refinement. It has been ex-
perimentally tested in the APS injector, APS storage
ring, NSLS-II storage ring, Fermilab IOTA/FAST com-
plex, and is being used extensively for the APS-Upgrade
commissioning.

g. GeOFF The Generic Optimisation Framework
(GeOFF) [144] is being developed by the data science
teams at CERN and GSI. It allows to easily integrate
RL, BO and numerical optimisation in the control room
or for offline optimisation on e.g. simulation. The optimi-
sation problem definition can handle arbitrarily complex
controls or simulation processes as long as a Python inter-
face is available. GeOFF also comes with a plug-and-play
graphical user interface to test and run the optimisation
or continuous control problems. It is routinely used at
CERN for the entire accelerator complex and for various
problems at GSI.

F. Computational requirements and scaling

Because of the complexity involved in efficiently im-
plementing the low-level mathematical routines, above
BO packages rely on linear algebra or machine learning
frameworks, predominantly PyTorch. While the theoret-
ical complexity and storage scaling of BO methods is well
understood and has been discussed previously, in prac-
tice the performance of the PyTorch/GPyTorch/BoTorch
libraries can deviate significantly from ideal behavior.

Due to the high costs of the specialized GPU hardware
it is critical to understand what tasks are computation-
ally feasible in practice. In Fig. 26 we provide benchmark
results for a ‘mid-range’ 2023 ML hardware setup consist-
ing of 16 cores (32 threads) from AMD EPYC 7742 CPU
and a single A100-40GB GPU. We do not consider multi-
GPU configurations, but they are supported by PyTorch
- this yields only a slight increase in the feasible problem
sizes.

We benchmark three typical components of the BO
process - GP model fitting, GP model evaluation, and
acquisition function optimization (which involves model
evaluation and auto-grad operations as part of the opti-
mizer loop). The overall scaling is consistent with expec-

FIG. 26. Performance scaling with dataset size for
BoTorch/GPyTorch (0.9.4/1.11) libraries on a single-
objective optimization run. Synthetic 5-variable quadratic
objective was used with Monte Carlo version of UCB acquisi-
tion function and 100 Adam optimizer iterations. GPU mem-
ory usage only applicable to GPU runs.

tations, with model fitting and evaluation showing O(n3)
growth as a function of number of collected points n.
However, the progression is not smooth, with repeatable
deviations at particular sizes due to different bottlenecks
and code paths that are encountered depending on in-
ternal PyTorch configuration. Note also that there is a
constant time floor of 100 − 1000 ms per BO loop due
to initialization, data copies, and Python overhead - in
practice this limits BO applications to making sub-1Hz
decisions.

The ultimate limit on number of model points is de-
termined by available memory, and is encountered at
∼ 25k points on a 40GB GPU (at which point CPU
is too slow even if there is sufficient RAM). Approxi-
mate GP methods can extend this limit, but are not
particularly popular in BO applications. Our practical
recommendation is to limit problem sizes to 10k points
with a GPU and 3k with a CPU-only machine, and ap-
ply BO only in cases when objective evaluation time is
sufficiently long to amortize computational costs for your
particular choice of model, acquisition function, and hy-
perparameters (see Sec. II B). This ensures that BO use
is worthwhile in terms of overall wall-clock convergence
speed.

G. Future directions for BO research in accelerator
science

While BO algorithms have been shown to be able to
solve a wide variety of accelerator physics problems in
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an efficient manner, there are still ample opportunities
for future improvements towards using BO in accelerator
science.

First and foremost is continuing research in the inte-
gration of physics information into GP models. As has
been highlighted in several sections of this review, im-
proving the accuracy of GP modeling improves decision-
making during optimization, leading to faster conver-
gence to optimal solutions and reductions in the num-
ber of constraint violations. Incorporating information
into GP models before performing optimization is espe-
cially critical in making good decisions during the first
few iterations. Furthermore, if uncertainties exist in the
sources of information used, these uncertainties should
be incorporated into the GP model as well.

In both online accelerator operations and in simulated
optimization, improving the orchestration of objective
function evaluation, GP model generation, and acquisi-
tion function maximization is another source of major po-
tential improvements. The development of a centralized
control framework that dispatches these tasks contained
in BO on parallel resources could lead to major reduc-
tions in the overall cost of performing optimization. A
potential example of this would be an online accelerator
control program that would send current and/or future
potential machine states to be evaluated on high per-
formance computing clusters outside the control room.
Results collected from these physics simulations could be
used to inform online control in real-time, similar to what
is done in [145].

VII. CONCLUSION

In conclusion, BO algorithms are an effective, extend-
able way of solving a wide variety of optimization chal-
lenges in accelerator physics. BO algorithms are par-
ticularly valuable when dealing with optimization chal-
lenges that involve significant resource expenses, such
as beam time, personnel, or computational resources.
These algorithms use statistical surrogate models based
on gathered data to inform optimization, reducing the
number of objective function evaluations versus other
black box optimization schemes. As a result, the BO
framework provides a straightforward and robust way to
incorporate prior knowledge (either from past measure-
ments or physics information) or approximate measure-

ments/computation into the modeling process to further
improve optimization convergence speed. By modify-
ing standard acquisition functions, BO algorithms can
be customized to solve a wide variety of single, multi-
objective, and characterization problems in accelerator
physics. Using BO algorithms can reduce the overall cost
of performing optimization when compared to conven-
tional black box optimization algorithms, allowing accel-
erator scientists to address more complex optimization
challenges.
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