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A huge range of important problems in computer science–including task optimization, formal
logic, encryption, and machine learning–can be solved by finding the sequence of binary variables
that optimizes a cost function defined by a series of few-variable constraint relationships. These
problems define the complexity class NP, and are in the worst case, and often the typical case, expo-
nentially hard in the number of variables for all known methods. This hardness applies both to exact
and approximate optimization, e.g. finding configurations with a value within a defined fraction of
the global optimum. Fundamentally, the lack of any guided local minimum escape method ensures
the hardness of both exact and approximate optimization classically, but the intuitive mechanism
for approximation hardness in quantum algorithms based on Hamiltonian time evolution is not well
understood. In this work, using the prototypically hard MAX-3-XORSAT problem class, we explore
this question. We conclude that the mechanisms for quantum exact and approximation hardness are
fundamentally distinct. We qualitatively identify why traditional methods such as high depth quan-
tum adiabatic optimization algorithms are not reliably good approximation algorithms. We propose
a new spectral folding optimization method that does not suffer from these issues and study it
analytically and numerically. We consider random rank-3 hypergraphs including extremal planted
solution instances, where the ground state satisfies an anomalously high fraction of constraints com-
pared to truly random problems. We show that, if we define the energy to be E = Nunsat−Nsat, then
spectrally folded quantum optimization will return states with energy E ≤ AEGS (where EGS is the
ground state energy) in polynomial time, where conservatively, A ≃ 0.6. We thoroughly benchmark
variations of spectrally folded quantum optimization for random classically approximation-hard
(planted solution) instances in simulation, and find performance consistent with this prediction.
We do not claim that this approximation guarantee holds for all possible hypergraphs, though our
algorithm’s mechanism can likely generalize widely. These results suggest that quantum computers
are more powerful for approximate optimization than had been previously assumed.
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I. INTRODUCTION

Combinatorial optimization of constraint satisfaction
problems (CSPs) is an enormously important–and often,
enormously difficult–area of modern computer science [1].
Specifically, a huge array of problems in optimization, cy-
bersecurity, machine learning, and more amount to find-
ing low-energy configurations of large collections of M
few-body constraints over N binary variables, see Fig. 1.
Generically, the energy landscape of these cost functions
is extremely rough (see Fig. 3) with exponentially many
local minima, making it very difficult to find the true
ground state or even a sufficiently low energy configura-
tion.

From the point of view of statistical physics these cost
functions are often equivalent to the Hamiltonian of a
disordered spin glass, and the core hardness mechanism
comes from the inability of the system to efficiently es-
cape local minima by flipping small numbers of spins at
each step [2–13]. In the hardest problems–and often,
even, in the typical case–the time to find the solution
grows exponentially for all known classical and quantum
methods. Remarkably, these problems are not only hard
to solve, but also hard to approximate, where approxi-
mation is defined as finding any configuration within a
defined fraction of the global optimum [14]. And while
a host of clever algorithms have been proposed over the
years to attack these problems, supplemented by rapid
growth in computing power since the invention of inte-
grated circuits, the exponential worst-case difficulty scal-
ing remains, and is believed (in the as yet unproven state-
ment that P ̸= NP) by most computer scientists to be a
fundamental and insurmountable fact of our reality, at
least for classical computers.

To make further progress, a host of heuristic quantum
algorithms have been developed, such as analog quan-
tum annealing [15–21], and its closed system and dig-
ital cousins, adiabatic quantum computing (AQC) [22,
23] and quantum approximate optimization algorithms

(QAOAs) [24]. In all of these methods the spin glass
problem Hamiltonian (diagonal in the computational z
basis) is combined with a transverse field term (typi-
cally, a uniform field along x), which allows the sys-
tem to escape from local minima by multiqubit tunnel-
ing, a collective process where large clusters of qubits
all change configuration simultaneously to tunnel from
one minimum to another [25]. In some artificial problem
instances this process has been shown to produce expo-
nential speedups compared to classical simulated anneal-
ing, with polynomial speedups observed in experiment for
short-ranged graphs [21, 26–28]. However, generally ap-
plicable beyond-quadratic speedups for NP optimization
problems have not been realized, and given the present
noisy state of quantum hardware and the projected severe
overhead of error correction [29], this degree of speedup
is insufficient for practical advantage over classical ma-
chines.
In this work, we approach the question of approxi-

mation hardness with the goal of identifying both core
intuitive mechanisms ensuring it, and opportunities for
exponential quantum advantage. In particular, for MAX-
3-XORSAT (a particularly difficult CSP class, defined in
detail in section IID), we argue the following:

• The hardness mechanism(s) for directly finding the
ground state of a given problem Hamiltonian HP

with heuristic quantum methods can be readily
identified, and likely cannot be circumvented in the
worst cases.

• Unlike classical algorithms based on local updates,
the mechanisms which ensure that it is hard to find
the ground state do not generalize to ensure ap-
proximation hardness for quantum algorithms.

• However, there are good reasons to believe that
traditional quantum approaches such as AQC or
QAOA are not effective approximators (e.g. re-
liably returning low energy states in polynomial
time) in the worst case. We present relatively large
scale numerical simulations that support this ex-
pectation.

• Understanding why this is the case suggests a novel
spectral folding quantum strategy, that transforms
HP and then solves the transformed Hamiltonian
through more traditional means. For some vari-
ations the performance of spectrally folded quan-
tum optimization can be predicted analytically and
promises an efficient approximation guarantee for
an extremely large fraction of instances, well into
the classically hard regime. For random hyper-
graphs in this regime, spectrally folded quantum
optimization provides an exponential speedup for
returning low energy states.

We back up all of these claims with extensive theoretical
analysis and numerical tests of all core predictions, to the
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largest feasible system sizes for simulating quantum algo-
rithms, and to the largest sizes needed to ensure asymp-
totic scaling has been reached for classical algorithms.
In doing so, we define instance construction rules that
ensure classical approximation hardness, at least for al-
gorithms based on local updates, and numerically estab-
lish that high depth QAOA does not exhibit meaningful
quantum advantage in finding either exact or approxi-
mate solutions to these hard instances. We analytically
and numerically show that spectrally folded quantum op-
timization can efficiently approximate these problems, in
practice in a linearly growing number of cost function
evaluations.

This paper is structured as follows. In section II, we
first provide an overview of classical and quantum ap-
proximation hardness and the MAX-3-XORSAT prob-
lem, and define the construction rules for the problems
studied in this work. In section III, we define spec-
trally folded quantum optimization and propose two vari-
ations of our algorithm. Then, in section IV, we de-
velop an extensive-order resummed quantum perturba-
tion theory capable of predicting the performance of
these algorithms, and establish an approximation guar-
antee for random hypergraphs. To verify all of these
claims, in section V, we present extensive numerical tests
and simulations for a variety of algorithms and problem
parametrizations. A summary of the key simulation re-
sults is presented in table I. We finally offer concluding
remarks, and include additional technical details in the
appendices.

II. HARDNESS MECHANISMS, PROBLEM
DEFINITIONS AND PREVIOUS APPROACHES

A. Inability of previous methods to find or even
approach the ground state at large N

To motivate our novel methods, it is important to first
review the qualitative reasons classical and established
quantum approaches are unable to efficiently solve or ap-
proximate these problems. The classical failure mecha-
nism is straightforward: hard problems display a high
density of poor quality local minima, e.g. high energy as
compared to the true ground state. Once a local mini-
mum is reached, as no general mechanism for guided local
minimum escape exists it is impossible to know in gen-
eral how close one is to a ground state, either in energy
or Hamming distance (number of bit flips separating two
states), at least unless the found minimum happens to
satisfy a large fraction of constraints.

We emphasize that we are concerned here with an ap-
proximation guarantee, not just a method that works well
in practice. For completely random problems, one can of-
ten predict the average ground state energy using statisti-
cal physics arguments, such as the famous Parisi solution
to the Sherrington-Kirkpatrick model [30]. If one is able
to find configurations close to this energy in a given in-

stance, that is not sufficient to rule out the existence of
some other, much deeper minimum far away in configura-
tion space, even if randomly drawing problems with such
deep minima is exponentially unlikely. In other words,
there is no efficient classical algorithm to know if a given
instance is extremal in this way unless P=NP [14].
Since there are in many cases exponentially many more

poor quality minima than low-lying ones, the basin of
attraction of the true ground state is generally an expo-
nentially small fraction of total configuration space and
thus very hard to find, a phenomenon that has been re-
ferred to as an “entropic barrier” to problem solving [12].
In particular, the authors of [12] showed that for the 3-
XORSAT problem they considered, once a local mini-
mum was found it was more efficient to simply restart the
algorithm from a random state instead of attempting to
climb out of the found minimum through penalized local
operations, as in simulated annealing or parallel temper-
ing [31]. We expect this may be a generic feature in some
of the hardest CSP classes. And interestingly, these ar-
guments apply equally well to approximation hardness,
not just finding the optimal solution. While for a given
class and system size approximation is nominally an eas-
ier problem, given that there are many more valid ap-
proximate solutions, both tasks scale exponentially in the
worst case, for fundamentally the same reason. We now
turn to quantum algorithms, for which the situation is
considerably more complex.

B. Mechanisms for quantum solution hardness:
exponentially small gaps and transverse field chaos

We consider a broad class of heuristic quantum algo-
rithms, which derive from quantum annealing, AQC and
QAOA. These algorithms can be supplemented with ad-
ditional gate model techniques, such as amplitude am-
plification [32], which improve performance but do not
circumvent exponential runtimes. In these algorithms
the system is initialized in the ground state of a trivial
Hamiltonian, which is then slowly interpolated into HP ;
the system is then measured. Other variations based on
energy matching [33–36] initialize a known or planted
low energy state of HP and then use collective quantum
tunneling to try to find other low energy states.
These algorithms are fundamentally distinct from clas-

sical approaches in two ways. The first is the presumed
mechanism for quantum advantage: multiqubit quan-
tum tunneling (or collective quantum phase transitions
in general), where local minima can be efficiently escaped
through many-body quantum effects that have no classi-
cal analog. Second and more subtly, where classical local
update algorithms all start from a random high energy
state and attempt to cool to low energy states, quantum
algorithms start below the energy of the problem ground
state. They then attempt to tunnel into the global mini-
mum and into other low energy states as the energy of the
initial state crosses the target state as the total Hamilto-
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nian changes.
Unfortunately, when compared to other applications

such as quantum simulation or factoring large numbers
with Shor’s algorithm, the realistic performance advan-
tage of these algorithms is generally much more modest.
In the worst case–and for many problem classes, the typ-
ical case–the macroscopic quantum tunneling rate into
the ground state decreases exponentially in N . This is a
fairly generic expectation, as in many cases, including the
MAX-3-XORSAT problem discussed below, the tunnel-
ing rate at the crossing point can be computed using Nth
order perturbation theory and the convergence of such
a method implies exponential decay. For some specific
problems this can be circumvented by introducing addi-
tional terms into the evolution, such as the well-known
result of ramping transverse field terms down one-by-one
in mean-field p-spin ferromagnets [37], though general-
izations of this and other methods [20, 38–42] to realistic
disordered problems are not expected to show similar ad-
vantages at large scales.

Further, for a given class, even if one can somehow en-
sure that the paramagnet-to-spin-glass transition decays
polynomially (as it does in the Sherrington-Kirkpatrick
problem [43, 44] and, likely, for MAXCUT [45, 46]), that
is not sufficient to ensure that the solution can be found
in polynomial time. This is because of a phenomenon
known as transverse field chaos (TFC) [47, 48], where en-
ergetic corrections from the transverse field can change
the energy hierarchy of classical minima in the quantum
spin glass phase, potentially pushing local minima below
the energy of the true ground state ofHP (when all trans-
verse terms are turned off). Consequently, optimization
methods will steer the system toward these false ground
states first, with additional phase transitions that oc-
cur as the transverse field is further weakened. As these
transitions occur at weak field values, from the analysis
in section IV they are generically exponentially slow, and
indeed, engineering this effect intentionally is an elegant
way to craft hard benchmark problems for quantum al-
gorithms [49]. This effect can be avoided by restricting
the algorithm to unstructured driver Hamiltonians [50]
or very weak transverse fields, but in either case perfor-
mance is very poor. The combination of exponentially
small gaps and TFC make it extremely unlikely that any
quantum algorithm of this type can reliably and directly
find the ground state of NP-complete problems.

C. Approximation hardness and conventional
AQC/QAOA

Approximation hardness, however, is another story.
For many NP-hard problems guaranteeing an approxi-
mation better than random guessing by a constant frac-
tion is also NP-hard [14, 51, 52]. As TFC involves cross-
ings between states that were close in energy to begin
with, it cannot by itself lead to quantum approximation
hardness at this level. So for example, if the random

state energy of a given class is chosen to be zero and the
ground state −N , a sufficiently general convention, then
any algorithm which could return states in polynomial
time with energy ≤ −cN for constant c > 0 for all in-
stances would promise a potentially exponential speedup.
Thus, a hypothetical algorithm which always returned
states with energy −N/3 or below in polynomial time
assuming spectral continuity would still promise an ex-
ponential speedup for the hardest problem classes even if
TFC reduced that guarantee to −N/4. In other words,
while TFC can prove ruinous for finding an exact solution
when the problem exhibits a clustering phase [13, 53–58]
and there are exponentially many states very close to the
ground state in energy but well separated from it in Ham-
ming distance, it is not going to push zero energy states
into competition with O (1) fractions of the ground state
energy.1

Exponentially small gaps are a more serious problem,
but those too cannot so easily be assumed to ensure
approximation hardness. This is because the empiri-
cal “difficulty exponents” of phase transitions in low-
order CSPs are often quite small; for random hyper-
graph MAX-3-XORSAT instances, the minimum gap at
the paramagnet-spin glass transition scales as approxi-
mately Ω0 (N) ∼ 2−cN with c ≃ 0.14 (see section IVB).
And while the fraction of states pE (N) below the ap-
proximation threshold is typically exponentially small,
the total number of such states is exponentially large. If
we could assume that the mixing rate between the para-
magnetic initial state and the dressed excited states of
HP is equivalent to that of the ground state, then the
naive product of Ω2

0 (N)× 2N × pE (N) is often exponen-
tially large as well, which would ensure fast approxima-
tion. But this naive analysis is inaccurate, because as we
argue momentarily, mixing matrix elements with excited
states decay more quickly, and the decay exponents grow
with excitation energy. The exponential number of tar-
get states in approximation problems allow an algorithm
suffering from both TFC and exponentially decaying ma-
trix elements to still guarantee an efficient approxima-
tion, provided, at least, that those decay exponents are
not too small. In some sense, our novel spectrally folded
quantum algorithm achieves fast approximation of clas-
sically hard instances by ensuring that the exponential
decay rate of tunneling into the problem’s excited states
matches or exceeds that of the ground state in more tra-
ditional methods.

Given all this, should we expect that AQC or QAOA
will efficiently approximate NP-hard problems? For-
mally, it has not been proven that these algorithms are
not efficient approximators when the circuit depth is al-
lowed to grow as a low-order polynomial in system size,

1 It’s important to note that for some problems where the clas-
sical approximation hardness threshold is relatively close to 1,
such as MAXCUT, TFC might well become a serious obstacle to
achieving quantum advantage for approximation.
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though there are good reasons to be doubtful, supported
by a number of recent works [59–62]. Let us consider,
qualitatively, how AQC/QAOA solves such a problem,
assuming the limit of quasi-continuous time; we present
a quantiative analysis below in Sec. IVB. The system is
initialized in the paramagnetic ground state of a uniform
transverse field Hamiltonian HD, and the system evolves
in time interpolating between HD and HP by lowering
the coefficient of one and raising the coefficient of the
other, raising the energy of the paramagnetic state un-
til it crosses the problem ground state from below. We
again emphasize the fundamental distinction of crossing
from below, rather than cooling from above, in quan-
tum and classical algorithms. The minimum gap at the
transition is expected to decay exponentially in N and is
approximately given by the overlap of the dressed prob-
lem ground state |GD⟩ with the paramagnet state |S⟩; we
perform this calculation in Sec. IVB. If the dressings are
weak enough that |GD⟩ = |G⟩ (the Grover limit [63]),
then ⟨S|GD⟩ = 2−N/2; however for random MAX-3-
XORSAT problems the perturbative corrections spread
|GD⟩ over a more significant (if still exponentially small)
fraction of Hilbert space and reduce the decay exponent
to around a quarter of that in the Grover case.

Assuming that we evolve time too quickly (e.g. not ex-
ponentially long) and miss the primary phase transition,
we can ask how efficiently |S⟩ will mix with the problem’s
excited states, as these rates ultimately determine the al-
gorithm’s efficacy as an approximator. Calculating them
directly is very difficult, but we can qualitatively predict
that they should be much smaller for two reasons. First,
these crossings occur as the transverse field strength κ is
reduced toward zero, and since the dressings that reduce
the decay exponent all scale with extensive powers of κ,
they will be much reduced by any reduction in κ itself.
Second, when considering a dressed excited state |ED⟩,
the perturbative dressings that come from mixing with
states with lower energy now have opposite sign and de-
structively interfere with other corrections in the overlap
with |S⟩, in contrast to |GD⟩ where all higher order terms
are positive definite. Both of these effects can, and do,
considerably worsen the mixing rates with excited states
and make AQC/QAOA a poor approximator in the worst
cases, and often in practice.

D. The MAX-3-XORSAT problem and
approximation-hard instance construction

Given the severe overhead of fault tolerance [29], quan-
tum hardware is expected to exhibit enormous prefactor
disadvantages as compared to parallel silicon, particu-
larly when the comparison is made to hardware with
equivalent financial value (e.g. millions of USD). Quan-
tum algorithms thus have the most promise when the
problem is hard or outright impossible for classical ma-
chines. NP-hard constraint satisfaction problems are no
exception, so when benchmarking a proposed quantum

FIG. 1: Graphical representation of a random 3-uniform hy-
pergraph GH = (V, E) used in the MAX-3-XORSAT problem.
The set of vertices V labelled {v1, . . . , v6} are connected to a
hyperedge (i.e., constraint) from the set E on the right labeled
{c1, . . . , c8} if the vertex is in constraint. Each constraint nec-
essarily contains a random set of three unique vertices. The
legend specifies the value of the variable Vijk = ±1 where the
grey and white filled cj boxes denote a (+1), and (−1) valued
constraint respectively. This example has a constraint density
of NC = 4

3
N for 6 vertices and 8 constraints, although we use

other values of NC throughout this work.

algorithm it is important to ensure that the problem
classes we consider are sufficiently hard for classical ma-
chines, and in the present NISQ era, exhibit their expo-
nential difficulty at small enough N that numerical simu-
lations of quantum algorithms can demonstrate meaning-
ful improvements. MAX-3-XORSAT problems are ideal
for benchmarking quantum algorithms because their ex-
ponential difficulty scaling is obvious at small N for both
classical and prior quantum approaches, in contrast to
other problems where the asymptotic exponential scal-
ing often does not set in until system sizes that are pro-
hibitively large for simulation.
To prototype our quantum algorithms, we thus con-

sider MAX-3-XORSAT [14], a well-studied problem that
consists in the Pauli basis of a hypergraph of NC three-
body constraint terms, as sketched in figure 1:

HP = −
NC∑
ijk

VijkZiZjZk, Vijk = ±1. (1)

A constraint is said to be satisfied if, for a given bitstring,
VijkZiZjZk = 1, and unsatisfied otherwise. This is called
a hypergraph because Vijk has three indices rather than
the usual two found in graph theory. Thanks to the lin-
earity of the problem, one can use Gaussian elimination
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to check if a solution exists that satisfies all the con-
straints in O

(
N3
)
time, but if the problem is not fully

satisfiable, finding the lowest energy state(s) is NP hard.
A random state satisfies half the constraints on aver-
age and is thus energy zero. Further, it was shown by
H̊astad [52] that if the true ground state satisfies a frac-
tion (1− ϵ) of the constraints, then finding any configura-
tion that satisfies more than (1/2 + ϵ) of them is also NP-
hard. The hardest instances are thus those with small but
finite ϵ, e.g. almost satisfiable problems, as both finding
the true ground state, and even finding an approximate
solution, is exponentially difficult. Note that if the prob-
lem graph is sparse (e.g. NC/N is on the order of 1)
finding approximate solutions can still be easy, since one
can randomly select a fraction of the constraints < cN
(for some O (1) constant c), and solve that new, much
easier problem; solutions to this sub-problem will satisfy
half the remaining constraints, on average.

To ensure that we are studying problems that are both
hard to solve and hard to approximate for all known
methods, we consider a family of instances we call planted
partial solution problems (PPSPs). To construct a PPSP,
we choose a small unsatisfied fraction ϵ and pick a ran-
dom hypergraph of NC ≫ N unique triplets; we use
ϵ = 0.1 in all simulations here. We then pick a random
bitstring G and randomly select (1− ϵ)NC of the con-
straints to be satisfied in G, by picking the sign of Vijk
appropriately, with the rest unsatisfied. If ϵ is small and
NC/N ≫ 1, G will be the problem ground state with very
high probability, as the SAT/UNSAT transition for this
problem is at NC/N ∼ 0.92 [64] and at densities much
higher than the SAT/UNSAT threshold ground states
for random graphs satisfy NC/2+O

(√
NC

)
constraints.

This property also ensures that G is a unique ground
state with high probability at large N . When we refer
to random hypergraph problems throughout this work,
we refer to this construction rule: a random, potentially
fairly dense, hypergraph where one can optionally ran-
domly chose an anomalously large fraction of constraints
to be satisfied by matching the signs to a randomly cho-
sen ground state bitstring.

Our PPSP construction is necessary because truly ap-
proximation hard problems–where the practical polyno-
mial time approximation difficulty approaches the ran-
dom guessing limit of the complexity class separation–
are rare in the space of all possible instances. Sufficiently
sparse problems are approximation-easy, and for denser
random problems one can always find strings that satisfy
NC/2 + O

(√
NC

)
constraints in polynomial time [65],

with a smaller prefactor in front of the
√
NC than the

prefactor in the average satisfied in the ground state. We
formulated our PPSP construction to ensure our algo-
rithm was being benchmarked on instances with a plau-
sible claim to true classical approximation hardness. We
note that commonly studied 3-regular problems [12, 66]
do not display strong approximation hardness, as they
are sparse, and can be solved efficiently if satisfiable. And
intriguingly, we show that, by some metrics, the perfor-

mance of our novel algorithm progressively improves with
increasing NC/N in this regime, at constant ϵ.

E. Absence of angle fine tuning in this work

Before presenting our algorithm and main results, we
want to make one last point about what we mean by
QAOA when talking about quantum algorithms. Specif-
ically, following the original proposal [24], most studies
of QAOA allow the individual angles governing the mag-
nitudes of the driver and problem Hamiltonians, HD and
HP , to vary independently at each timestep. For finding
ground states with high depth circuits, this technique
is analogous to the schedule fine tuning concept that
dates back to the adiabatic formulation of Grover’s al-
gorithm [63], and yields a quadratic speedup. And for
many problems, these algorithms exhibit concentration,
where the set of angles that is optimal for one randomly
generated instance is close to optimal for another with
high probability [44, 61]. More general formulations such
as ADAPT-QAOA [67] can potentially offer more signifi-
cant speedups, albeit with the challenge of a much larger
search space for optimizing control parameters.
We avoid this approach in our work, and instead focus

only on simple heuristics where the schedule is deter-
mined from smooth functions based on intuitive guessing
and a small amount of trial and error. We do this for
two reasons. First, as argued in [68], quadratic speedups
from schedule fine tuning are extremely fragile and un-
likely to be viable at large N except in very narrow cir-
cumstances. Second, as the truly approximation hard in-
stances of MAX-3-XORSAT (and we suspect, many other
CSPs) are extremal in the space of random problems, it
is less obvious that concentration arguments would apply
to the cases we consider. So even if, for example, these
instances exhibit concentration and some set of angles is
near-optimal for a specific ϵ and NC/N scaling, we do not
think it can be easily assumed that those angles would
generalize to other extremal parametrizations.
The fundamental challenge of approximation hardness

is to find, or rule out the existence of, one or more very
deep minima in an exponentially large search space. Con-
sequently, optimizing angles based on average energies
returned is not expected to improve algorithm perfor-
mance. If the algorithm finds a state in the basin of
attraction of the deep minimum, we can likely halt as a
successful approximation has been found, but if it does
not, sets of angles that return lower energies for random,
uncorrelated shallower minima are not expected to im-
prove the probability of reaching states near the deep
minimum. And again, even if a given subset of extremal
problems does exhibit concentration for angle optimiza-
tion, those angles may not generalize to any other ex-
tremal part of parameter space.
We therefore restrict all of our simulations in this work

to linearly increasing total runtime with N , and smooth,
simple functions to control the relative magnitudes of
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HD and HP . Unsurprisingly, the best scaling and pref-
actor choices differ somewhat for QAOA and variations
of spectrally folded optimization, and the results here are
not optimal for any specific algorithm variation or PPSP
subclass, but rather represent a decent choice, found by
intuition and trial and error, for a broad set of parame-
ters.

III. SPECTRALLY FOLDED QUANTUM
OPTIMIZATION ALGORITHMS

The core idea of spectral folding (and related, more
general spectral deformations) is to modify how the
Hamiltonian is applied to the quantum state through the
introduction of a filter function. Specifically, the algo-
rithms we consider solve problems through simulating the
time evolution of a quantum state, as |ψ⟩ → e−iH(t)dt |ψ⟩,
with the exponentiated Hamiltonian discretized as a se-
ries of layers e.g. eiaHDeibHP . The driver Hamilto-
nian, and any other additional Hamiltonian terms, are
not changed by spectral folding, so we will ignore them
for now and focus on the problem Hamiltonian itself.
Specifically, we write |ψ⟩ in the computational basis as

|ψ⟩ =
∑2N−1

m=0 cm |m⟩, where m is the decimal integer
representation of a given bitstring. Then, for (arbitrary)
control angle γ:

eiγHP |ψ⟩ =
2N−1∑
m=0

eiγE(m)cm |m⟩ , (2)

E (m) = ⟨m|HP |m⟩ = −
NC∑
ijk

⟨m|VijkZiZjZk |m⟩ . (3)

In other words, the phase of each component state ad-
vances proportionally to its energy under the problem
Hamiltonian, and that energy is computed at each step
by applying a sequence of gates to implement each con-
straint.

In spectral folding, the phase of each component in-
stead advances proportional to an arbitrary function f
of the diagonal HP ,

|ψ⟩ → eiγf(HP ) |ψ⟩ =
2N−1∑
m=0

eiγf(E(m))cm |m⟩ . (4)

This can be accomplished by introducing a register of
auxiliary qubits, applying a gate sequence that maps the
sum of the constraint terms to a fraction of that register
to store E, using a second fraction of that register to com-
pute f (E), applying a sequence of controlled-phase gates
to advance the phase by f (E), and then uncomputing the
previous steps to return the register to its initial state.
The entire process is sketched in figure 2. Provided f
is a relatively simple function, this adds a multiplicative
overhead which is polylogarithmic in N , since E (m) is

bounded by a polynomial in N and each arithmetic oper-
ation takes O (logN) steps.2 We define spectral warping
as any f which applies a nonlinear rescaling of E, such
as f (E) = cE2, and spectral folding as a choice of f that
mirrors E about a specific value, e.g. f (E) = |E − Et|.
The core idea is sketched in figure 3, and these two meth-
ods can of course be composed. Incorporating this opera-
tion enormously expands the space of quantum optimiza-
tion algorithms we can define; in this work we focus on
two choices, linear and quadratic spectral folding. Specif-
ically, if we choose our problem normalization via includ-
ing a multiplicative constant3 so that the ground state
energy is EGS = −N , and let Et = AN for a constant A,
then we define linear and quadratic spectral folding as

flin (E) =
|E +AN |

A
, fquad (E) =

(E +AN)
2

A2N
(5)

Here, A < 1 defines the approximation target. And crit-
ically, it is defined using the conventions that random
states have energy zero, so returning a state with en-
ergy AEGS approximates, by a factor of A, the degree
to which the true ground state itself improves on ran-
dom states. These normalization choices ensure that the
energy difference between the new ground states of the
folded problem, and random states, is N as in the origi-
nal renormalized problem. Making this choice simplifies
the analysis significantly.

A good choice of A is important for spectrally folded
quantum optimization to succeed; if A is chosen to be too
close to 1, then we risk failing to well-approximate HP

due to the interference effects mentioned in section IIC.
A choice of A which is too small will return a subopti-
mal approximation ratio, and if A is too close to zero,
cause instabilities from having a poorly defined problem
to solve. Fortunately, for random hypergraph MAX-3-
XORSAT instances–and here random refers to the graph
itself and not, critically, on how many constraints are
satisfied in the ground state–we can predict the thresh-
old A for which we expect a polynomial depth circuit
to return states with E ≃ AEGS from first principles.
The ideal value of A depends both on the problem class
and on the variation of spectral folding employed; for
MAX-3-XORSAT, A ≥ 0.6 is achievable as derived be-
low in section IVD. This is a significant leap over the
best known classical approximation algorithm for this

2 We note that for any choice of f more complex than multiplying
E by a constant (something that does not require auxiliary qubits
to begin with), any spatial locality the graph might have is lost in
this step, since E (m) is a global quantity which we are deforming
with f .

3 Formally, this choice assumes that we know the fraction of the
NC constraints which are satisfied in the ground state, some-
thing that we cannot know in advance of running our quantum
optimization algorithm! However, we can simply repeatedly run
the algorithm with different normalization choices to guess its
value, a prefactor overhead of at most O (NC).
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FIG. 2: A schematic for implementing spectrally deformed time evolution U = exp(if(HP )dt). A set of gates maps the value of
each of the NC constraint to adding or subtracting 1 to a register of ancilla qubits, using binary signed adder circuits controlled
by the value of VijkZiZjZk. A sequence of additional gates computes f (E) from E (likely using more ancilla qubits), and then
a set of local Z rotations is applied to the register storing f (E) to advance the phase of each component of |ψ⟩ proportionally.
The computation of f (E) and entangling with “constraint-controlled” gates are then uncomputed, returning the ancillas to
their initial state and disentangling them from the N primary qubits over which the problem is defined. The net result of
this entire process is to enact the operation in Eq. (4), evolving time under an arbitrary function of the diagonal Hamiltonian
(transverse field layers and other operations on the primary qubits are not shown). For relatively simple functions, the net
overhead of this entire process (compared to enacting exp (iHP dt) directly) is polylogarithmic in N .

problem [69], which offers a weaker guarantee with much
more restricted viability, in the worst case, equivalent to
A → 0 in our notation. It is also a significant leap over
recent quantum approaches to this problem [70, 71]. We

note that minimizing (H − E)
2
is not itself a novel idea

and has been used in classical and quantum algorithms
for finding states close to specific energies in chemical and
many-body systems [72–78]. To our knowledge, however,
the use of spectral folding for approximate optimization
of CSPs is novel, both in concept and in the analysis we
present below to choose A and understand at a deeper
level why it presents significant advantages over optimiz-
ing the problem HP directly.

From hereon, we letHfold be the spectrally folded prob-
lem Hamiltonian. Having defined it, there are a num-
ber of ways we can attempt to find its ground states.
The simplest choice, and one that performs well, is
AQC/QAOA-inspired state preparation, where we inter-
polate in Trotterized evolution between the transverse
field driver and the folded problem over a time tf :

H (t) = f (t)HD + g (t)Hfold, HD = −
∑
j

Xj , (6)

f (0) = g (tf ) = 1, f (tf ) = g (0) = 0. (7)

This prescription, with the quadratic folding choice in
Eq. (5), is the most straightforward to benchmark us-

ing standard quantum simulation packages as each call
requires O

(
N2

C

)
multiqubit ZiZjZkZl... rotations. Clas-

sically simulating the linear folding prescription requires
auxiliary qubits to implement the absolute value opera-
tion or, much more practically, saving the phase oracle
as a pre-computed diagonal operator.
We can also consider trial minimum annealing (TMA),

originally proposed in [79]. We explore the TMA formu-
lation in depth because we can predict its scaling ana-
lytically. In this scheme, a simple classical algorithm is
used to find an initial local minimum of HP ; the qual-
ity of the minimum does not particularly matter and for
approximation-hard instances we assume it is far above
the true ground state energy, in the worst case asymp-
totically approaching random guessing. Let this classical
minimum state be |L⟩. We will use the linear folding
prescription in Eq. 5 for HP itself, and add to it a new,
diagonal lowering Hamiltonian HL which has |L⟩ as its
ground state, and assign to it a time-dependent coeffi-
cient C (t). Our total cost function Hamiltonian is

Hcost (t) =
|HP +AN |

A
+ C (t)HL. (8)

Recall that HP is normalized so that its ground state en-
ergy is −N . To go further, we need to specify a form for
HL. For this analysis will choose a new random hyper-
graph of NC triples which, critically, has no correlation
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to the hypergraph of HP ; we choose the same NC as
the problem for convenience here but any O (N) quan-
tity should be fine. We choose the signs of all constraints
so that |L⟩ satisfies all of them. HL is not included in the
folding procedure so applied separately in time evolution.
We then choose C (t = 0) such that the initial energy of
|L⟩ (defined by Hfold + C (t)HL) is well below −N but
remains O (N). Our algorithm simulates appropriately
discretized time evolution in the following sequence:

• Initialize |L⟩, with Hcost always on, and evolve
time smoothly ramping up the transverse field from
0 to κ in time tr. We assume tr increases lin-
early with N and choose κ ≤ κc; κc ≃ 1.3 for
MAX-3-XORSAT but can vary for other problems,
and we expect weak variation from one instance to
the next. We want to choose κ at or just below
this value, so we remain in the dressed problem
phase (DPP, defined in section IV) at all times.
Leaving and then re-entering the DPP does not
mean the algorithm will fail but makes predictions
harder. This smoothly evolves the state to |LD⟩,
the dressed version of |L⟩.

• Evolve time for a total time T , likely also O (N),
where C (t) is smoothly ramped down to zero, en-
suring that |L⟩ crosses the hyperspherical shell of
ground states of Hfold = |HP +AN | /A. Note that
this crossing occurs when the ground state energy
of C (t)HL is O (−N), and if we assume the initial
minimum was uncorrelated with the true ground
state |G⟩, the mean Hamming distance between |L⟩
and any of the ground states of the folded Hamil-
tonian is N/2 flips. Consequently, HL adds an

O
(√

N
)

energy uncertainty to these states that

has no meaningful impact on the approximation ra-
tio.

• Finally, ramp the transverse down to zero smoothly
over tr and measure the system in the z basis.
For an appropriate O (1) choice of A and a ran-
dom problem hypergraph, this algorithm will re-
turn states with energies close to AEGS with con-
stant probability. We can optionally repeat the al-
gorithm many times, starting from different choices
of |L⟩, to ensure a fairer sampling of states in that
energy range.

The total gate count of this algorithm is as follows. We
have a factor of O (N +NC polylog (N)) per timestep
for the layers of transverse field, Hfold and HL terms,
which we simplify to NC polylog (N). We obtain, in the
worst case, a factor of O (NC) for the number of guesses
one needs to make to correctly set the normalization for
a chosen A. We assume, on empirical grounds, that
the total quantum evolution time is O (N).This choice
works well in practice in our simulations, and more in-
tuitively, the very simplest classical optimization rou-
tine, steepest descent, requires O (N) Hamiltonian calls

to halt. We do not think it reasonable, ultimately, that
a quantum algorithm should perform well with fewer
steps per shot. Finally, in the worst case we expect
a timestep dt ∼ 1/N , for graphs where a small num-
ber of variables connect to significant fractions of the
NC constraints, but dt constant or increasing logarith-
mically is empirically and intuitively fine in the typi-
cal case. Taken together, and we emphasize assuming
that the algorithm is capable of returning states with
E < AEGS in constant probability, we estimate a to-
tal runtime between O

(
N2

CN
2 polylog (N)

)
in the worst

case and O (NCN polylog (N)) in more typical cases.

All that said, justifying the assumption of constant
success probability is the central task of the paper. We
now provide a theoretical analysis of the performance
of this formulation of spectral folding on random hyper-
graph PPSPs, and a more qualitative analysis of the ex-
pected performance of other variations.

IV. ANALYTICAL PERFORMANCE
PREDICTIONS

A. Preliminaries

In this section, we will predict from first principles the
average macroscopic quantum tunneling rate–and thus,
achievable approximation ratio–for the TMA variation
of spectrally folded quantum optimization. This ver-
sion may not be the optimal choice, and there are in-
tuitive reasons to believe that other variations could of-
fer better performance, but being able to make direct
analytical predictions enormously strengthens our argu-
ment and bolsters the scaling expectations one can infer
from our numerical results. To do so, we have developed
a somewhat novel resummed extensive order perturba-
tion theory based on previous forward approximation re-
sults [25, 33, 80–84].

For the random hypergraph problems we study here,
the two key factors in determining the macroscopic quan-
tum tunneling rate are the transverse field strength κc
where a phase transition occurs between the paramagnet
and the quantum spin glass, which we call the dressed
problem phase (DPP) in this work, and the energy cost
E (x) for x random flips away from the ground state.
We first derive the energy cost, and remarkably, for ran-
dom flip sequences it turns out to be graph indepen-
dent. Specifically, for MAX-3-XORSAT, our problem is
defined as a hypergraph of NC p-body constraints (e.g.
VijkZiZjZk) over N variables, where p = 3 here, and
each constraint returns ±1 and flips to the opposite value
when any one of the spins flips. Let us say the system is
in some classical configuration s; the energy is then given
by E (s) = NC (nunsat − nsat), where a sat constraint re-
turns 1 in this notation, and n implies a density.

Now we flip one spin at random. Each spin participates
in, on average, pNC/N constraints, and consequently, the
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FIG. 3: Illustration of the spectral folding procedure. (Top)
Sketch of the rough energy landscape of an approximation-
hard CSP, with a single deep minimum whose basin of at-
traction is an exponentially small fraction of the configuration
space. Directly optimizing this cost function through quan-
tum approaches often misses the deep minimum entirely, for
reasons explained in the text. (Bottom) Spectrally folded
energy landscape in Eq. (5), where the problem Hamilto-
nian energies are mirrored around an approximation target
E = AEGS. This can be implemented in a gate model al-
gorithm with modest overhead, as shown in the text. Doing
so promotes the states near the fold to an exponentially large
ground state band while eliminating an interference effect that
reduces tunneling into them from trivial initial states; for a
wide range of problem instances (and likely, low-order prob-
lem classes), this works out to an approximation guarantee.
Detailed performance predictions, and numerical benchmark-
ing, are shown in the text.

average energy change for a single spin flip is

∆Eavg = +2p
NC

N
(Nsat −Nunsat) = −2pE (9)

Now imagine we have flipped y spins from our initial
configuration. If we flip one more spin at random, once
again ∆Eavg (y) = −2pE (y)∆y. However, we have al-
ready flipped y spins, so when we flip one more at ran-
dom, with probability 1 − y/N we have flipped a spin
back and are computing the energy change associated
with reducing y by 1. Consequently(

1− 2y

N

)
∆Eavg (y)

∆y
= −2pE (y) (10)

If we interpret this as a differential equation, it has a
straightforward solution: starting from the ground state
G, for x unique random flips away the average energy is

Eavg (x) = EGS

(
1− 2x

N

)p

. (11)

Note that this statement is graph independent, and is
only an average; individual trajectories will of course
display substantial variations. It is a rederivation of a
familiar result for dense hypergraphs with Gaussian dis-
tributed constraint energies [33, 85], but is applicable in
much broader contexts and is easy to confirm numeri-
cally. Throughout this work, we rescale all problems by
a multiplicative constant so that the ground state energy
is −N .

B. Paramagnet to spin glass transition scaling for
MAX-3-XORSAT

Before proceeding to our main calculation, we note
that, from this result, we can predict the typical case
difficulty scaling of finding the ground state with AQC
or QAOA, for random hypergraphs as defined in sec-
tion IID. To predict the phase transition rate, we will
use high order perturbation theory to compute the per-
turbative dressings to the problem ground state; call this
state |GD⟩. Using fourth order perturbation theory, for
uniform transverse field strength κ, the energy of the
dressed ground state is, again on average4

EGS ≃ −N
(
1 +

κ2

2p
+

κ4

8p3
+ ...

)
. (12)

4 In this step the graph structure of HP can potentially be impor-
tant. This is because the energy denominator 2p, the average
cost per flip just a few flips away from G, is more sensitive to the
details of the graph than the energy cost many flips away, which
can in turn shift κc. We thus do not claim this result is valid
for all graphs. However, we find that for our random PPSPs
the transition is consistently near the κc we predict here and the
scaling of the uniform field result closely matches our prediction.
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This crosses the energy of the paramagnetic state, which
is −Nκ and minimally perturbed by the problem Hamil-
tonian, at κc ≃ 1.29 for our family of p = 3 PPSPs. The
splitting 2Ω0 at the phase transition is expected to be
proportional to the overlap of the uniform superposition
state |S⟩, the ground state of HD, with the dressed state
|GD⟩:

Ω0 ∝ ⟨S|GD⟩ . (13)

To compute Ω0, we must thus compute the perturbative
corrections to |GD⟩, to high orders. Again using Eq. (11),

if we let
∣∣G(i,j,k...)

〉
≡ XiXjXk... |G⟩, and Ẽavg (k) ≡

Eavg (k)− EG, at the transition point we have

|GD⟩ ≃ |G⟩+ κc

Ẽavg(1)

∑
j

∣∣G(j)
〉

+2!
κ2
c

Ẽavg(1)Ẽavg(2)

∑
i ̸=j

∣∣G(i,j)
〉

+3!κ3c
∏3

m=1
1

Ẽavg(m)

∑
i ̸=j ̸=k

∣∣G(i,j,k)
〉
+ ... (14)

The factorials come from the combinatorics of ordering
the m spin flips to reach each term. Now, since all states
are present in |S⟩ with equal amplitude 2−N/2 and all
terms in |GD⟩ are positive definite, we can immediately
conclude

Ω0 (N) ≃ 2−N/2

(
1 +

N∑
m=1

κmc

(
N

m

)
m!

m∏
n=1

1

Ẽavg (n)

)
.(15)

For κc = 1.29, this function is well fit by Ω0 = a
√
N2−bN ,

where b ≃ 0.14, in decent agreement with the result for
a mean-field p = 3-spin ferromagnet derived in [86]. We
note also the hardness equivalence between dense and
random sparse graphs drawn in [59], though we empha-
size that the results we derive here are not limited to
completely random graphs. If we are in the diabatic
regime for tf ≪ 1/Ω0 (N), the probability of finding the
ground state after a sweep is PGS (tf ) ≃ Ω2

0tf/W , where
W ∼ O (N) is the energy range swept over in the evo-
lution; for tf ∝ N we thus have PGS (tf , N) ≃ N2−2bN .
Our numerical simulations for PPSPs, shown below, are
in good agreement with this result. Note that this as-
sumes a single avoided crossing and does not consider
transverse field chaos, e.g. crossings late in evolution
between states close in energy; such transitions can in
principle be substantially more difficult [87], but are not
relevant to approximation hardness in this problem as
argued earlier.

C. Scaling of inter-valley tunneling in a p = 3
quantum spin glass

This calculation is less easy to generalize to a spec-
trally folded Hamiltonian, however, where we have ex-
ponentially many competing ground states, clustered in
a thin hyperspherical shell around the true minimum, at
least in approximation-hard problems. So instead we will

consider tunneling between two p-spin wells in an N spin
system, spaced N/2 flips apart, and show that the aver-
age per-state tunneling rate in the TMA formulation of
spectrally folded optimization should have near-identical
scaling. Our total N -spin Hamiltonian, consequently, is

H = − 1

Np−1

∑
j

Zjaj

p

+

∑
j

Zjbj

p
− κ

∑
j

Xj , (16)

where the aj and bj are all equal to ±1 and specify the
minimum position for each of the two terms. We assume
for the remainder of this writeup that a and b correspond
to bitstrings M = N/2 flips apart; we let these states be
|0⟩ and |1⟩. We will also define the bare classical energy,
with no corrections from transverse fields. We start from
one of the two minima, and consider a state which ism+n
random flips away from it. We letm of these flips be ones
which move toward the other minimum (e.g. reduce the
Hamming distance to it), and the n flips be flips that

move away from it. Then the bare energy E
(0)
m,n is given

by:

E(0)
m,n = −N

[(
1− 2

m+ n

N

)p

+

(
2
m− n

N

)p]
. (17)

We assume that the transverse field strength κ is be-
low κc, the p-dependent critical point where a transi-
tion to the paramagnetic state occurs. The ground states
are thus the symmetric and antisymmetric combinations
of the two dressed classical minima, with splitting 2Ω0,
where Ω0 decays exponentially in N and our goal in this
section is to predict its decay rate.
Computing Ω0 proceeds through the following steps:

• We compute the renormalized cost per flip away
from either minimum, incorporating transverse
field corrections, which we will then use in the
energy denominators of our Mth order perturba-
tion theory. This step is analogous to commonly
used resummation schemes in diagrammatic quan-
tum field theory, where self-energy corrections are
incorporated into the propagators used to compute
higher order processes.

• We divide the system between primary spins, which
flip between the classical minima, and secondary
spins, which do not. We then compute the dressed
states |0D⟩ and |1D⟩ that comprise all the primary
flip sequences up to orderM/2 away from each min-
imum. It is at this order that the two states have
nonzero overlap.

• These dressed states are then normalized; incorpo-
rating this normalization, their overlap gives the
primary spin contribution to the tunneling rate,

Ω
(p)
0 .
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• We then compute the secondary spin contributions
to tunneling, which take two forms: an increase
of the tunneling rate from the constructive contri-
bution of many additional tunneling sequences in
which secondary spins participate, and a decrease
from normalization corrections and the spread of
the classical minima away from the core classical
configurations from which the tunneling calculation
begins.

• Incorporating both sets of secondary spin contribu-
tions gives us a closed form expression for Ω0 which
can then be evaluated numerically and compared to
exact diagonalization.

We first want to compute the energy shifts, in second
order perturbation theory, to these states. These correc-
tions arise from a single spin being flipped and flipped
back, and are opposite in sign to the cost of the local
flip. Let um,n be the difference between energies of a
state m,n and a ground state, incorporating these cor-
rections. Then

um,n = E(0)
m,n +N

(
1 +

κ2

2p

)
−
(
N

2
− 2m

)
κ2

∂mE
(0)
m,n

−
(
N

2
− 2n

)
κ2

∂nE
(0)
m,n

+O
(
κ4
)
. (18)

Note that ∂mEm,n|m,n=0 = ∂nEm,n|m,n=0 = 2p, so
u0,0 = 0. One can observe that if p = 2, ∂mEm,0 =
4
(
1− 4m

N

)
, and the transverse field corrections to state

energies are m-independent, so that the energy barrier
between the two competing ground states is not renor-
malized by the transverse field. But for p = 3 and higher
these corrections are nontrivial and act to reduce the ef-
fective energy barrier between the states, increasing the
tunneling matrix element. This process is effectively a
resummation of higher order corrections and is necessary
to obtain quantitatively accurate results.

We start by computing the dressed states, summing
over primary spin corrections only. They take the form

|0D⟩ ≡ |0⟩+
∑
j

κ

u1,0
Xj |0⟩+

∑
j,k(j ̸=k)

2κ2

u1,0u2,0
XjXk |0⟩

+
∑

j,k,l(j ̸=k ̸=l)

3!κ3

u1,0u2,0u3,0
XjXkXl |0⟩+ ... (19)

The expression for |1D⟩ is identical. We stop our expan-
sion at order M/2, which is the lowest nontrivial order
needed to connect the states. For simplicity we assume
M is even though the argument is easy to generalize to
odd M as well. Note that this state is not normalized,
and in fact the norm of the state written above is expo-
nentially large, so we will need to incorporate normaliza-
tion corrections into the definition of the states. Thanks
to the dressing of the states, we obtain a primary-spin

energy splitting

1

2
(⟨0D|+ ⟨1D|)HP (|0D⟩+ |1D⟩) = 2Ω

(p)
0 ,

1

2
(⟨0D| − ⟨1D|)HP (|0D⟩ − |1D⟩) = 0. (20)

Evaluating these expressions, the degeneracy splitting
from only considering primary spins is:

Ω
(p)
0 =κM

(
M

M/2

)
1

uM/2,0

M
2
!

M/2−1∏
k=1

1

uk,0

2

×N (p),

N (p) =

1 +

M/2∑
k=1

(
M

k

)κkk! k∏
j=1

1

uj,0

2


−1

. (21)

Here, Np is the normalization correction. This covers
the primary spin portion of the macroscopic quantum
tunneling rate.
We now turn to the secondary spins. To introduce sec-

ondary spin corrections, consider a single secondary spin
j out of the (N −M) ∼ N/2 total, whose bit value is the
same in both classical minima. Since the same transverse
field is acting on it as all other spins, when we consider
the sum of all processes that connect the two minima, we
can now divide them between those where M/2 primary
spins flip from each minima to meet in the middle, with
secondary spin j unchanged, and a new set of processes
where spin j flips starting from each minimum and the
two wavefunctions overlap at the set of states whereM/2
primary spins have flipped along with j. The first set of
processes is what was considered in Eq. 21; the second is
new, and we want to calculate its matrix element. It is
most useful to express these matrix elements as a ratio of
the new term to the original, primary-spin-only process,
since both decay exponentially in M . Let the primary
spin perturbative matrix element to reach M/2 flips be
ξM/2, so that

ξM/2 = κM/2

M
2
!

M/2∏
k=1

1

uk,0

 . (22)

To define the analogous process where j flips, we need to
sum over all the points during the perturbative sequence
when that can happen. We thus have:

ξsM/2 = κM/2+1M

2
!

M/2∑
n=1

n∏
k=1

1

uk,0

M/2∏
k=n

1

uk,1
. (23)

And noting that we have to make this insertion in the
matrix elements from both minima, the total tunneling
term is increased by

Ω
(p)
0 →

(
1 +

(
ξsM/2

ξM/2

)2
)
Ω

(p)
0 , (24)(

1 +

(
ξsM/2

ξM/2

)2
)

≡ γT . (25)
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We now need to consider the rest of the secondary spins.
Formally of course, the additional energy cost of each
secondary spin flip changes as more secondary spins flip,
but since these corrections are fairly weak (though they
are appreciable and necessary for an accurate prediction
of the scaling exponent) the total tunneling rate is going
to be dominated by the set of processes where a com-
paratively small fraction of secondary spins have flipped,
and we can thus approximate them as independent con-
tributions. In this limit, since there are N−M secondary
spins,

Ω
(p)
0 → Ω

(p)
0 γN−M

T . (26)

Alongside this, the secondary spin corrections also
spread the competing ground state wavefunctions out
over Hilbert space, which exponentially reduces the
weight of the core classical configurations from which
the tunneling calculation begins. To be consistent with
the independence approximation made above, we simply
compute all the corrections to the ground state from each
secondary spin independently and multiply them. Noting
that we must apply this calculation to both competing
ground states, this reduces the tunneling rate by

Ω
(p)
0 → Ω

(p)
0

(
γT
γR

)N−M

, γR ≡ 1 +

(
κ

u0,1

)2

. (27)

Note that, if we set the cost per flip of a given secondary
spin to some constant U , independent of the configura-
tion of the other spins, that would imply it is discon-
nected from the primary spins as there are no couplings
to shift the energy. In this limit a direct evaluation of
the two functions shows that γT = γR (for any choice of
U) and this now disconnected spin plays no role in tun-
neling at all. This factorization of disconnected spins is
reassuring, and lends support to the correctness of this
approach. Taking into account all these effects, our total
tunneling rate is

Ω0 = κM
(
M

M/2

)
1

uM/2,0

M
2
!

M/2−1∏
k=1

1

uk,0

2

×N (p) ×
(
γT
γR

)N−M

. (28)

Taking all of these effects into account yields a highly
accurate prediction of the minimum gap scaling for a
wide range of values for p and κ, with only an O (1)
discrepancy in the prefactor and few percent discrepan-
cies in the scaling exponent (empirically, Eq. 28 tends to
slightly overestimate the decay compared to the exponent
extracted from numerical diagonalization). We refer to
the Appendix A for more details.

D. Achievable approximation ratio with spectrally
folded trial minimum annealing

With this result in hand, we will now predict the
macroscopic quantum tunneling rate–and thus, achiev-
able approximation ratio–for the spectrally folded Hamil-
tonian. From this, we can calculate our target value of A,
assuming that there is a single deep minimum far below
the energy of any local minima. Relaxing this assumption
will improve the performance of the algorithm by virtue
of there being many more target states, as confirmed in
our simulations for lower constraint densities. We con-
sider the protocol in section III, with an initial state |L⟩.
We assume that the process of ramping the transverse
field up and down is itself at least roughly adiabatic, i.e.,
we can assume approximate spectral continuity with re-
spect to the folding and lowering Hamiltonians, noting

that the lowering Hamiltonian will itself create O
(√

N
)

shifts to the energies of states near the fold. It follows
from our assumption that the ramping process itself does
not meaningfully heat the system. We then consider the
set T of all states within O (1) shifts of −AEGS in HP ,
the states closest to the fold, and compute, as a func-
tion of all our various algorithm parameters, the total
probability of tunneling into any one of them.
Since the tunneling rate into any individual state is

exponentially small, and the time over which we slowly
turn off the lowering Hamiltonian is T ∝ O (N), we can
assume that tunneling will be diabatic with respect to
any individual state. A Fermi’s Golden rule analysis as
in [68] suggests that

Ptot ∝
T

W

∑
j∈T

Ω2
0,Lj , (29)

where W ∼ O (N) is the energy range swept over by
reducing C (t) to 0, and Ω0,Lj is the tunnel splitting
at degeneracy between |LD⟩ and the target state |jD⟩,
which we assume are an average of ∼ N/2 flips apart.
To go further, we need to compute the average value of
Ω2

0,Lj , noting that while of course there will be substan-
tial state-to-state variations, given that there are expo-
nentially many states in T the average value is going to
dominate Eq. (29). As in the previous calculation, the
most important quantity here is the average cost per flip
away from the typical ground state in the folded Hamil-
tonian, which remarkably turns out to be A-independent.
To see this, we start from the average cost per flip away

from |G⟩, given by Eq. (11), and note that we can invert
that equation to find the mean number of flips xAN for
which ⟨E (xAN)⟩ = −AN . To be specific,

xA =
1−A1/3

2
. (30)

We can therefore assume that the typical state in T is
xAN flips away from |G⟩. If we consider the sequences of
primary spin flips connecting |jD⟩ and |LD⟩, the typical
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flip sequence starts xAN flips away from |G⟩, and notice
that with probability 1 − xA an additional random flip
towards |L⟩ will also move closer to |G⟩. Taking all these
effects and the division by A into account, so that the
bare unperturbed energy of both |j⟩ and |L⟩ when they
cross are both ∼ −N , a bit of algebra shows that for y
flips away from a ground state of the folded Hamiltonian,
not only is the total average cost ∆E (y) A-independent,
it is precisely equal to the cost given by Eq. (11).

This is again only an average, but noting that since it
appears the denominators of equations like (28), varia-
tions about it are more likely to increase the tunneling
rate than decrease it. And likewise, since HL is a ran-
dom 3-XORSAT problem itself the mean cost per flip
away from |L⟩ is going to be given by Eq. 11 as well,
so Eqns. 16 through 28 can faithfully predict the aver-
age tunneling rate between |L⟩ and a randomly chosen
ground state of the folded Hamiltonian.5 For more dis-
cussion of this approximation, see the appendix.

Of course, this rate decays exponentially; assuming
the two states are M ∼ N/2 flips away for κ = 1.29,
Ω0 ∝ 2−bN where b ≃ 0.2. But this is balanced by the
fact that there are on the order of

(
N

xAN

)
target states.

We can further note that out of these states, while the
mean distance to |L⟩ is M ∼ N/2, ones which are k flips
closer have tunneling rates which are larger by a factor of
22bk on average, and though those states are proportion-
ally rare their increased weight is enough to meaningfully
impact our choice of A. Since our total runtime is lin-
ear, simple diabatic scaling predicts that the probability
of tunneling into the typical state M − k flips away is
proportional to Ω2

0, e.g. 2
−4b(M−k).

We now take this result and plug it into Eq. (29), so
that we can determine the choice of A where the returned
Ptot provides an approximation guarantee. If we use Stir-
ling’s approximation to write the binomial coefficients as
exponentials, and ignore slowly varying polynomial fac-
tors, the total number of states in T scales as:

NT ∝ exp (− [xA lnxA + (1− xA) ln (1− xA)]N) . (31)

Likewise, if the average probability of tunneling into a
target state k primary spin flips closer to |L⟩ is increased
by a factor of at least 24bk, the weighted per-state average
of the diabatic tunneling rate into states in T can be
approximated as

log
〈
Ω2

0

〉
−N ≈ 2b ln 2− xA

(
ln
(
1 + 24b

)
− ln 2− 2b ln 2

)
.(32)

5 We expect that using the average cost per flip in Eq. 17 will
if anything underestimate the per-state tunneling rate in real
disordered problems. This is because all of these energy costs
appear in denominators, which leads to likely small asymmetries
in how much the deviations from the average in any individual
flip sequence contribute to the total matrix element, giving lower
energy sequences proportionally higher weight. We do not really
expect this effect to be significant but rather highlight it as an-
other point where our prediction is conservative by design.

Note that this average comes from considering only xAN
flips away from |G⟩ but varying Hamming distance from
|L⟩ and thus neglects the influence of comparatively rarer
states larger distances from |G⟩. Taking all these terms
into account, the probability of returning a state with
E ≃ AEGS as measured relative to the original HP be-
comes constant, or at least stops decaying exponentially,
when

− 2b ln 2− [xA lnxA + (1− xA) ln (1− xA)] +

xA
(
− ln 2− 2b ln 2 + ln

(
1 + 24b

))
= 0. (33)

The achievable approximation ratio is thus determined
by the per-state decay exponent b, computed in sec-
tion IVC as a function of N and κ by fitting Eq. (28) to

Ω0 (N) ∝
√
N2−bN , and then choosing xA using Eq. (30)

to solve Eq. (33). This analysis only counts states within
O (1) shifts of AEGS (recall that EGS = −N in our nor-
malization) and ignores low-order polynomial prefactors;
for b = 0.2, which again depends on κ = 1.29 in this
calculation, this is solved when xA ≃ 0.08, or A ≃ 0.59.
This means that if the true ground state satisfies a con-

straint fraction F beyond random guessing—e.g. a total
fraction 1/2+F , so F is at most 1/2 here—our algorithm
will return states which satisfy a fraction 1/2+AF with
high probability. If we choose A to be too large com-
pared to the target value established by expressions like
Eq. (33), we risk failing to well-approximate the problem;
conversely, choosing A below it will reduce the returned
approximation ratio to A and thus perform suboptimally.
And, we emphasize again, this prediction assumes a ran-
dom, potentially dense hypergraph but is fundamentally
independent of the fraction satisfied in EGS itself and so
applies to the planted partial solution instances we use
for numerical benchmarking below.

E. Further Comments and Caveats

We expect that this analysis underestimates the choice
of A that will return states with E ≤ AEGS with con-
stant probability. This is because our counting here only
counts states very close to the fold, when in reality the
probability of tunneling into states a small extensive frac-
tion larger than AEGS is still going to be appreciable due
to the continued exponential growth of the number of
targets, even if the per-state tunneling rate does tend to
decrease with increasing E due to the interference effect
mentioned earlier, in which perturbative corrections that
mix with states of lower energy have opposite sign. In
addition to this consideration, because the target ground
states and low lying excitations of the folded Hamiltonian
in T very roughly form a hyperspherical shell, any indi-
vidual target state will have other states in T that are
relatively close to it in Hamming distance. Consequently
we expect these states to have a band dispersion, cen-
tered around the mean energy given by the corrections
in Eq. (18). Since we are already assuming off-resonant
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tunneling, i.e. a per-state tunneling rate ∝ Ω2
0, and so

summing over squared matrix elements, if we consider
states near the band center where the density is highest
this will alter the average tunneling rate by at most a
prefactor. However, there are good reasons to suspect
that tunneling into extremal states near the bottom of
the band can be substantially enhanced, enough to in-
crease the optimal value of A. This calculation is diffi-
cult to do quantitatively so we do not attempt it here; we
instead see the approximation of considering only states
near the band center of T as another choice that likely
underestimates the achievable approximation ratio. We
discuss this point in more detail in Appendix B.

We also want to emphasize that this variation is not
necessarily the optimal spectrally folded optimization al-
gorithm, but instead merely the one where we were able
to analytically compute the threshold A. For example,
one can perform trial minimum annealing with a simple
local Z bias lowering Hamiltonian (e.g. HL =

∑
j hjZj),

or standard AQC interpolation using the quadratic fold-
ing procedure in Eq. (5) as the cost function. The linear
lowering Hamiltonian is expected to have equal or bet-
ter tunneling rates to a 3-XORSAT-based minimum as
the overall cost-per-flip curve is shallower, though the lo-
cal energy shifts to the ground states of Hfold from HL

are expected to be larger. The total gate count at each
time step is lower. Empirical performance in testing up
through N = 25 showed fairly similar performance to
3XOR-based HL for all other parameters equal, but with
more significant non-monotonic behaviors that made fit-
ting difficult; see Sec. V for details. That the two schemes
could asymptotically converge to the same achievable ap-
proximation ratios seems plausible to us but we cannot
simulate large enough systems to be sure.

For quadratic folding AQC as in Eq. (6), if we choose
A = 1 the gap is efficiently computable using the meth-
ods in [86] and decays as Ω0 ∼ 2−0.16N . Given that, like
linear folding, the cost per flip curve is A-independent, if
we assume that the tunneling rate per state for A < 1 is
basically equal to this, then the total decay exponent
vanishes if xA ≃ 0.06 and A ≃ 0.68 using the argu-
ments of the previous few paragraphs. We do not think
that can be simply assumed as easily as with tunnel-
ing between semiclassical minima and a linearly folded
problem Hamiltonian, in the DPP, and more theoretical
work is needed here to analytically determine the opti-
mal choice of A. Interestingly however, our simulation
data in Sec. VI supports this conclusion, with a worst
case polynomial time approximation ratio of 0.7 found
in our simulations. These simulations show that this
method performs similarly too, or slightly worse than,
the 3XORSAT-TMA algorithm, which is better able to
outperform the approximation guarantee of ∼ 0.6 de-
rived here.6 We also expect that the average tunneling

6 For smaller systems we also tested linear folding AQC and

rate–and thus, achievable approximation ratio–can likely
be further increased by using other, potentially many-
frequency, AC methods such as RFQA [25, 49, 68, 88, 89].
For simplicity, we do not incorporate these methods in
this work, but they could be a novel way to further im-
prove the performance of this algorithm and are worth
exploring in future research.
In summary, through a relatively novel resummed ex-

tensive order perturbation theory, we have shown that
random hypergraph MAX-3-XORSAT instances, includ-
ing extremal ones with planted partial solutions, are ef-
ficiently approximable to a fairly large constant fraction
through the spectrally folded quantum optimization algo-
rithms. We do not expect this to be the case for QAOA,
an expectation supported by the numerical evidence we
present below. We similarly do not expect such guar-
antees to be possible for directly finding global optima,
for the reasons set forth in the introduction. Evidently,
one cannot so easily summit a mountain in hyperspace,
but one can reach the rim of a crater. We now present a
series of numerical simulations to further support these
claims.

V. NUMERICAL TESTS OF APPROXIMATION
HARDNESS FOR TRADITIONAL METHODS

A. Setup and summary of results

To confirm our predictions–or at least, verify that
any serious issues with our calculations and interpreta-
tion of the problem are subtle and not apparent at sys-
tem sizes within reach of present or near-future classical
simulations–we performed a series of numerical simula-
tions of various classical and quantum algorithms applied
to our PPSPs. For all quantum simulation tasks we used
the Qulacs package [90]. For smaller systems and algo-
rithm prototyping we ran our simulations on local work-
stations; this includes all the spectral folding TMA simu-
lations. For all QAOA and spectral folding AQC simula-
tions presented, we used the Fujitsu Quantum Simulator,
a classical HPC system. This allowed us to probe larger
system sizes while still averaging over enough instances to
have reliable statistics for the problem class. Unless oth-
erwise stated, each datapoint represents the average over
960 or 1000 (for the QAOA and spectral folding AQC
results) random problem instances constructed with the
prescriptions outlined in section IID. In all cases in this
work we used an unsatisfied fraction ϵ = 0.1 for our par-
tial planted solutions; we expect similar phenomenolog-

quadratic folding TMA. In very preliminary studies we found
that quadratic AQC modestly outperformed linear AQC, and
linear TMA more significantly outperformed quadratic TMA. So
we chose not to pursue those methods for larger simulations and
do not present those results here, but they may be viable or even
superior for other problem classes.
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ical behavior for other constant ϵ values, though we ex-
pect the precise thresholds we measure will vary with
ϵ for classical optimization algorithms and QAOA (but
not folded optimization, below its predicted performance
floor).

The results of our simulations are summarized in Ta-
ble I, which lists the best per-shot polynomial time
approximation ratio achievable through each algorithm
studied, both classical and quantum. To estimate these
values, we measured the average per-shot probability
Pq (N) = P (E ≤ qEGS) of returning states with ener-
gies at or below qEGS, where q ≤ 1 is the approxima-
tion ratio and EGS is negative in our conventions. These
probabilities were computed by choosing bins of size 0.05
EGS.
To determined the polynomial time hardness thresh-

old, we applied a very simple rule where we fitted Pq (N)
to a simple exponential function, assuming any observed
decay faster than 2−0.005N corresponded asymptotically
to exponential decay, and any positive exponents, e.g. ex-
ponential growth, represent small-N growth toward some
constant saturation value. This threshold of 2−0.005N was
chosen to reduce the influence of uncertainty from fitting
in a small handful of cases. For the greedy algorithm
with NC/N = 1.5

√
N we fitted decay to an exponential

in
√
N as discussed below. The polynomial time approx-

imation hardness threshold for a given algorithm, unsat-
isfied fraction ϵ and NC/N scaling choice is defined to be
qa, the largest values of q for which we do not observe
exponential decay. For NC/N = 3

√
N/2 this threshold

is decaying with system size, and the asterisk next to the
result for QAOA is to highlight the fact that we only ran
these simulations out to N = 28 so are likely not captur-
ing the asymptotic threshold. As discussed elsewhere, the
number of cost function calls is O (N) for all approaches
studied. Cases for which a range is quoted are where
we felt there was some ambiguity to the fitting, and all
values are the result of extrapolating fits to numerical
simulations and are naturally somewhat approximate.

B. Performance of greedy classical algorithms

To explore the classical difficulty of our PPSPs, we ap-
plied a greedy local search algorithm adapted from [12].
This algorithm is straightforward; we start with a ran-
dom bitstring. Then, beginning at each step, we calculate
k = ”number of unsatisfied constraints minus the num-
ber of satisfied constraints” associated with each bit. We
then calculate the fraction of bits, fk, belonging to each
k value. Note that we only care when k > 0 because
these are the cases where flipping a particular bit will
lower the energy. Using some weight function, w(k), we
select a k value with normalized probabilities ∝ w(k)∗fk
and flip a bit with that k value. If there are multiple
bits belonging to the k value chosen, we choose a bit in
this set with uniform probability to flip. This is repeated
until the configuration finds itself in a minimum, and the
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FIG. 4: Per-shot probability of finding the true ground
state with the quasi-greedy classical algorithm defined in sec-
tion VB as adapted from [12], for the four constraint den-
sities studied in this work and planted solution unsatisfied
fraction ϵ = 0.1. The probability decays superpolynomially

with N ; fits are to a2−bN for NC = {2, 4, 6}N and a2−b
√

N

for NC = 1.5N3/2; the scaling fairly well matches the em-
pirically observed Eq. (34). Each datapoint is the average
of 105 shots. As the constraint density increases, the basin
of attraction widens, and the problem becomes easier–though
still exponentially scaling–for local update classical routines.
Each shot consists of O (N) local updates so the time to so-
lution scales essentially as the inverse of this probability.

algorithm halts.

We found the algorithm performed best with a weight
profile quadratic with k, however this can be experi-
mented with for different results. Notably, [12] found that
when applying a highly optimized version of this search
to 3-regular 3-XORSAT problems it performed well even
when compared to more sophisticated algorithms such
as simulated annealing and parallel tempering. The in-
tuitive reason for this can be inferred from the typical en-
ergy landscapes of these problems, which are rough and
contain exponentially many high energy local minima.
Once one is found, it is more efficient to simply restart
the algorithm from a new random configuration instead
of attempting to “climb out” using penalized operations
in simulated annealing or parallel tempering. As the lo-
cations of these minima are uncorrelated with the true
ground state, finding one provides no useful information
in a ground state search.

This expected inefficiency of simulated anneal-
ing/parallel tempering for this problem can easily be in-
ferred from the results plotted in Figs. 4 and 5. Namely,
in all cases the algorithm will find a single relatively deep
minimum with high probability at each shot, leading to
a super-polynomial cost to escape from it in algorithms
simulating a thermal bath. Interestingly, as NC/N in-
creases for fixed unsatisfied ground state fraction ϵ, we
find that the decay exponent of the per-shot probabil-
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NC/N Classical QAOA AQC/0.75 AQC/0.85 TMA-3/0.75 TMA-3/0.85 TMA-L/0.75
2 0.75-0.8 0.75 0.75 0.75 0.75 0.75 0.7
4 0.55 0.55 0.7 0.7 0.75 0.8 0.75
6 0.45 0.45 0.75 0.7 0.8 0.8 0.75

3
√
N/2 decaying 0.25/decaying* 0.75 0.75 0.8 0.8 0.75-0.8

TABLE I: Approximation hardness thresholds for the classical greedy search, high-depth QAOA and spectral folding variations.
This table lists qa, the largest value of the approximation ratio q before exponential decay is reported, drawn from the numerical
experiments in figures 5 through 8 and 14. Spectral folding results are labeled as protocol/A (where A is the approximation
target); AQC is quadratic spectral folding in the AQC formulation, TMA-3 is trial minimum annealing with a linear folded
Hamiltonian and 3-XORSAT lowering Hamiltonian, and TMA-L is the same with local Z biases for the lowering Hamiltonian.
These results support the predictions in section IV that random hypergraph problems are efficiently approximable through
spectrally folded quantum optimization.

ity of finding the ground state, PGS (N), monotonically
decreases, suggesting that the basin of attraction of the
true ground state is widening as the problem becomes
more extremal. In fact, for NC ≥ 2N , we empirically ob-
serve that the per-shot probability of finding the planted
ground state has the approximate scaling

log (PGS (N)) ≃ −cg
N2

NC
. (PPSPs, NC ≥ 2N) (34)

However, the approximation ratio qa–defined as the min-
imum energy for which the probability of finding states
at or below it stays constant as N increase–steadily wors-
ens. We attribute this to there being a high density of
local minimia with energies ≥ qaEGS (recall EGS is neg-
ative in our conventions), but below that threshold the
number of minima quickly decreases and the probability
of finding one decreases exponentially. This results in
the scaling collapse seen in Fig. 5–for sufficiently low en-
ergy there are no minima aside from the ground state, so
the approximation probability scales nearly identically to
PGS (N). This high energy clustering phase is a feature of
our PPSP construction, and is responsible for its classical
approximation hardness. We again contrast this to prob-
lems near the statistical SAT/UNSAT threshold such as
three-regular instances, where the clustering energy, the
lowest energy where there are still exponentially many
local minima and they are thus easy to find, is close to
EGS and they are not approximation-hard in practice as
a result. We conjecture that high energy clustering be-
havior is a generic feature of low-degree constraint prob-
lem classes that are approximation-hard for local update
algorithms.

As shown in Fig. 5, these construction rules yield in a
set of instances which are hard to approximate in prac-
tice. If we let NC/N grow slowly with N , e.g. as ln (N)

or
√
N , then as N → ∞, the probability of finding any

states with energies any O (1) fraction better than ran-
dom guessing, decays superpolynomially in N . And since
the unsatisfied fraction ϵ in the ground state is small
but nonzero, Gaussian elimination cannot be used to ef-
ficiently find the solution, forcing classical computers to
rely on local update algorithms stymied by entropic bar-
riers. It is of course possible that some clever algorithm
could be written to exploit our PPSP structure to effi-

ciently solve or approximate these instances classically;
we merely claim hardness for generic methods based on
local updates. Our PPSP construction rules can easily
be generalized to other CSPs, and we suggest that they
could prove to be a useful tool for exploring practical
approximation hardness in other contexts.

C. Performance of high-depth QAOA for this
problem

To make firm points of comparison, alongside the
simulations of spectrally folded optimization itself we
extensively benchmarked high-depth QAOA and quasi-
greedy [12, 66] classical algorithms on these instances.
For our high-depth QAOA simulations, we formulated
our algorithm to mimic trotterized time evolution over a
total time tf , with:

|ψ (t+ dt)⟩ = e−2πif(t)dtHDe−2πig(t)dtHP |ψ (t)⟩ , (35)

f (t) =
√

1− t/tf , g (t) =
√
t/tf .

In all the presented data we used tf = N/32 and
dt ≃ 0.05. Individual shots use a random evolution
time between 2tf/3 and 4tf/3; this runtime averaging
produces substantially more reliable scaling, particularly
when probabilities are small. These parameters were
chosen by trial and error for smaller systems; we ob-
served that the probabilities of finding the ground state
and other low-energy states increased sublinearly with
tf beyond this point. The relative improvements of the
probabilities of returning low-lying states were similarly
sublinear. No sophisticated numerical or iterative opti-
mization methods were used, for the reasons discussed in
section II E.
The results of our QAOA simulations, of 1000 random

PPSPs for each choice of N running from 8 to 30, are
shown in Fig. 6. The probability of finding the ground
state, shown in Fig. 11, decays exponentially with an
exponent very close to that in Eq. (15), which we find
remarkable given the simplifying assumptions in that
derivation, and that it does not use the more sophis-
ticated techniques used to compute tunneling rates be-
tween semiclassical minima. Further, this exponent dis-
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FIG. 5: Classical approximation hardness of PPSPs using the quasi-greedy classical algorithm, for constraint densities (clockwise

from top left) NC =
{
2N, 4N, 6N, 1.5N3/2

}
. In each figure we plot the probability that a given shot returns an energy below

qEGS for various choices of q. For all the fixed NC/N problem classes we find an empirical approximation threshold q = Ag

below which finding states becomes superpolynomially hard, and that this value decreases as NC/N increases. For the case

NC = 1.5N3/2 (bottom left), this value steadily drops, as discussed in the text.

plays only small variations with constraint density and
is nearly identical in all four cases. Smaller system stud-
ies for other constraint densities all yielded very similar
results for PGS, as predicted by Eq. (15).

Turning to approximation hardness, being relatively
sparse, the NC = 2N problems are fairly well-
approximated by QAOA, with the algorithm returning
strings within q = 0.75 with constant or saturating prob-
ability; we attribute this to the presence of many compet-
ing minima with energies not far from EGS. In contrast,
forNC = 4N the algorithm’s performance for approxima-
tion degrades, with clear exponential decay for approxi-
mation ratios better than q = 0.55. For higher constraint
densities approximation becomes even more difficult, de-
caying exponentially below q = 0.45 for NC = 6N and
0.25 for NC = 3N3/2/2. We expect decay at sufficiently
large N for any constant fraction in that case, but cannot

simulate larger system sizes. Crucially, the thresholds qa
we measure are nearly identical to those found by the
classical greedy algorithm (figure 5), and no signatures
of an exponential quantum advantage in these instances
can be seen.

Interestingly, as NC/N increases, the probabilities of
finding states comparatively close to |G⟩ in Hamming
distance improve (see Fig. 11), but the probabilities of
finding states close in energy worsen. We attribute this
behavior to the high energy clustering phase conjectured
in Sec. VB. Empirically for our PPSPs there is a high
density of local minima with energies E ≥ qaEGS, and
if qa is relatively close to 1 it becomes harder for high-
depth QAOA to find local excitations near the planted
ground state, as the probability amplitudes will be spread
over increasingly many competing minima and their own
basins of attraction. Conversely, as qa decreases with
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FIG. 6: Performance of QAOA as an approximator for NC =
{
2, 4, 6, 3

√
N/2

}
N (clockwise from top left), with problem and

algorithm parameters described in-text. Plotted are the probabilities Pq (N) = P (E ≤ qEGS) for q running from 0.5 to 0.85
in steps of 0.05 (top panels) and 0.25 to 0.6 (bottom panels). The results for the larger constraint densities thus plot a weaker
approximation range. Thick straight lines correspond to simple exponential fits where Pq (N) is not decaying, dashed straight
lines correspond to exponential decay, and thin lines between points are included for visual clarity. As summarized in table I,
these results do not represent a meaningful improvement over the classical greedy result (Fig. 5), though in some cases where
Pq (N) decays exponentially for both approaches, the exponent for QAOA may be better. These results were obtained using
the Fujitsu Quantum Simulator, a classical HPC system.

increasing NC/N , the probability of finding local exci-
tations relatively near |G⟩ increases though still decays
exponentially, as the low energy minima far from |G⟩ are
at proportionally higher energies and thus do not com-
pete directly with few-flip states. That the thresholds
qa for QAOA match those of the greedy classical algo-
rithm further supports the interpretation of an energy
threshold above which local minima become common.

Comparing the classical and established quantum
methods, we find that, for these approximation hard
instances, QAOA performs very poorly for finding the
ground state but less poorly for approximation below the
classical hardness threshold qa (see Table I), with decay
exponents that are much closer to the classical result. In
some higher constraint density cases our fits produced
favorable exponents for approximation with QAOA but
our range of N here is smaller than we would prefer to
claim any relative quantum advantage absent theoreti-
cal justification. Nonetheless, both methods show clear
super-polynomial decay per-shot for approximate opti-

mization below the energy range where local minima are
dense. With these results in hand, we now turn to folded
quantum optimization, which maintains an approxima-
tion guarantee regardless of the problem’s constraint den-
sity.

VI. NUMERICAL TESTS OF SPECTRAL
FOLDING VARIATIONS

Having numerically confirmed the expectation that our
PPSPs are superpolynomially hard for classical and prior
quantum approaches, for both exact and approximate op-
timization, we now present the results of our folded quan-
tum optimization simulations. We simulated both the
trial minimum annealing and interpolation (e.g. AQC)
variations. In all cases we chose runtimes increased lin-
early in N , albeit with larger prefactors than in the
QAOA simulations (which used tf = N/32). A longer
runtime further helps reduce the potential influence of
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diabatic local heating as the Hamiltonian parameters are
varied. Run and ramp times that are too short can lead
to artificially poor scaling, arising from the formation of
local excitations as the transverse field is turned on or off
too quickly. This is fundamentally a different, and much
more prosaic, issue, than decaying collective tunneling
rates, but can be difficult to distinguish when our only
measures are energy and Hamming distance from |G⟩.

A. Spectrally folded adiabatic interpolation
performance

We first present simulations of the AQC variation of
spectral folding, in figures 7 and 12. For the AQC
variation, we followed the procedure in Eq. (35), with
a quadratic Hfold (Eq. 5) in place of HP and f (t) =

(1− t/tf )
1/4

instead of
√
1− t/tf , with an average run-

time tf = N/24. This schedule modification was found
to improve scaling at higher approximation ratios. In
all cases individual shots are runtime averaged between
2tf/3 and 4tf/3 as in our QAOA simulations.

All these parameter choices are the result of intuition,
trial and error, and a desire for simulations to complete
in reasonable amounts of time; none are particularly opti-
mal. Nonetheless, as shown in figure 7, in all but one case
we were able to meet the approximation target A = 0.75,
but not exceed it; for NC = 4N . Our spectral fold-
ing methods are also much better at reliably returning
states close to G in Hamming distance, consistent with
the approximation guarantee (see Fig. 12). We likewise
tested increasing A to 0.85 in simulations up to N = 24
with this variation, and found improved prefactors but
no improvement in scaling (see Fig. 14). This suggests
that we have found the performance ceiling for this ap-
proach. Interestingly, the worst case qa = 0.7 observed
for this method is very close to the approximation ratio of
∼ 0.68 predicted in section IVE, using a more simplified
analysis than was employed for the TMA variation.

B. Trial minimum annealing performance

We also tested the TMA formulation of spectral
folding–the formulation for which we can make the most
reliable analytical predictions–as plotted in Fig. 8. For
these variations we used runtimes tf = N/12 and dt =
0.025; note that this choice of tf is a factor of 8/3 larger
than in our QAOA simulations but with the same scaling.
In smaller system studies similar qualitative performance
was observed for shorter tf (such as N/24 or N/32). For
this variation we used a 3-XORSAT HL–the formulation
for which we could predict performance in Sec. IV–with
the minimum energy set to −2N via C (t), which was
linearly ramped down to zero by tf , and simple sinu-
soidal ramp profiles with tr = N/24; the transverse field
strength κ during the main evolution was 1.3. The careful
reader may note that choosing C (t) to set the minimum

energy to −2N instead of −N is naively suboptimal, as
all other things being equal sweeping over a larger energy
range increases W in Eq. (29), and should reduce the re-
turned probabilities Pq (N) by an appropriate prefactor.
However in our simulations this choice consistently im-
proved both the prefactors and scaling, e.g. the value of
qa, as compared to choosing a minimum energy −N for
HL. We suspect this has to do with the band structure
considerations described in Appendix B but due to the
complexity of the problem, are unable to make a quanti-
tative prediction.
The performance of the two approaches is qualitatively

similar with subtle differences as we vary the returned ap-
proximation ratio q. At lower approximation ratios the
AQC formulation returns higher probabilities, at lower
total gate count since there are no ramping steps and no
additional gates associated with adding HL. However,
at higher approximation ratios the TMA formulation ap-
pears to be better able to approach the approximation
target A = 0.85. As discussed in the algorithm defini-
tion, folded optimization will definitionally fail to consis-
tently return energies significantly below AEGS, and we
expect it to break down as A gets too close to 1 given
that QAOA and similar methods fail to reliably approx-
imate these problems. Choosing the best value for A is
thus a subtle issue that depends on the problem class; for
extensions of this method to hard CSPs it will necessarily
change from one problem class to the next.
Likewise, as mentioned in section IVE, one can replace

the random 3-XORSAT lowering Hamiltonian in TMA
for a simpler set of linear Z biases, reducing the gate
count per timestep and, potentially, increasing the per-
state tunneling rate by implementing a shallower cost-
per-flip curve. In comparison to the 3-XORSAT vari-
ation discussed in the previous paragraph, to achieve
good performance we needed to double the ramp time.
This protocol seemed to be more sensitive to performance
degradation from heating during ramps. The algorithm
also benefitted from adjusting C (t) so that the minimum
energy of HL was −3N , as compared to −2N for the 3-
XORSATHL. Relative performance for A = 0.75 is com-
parable to the other variations, as illustrated in Fig. 9,
though the individual Pq (N) show more significant non-
monotonicity that makes reliable curve fitting challeng-
ing. This issue is even more pronounced for A = 0.85
(data not shown), to the point that we did not quote qa
values for that variation in the Table I.

C. Discussion of our spectrally folded optimization
results

The reader may note that all of these simulations tar-
geted energies in the range A = 0.75 to A = 0.85, well
above the theoretical prediction of ∼ 0.6. We also tested
A = 0.65 at smaller scales (data not shown) for both
formulations but found no region of the parameter space
where it showed meaningful improvements over choosing
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FIG. 7: Performance of the quadratic AQC formulation of spectral folding, for NC =
{
2, 4, 6, 3

√
N/2

}
N (clockwise from top

left), with N running from 10 to 27 (top row) or 26 (bottom row), A = 0.75, dt = 0.0325, tf = N/24 and other parameters as
stated in text. In each plot the 8 curves plot Pq (N) = P (E ≤ qEGS) for q running from 0.5 to 0.85 (top to bottom) in steps of
0.05. Thick straight lines correspond to simple exponential fits where Pq (N) is not decaying, dashed straight lines correspond to
exponential decay, and thin lines between points are included for visual clarity. In all four cases spectrally folded optimization is
able to meet its approximation target of A = 0.75, returning states at or below this energy with constant probablity in a linearly
growing number of cost function calls. This is in stark contrast to our classical greedy algorithm (FIG. 5) and QAOA (FIG. 6)
results, where the achievable polynomial time approximation ratio steadily worsens with increasing NC/N , and supports the
theoretical analysis of section IV. These results were obtained using the Fujitsu Quantum Simulator, a classical HPC system.

A = 0.75 or higher. When increasing A to 0.85 we were
not able to meet this target with constant probability,
though for some cases we did see improvements in the
returned achievable approximation ratio qa when com-
pared to A = 0.75. We did not run tests with A > 0.85
due to system size constraints, though comparing per-
formance between A = 0.75 and A = 0.85 in table I
suggests we have found the performance ceiling for these
methods. Given the comparatively small system sizes
available to classical simulation our ability to draw mean-
ingful scaling distinctions with very small changes in A
is limited. Considering the results of all our numerical
simulations, the minimum achievable approximation ra-
tio for our PPSP problem classes is at least 0.7 (often
0.75) for the quadratic AQC variation, and at least 0.75
(often 0.8) for the 3-XORSAT TMA variation.

As summarized in table I, the contrast between the
clear super-polynomial decay of higher approximation ra-
tios with classical methods and QAOA (Figs. 4-6), and

the constant probabilities returned by folded quantum
optimization (Figs. 7-9) is stark. In particular, for the
established methods, the polynomial time approximation
threshold is set by the problem structure, specifically the
relative energy of the high energy clustering phase, and as
our PPSPs become more extremal this threshold steadily
worsens as a fraction of the energy of the planted ground
state. We found no evidence for an exponential sep-
aration in approximation power between local classical
searches and QAOA/AQC. At lower constraint densities,
the clustering energy is not far above the ground state
and spectrally folded quantum optimization provides no
benefits for approximation, though it can still show scal-
ing advantages for returning states close in Hamming dis-
tance to the ground state (see appendices). At higher
constraint densities however, spectral folding is able to
return states close to G, in both energy and Hamming
distance, consistently and without degradation as NC/N
increases. The performance of all spectral folding vari-
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FIG. 8: Performance of the trial minimum annealing formulation of spectral folding with a 3-XORSAT lowering Hamiltonian

HL, with A = 0.85, plotted for constraint densities (clockwise from top left)NC =
{
2N, 4N, 6N, 1.5×N3/2

}
and approximation

ratios between q = 0.5 and 0.85 with N running from 10 to 24, for the parameters detailed in the text. All data is derived from
averaging over 960 random instances and choices of tf . Compared to the AQC formulation shown in figure 7, the achievable
approximation ratio qa is often slightly higher, though the total gate count in this formulation is larger by a constant prefactor.
In all cases qa well exceeds the value of 0.6 conservatively predicted for this formulation.

ations tested was broadly similar, with the 3-XORSAT
TMA variation returning the highest approximation ra-
tio but at the highest prefactor cost in gate count.

This illustrates the fundamentally different structure
of collective tunneling in this approach. Where high
depth QAOA, AQC and other direct methods attempt
to find the ground state, asymptotically fail (given ex-
ponential scaling), and return approximate states passed
after this missed opportunity, spectrally folded optimiza-
tion deforms the cost function to search for states in an
exponentially large hyperspherical shell, avoiding the in-
terference and weakening field issues that are qualita-
tively responsible for QAOA’s lack of obvious quantum
advantage. In the interest of fair comparisons the to-
tal runtime per-shot of all routines is O (N) Hamiltonian
calls. With this simple linear scaling we are able to en-
sure that any exponential scaling of the time to solution
not visible from our figures or fits must involve very small
exponents, though of course we cannot rule out such be-
havior on numerics alone. We thus do not see our nu-
merical simulations as a precision scaling benchmark of

folded quantum optimization, but rather a test of the
basic veracity of our conservative analytical predictions
in section IV. The results of our simulations, for a wide
range of parameters, all suggest that our theory is sound.

D. Extensions of these results

Having thoroughly explored MAX-3-XORSAT in this
work, it would be interesting to test spectral folding
methods on other hard CSPs or problems that can be
straightforwardly formulated as such. We expect that the
derivation of the achievable approximation ratio through
the overlap of dressed states could generalize with some
modifications to many other problem classes. We focused
on MAX-3-XORSAT due to the simplicity of its struc-
ture, classical approximation hardness, and the fact that
its exponential difficulty scaling is obvious at small N for
more standard classical and quantum approaches.
It also strikes us as noteworthy that while spectral fold-

ing can be implemented in traditional classical heuristics,
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FIG. 9: Performance of the trial minimum annealing formulation of spectral folding with a local Z bias HL, with A = 0.75, for
N running from 8 to 25. qa in each case is comparable to other variations, though greater non-monotonicity in the individual
Pq (N) curves makes fitting more difficult.

there is no benefit to doing so. As we discussed at length
in Sec. II, classical algorithms generally start from high
energy states and attempt to cool towards the ground
state through local updates. In the case of linear spectral
folding, the folding procedure makes no difference what-
soever to the returned energy until the fold energy has
been reached, and in the worst case reaching that energy
is an exponentially difficult task for classical computers
unless P=NP, due to entropic barriers as discussed in
Sec. II and confirmed in our simulations. Changes to the
high energy spectrum from quadratic folding are sim-
ilarly not expected to make approximation easier. So
while spectral folding is not in and of itself a quantum
operation, we expect that it is only valuable in quantum
algorithms and we consider it an irreducibly quantum
method as a result. Further, because of its nonlocal na-
ture, even in the locally gapped dressed problem phase we
expect volume-scaling entanglement in low-lying states of
the folded quantum spin glass, and significant classical
simulation difficulty.

One interesting potential exception to this argument
is quantum Monte Carlo. Being a stoquastic problem, a
folded quantum spin glass can in principle be efficiently
simulated using QMC [91–95], which for a uniform field
has in some cases proven to be an effective quantum-

inspired classical solver [26, 96]. Incorporating spectral
folding into these algorithms is possible, though the loss
of locality makes evaluating each update much more ex-
pensive. As QMC is, fundamentally, an energy-based
classical local update rule combined with many replicas,
we do not expect it to overcome the entropic barrier in
MAX-3-XORSAT the way that true quantum evolution
can.7 All that said, there may be some narrow cases
where incorporating spectral folding in a QMC calcula-
tion could prove useful as a classical solver; this would be
an interesting avenue for future research. If it turns out
that many or all of these instances are efficiently approx-
imable classically through QMC with a folded spectrum,
that would be a very significant discovery in its own right.

7 As remarked earlier, we found the scaling of linear spectral fold-
ing in the AQC framework, which has no influence on the high
energy spectrum at all, to be close to that of quadratic folding for
the same schedule. As finding the deep minimum is an entropic
barrier challenge for classical algorithms, we do not expect sim-
ulated quantum annealing through QMC to be able to replicate
the true quantum result.
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VII. CONCLUSIONS AND OUTLOOK

Using the NP-hard MAX-3-XORSAT problem class,
we explored the question of classical and quantum
approximation hardness from a practical, mechanism-
focused point of view. Guided by theoretical intuition,
we proposed a class of instances called planted par-
tial solution problems (PPSPs) which we showed are
empirically hard for both exact and approximate opti-
mization for classical searches and established quantum
methods such as the quantum approximate optimization
algorithm (QAOA) and adiabatic quantum computing
(AQC). Through extrapolation and qualitative analysis
of a rigorous calculation of the typical-case minimum
gap at the first order paramagnet to spin glass tran-
sition bottlenecking MAX-3-XORSAT, we were able to
identify two effects that significantly impede high-depth
QAOA’s ability to approximate the hardest instances,
namely weakening transverse field and destructive inter-
ference. We then proposed a novel algorithmic update,
called spectral folding, that does not suffer from these two
issues. Spectral folding is conceptually simple; the ana-
lytical analysis of its performance is perhaps less so. And
rather intriguingly, it works by applying classical mod-
ifications to the classical cost function being optimized,
which only provide benefits for quantum optimization.

Using a resummed extensive-order perturbation the-
ory, we were able to predict a constant fraction ap-
proximation guarantee for our difficult random hyper-
graph PPSPs, and consequently, an exponential quan-
tum speedup in the classically hard regime. To further
support our claims, we performed a series of numerical
simulations of high-depth QAOA, classical optimization
routines, and spectral folding methods, out to the largest
sizes that we could feasibly reach while still being able
to gather good statistics. These numerical results sup-
port our claims and we did not discover any meaningful
discrepancies or red flags in them; every major predic-
tion here has been numerically checked to the extent we
found reasonably possible with current supercomputing
resources.

The implications of an effective fast approximation
guarantee through spectral folding–or any quantum algo-
rithm, for that matter–are profound, and even restrict-
ing ourselves to MAX-3-XORSAT it is important to ask
what types of hypergraph might cause it to fail. To be
clear, “failure” in this case means that, for a class of hy-
pergraphs, some property invalidates the analytical pre-
dictions we made and restricts polynomial-time approx-
imation to values of A near zero. If a subsequent, more
sophisticated analysis shows, for example, that due to
some subtle effect missed in our resummed extensive or-
der perturbation theory, the variations we propose are
asymptotically limited to A = 0.4 for random hyper-
graphs instead of our prediction of ≥ 0.6, we would not
consider that a general failure of the algorithm. Given the
exponential density of target states, for folded quantum
optimization to fail the per-state tunneling rate needs to

be much worse than what our calculations and simula-
tions return; even doubling the per-state tunneling decay
exponent in Eq. (33) yields A ≃ 0.18, a much worse ap-
proximation ratio than we predict and observe in simu-
lations, but still a constant fraction better than random
guessing.
We are not so hubristic as to claim it is impossible

that there is some hidden effect that substantially wors-
ens scaling at large N for random hypergraphs, which is
not captured by our theory and is invisible in our nu-
merics. But we see no evidence for it, have no idea what
such an issue could be, and formulated our theory such
that the simplifying approximations we made were more
likely to underestimate the achievable approximation ra-
tio A than overestimate it. Excellent empirical perfor-
mance in simulation supports this interpretation. We
see it as much more likely that one can structure PPSP
hypergraphs in some non-random way as to violate the
core assumptions of our calculations and become inap-
proximable. The conditions on such hypergraphs are,
however, fairly strict; besides needing to more than dou-
ble the exponential decay rate of per-state tunneling as
compared to random hypergraphs, whatever property is
responsible for the slowdown must be resilient both to
the addition of a random, uncorrelated problem with sim-
ilar constraint density and ground state energy, and to
spectral deformations such as quadratic folding. Further,
such graphs must be relatively dense, as sparse problems
are easy to approximate by solving random sub-problems,
and their construction rules must not inadvertently ren-
der them amenable to classical optimization.
Identifying hypergraph properties that cause this en-

tire method to break down could lead to valuable new dis-
coveries about macroscopic quantum tunneling physics
and problem hardness, and further algorithm innovations
in the steps needed to mitigate their effects. As we stated
in the introduction, the underlying reasons for classical
approximation hardness are generic and intuitive if often
only applicable to extremal problem instances, but their
quantum equivalents are not, and much more opaque.
The correctness of our predictions here would imply that
quantum approximation hardness may not be generic at
all, and instead specific to as-yet undiscovered sets of
problem properties. Let’s go exploring.
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Appendix A: Tunneling between two p-spin wells

To benchmark our prediction in Eq. 28, we
performed a series of numerical simulations,
shown in FIG. 10. (p, κ) values used were
{(2, 1.25) , (3, 1.25) , (4, 1.2) , (5, 1.1) , (7, 1.06) , (9, 1.03)},
and the resulting exponents found from numer-
ical fitting of Ω0 (N) = a

√
N2−bN , as com-

pared to Eq. 28, are (listed as (p, bnum, bth))
{(2, 0.175, 0.180) , (3, 0.235, 0.239) , (4, 0.275, 0.287),
(5, 0.482, 0.512) , (7, 0.591, 0.623) , (9, 0.676, 0.722)},
demonstrating excellent overall agreement, even with
the prefactor, as shown in FIG 10.

While fully sufficient for our purposes here (where
p = 3), we want to highlight two issues with the formu-
lation in Eq. 18 that suggest a more refined treatment
should be developed to tackle p > 3 and/or asymmet-
ric minima. First, ∂mEm,n is guaranteed to vanish at
some point, since the energy curve at the peak of the
barrier is smooth, and since it enters the calculation in
the denominator, it predicts a diverging scale for energy
corrections. In symmetric cases, this divergence is can-
celed by the factor of N/2−2n in the numerator and the
result is finite, but if the energy curve is not symmetrical
between the two minima those two factors won’t gener-
ally coincide (as the barrier peak won’t occur at M/2
flips for asymmetric minima) and the divergence will not
be canceled.

Second, even we consider the symmetric case and the
divergence is canceled, this formulation of perturbation
theory can still lead to unphysical results. For p ≥ 4,
while the energy corrections remain finite throughout,
for κ relatively close to κc, the renormalized energy bar-
rier peaks at some m = mc < M/2, and decreases from
there. This is unphysical, and we can mitigate it with the
ad hoc prescription that um,0 simply stops increasing be-
yond m = mc and maintains that value until m = M/2.
The sum in Eq. 23 is similarly modified so that the in-
sertion of an additional spin flip cannot lower the energy.
Using this prescription produces quantitatively good re-
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FIG. 10: Comparison of Eq. 28 to the tunnel splitting found
from exact diagonalization of the Hamiltonian in Eq. 16, for
p = {2, 3, 4, 5, 7, 9} (blue, gold, green, purple, red, brown) and
κ stated in the text. There are no free parameters in this;
exponents found by extrapolating Eq. 28 out to N = 80 agree
with the numerical results to within few percent. To make
sensible predictions for p ≥ 4 an additional modification was
needed to regularize the transverse field corrections to state
energies– see text for details. Only p = 3 is directly relevant
to this work; simulation of other p values is to demonstrate
the accuracy and flexibility of our theory.

sults for p running from 4 to 9, as shown in FIG. 10.
One can also work through this analysis for the split-

ting p = 2 mean field all-to-all ferromagnet, where the
transition out of the ferromagnet phase occurs when
κ = 2 for this normalization. In that case all N spins
must flip and there are no secondary spin corrections;
further, due to a symmetry cancellation the self energy
corrections (e.g. Eq. 18) are energy-independent and thus
do not renormalize the tunneling barrier. Repeating the
same steps for this somewhat simpler calculation yields

Ω0 (Nκ) ≃
√
N

2π

κN

w (N,κ)
2

(e
4

)N
. (A1)

We of course still need to evaluate the normalization fac-
tor w (N,κ). Explicitly, it is given by

w (N,κ) =

√√√√√1 +

N/2∑
k=1

(
N

k

)
κ2k

k! k∏
j=1

ϵ−1
k

2

(A2)

This function is extremely well fit by a simple exponential
in N , with a coefficient that depends on κ. Empirically,
it can be well approximated as,

w (N,κ)
2 ∝

(
1 + aκb

)N
, (A3)

where fitting a range of κ values from 0.4 to 1.6 gives
a = 0.066 and b = 2.25, in fairly good agreement with the

result
(
1 + κ2/16

)M
one can derive from simple second

order perturbation theory.
Of note is that Eq. A2 is both of similar quantita-

tive accuracy as the results plotted in FIG. 10, and it
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predicts that the decay exponent smoothly approaches
zero as κ → 2, at which point the minimum gap de-
cays inverse polynomially. Similar behavior–a crossover
to polynomial scaling when theory predicts the decay ex-
ponent must vanish–was observed both analytically and
numerically in the 1d transverse field Ising chain in [25].
We see this as lending further indirect support to our
polynomial time approximation hardness prediction in
Eq. 33–though the situation is fairly different all these
calculations identify a crossover to polynomial scaling by
the point at which a predicted decay exponent vanishes
in careful many-body theory.

Appendix B: Band structure considerations for
linear spectral folding

In the simulations in section VI, we noticed that the
quadratic AQC formulation of spectrally folded quantum
optimization performed similarly to the rough prediction
in section IV, returning a worst case approximation ra-
tio of qa = 0.7 compared to the approximate theoreti-
cal estimate 0.68. In contrast, the linear trial minimum
annealing versions more notably outperformed the ana-
lyitical prediction (returning qa = 0.75 as compared to
0.6), and in numerical experiments the best choice for
the lowering parameter C (t) in Eq. 8 was 2-3 times that
one would naively expect. We suspect that this has to
do with the band structure of the dressed eigenstates in
T (the band of classical states at or very near the fold
energy) when the transverse field κ is nonzero, and in
this subsection argue why this might be the case. We
present these arguments as suggestions and not a rigor-
ous proof, and think more work on this issue could be
valuable for shedding light on the detailed structure of
these optimization algorithms.

Let {|Tj⟩} be the set of all NT bitstring states in T ;
states in T all have E ≃ AEGS before any corrections
from the lowering Hamiltonian. Further let |ψk⟩ be a
dressed eigenstate whose spectral weight is concentrated
in T . Thus

|ψk⟩ ≃
NT∑
j∈T

cjk |Tj⟩ ,
〈∣∣c2jk∣∣〉 ≃ 1

NT
. (B1)

Finally, let ΩLj be the M -spin tunneling matrix element
into a bitstring state |Tj⟩ from |LD⟩, where ⟨ΩLj⟩j = Ω0

as calculated in Eq. 28.
We choose our gauge and basis so that all transverse

field terms are negative and H is real, which is straight-
forward since H is stoquastic. In this gauge we can as-
sume all the ΩLj matrix elements are negative, though
their magnitudes can of course vary substantially over
T (but we expect are fairly well-correlated locally, when
considering states in T only a few flips apart). Because
the states in T are all near-zero energy, the local trans-
verse field-induced “hopping” matrix elements connect-
ing them are either direct (if a given pair of states in T

are one flip apart), or the result of short ranged, few-flip
tunneling through local excited states. In either case, the
resulting matrix element is negative, and the band of |ψk⟩
states are (approximately) the eigenstates of a hopping-
like model on a sparse, disordered graph of NT sites,
where most hopping matrix elements are negative and
there is local potential disorder. With all these quantities
defined, we now want to estimate the tunneling matrix
element Ω̃Lk from |LD⟩ into |ψk⟩.
We first consider states |ψk⟩ near the band center, e.g.

where the energy shifts from the transverse field are solely
due to the second order local processes captured in sec-
tion IV and the “hopping energy” is nearly zero. For
such states, we can assume the signs of the amplitudes
cjk are randomized. Then by the law of large numbers:

〈
Ω̃2

Lk

〉
k

≃
〈NT∑

j∈T
cjkΩLj

2〉
k

(B2)

∝ NT
〈
c2jkΩ

2
Lj

〉
j
∝
〈
Ω2

Lj

〉
.

Thus, the average squared matrix element to tunnel into
a state in the band center has the same scaling as one
obtains from a more naive calculation that ignores the
band structure entirely. Since the majority of states in
the band are near the center in this respect, this calcu-
lation shows that ignoring the local band structure in T
is a decent approximation for obtaining the average col-
lective tunneling rate that enters into equations like 33.
But what happens when we consider states that are

more extremal, e.g. near the top or bottom of the band?
Near the top of the band, we can assume significant local
alternation in the signs/phases of the cjk coefficients, and
thus the assumption of randomization is still fairly good
and Eq. B2 likely accurately captures the scaling. For
states near the bottom of the band, however, the situa-
tion changes. First, these states will be lower in energy
by an O (N) factor, which means C (t) must be further
reduced for |LD⟩ to cross them, and the individual tun-
neling matrix elements ΩLj into such states may scale
differently as a result. We label these matrix elements
Ω′

Lj and do not attempt to predict what, if any, changes
to scaling may arise.

Second, to minimize the energy the signs/phases of the
cjk of nearby (in Hamming distance) configurations will
be synchronized given that the matrix elements that cou-
ple them are real and (mostly) negative (again, in this
gauge choice). And this synchronization can dramati-
cally enhance tunneling rates. Let us guess, for example,
that in the band ground state |ψ0⟩, most cj0 are positive.
Then:

∣∣∣Ω̃2
L0

∣∣∣ ≃ 〈
NT∑

j∈T
cj0Ω

′
Lj

2〉
∝ NT

〈(
Ω′

Lj

)2〉
. (B3)

Since NT is exponentially large in N (Eq. 31), the tun-
neling matrix element into the band ground state can
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be exponentially larger than the average matrix element
for tunneling into the band center, though if Ω′

Lj decays
more quickly with N that may reduce or erase this effect.
We expect that collective tunneling into low-lying states
in the band could be similarly enhanced even if there
is more variation in the signs of the cjk terms, as the
matrix elements ΩLj are locally correlated in magnitude.
And though there are exponentially fewer states near the
band bottom compared to the band center, if the tunnel-
ing matrix elements are exponentially larger the weighted
average over all states in the band can be substantially
increased–we saw this effect already in averaging over the
relative distance to |L⟩ of different states in T (Eq. 32).
It is thus quite plausible that band structure effects could

further increase collective tunneling rates and be respon-
sible for the relative overperformance of TMA spectral
folding in our simulations, as compared to the analytical
prediction.
All that said, we did not include this analysis in the

main text because we do not presently have the mathe-
matical tools to quantitatively predict the band structure
and nature of the dressed eigenstates, nor can we predict
the potential scaling changes in the collective tunneling
matrix elements Ω′

Lj to states near the bottom of the
band. So we present these results to justify our claim
that ignoring band structure is likely to underestimate
the achievable approximation ratio, and to suggest inter-
esting directions for further research.
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FIG. 14: Performance quadratic AQC spectral folding, for NC =
{
2, 4, 6, 3

√
N/2

}
N (clockwise from top left) with increased

approximation target A = 0.85 and all other parameters equal. In comparison to the A = 0.75 results in figure 7, increasing A
improves prefactors but does not improve scaling and in the case of NC/N = 6, modestly reduces qa. This suggests we have
reached the performance ceiling for this variation on the tested PPSP classes.


