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Axion-like dark matter whose symmetry breaking occurs after the end of inflation predicts en-
hanced primordial density fluctuations at small scales. This leads to dense axion minihalos (or
miniclusters) forming early in the history of the Universe. Condensation of axions in the minihalos
leads to the formation and subsequent growth of axion stars at the cores of these halos. If, like
the QCD axion, the axion-like particle has attractive self-interactions there is a maximal mass for
these stars, above which the star rapidly shrinks and converts an O(1) fraction of its mass into
unbound relativistic axions. This process would leave a similar (although in principle distinct)
signature in cosmological observables as a decaying dark matter fraction, and thus is strongly con-
strained. We place new limits on the properties of axion-like particles that are independent of their
non-gravitational couplings to the standard model.

I. INTRODUCTION

The stars in our galaxy are made of ∼ 1057 fermions
bound together by gravity and protected from collapse
by thermal pressure or fermion degeneracy pressure. In
the presence of a light, long-lived boson similar gravita-
tionally bound states of that boson may exist, but in the
absence of nuclear burning they are instead supported
by gradient pressure, which is a result of the uncertainty
principle. Axion stars are one such example of these
bosonic objects.

In the Standard Model, stars convert approximately
0.1% of their mass energy into radiation over their life-
time. The small energy released (compared to rest mass)
in the pp-chain, for instance, is due to the relatively small
binding energy inside the star. Only very compact ob-
jects like neutron stars are relativistic in nature. More-
over, because of baryon number conservation, there is a
limitation on overall energy release given the (approx-
imately degenerate) neutrons and protons which must
remain in the final state.

However, in the dark sector, there are reasons to ex-
pect the overall energy conversion could be much higher
if a similar process were to occur. Complete conver-
sion of rest mass from e.g. a 3 → 1 process is possi-
ble because there is no “baryon-number” conservation
for bosonic dark matter. For example, axion stars will
collapse and emit relativistic axions when they reach a
critical mass. We call such processes that drastically con-
vert dark matter to dark radiation as Axinovae. There
is no mechanism to quench the axionovae if axion stars
form ubiquitously in the Universe, as expected in the
post-inflationary scenario where axion miniclusters form
after matter-radiation equality. Therefore, a large for-
mation rate of axion stars that lead to axinovae is very
constraining. We take the formation of axion stars as a
concrete example to study but the result can apply to
generic scalars whose self-interaction is attractive since
the properties of axion stars do not depend on any inter-

actions other than gravity and the axion self-couplings.
A natural cosmic history that can occur generically

for these models is, after matter-radiation equality, these
axions stars form, grow, and finally explode as an axi-
nova, converting a significant fraction of energy into semi-
relativistic axions. After this, the remnant can continue
to grow, until it explodes again. This process of recurrent
axinovae can convert a significant fraction of the dark
matter into relativistic energy, which is then constrained
by cosmological observations.

This paper is organized as follows: in Sec. II, we dis-
cuss the formation of enhanced structures at small scales
due to the axion perturbations and study the formation
history of axion stars inside those structures. In Sec. III,
we study the constraints on axion parameter space by
requiring the decay fraction of axion dark matter should
not exceed an upper bound. In Sec. IV, we present our
conclusions.

II. AXIONS, AXION MINIHALOS, AND AXION
STARS

The axion is a well-motivated dark matter candidate,
which can also leave unique fingerprint on the matter
power spectrum at small scales if the PQ symmetry
breaking occurs after inflation. In such scenarios, differ-
ent horizon patches have different matter densities when
the axion acquires its mass, leading to the formation of
axion miniclusters or axion minihalos at matter-radiation
equality [1, 2]. More interestingly, coherent objects called
axion stars can form in the center of axion minihalos due
to Bose-Einstein condensation [3], which may eventually
accrete into a critical object and emit relativistic axions.
We call such phenomenon axinovae, which can occur with
an attractive axion self-coupling and the formation of ax-
ion minihalos at matter-radiation equality.

Originally proposed to solve the strong CP problem
[4–6], the present-day landscape of axions and axion-like
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particles (ALPs) is broad. One common feature across
this landscape is that the axion, φ, is a pseudo-Goldstone
boson of a global U(1)PQ symmetry broken at a scale
fa. The U(1)PQ is anomalous under a confining gauge
group which means that the axion’s potential is generated
through instanton effects occurring at the compositeness
scale of the gauge group, Λ, and takes the form

V (φ) =
Λ4

cud

√
1− 4cud sin2

(
φ

fa

)
. (1)

In the case of the QCD axion Λ ≈ 200 MeV and cud ≈
mumd/(mu + md)

2 ≈ 0.2. In addition to the self cou-
plings, coupling to gravity, and the anomaly-induced cou-
pling to QCD (or QCD-like group), the axion may have
model-dependent couplings to other SM gauge bosons
and fermions. We focus here on the self and gravitational
couplings only, which can already lead to interesting dy-
namics such as axinovae.

A. Axion Minihalos

In the post-inflationary scenario, the present-day Uni-
verse contains a large number of patches which were
causally disconnected at the time of QCD phase tran-
sition. In each causally disconnected patch of the Uni-
verse, axion field values are uncorrelated. Once the ax-
ion acquires a mass, and Hubble friction is small enough,
the axion behaves as cold dark matter and isocurvature
fluctuations are present in the matter density. When
the Universe becomes matter dominated this small-scale
structure will start to collapse under gravity, leading to
axion minihalos. Furthermore, there may be large over-
densities of axions at even smaller scales arising from
the evolution of the network of axion strings and domain
walls [7] set up when the PQ symmetry breaks. Even
for the much studied case of the QCD axion, there is
controversy [8–22] as to what fraction of the relic dark
matter axions arise from misalignment or from the de-
cay of topological defects. Along with those topological
defects, objects called oscillons or axitons that can con-
tribute to the small scale overdensities will form after the
axion accquires its mass [14, 15]. Those objects can form
when the axion self-interaction dominates over the Hub-
ble expansion term, which is easily satisfied in the early
Universe when the self-interaction is strong due to the
high density. As the axion density drops, the formation
of oscillons will be turned off and oscillons themselves
will dissipate via emitting relativistic axions.

It is worth noting that the post-inflationary scenario is
not essential for the axinovae. Any matter power spec-
trum which is enhanced at small scales can lead to the
formation of axion minihalos around matter-radiation
equality, but the post-inflationary scenario is a minimal
realisation. We take a simple ansatz for the spectrum
of initial fluctuations in the axion field, namely that the
spectrum of isocurvature fluctuations in the axion field

follow a white-noise spectrum, cut off at small scales i.e.

δρa
ρa

= A0

(
k

k0

)3

Θ(k0 − k) . (2)

Here k0 ≈ aoscHoscis the (comoving) wavenumber deter-
mined by the horizon size at the time the axion starts to
oscillate, i.e. ma(Tosc) ∼ 3Hosc. While here we consider
a pure white noise spectrum we extend this analysis to a
more general power law spectrum in Appendix C. In real-
ity one would expect a softening of the cutoff in the white
noise power spectrum at small scales. The exact details
of how this occurs is related to the dynamics of string net-
work and axitons, and is unknown. It will not affect our
conclusions, see Appendix C for details. As mentioned
above, the contribution of strings and domain walls to
the abundance of non-relativistic axions is uncertain and
will impact the size of the power spectrum. Simulations
typically show the density perturbations have A0 ∼ 0.1
at k = aoscHosc, but they also show larger sub-horizon
(larger k) fluctuations. These sub-horizon fluctuations
can collapse earlier than those at the horizon scale, lead-
ing to high concentration minihalos. These halos are at
smaller scales, k ≥ aoscHosc, and have larger δρa/ρa and
lower axion speeds in the mini-halos, resulting in a faster
star growth rate. We take the conservative limit of hold-
ing k0 = Hosc as the scale at which A0 = 1. With this
white noise power spectrum (2) the first structures, of

mass M0, form at redshift zc ≈ A
1/2
0 zeq and the charac-

teristic structure mass, defined as the peak in the distri-
bution Mdn/d logM , occurs at

Mpeak(z) = M0

(
1 + zc
1 + z

)2

. (3)

Where

M0 = 6π2ρ0

(
1

k0

)3

, (4)

is the co-moving mass in the horizon at the time the axion
starts to roll and ρ0 is the present-day cosmological axion
density. The minihalos have a distribution of masses but
for simplicity we use the characteristic mass Mpeak to
provide a measure of the overall behavior.

The growth continues till around z ∼ 10 − 20 when
the minihalos merge into standard CDM halos and their
growth stalls [23].

We take the minihalos to have an NFW [24] density
profile, defined by a scale radius rs and density ρs,

ρ(r) =
ρs

r
rs

(
1 + r

rs

)2 . (5)

At the scale radius the circular speed is given by

v2
s = 4πGNρsr

2
s (log 4− 1) . (6)

This speed will be relevant for the calculation of ax-
ion star formation rate, and in the minihalos that will
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form axion stars this speed is much smaller than typical
speeds in the Milky Way. Numerical studies have shown
that the dark matter halos at the characteristic mass will
first reach a concentration factor [25] c ≈ 4 at the time
of halo collapse [26]. For lighter halos that grow more
through accretion than mergers, the halo concentration
will grow linearly with the scale factor due to the de-
creasing background density. In the next subsections we
discuss further structures that can develop in the core of
these minihalos. In addition to the low speeds in mini-
halos, the scale density in the mini-halos that form early
is large,

ρs = ρ0(1 + z)3 ∆200 c
3

3
(

log(1 + c)− c
1+c

) , (7)

where ∆200 ≈ 200 in the spherical collapse model. For
mini-halos that collapse at zeq this density is ρs ≈ 1014ρ0.

B. Lifecycle of an Axion Star

We now turn to the question of formation of axion stars
at the core of the minihalos discussed above. The sub-
sequent growth and explosion of axion stars (axinovae)
will also be studied. There are a few timescales we will
discuss that are relevant in the lifecycle of axion stars:

• The condensation timescale from gravitational in-
teractions

• The condensation timescale from axion self-
interactions.

• The evaporation timescale of light axion stars.

• The Hubble time when the axion star formation is
active.

We will discuss those timescales later in this subsection.
For the parameter space that axinovae can place mean-
ingful constraints on, the axion self-interaction always
dominates over gravity.

As discussed in Appendix A, there are two branches
of axion star configurations: the dilute branch, which,
below a certain mass, is stable and the dense branch
which will explode and emit relativistic axions. There is
a critical star mass (A5) that separates the two branches,
which we denote as Mmax

∗ . Therefore, if they continue
to accrete mass, the lighter dilute axion stars will even-
tually become unstable in a minihalo environment. Ax-
ion minihalos are ideal environments for the axion star
formation because they are dense and cold, owing to the
high collapse redshifts and small virial masses. When the
star formation rate is sufficiently large, stars will form in
the minihalo center and grow to a critical mass star if
the minihalo is massive enough. The critical star will
contract under self-interaction and gravity, converting a
large fraction of its mass to relativistic axions. Until

the axinovae consume most of the minihalo mass, ax-
ion minihalos remain ideal environments for the axion
star formation and axinovae shall occur again within the
same timescale. Thus, we naturally expect the axinovae
phenomenon to be recurrent, when the growth timescale
is fast enough. The crucial calculation to determine the
fate of axion stars is the formation rate in the minihalo
center and the corresponding star mass.

Once minihalos exist, gravitational interactions or self-
interactions can subsequently lead to the formation of
Bose-Einstein condensed axion stars at their center. The
timescale for this formation, and subsequent growth, in
an environment where the axions being captured have
typical number density n and speed v is determined [27–
30] by

τ ∼ (fBEnσv)
−1

. (8)

With σ the total scattering cross section. This formation
rate is Bose-enhanced from the naive expectation due
to the large phase space density, fBE = 6π2n(mav)−3.
The gravitational Rutherford transport cross section
is σgr = 8π(GNmav

−2)2 log(mavR), where the Coulomb
logarithm has been cutoff at a characteristic length scale
of the minihalo, R. Attractive self-couplings can also
lead to formation and the scattering cross section is
σself = λ2m−2

a /128π. The total condensation time, con-
sidering both gravity and self-interaction, is

τ =
τselfτgr
τgr + τself

. (9)

With each individual process having a timescale of

τgr =
b

48π3

mav
6

G2
Nn

2 log (mavR)
, (10)

for gravity, and

τself =
64dm5

av
2

3πn2λ2
. (11)

The parameters b, d ∼ O(1) are numerical coefficients
that are extracted from numerical simulations [31]. Com-
paring these two timescales, (10) and (11), we see that
the self interactions will determine the axion star forma-
tion rate if fa <∼Mplv. Furthermore, if the relevant speed
is determined by gravitational collapse of a minihalo (6)
then self interactions dominate in the limit f2

a
<∼ ρsr

2
s .

When determining the gravitational relaxation timescale
for formation of axion stars in minihalos we take, as typ-
ical, the densities and speeds at the scale radius, see
Eqs. (5) and (6).

In addition to the timescale for axion star growth there
is also a rate for evaporation of the star. Axions in the
halo that are not part of the star can collide with bound
axions causing them to be ejected. The rate for this pro-
cess shrinks with axion star mass and is approximately
[32] Γevap ∼ (mavR∗)

2τ−1. The competition between
growth and evaporation means only axion stars above a
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certain mass will gain mass by gathering axions from the
halo. As observed in numerical simulations [27, 32] such
stars first appear after time τ and then proceed to grow.
The growth is initially fast (d logM/dt is constant) but
once the virial velocity of the minicluster falls below the
speed of the axions in the axion star the rate of growth
slows, d logM/dt becomes inversely proportional to (a
power of) the star mass [32] which results in the mass
growing with time as a power law. The characteristic
axion star mass where this change in behavior occurs is
obtained by equating the virial velocity of the minicluster
with that of the axion star [27, 28, 31–34] is

M∗ ≈ 3ρ1/6
a G

−1/2
N m−1

a M
1/3
h , (12)

where Mh is the halo mass. The behavior of the growth
rate once the axions in the star are moving faster than
those in the halo is not definitively known, and there is
evidence that it may continue to evolve with star mass
[32]. This would result in the mass growing as a power
law with a running index. However, to simplify our anal-
ysis and to partially account for the numerical uncertain-
ties, we will use a single power law but consider a range of
possible powers. In particular, we parametrize the power-
law mass growth as M∗ = M∗ (t/τ)1/α and vary α in the
range of 1 to 5. With initial exponential growth followed
by constant power law growth, the timescale to form an
axion star at critical mass Mmax

∗ depends in which regime
the critical mass falls. Thus,

tcrit = τ ×

{
log
(
M∗/M

max
∗

)
+ 1, Mmax

∗ ≤M∗
(Mmax
∗ /M∗)

α, Mmax
∗ > M∗

.

(13)
The numerical simulations discussed above have

mostly been carried out assuming a homogenous gas of
axions as the initial background upon which an axion
star forms. For stars that form in minihalos the gas has
a density and velocity profile. In Appendix B we argue
that for an NFW profile the exponential growth is re-
placed with a power law, and the whole growth becomes
a single power law, with α = 3/2 when self interactions
dominate.

Given that the majority of the dark matter has col-
lapsed into axion minihalos with a characteristic mass
Mpeak(z), the total fraction of dark matter rest mass that
has been converted to kinetic energy per unit time can
be calculated as

dfdecay

dt
=

κMmax
∗

Mpeak(z) tcrit
, (14)

where κ is the fraction of the axion star’s mass that is
converted to relativistic axions during axinovae. From
simulations of these processes [35], it is seen that ap-
proximately 50% of the star’s mass is lost during the
nova and of this about 20% is in the form of relativistic
axions, so κ ≈ 0.1. The time to reach a critical star given
in (13) assumes the star grows from an undistorted mini-
halo. After the first axinova there is a remanent of mass

∼ 0.5Mmax
∗ already present and the time for this to grow

to Mmax
∗ is slightly shorter than for the first star. For the

power law considered here this correction is small and we
ignore it, assuming all subsequent stars take time tcrit to
explode.

III. COSMOLOGICAL CONSTRAINTS

A. The decay rate of axion stars

The process of forming axion stars which subsequently
become nova converts non-relativistic dark matter axions
into boosted (γ ∼ O(few)) axions. The kinetic energy of
the outgoing axions will red-shift away after the scale fac-
tor has grown by ∼ √γ and thus the dark matter’s con-
tribution to the matter-energy budget is depleted. Here
we study the impact of the cumulative loss of mass in
the dark sector but it is possible that the temporary ex-
istence of a new relativistic species may lead to a mea-
surable effect on large-scale structure and is worthy of
future study.

This process is closely related to the scenario of de-
caying dark matter, which is well constrained by recent
cosmological data [36–38]. For dark matter which de-
cays after recombination, the decrease of the dark mat-
ter fraction will increase the angular diameter distance
to the last scattering surface over time. Furthermore,
the amount of CMB lensing is reduced due to a smaller
gravitational potential than expected. This scenario is
constrained by a combination of CMB [39] and, for very
long lived dark matter, SDSS [40] data. If the decay of
dark matter occurs well before recombination or even be-
fore matter-radiation equality, the primary effect of the
decaying dark matter is to enhance Neff since the decay
products behave as dark radiation. In the short-lived sit-
uation the constraints are primarily from CMB measure-
ments. We will be interested in the long-lived case, and
in particular decays which occur after matter-radiation
equality but are no longer ongoing. The equivalent bound
[38] for decaying dark matter on the fraction of the initial
amount of dark matter that can decay is

fdDM ≡
ΩdDM

ΩdDM + ΩDM
≤ 2.62% (at 2σ) . (15)

Although the cosmological evolution of the dark sectors
for decaying dark matter and axinovae are not identi-
cal they are similar and since the above constraint is in-
dependent of decaying dark matter lifetime over a wide
range of lifetimes we will use it to constrain axions. We
leave a more detailed numerical analysis, and an investi-
gation of other possible signals, for future work. Convert-
ing (15) to the case of axinova leads to the requirement
that ∫ z=20

zc

dz
dfdecay

dz
≤ 2.62% . (16)
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In the scenario of axinovae, the decay of dark matter
occurs when axion miniclusters start to form, which is
always after matter-radiation equality. To avoid the con-
straint of (16) requires either that the formation rate of
axion stars is too small to be cosmologically relevant or
that the formed axion star mass is smaller than the crit-
ical mass so there are no axinovae. Note that this bound
does not rely upon there being a coupling to any SM
particles e.g. photons, gluons, or SM fermions. However,
our constraints do rely on the assumption that axions
do make up the dark matter relic abundance and that
the fluctuations in the axion field are isocurvature in na-
ture and approximately power law. If axions make up
a fraction of the dark matter, this can be encoded as a
reduction of κ, see (14), and a corresponding weakening
of the bounds.

For normal misalignment production of axions, where
〈θ2〉 ≈ 4 [41], the typical initial halos that form have a
mass that depends upon the horizon size when the ax-
ion starts to oscillate ma(Tosc) = 3H(Tosc)/2. For the
QCD axion, where the temperature dependence of the
axion mass is known, this oscillation time is uniquely
determined. However, in more general axion scenar-
ios the oscillation temperature, and therefore M0, is a
free parameter. In the radiation dominated era H(T ) =

π (8πg∗(T )/90)
1/2

T 2/MPl and the halos form with mass,

Mh =
4π

3

(
1

a(Tosc)H(Tosc)

)3

ρ0 ≈ 2×108M�

(
keV

Tosc

)3

.

(17)
The existence of DM structure down to small scales re-
quires that the axions behave as dark matter by the
time the temperature of the Universe is ∼ keV, i.e.
Tosc >∼ 1 keV. Thus, there is an upper bound on the initial
halo mass. More sophisticated analysis of the constraints
on the axion isocurvature power spectrum at small scales
can be found in Ref. [42].

Going forward we will assume that the axion makes up
a sizable fraction of the dark matter abundance and place
a bound on its self-coupling, equivalently fa, through
recurrent axinova. There are four parameters that de-
termine the amount of axion dark matter that is con-
verted to dark radiation: the axion mass ma, the axion
self coupling λ which in simple models is determined by
the decay constant fa, the structure mass M0 (or equiv-
alently Mpeak(zc)), and the red-shift at which minihalos
first form zc. Numerical simulations [14, 15] indicate that
the white noise spectrum has large amplitude at small
scales A0 ∼ O(1) and thus minihalos form as early as
possible zc ∼ zeq, with mass given by (17).

As times evolves, the characteristic mass grows as
Mh ∼ (1 + z)−2 as minihalos merge with each other.
Since a characteristic mass halo has concentration c ≈ 4
its scale radius and density vary with redshift as rs ∼
(1 + z)−5/3, ρs ∼ (1 + z)3 and consequently the speed at
the scale radius depends on redshift as vs ∼ (1 + z)−1/6.
From Eqs. (10) and (11) this implies that the time scales
for collapse scale as τgr ∼ (1 + z)−7, τself ∼ (1 + z)−19/3.

This rapid lengthening of the axion star formation time
as the Universe ages means that the dominant DM mass
loss occurs as soon as the minihalo mass is larger than the
critical star mass, and the earlier that occurs the greater
the fraction lost. More precisely, assuming tcrit is in the
power law regime, the decay rate for halos of mass M0

which initially form at redshift zc is,

dfdecay

dz
∼ 76500π2/3κ

M3
plρ

2
col

M0f5
am

4
a

(
1 + z

1 + zc

)8
1

(1 + z)5/2H0

×

1 + 75π4/3

(
fa

M
1/3
0 ρ

1/6
col

)4(
1 + z

1 + zc

)2/3


×
(

M∗
Mmax
∗

)α−2

Θ (Mpeak(z)−Mmax
∗ ) ,

(18)

where we have suppressed the logarithmic corrections to
the Rutherford cross section in (10), taken b = d = 1,
and ρcol = (1 + zc)

3ρ0 is the background density at the
time of initial collapse.

The from of (18) makes clear that the rate is peaked
to early redshift and this rate is enhanced by decreasing
both ma and fa. If the timescale for scattering is set by

self interactions, i.e. fa <∼ M
1/3
0 ρ

1/6
0 , then along curves

where fa ∼ m
−4/5
a the decay rate is constant. Further-

more, for any choice of parameters there is a maximal fa
above which there is not enough time to form a critical
mass star in a minihalo. This leads to a region, bounded
from below (above), in ma − fa (ma − f−1

a ) space which
is constrained by the cosmological data discussed above
(14).

In Fig. 1, we plot the region that is constrained by
the axinovae, for various assumptions. The gray regions
are excluded by black hole superradiance constraints [43–
46]. The most conservative (weakest) constraint, shown
in green, comes from assuming that the oscillation tem-
perature is low and that the time to reach a critical star
is given by (13). Over most of the green region the crit-
ical star mass is low and the growth (d logM/dt) is still
in the constant regime. Given constraints on large scale
structure we take the lowest possible oscillation tempera-
ture to ∼ 1 keV. The later an axion starts oscillating the
larger the mass of the initial axion miniclusters, which
leads to a longer axion star production time τ , suppress-
ing the resulting appearance of axinova.

In the red region we again assume the lowest possible
oscillation but now assume that the star growth is power
law, M ∼ ρsr3

s(t/τ)2/3, for all star masses, as discussed in
Appendix B. At masses below ρsr

3
s the power law predicts

faster growth than the constant growth assumed in (13)
and the green region. This makes the bound stronger.
For fa >∼ 1015GeV the axion star critical mass is larger
than where exponential growth transitions to power law
in the green and the two constraints coincide.

Finally, the blue region is the strongest constraint
and is found by optimizing over the oscillation temper-
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10-20 10-18 10-16 10-14 10-12 10-10 10-8 10-6 10-4
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10-11

10-9

10-7

FIG. 1. The exclusion region from axinovae for different as-
sumptions for axion parameters, see text for more details.
Existing limits from the black hole superradiance are shown
in grey. The green region is the most conservative bound us-
ing a constant rate of dlogM/dt at Mmax

∗ ≤ M∗ and a late
Tosc, with a formation timescale given in Eq. (13) The red re-

gion uses a power-law growth (PL) with M ∝ t2/3 over all the
mass ranges and it also assumes the lowest oscillation temper-
ature. The blue region presents the bound after optimizing
over oscillation temperature.

ature. The maximum possible oscillation temperature
arises when the axion starts oscillating with its zero tem-
perature mass, Tosc =

√
maMpl. These high temper-

atures will lead to the lightest axion miniclusters and
the shortest star production times, but such miniclusters
may not be massive enough to contain a critical star. At
each point in the parameter space, we select the highest
possible Tosc that leads to a massive enough minicluster.
Since, Mh ∼ T−3

osc this selected temperature is still close
to
√
maMpl. In Fig. 2, in Appendix D we show the con-

straint for M∗ ∼ t1/5, when the leading order the decay
rate is independent of Tosc.

In the excluded regions an O(1) fraction of all dark
matter has passed through an axionova. This may lead to
other observables in axion experiments or in cosmological
observations. Given the high powers that appear in (18)
if the constraints on decaying dark matter are improved
in the future the region of parameter space excluded will
not be greatly altered.

IV. CONCLUSIONS

We obtain new bounds on axion dark matter parame-
ters ma, fa assuming the formation of dense axion mini-
halos, motivated by the post-inflationary scenario. Axion
perturbations in the post-inflationary scenario will lead
to the formation of dense substructures known as axion
miniclusters or minihalos after matter-radiation equality,
which can subsequently form coherent objects known as
axion stars at the core of axion minihalos. Low mass di-
lute axion stars, supported by gradient pressure, can be
cosmologically stable. However, they will accrete more
axions from minihalos and continue to grow in mass un-
til the axion self-coupling becomes important and the
gradient pressure can no longer stop them from collaps-
ing and emitting relativistic axions, in an axinova. The
remnant of an axinova is a less massive star which will
again grow, leading to recurrent axinova.

If the recurrent formation rate is large enough and ax-
inovae are active, they can convert a significant fraction
of dark matter into radiation which can be constrained
by measurements of large scale structure formation. Our
constraint only depends on the axion self-coupling and
gravity. The self coupling can be mapped to axion-
photon and axion-neutron couplings in specific models.
Those constraints are obtained by requiring the popula-
tion of dense axion stars formed in axion minihalos at
high redshifts shall not dominate the mass of dark mat-
ter. If the axion is only a fraction of dark matter or only a
few percent of axion dark matter is decaying, the conver-
sion to dark radiation may be cosmologically significant
in future observations but consistent with the current
data. Alternatively, if the axinova has a branching frac-
tion into standard model states there may be observables
in the region or parameter space close to our bound. We
leave a more detailed study of the cosmological evolution
or possible visible signals to future work.
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APPENDIX

Appendix A: Axion Star Configurations

The stable axion-field configuration for the gravitational bound-state of non-relativistic axions can be found by
solving the Gross-Pitaevskii-Poisson equations, which must be done numerically. For a thorough review, see [47] and
references therein. However, it has been shown that a good approximation of these solutions is obtained by using a
Gaussian ansatz for the field profile [48–50]. Doing so gives some insight into the competing effects driving the physics
[51]. Expanding the axion potential (1) to quartic order one finds an attractive self interaction

V =
1

2
m2
aφ

2 − λ

4!
φ4 , (A1)

with λ = (1− 3cud)m
2
a/f

2
a . An axion star of mass M∗ and radius R∗ has energy

E∗ = −GNM
2
∗

R∗
+ c1

M∗
2m2

aR
2
∗
− c2

λM2
∗

12m4
aR

3
∗
. (A2)

In order, these terms correspond to the gravitational self energy, the gradient pressure, and the internal energy from
self interactions. The numerical coefficients, ci, depend upon the details of the field profile and are found numerically
[51–53] to be c1 = 9.9, c2 = 0.85. The mass-radius relation for axion stars, found by minimizing E∗, has two solutions

R±∗ =
c1

2GNM∗m2
a

(
1±

√
1− c2

c21
λGNM2

∗

)
. (A3)

The R+
∗ root corresponds to the so-called dilute branch and the axion field value is small. On this branch gravitational

attraction is balanced by gradient pressure leading to a stable configuration. As is typical for objects supported by
uncertainty pressure the product of the radius and mass of the star is a constant

R+
∗ = 9.9

M2
pl

m2
aM∗

. (A4)

However, as one moves to larger axion star mass the self interactions cannot be ignored and if they are attractive (as
asummed above) they destabilise the star. There is a maximal mass, beyond which axion stars are no longer stable

Mmax
∗ =

10.7√
λ
Mpl . (A5)

The two solutions (A3) meet at this maximal mass. The second solution is one where gravity can be ignored and the
gradient pressure and the axion’s attractive self interactions are in unstable equilibrium. On this branch R∗ ∼M∗.

The value of the axion field at the center of the star scales as a2
0 ∼M∗/(m2

aR
3
∗) so that at the low mass end of the

R−∗ branch a0 ∼ 1 and the axion field is not dilute. The axions can no longer be thought of as non-relativistic and the

solution is approximately constant density (ρ ∼ m2
πf

2
π) and thus R∗ ∼ M

1/3
∗ . However, it is believed that this field

configuration is also unstable, with a lifetime ∼ 103m−1
a [51], although alterations to the axion potential can make

these solutions long lived [54–56].
The upshot of this is that if a dilute axion star with mass below Mmax

∗ were to form and grow, by accumulation of
additional axions, to the maximal mass it would then shrink in size and become a dense axion star which would survive
for a short period. During this time the dense axion star goes through several oscillations and a density singularity
develops in the central core and this dense region emits relativistic axions lowering the density [35, 57, 58]. This
process repeats and ∼ 30% of the initial star mass can be emitted, leaving a dilute remnant which may in turn grow
to the maximal mass and emit more relativistic axions. Thus, maximal mass stars are an engine to turn substantial
amounts of cold dark matter into radiation.

Appendix B: The growth of axion stars in a large minihalo

When the axion star mass larger than the characteristic star mass M∗, the mass growth is found to be well described
by a power law, M∗ ∝ t1/α. However, the growth rate at lighter masses in an axion minihalo is still unknown. One
would expect the growth rate is larger at smaller radius in the minihalo environment due to the larger density and
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smaller velocity. If a star is formed within a small radius, the mass contained in this region is small. Therefore, lighter
objects always start to form with a greater rate. For an NFW profile, the mass contained within r is

M(r)|r→0 = 4πρsr
3
s

(
ln

(
1 +

r

rs

)
− r

r + rs

)
≈ 2πρsrsr

2. (B1)

The formation timescale given by self-interactions is τself ∝ v2/ρ2. At small radius of an NFW halo, the density and

velocity scale as ρ ∝ 1/r and v ∝
√
r. Therefore, M(t) ∝ t2/3. Similarly, if the gravity dominates the axion star

formation, τgr ∝ v6/ρ2 ∝ r5 at small radius and we obtain the mass growth power law M(t) ∝ t2/5. Since this scaling
is active at short distance scales within the minihalo we consider a scenario where α = 3/2 at all axion star masses,
see Fig. 1.

Appendix C: Press-Schechter with White Noise-like Power at Short Distances

We consider the density perturbations, δ ≡ δρ/ρ, to consist of two contributions, conventional ΛCDM adiabatic
perturbations that are present at all scales and isocurvature perturbations which are only become important over
a finite range of scales. We take the isocurvature contribution to be a power low with a cut-off at very small
scales, corresponding to a wavenumber k0. For the case of the axion it is believed the short-scale behavior has a
power spectrum that is approximately that of white noise, corresponding to n = 3 below. Modes from these two
contributions have different growth behaviors after they enter the horizon, in particular the adiabatic perturbations
have logarithmic growth until matter-radiation equality while the isocurvature modes do not. At late times, in the
matter dominated era, they have similar growth. Taking into account these different growth behaviors the two-point
function of the density perturbations is

〈δ2〉 =
2π2

k3

(
D2
adiI

2
1L

2As

(
k

ks

)ns−1

+D2
isoA0

(
k

k0

)n
Θ(k0 − k)

)
. (C1)

For a ΛCDM-like power spectrum As ≈ 2 × 10−9, ns ≈ 0.97, and the pivot scale is ks = 5 × 10−3 Mpc−1. At late
times Dadi ≈ Diso ≈ a/aeq = (1 + zeq)/(1 + z) and the exact forms can be found in standard references e.g. [59, 60].
The constant I1 ≈ 9.1 and L ≈ log(0.1aeq/a).

The Press-Schechter formalism assumes spherical collapse of over-densities and that the probability for these col-
lapses follows a Gaussian distribution whose variance, smoothed at some scale R, is given by

σ2(z,R) =

∫
d3k

(2π)
3 〈δ

2〉
∣∣∣W̃ (kR)

∣∣∣2 , (C2)

where W̃ (kR) is the window function and can take various forms. Here we focus on the so-called sharp k-filter where

W̃ (z) = Θ(1 − z). For this choice of window function there is not a well defined mass, M , associated with the

co-moving filter scale R, since the real space form of W̃ does not have local support [61]. However, we will follow the
oft-used relation M = 6π2ρ0R

3 [62], where ρ0 is the present day cosmological axion density. Note that for (C2) to be
well defined we have to introduce an IR cut-off kIR and we define M0 = 6π2ρ0k

−3
0 . We are typically interested in halo

masses and formation redshifts where the adiabatic perturbations are subdominant to the isocurvature perturbations,
As � A0. In this regime, once structures can form i.e. z < zeq, the variance has the simple form

σ2(z,M) ∼
(

1 + zeq

1 + z

)2
A0

n
×

{
1 M ≤M0(
M0

M

)n/3
M > M0

. (C3)

In the Press-Schechter approach the halo mass function is related to the probability to find δ > δc ≈ 1.686, with
the fraction of matter in objects of mass M given by

df

dM
=

√
2

π

δc
Mσ

∣∣∣∣ d log σ

d logM

∣∣∣∣ e−δ2c/σ2

. (C4)

The exponential suppression means that the most massive objects, with mass Mpeak, to have formed are those for
which σ(z,Mpeak) = δc. If the isocurvature perturbations were large enough, A0 > nδc, these objects would form at
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zeq. Instead, for more typical isocurvature perturbations of A0 ≈ 0.1, the first halos to form are of mass M0 and they
form at

zc ≈
√
A0

n

zeq

δc
, (C5)

and subsequently grow, with the peak mass of the halo mass function being

Mpeak = M0

(
1 + zc
1 + z

)6/n

= M0

(
A0

δ2
cn

)3/n(
1 + zeq

1 + z

)6/n

. (C6)

Appendix D: Axion Relic Abundance from Misalignment

We consider the relic abundance from the misalignment mechanism for an axion coupled to a dark confining gauge
group “DarkQCD”, which is taken to be SU(NC) with NF vector-like quarks. The temperature dependence of the
mass is understood in two limits. At low temperature the axion mass is independent of temperature and at high
temperature the dilute instanton gas approximation is valid, leading to a power law dependence. In between there
could be a first or second order transition or a smooth cross over depending on NF , NC [63, 64]. For simplicity we
take the temperature dependence mass to have the form

ma(T ) =

{
m0 T < Tc

m0

(
Tc

T

)b
T ≥ Tc

. (D1)

Here we take the critical temperature to be the same as the confinement scale of DarkQCD, Tc = Λ =
√
m0fa. The

dilute instanton gas approximation gives b = (11NC +NF − 12)/6. Taking b large for temperatures in the vicinity
of Tc also approximates the form of a first order phase transition. After PQ symmetry breaking, and before the
instantons generate a potential for the axion, the misalignment angle θ = a/f has a flat potential and is free to take
on any initial value in each causal patch. The equation of motion for this angle is

θ̈ + 3Hθ̇ +m2(T )θ = 0 . (D2)

Assuming the cosmology is governed by a fluid with equation of state p = ωρ (RD is ω = 1/3) then the scale factor

a ∼ t
2

3(1+ω) and H = 2
3(1+ω)t . Combining this with the fact that temperature redshifts with the scale factor, T ∼ a−1,

(D2) becomes

θ̈ +
2

(1 + ω)t
θ̇ +m2

0

(
Λ

Ti

)2b(
t

ti

) 4b
3(1+ω)

θ = 0 . (D3)

This equation can be solved exactly by noting that y = xαJn(βxγ) with Jn the n-th Bessel function, satisfies the
equation

d2y

dx2
− 2α− 1

x

dy

dx
+

(
β2γ2x2(γ−1) +

α2 − n2γ2

x2

)
y = 0 . (D4)

Thus, the solution to (D3) takes the form(
ti
t

) 1−ω
2(1+ω)

J 3(ω−1)
2(2b+3(1+ω))

(
m0 t

(
Λ

Ti

)b
3(1 + ω)

2b+ 3(1 + ω)

(
t

ti

) 2b
3(1+ω)

)
. (D5)

Requiring that the argument of the Bessel function changes by an O(1) amount before oscillation is deemed to have
set in, and identifying various powers of t with H and ma(T ), the oscillation temperature is implicitly defined by

mosc ∼
3 + 3ω + 2b

2
Hosc . (D6)

Notice that for large b, an axion mass that rapidly changes from zero to m0 as can arise in a first order phase transition,
this is different from the usual m ∼ 3H/2 requirement since the rapid evolution of the axion mass provides its own
“friction”. From now on we consider the case of RD and thus mosc ∼ (2+b)Hosc. We also consider the possibility that
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the dark sector and the SM are at different temperatures. Assuming there are no thermalizing interactions between
them, and ignoring the complication of different thresholds in the two sectors we take the ratio of temperatures to be
a constant, TD = ξTSM ≡ ξT . Thus, the oscillation temperature and mass are found by solving

(
8π3g∗(T )

90

)1/2
T 2

Mpl
=


2m0

3 ξT < Λ

m0

2+b

(
Λ
ξT

)b
ξT ≥ Λ

. (D7)

If the oscillation begins while the mass is temperature dependent then

Tosc = Λ

(
c(Tosc)

Mpl

fa

ξ−b

2 + b

) 1
2+b

b→∞−−−→ Λ

ξ
, (D8)

where c(T ) =
√

90/8π3g∗(T ) and, assuming the SM dominates the energy density of the Universe, 0.06 <∼ c(T ) <∼ 0.33.
This solution is only consistent if TD > Λ which places the restriction b <∼ ξ2Mpl/fa [65]. For b, ξ in violation of this

bound the oscillation starts after the axion has attained its zero-temperature mass and Tosc ∼
√

2c(Tosc)m0Mpl/3 =

Λ
√

2c(Tosc)Mpl/3fa.
Once the oscillation temperature is known, and using the fact that ratio of axion number density to entropy density

is constant, the present day axion mass fraction can be determined:

Ωa =
m0moscf

2
a 〈θ2〉

2ρcrit

g∗(T0)T 3
0

g∗(Tosc)T 3
osc

=

√
8π3

90g∗(Tosc)

m0f
2
a 〈θ2〉

ρcritMpl

g∗(T0)T 3
0

Tosc

{
3
4 ξTosc < Λ
2+b

2 ξTosc ≥ Λ
(D9)

=
g∗(T0)T 3

0

ρcritMpl
m

1/2
0 f3/2

a 〈θ2〉


3
4

(
8π3

90

)3/4 (
3fa

2Mpl

)1/2

g
−1/4
∗ (Tosc) ξTosc < Λ

2+b
2

(
8π3

90

) 3+b
2(2+b)

(
(2+b)ξbfa

Mpl

) 1
2+b

g
− b+1

2(2+b)
∗ (Tosc) ξTosc ≥ Λ

. (D10)

If the dark sector has roughly the same temperature as the standard model sector (ξ ∼ 1), the confinement scale
corresponds to a Hubble of H ∼ mafa/Mpl, which is always smaller than ma because we require fa < Mpl and the
axion self-coupling is stronger than gravity. The axion mass will not be turned on until the dark confinement occurs.
Therefore, Tosc is greatly delayed, which enhances the relic abundance since it is less diluted. The blue dashed curve
in Fig. 2 shows the axion parameters that give the dark matter relic abundance assuming a slightly colder dark sector
(TDS = 0.5TSM) and axion mass to be turned on as ma ∝ T−b. A large dark gauge group or a first-order phase
transition in the dark sector will be needed for a large b. We also presented the Tosc independent constraint in Fig. 2
which assumes axion star mass grows like M ∝ t0.2, corresponding to α = 5. For this value of α the decay rate (18)
is independent of Tosc in the region of parameter space dominated by self interactions.

While we have been focusing on a QCD-like axion model to study the relic abundance, there are other models
that can enhance the self-coupling of axions while giving the correct relic abundance, such as a clockwork axion [66]
(discussed in Appendix E), friendship axion [67], axions from dilute domain walls [68, 69],and kinetic misalignment
mechanism [70, 71]. In a clockwork axion scenario, a large field range is naturally produced for the axion field in the
low-energy theory. The axion potential can have two confinement scales and two effective decay constants which can
give the relic abundance that is needed while keeping the self-coupling strong. The friendship axion can resonantly
convert the energy density in the axion sector with a larger decay constant to that with a lower decay constant if
the mass ratio of two axions is close to 1. Therefore the relic density of axions with a low decay constant is greatly
enhanced. Axion relic density can be greatly enhanced if the Peccei Quinn symmetry is followed by a period of inflation
such that axion string networks are inflated away but will eventually reenter the horizon [68, 69]. In this scenario, the
decay of diluted domain walls occurs very late, enhancing the relic density of axions. In kinetic misalignment [70, 71]
the axion field does not start at rest but instead has a nonzero initial velocity. The process of the axion settling into a
minimum of the periodic potential, and generating an axion number density, is delayed since it can only occur after its
initial kinetic energy has red-shifted away. The initial velocity, θ̇i, for the field is proportional to the net PQ charge and
its generation requires an explicit breaking of the PQ symmetry at some scale. This breaking should not be present
at later times when the axion potential should be determined solely by instanton effects as can occur, for instance,
if the breaking is from higher dimensional operators or arises from another scalar field acquiring a VEV. The kinetic
energy of the field becomes comparable to the potential energy when θ̇i(ai/a)3 ≈ ma(T ), so large initial velocity and
late generation both delay the onset of oscillations and increase the relic abundance. Kinetic misalignment tends
to produce denser minihalos than conventional misalignment [72, 73] due to a parametric resonance that enhances
fragmentation [74]. If the fragmentation is not complete the power spectrum of axion density perturbations has
features at many scales and our power law ansatz will not be a good approximation. However, if the fragmentation
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FIG. 2. The exclusion plot of axion parameters from axinovae. The colored region represents the exclusion region assuming the
axion star growth M ∝ t0.2, where the exclusion is independent of Tosc. The gray regions are the existing limits from the black
hole superradiance. Dashed curves are the axion parameters giving the correct relic abundance assuming axion mass behaves
as ma(T ) = ma(Λ/T )b, where Λ =

√
mafa is the dark confinement scale. A large b can naturally come from a first-order dark

QCD phase transition.

completes before the kinetic motion is depleted the power spectrum is well approximated by white noise [72]. In both
cases the late-time halo mass function is peaked such that most of the mass is in mini-halos of mass Mpeak. While
there have been many models that can enhance either the axion relic abundance or the self-coupling, diluting the relic
abundance is also possible in scenarios such as nonstandard thermal histories that lead to entropy production [75].

Appendix E: Enhanced Axion Self-Coupling

The axion self-coupling is given by |λ| ∼ m2
a/f

2
a ∼ Λ4/f4

a , assuming a cosine instanton potential. To obtain the
right relic abundance for axion dark matter, fa is usually large since the relic abundance of axions is proportional to
f2
a . However, axion self-couplings can be enhanced without affecting the standard misalignment mechanism or the

formation of axion miniclusters. If the axion couples to two confining sectors, which can be naturally achieved with
clockwork mechanism [66], the axion potential is

V (a) = V1(a) + V2(a) = Λ4
1

(
1− cos

a

f1

)
+ Λ4

2

(
1− cos

a

f2

)
. (E1)

Here Λ1,Λ2 are the confinement scales of the two strongly coupled sectors and f1, f2 are the corresponding decay
constants.

We consider the situation where the vacuum misalignment mechanism is mostly set by V1(a) and so we require
V ′1(a)� V ′2(a) and V ′′1 (a)� V ′′2 (a) which corresponds to the requirements

Λ4
1

f1
� Λ4

2

f2
,

Λ4
1

f2
1

� Λ4
2

f2
2

. (E2)

Satisfying these constraints will guarantee that the misalignment mechanism and the axion mass term and the rolling
of axion field are solely determined by the strong sector with a confinement scale of Λ1 and breaking scale f1, which
will be responsible for the relic abundance of the axion particles. However, this does not fully determine the axion
self-couplings. If f1 � f2, the self-coupling can be dominated by the other strong sector, as long as the following
condition is satisfied

Λ4
1

f4
1

� Λ4
2

f4
2

. (E3)

The conditions (E2) and (E3) can be consistent with each other provided f1 � f2. For instance, if Λ2/Λ1 ≡ ε� 1 then
f2/f1 ∼ εζ , with 1 < ζ < 2, will satisfy the conditions. Assuming the strong coupling sectors satisfy these requirements
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then m2
a ∼ Λ4

1/f
2
1 and |λ| ∼ Λ4

2/f
4
2 and the effective decay constant that labels the self-coupling strength is

f̃a =
ma√
|λ|

= f1

(
f2Λ1

f1Λ2

)2

� f1. (E4)

Therefore, the effective decay constant of an axion model that gives the self-coupling strength can be much smaller
than the decay constant that is responsible for the relic abundance. They can be considered as two independent
parameters.
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