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Abstract: Vetoing energetic jet activity is a crucial tool for suppressing backgrounds and
enabling new physics searches at the LHC, but the introduction of a veto scale can introduce
large logarithms that may need to be resummed. We present an implementation of jet-veto
resummation for color-singlet processes at the level of N3LLp matched to fixed-order NNLO
predictions. Our public code MCFM allows for predictions of a single boson, such as Z/γ∗,
W± or H, or with a pair of vector bosons, such as W+W−, W±Z or ZZ. The implementation
relies on recent calculations of the soft and beam functions in the presence of a jet veto
over all rapidities, with jets defined using a sequential recombination algorithm with jet
radius R. However one of the ingredients that is required to reach full N3LL accuracy is only
known approximately, hence N3LLp. We describe in detail our formalism and compare with
previous public codes that operate at the level of NNLL. Our higher-order predictions improve
significantly upon NNLL calculations by reducing theoretical uncertainties. We demonstrate
this by comparing our predictions with ATLAS and CMS results.
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1 Introduction

Jet vetoing is a crucial technique in particle physics that is used primarily to suppress
backgrounds in processes involving the production of W+W− final states (e.g. directly or
in Higgs decays). By identifying and removing events that contain energetic hadronic jets
(vetoing), the impact of the dominant top-quark pair production background is reduced.
The concrete jet-veto implementation depends on factors such as the jet algorithm and its
parameters, as well as the kinematic selection cuts applied to the identified jets. For LHC
analyses, the most common jet vetoing scheme is to impose a maximum transverse momentum
cut pveto

T on anti-kT jets.

The jet veto scale pveto
T can induce large logarithms if it is smaller than the hard process scale

Q, which then mandates resummation. In this paper we describe a coherent implementation of
jet veto resummation in processes involving the production of a color-singlet boson (W,Z/γ∗

and H bosons) or a pair of bosons (ZZ, W±Z, and W+W−). Our resummation operates at
the level of N3LLp

1 matched to fixed order NNLO.

We build on the pioneering work of previous studies, which have demonstrated the effectiveness
of resummation methods for a jet veto [1–5]. General purpose implementations include a
numerical approach to resummation at NNLO+NNLL [6, 7] and an automated approach to jet
veto studies at NLO+NNLL [8]. Publicly available codes operating at NNLL and addressing
the same issue are, JetVHeto [9], the code MCFM-RE [10] which is derivative of both MCFM
and JetVHeto, and MATRIX+RadISH [11]. Both JetVHeto and RadISH implement the same
analytic resummation formula of ref. [5].

Our research extends and improves upon these earlier results through detailed phenomenological
studies of specific final states, including Higgs boson production [5, 12–14], W+W− production
[15, 16], and ZZ and W±Z production [17]. Another important aspect of our study is the
performance of the resummation at N3LLp accuracy, which has not always been the case in

1The last missing ingredient for N3LL resummation is the exact dveto
3 (the three-loop rapidity anomalous

dimension) which we approximate and take into account with an uncertainty estimate. We discuss this in detail
in the subsequent section.
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previous work. We also describe our approximation of the missing dveto
3 that would be necessary

to reach full N3LL accuracy. Finally, we include our results in MCFM, a publicly distributed
code, which allows users to easily perform studies in practice.

Resummation of jet-veto logarithms has a close relationship with the resummation of transverse
momentum logarithms. In the latter, one is interested in transverse momenta all the way down
to zero pT , so the logarithms can be larger than in jet-veto processes where pveto

T in the range
25 to 30 GeV is used experimentally. In this paper we explore which jet-veto processes actually
require resummation at these values of pveto

T , supply the best predictions for those processes
where it is warranted, and confront our theoretical predictions with experimental data where
it is available.

In Section 2 we discuss the jet-veto factorization theorem including its ingredients that result
in the resummation. We describe our setup for phenomenology including our uncertainty
procedure in Section 3, compare with the public code JetVHeto in Section 4, and study the
phenomenological implications for a wide range of processes in Section 5. We conclude in
Section 6.

2 Jet-veto factorization and resummation

We consider processes where jets have been defined using sequential recombination jet algorithms
[18] with distance measure

dij = min(k2n
Ti , k

2n
Tj)

∆y2
ij + ∆φ2

ij

R2
, diB = k2n

Ti , (2.1)

where the choice n = −1 is the anti-kT algorithm [19], n = 0 is the Cambridge-Aachen algorithm
[20, 21], and n = 1 is the kT algorithm [22, 23]. kT i denotes the transverse momentum of
(pseudo-)particle i with respect to the beam direction, and ∆yij and ∆φij are the rapidity and
azimuthal angle differences of (pseudo-)particles i and j.

To describe the resummation method we focus on the simplest case of quark-antiquark induced
Drell-Yan production of a lepton pair of invariant mass Q and rapidity y. The case of gluon
initiated processes is structurally the same, but with different ingredients that we give below
and in the appendices. In the presence of a jet veto over all rapidities we have a factorization
formula [3, 12, 13],

d2σ(pveto
T )

dQ2dy
=
dσ0

dQ2

∣∣CV (−Q2, µ)
∣∣2

×
[
Bq(ξ1, Q, p

veto
T , R, µ, ν)Bq̄(ξ2, Q, p

veto
T , R, µ, ν)S(pveto

T , R, µ, ν)
]

+O
(
pveto
T

Q

)
(2.2)

where ξ1,2 = (Q/
√
s) e±y and,

dσ0

dQ2
=

4πα2

3NcQ2s
. (2.3)
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Table 1: Counting of orders in the resummation, adapted from ref. [26]. The second column
indicates the nominal order when counting L⊥ ∼ 1/αs. The third column states which
logarithms are included. The last three columns show the necessary additional anomalous
dimensions and hard function corrections in each successive order. The requisite anomalous
dimensions are provided in Appendix B.

Approximation Nominal order Accuracy ∼ αnsLk⊥ Γcusp γcoll. H

LL α−1
s 2n ≥ k ≥ n+ 1 Γ0 tree tree

NLL+LO α0
s 2n ≥ k ≥ n Γ1, γ0 tree

N2LL+NLO α1
s 2n ≥ k ≥ max(n− 1, 0) Γ2 γ1 1-loop

N3LL +NNLO α2
s 2n ≥ k ≥ max(n− 2, 0) Γ3 γ2 2-loop

In this equation CV is a matching coefficient whose square is the hard coefficient function that
corrects the lowest order cross-section, see Eq. (2.3). Bq and Bq̄ are the quark beam functions
which describe the emission of radiation collinear to the two beam directions in the presence of
a jet veto, and S describes the emission of soft radiation in the presence of a jet veto. The
quantity ν is a supplementary scale necessitated by the rapidity divergences present in beam
and soft functions. The main process-independent ingredients are the beam and soft functions
for both incoming quarks and gluons which have been published recently at the two-loop level
[24, 25]. The hard function is process specific. We have used the existing two-loop fixed order
implementations in MCFM.

Overall the factorization theorem achieves a separation of scales. The hard function contains
logarithms of the ratio Q2/µ2, which can be minimized by setting µ2 = µ2

h ∼ Q2. However,
inside the beam and soft functions, it is natural to choose µ = pveto

T to avoid large logarithms.
The resummation of large logarithms is achieved by choosing µ ∼ Q in the hard function and
evolving it down to the resummation scale µ ∼ pveto

T using the renormalization group (RG).
For the hard function the evolution is solved analytically, see Appendix E.

In RG-improved power counting the logarithms L⊥ = 2 log(µh/p
veto
T ), where µh is of order Q,

are assumed to be of order 1/αs. With this definition the counting of powers of αs and of the
large logarithm L⊥ is shown in Table 1. The non-logarithmic terms that the resummation
does not provide are easily accounted for by adding the matching corrections. The matching
corrections are a finite contribution and add the effect of fixed-order corrections while removing
the logarithmic overlap through a fixed-order expansion of the resummation.

2.0.1 Soft function

The jet veto soft function has been calculated using an exponential regulator [27] in Ref. [25].
The calculation is divided into the sum of the soft function for a reference observable and a
correction factor,

S(pveto
T , R, µ, ν) = S⊥(pveto

T , µ, ν) + ∆S(pveto
T , R, µ, ν) . (2.4)
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In Ref. [25] the reference observable is the transverse momentum of the color singlet system
denoted by S⊥. S⊥ can be derived from the expression given in Refs. [28, 29] after performing
the Fourier transform to momentum space (see, for instance, the rules given in Table 1 of
Ref. [30]). ∆S depends on the jet algorithm and contributes for two or more emissions. It thus
depends only on double real emission diagrams.

2.0.2 Refactorization and reduced beam functions

For consistency with the transverse momentum resummation framework in CuTe-MCFM [31] we
cast the factorization theorem in terms of the collinear anomaly framework. In this framework
the rapidity logarithms are exponentiated directly instead of resummed by solving rapidity RG
equations [32, 33]. For this we rewrite the square bracket in Eq. (2.2) as follows,

Bq(ξ1, Q, p
veto
T , R, µ, ν)Bq̄(ξ2, Q, p

veto
T , R, µ, ν)S(pveto

T , R, µ, ν)

=

(
Q

pveto
T

)−2Fqq(pveto
T ,R,µ)

e2hF (pveto
T ,µ) B̄q(ξ1, p

veto
T , R, µ) B̄q̄(ξ2, p

veto
T , R, µ) . (2.5)

The ν dependence vanishes in this combination of beam and soft functions.

We have factored out ehF/A(pveto
T ,µ) from each beam function, resulting in the reduced beam

functions B̄. By construction hF/A are solutions of the RGE equation,

d

d lnµ
hF/A(pveto

T , µ) = 2ΓF/Acusp(µ) ln
µ

pveto
T

− 2γq/g(µ) , (2.6)

with boundary condition hF/A(µ, µ) = 0. The superscripts F or A signify whether the color
is treated in the fundamental (F ) or adjoint (A) representation, corresponding to a quark
initiated process or a gluon initiated process, respectively. The exact form of hF/A(pveto

T , µ),
determined by solving Eq. (2.6), is given in Appendix C.1. In terms of the reduced beam
functions the jet-vetoed cross-section is now given by,

d2σ(pveto
T )

dQ2dy
=
dσ0

dQ2
H̄(Q,µ, pveto

T )B̄q(ξ1, p
veto
T , R, µ) B̄q̄(ξ2, p

veto
T , R, µ) +O(pveto

T /Q) , (2.7)

The choice of hF/A in Eq. (2.6) divides Eq. (2.2) into two separately RG invariant pieces, the
product of the two reduced beam functions (B̄q B̄q̄), and the hard function, (H̄)

H̄(Q,µ, pveto
T ) =

∣∣CV (−Q2, µ)
∣∣2( Q

pveto
T

)−2Fqq(pveto
T ,R,µ)

e2hF (pveto
T ,µ) . (2.8)

For quark-initiated processes the functions CV and Fqq obey the following RG equations.

d

d lnµ
CV (−Q2, µ) =

[
ΓFcusp(µ) ln

−Q2

µ2
+ 2γq(µ)

]
CV (−Q2, µ) , (2.9)

d

d lnµ
Fqq(p

veto
T , R, µ) = 2ΓFcusp(µ) . (2.10)
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Eqs. (2.9) and (2.10) are structurally the same for the gluon case with different anomalous
dimensions.

The function H̄ is RG invariant due to the RGE’s satisfied by CV and Fqq and hF :

d

dµ
H̄(Q,µ, pveto

T ) = O(α3
s) .

Consequently, the remaining product of reduced beam functions is also RG invariant, up to
the order calculated. In our case,

d

dµ
B̄q(ξ1, p

veto
T , R, µ) B̄q̄(ξ2, p

veto
T , R, µ) = O(α3

s) . (2.11)

The confirmation of Eq. (2.11) and the confirmation of the R-dependence of the collinear
anomaly given in the next section are two simple checks of the results of Refs. [24, 25]. Full
details of the formulas needed to perform this check are given in Appendix C.

If the scale pveto
T is in the perturbative domain, the reduced beam function can be written in

terms of the matching kernels Ī as

B̄i(ξ, p
veto
T , R, µ) =

∑
j=g,q,q̄

∫ 1

ξ

dz

z
Īij(z, p

veto
T , R, µ)φj/P (ξ/z, µ) ,

where φ denotes the usual collinear parton distribution of a parton of flavor j in a proton P .
The matching coefficients Ī are extracted from I, the two-loop beam and soft functions of
Refs. [24, 25] as,

Īij(z, p
veto
T , R, µ) = e−h

F/A(pveto
T ,µ) Iij(z, p

veto
T , R, µ) . (2.12)

The coefficients in Ref. [24] are presented as a Laurent expansion in the jet radius parameter
R. Analytic expressions are presented for all flavor channels except for a set of R-independent
non-logarithmic terms which are presented as numerical grids. For our purposes we have
interpolated the numerical grids using a spline fit. We give further details on the reduced beam
functions in Appendix A.

2.1 The collinear anomaly coefficient and its approximations

The missing ingredient for a complete N3LL resummation is the three-loop collinear anomaly
coefficient and therefore warrants a longer discussion. This limitation has been discussed in the
literature and approximated in various ways. Here we discuss the uncertainty associated with
the approximations and how we take it into account in our phenomenological predictions.

As presented in Eq. (2.10) the collinear anomaly coefficients obey the RG equations,

d

d lnµ
Fqq(p

veto
T , R, µ) = 2ΓFcusp(µ) , (2.13)

d

d lnµ
Fgg(p

veto
T , R, µ) = 2ΓAcusp(µ) , (2.14)
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where, for example, Fqq has the expansion,

Fqq(p
veto
T , R, µ) =

αs
4π
F (0)
qq (pveto

T , R, µ) +
(αs

4π

)2
F (1)
qq (pveto

T , R, µ)

+
(αs

4π

)3
F (2)
qq (pveto

T , R, µ) +
(αs

4π

)4
F (3)
qq (pveto

T , R, µ) + . . . (2.15)

While the logarithmic structure is given by the RG equations, the constant boundary parts
dveto
k (R,B) where B = F or A need to be determined by separate calculations and are also

referred to as the rapidity anomalous dimensions in the framework of Refs. [32, 33]:

F (0)
qq (pveto

T , R, µh) = ΓF0 L⊥ + dveto
1 (R,F ) ,

F (1)
qq (pveto

T , R, µh) =
1

2
ΓF0 β0L

2
⊥ + ΓF1 L⊥ + dveto

2 (R,F ) ,

F (2)
qq (pveto

T , R, µh) =
1

3
ΓF0 β

2
0L

3
⊥ +

1

2
(ΓF0 β1 + 2ΓF1 β0)L2

⊥

+ (ΓF2 + 2β0d
veto
2 (R,F ))L⊥ + dveto

3 (R,F ) ,

F (3)
qq (pveto

T , R, µh) =
1

4
β3

0ΓF0 L
4
⊥ + (ΓF1 β

2
0 +

5

6
ΓF0 β0β1)L3

⊥

+ (
1

2
ΓF0 β2 + ΓF1 β1 +

3

2
ΓF2 β0 + 3dveto

2 (R,F )β2
0)L2

⊥

+ (ΓF3 + 3dveto
3 (R,F )β0 + 2dveto

2 (R,F )β1)L⊥ + dveto
4 (R,F ) . (2.16)

The analogous expression for gluons (F → A) is given in Eq. (D.1). The coefficients in the
expansion of the cusp anomalous dimension, ΓFk , are given in Appendix B.2.

For single gluon emission dveto
1 (R,B) = 0. The function dveto

2 is defined below in Eq. (2.17).
There is only partial information on dveto

3 from Refs. [14, 34, 35], and we have to rely on
an approximation. To estimate the validity of this approximation we first study similar
approximations of dveto

2 .

The function dveto
2 is given by [12],

dveto
2 (R,B) = dB2 − 32CB f(R,B) , where

dB2 = CB

[(
808

27
− 28ζ3

)
CA −

224

27
TFnf

]
. (2.17)

The function f(R,B), which gives the dependence on the jet radius R, is known as an expansion
about R = 0 up to terms including R4,

f(R,B) = CB

(
− π2R2

12
+
R4

16

)
+ CA

(
cAL lnR+ cA0 + cA2 R

2 + cA4 R
4 + . . .

)
+ TFnf

(
cfL lnR+ cf0 + cf2R

2 + cf4R
4 + . . .

)
. (2.18)

The terms on the first line are due to independent emission, whereas the terms on the second
and third lines are due to correlated emission [4]. The expansion coefficients are given in
Appendix D in analytic and numerical form.
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2.1.1 Approximations for dveto
2

Using Eqs. (2.17) and (D.4) we have for the gluon case in the limit nf → 0 and retaining only
logarithmic and constant terms in R,

dveto
2 (R,A) = −32C2

A

[
− 1

32C2
A

dA2 + cAL lnR+ cA0

]
' −32C2

A

[
− 1.096259 lnR+ 0.7272641]

∼ 32C2
A × ln

(R
2

)
. (2.19)

This result was used as a basis for an approximation to dveto
3 in ref. [12]. However, the leading

color (nf = 0) approximation is rather poor. With full nf dependence, but retaining only
logarithmic and constant terms in R and setting nf = 5 we have

dveto
2 (R,B) = 32CBCA

[
(1.096 + 0.0295nf ) lnR− (0.72726 + 0.12445nf )

]
∼ 32CBCA

[
1.2435 ln

( R

2.96

)]
. (2.20)

In Fig. 1 we show dveto
2 (R,A) and its approximations in units of dA2 as a function of the jet

radius R. As a reminder, dA2 is the non-R dependent part of d2, see Eq. (2.17). We first
compare the full result (red) with the inclusion of terms up order R2 (green). This shows
that the R expansion converges quickly and it is sufficient to consider only terms up to R4 for
practical applications. Including only the logarithm and the constant (blue) gives a reasonable
approximation for sufficiently small R, with percent-level deviations around R = 0.4. The
leading color approximation (magenta) works only crudely as a first guess and could be used
in the absence of any better estimate.

2.1.2 The function dveto
3

While the complete dveto
3 is unknown so far, we can extract the leading logarithmic term

from results in the literature. Given that this approximation works reasonably well for dveto
2

for R ∼ 0.4, it is reasonable to expect a similar behavior for dveto
3 . We further estimate the

uncertainty associated with such an approximation.

From Eq. (2.15) the collinear anomaly coefficient at µ = pveto
T is given by,

Fgg(p
veto
T , R, pveto

T ) =
(αs

4π

)2
dveto

2 (R,A) +
(αs

4π

)3
dveto

3 (R,A) + . . . (2.21)

Therefore, expanding the collinear anomaly we have that( Q

pveto
T

)−2Fgg(pveto
T ,pveto

T )
=1− 2

(
αs(p

veto
T )

4π

)2

ln

(
Q

pveto
T

)
dveto

2 (R,A)

− 2 ln

(
αs(p

veto
T )

4π

)3

ln

(
Q

pveto
T

)
dveto

3 (R,A) +O(α4
s). (2.22)
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Figure 1: Approximations of dveto
2 (R,A)

scaled by the constant dA2 . The full result,
Eq. (2.17) is plotted in red. The approxi-
mation retaining only constant terms and
logarithms of R is shown in blue. The ap-
proximation retaining constant terms and
logarithms of R and R2 terms is shown in
green. The leading color ansatz, Eq. (2.19),
derived setting nf = 0, is 32C2

A ln(R/2) and
is shown in magenta. The red, blue and green
curves are all plotted for nf = 5.

Figure 2: Effect of R0 variation in dveto
3 as

given by Eq. (2.24) with nf = 5, compared to
the case dveto

3 = 0: R0 = 1 (black), R0 = 0.5

(red, dashed), R0 = 2 (blue, dashed).

At order α3
s the leading term in the limit R→ 0 can be extracted from Eq. (C.2) of Ref. [14]

which reads,

Fcorrel
LLR,31(R) =

(αs
4π

)3
ln
( Q

pveto
T

)
· 128CA ln2 R

R0

×
[
1.803136C2

A − 0.589237nf2TRCA + 0.36982CFnf2TR − 0.05893n2
f4T 2

R

]
. (2.23)

Comparing the third-order coefficient in the two equations we thus have for a general color
representation

dveto
3 (R,B) = −64CB ln2

( R
R0

)
(1.803136C2

A + 0.36982CFnf − 0.589237CAnf − 0.05893n2
f )

= −8.38188× 64CB ln2
( R
R0

)
for nf = 5 . (2.24)

Hence, the sign of the leading term in the small R limit is known. In this limit dveto
3 leads to an

increase in the cross-section. This approximation only gives the leading R behavior, and it has
been suggested that one may plausibly take 1

2 < R0 < 2 as an uncertainty envelope [14].

Since dveto
3 enters through the collinear anomaly as an overall factor, we consider the impact of

varying R0 in Fig. 2. For typical values of pveto
T = 30 GeV (as considered in this paper for the

– 8 –



Table 2: Input and derived parameters used for our numerical estimates.

MW 80.385 GeV ΓW 2.0854 GeV
MZ 91.1876 GeV ΓZ 2.4952 GeV
Gµ 1.166390× 10−5 GeV−2

mt 173.2 GeV mh 125 GeV

m2
W = M2

W − iMWΓW (6461.748225− 167.634879 i) GeV2

m2
Z = M2

Z − iMZΓZ (8315.17839376− 227.53129952 i) GeV2

cos2 θW = m2
W /m

2
Z (0.7770725897054007 + 0.001103218322282256 i)

α =
√

2Gµ
π M2

W (1− M2
W

M2
Z

) 7.56246890198475× 10−3 giving 1/α ≈ 132.23 . . .

comparison with experimental studies) there is an effect of less than two percent for R = 0.4.
This is in agreement with the deviations we found for dveto

2 for this approximation.

We take into account this variation in our uncertainty estimates, see Section 3.3. A definitive
statement on this issue will have to await an exact calculation of dveto

3 .

3 Setup for phenomenology

Before discussing phenomenological results, we list our input parameters, the method for
matching to fixed order, and the approach for estimating uncertainties at fixed order and at
the resummed level.

3.1 Input parameters

The input values used in our numerical studies are shown in Table 2. As indicated in
the table we use the complex mass scheme for the W and Z boson masses. The number
of light quarks, nf , is set equal to five, except for the case of W+W−-production where
nf = 4. We use the PDF distribution NNPDF31_nnlo_as_0118 except for W+W− where we use
NNPDF31_nnlo_as_0118_nf_4 [36]. Note that we use these NNLO parton distributions even in
our lower order predictions.

In the cases of WW and ZZ production, at O(α2
s) the cross-section receives contributions from

processes with two gluons in the initial state. When performing the resummed calculations we
only include such contributions at NLL. However, these contributions only represent about 3%
of the cross-section for pveto

T = 10 GeV, rising to about 6–8% for pveto
T = 60 GeV. Therefore,

neglecting higher order corrections to these contributions, which are not implemented in our
code, is justified. Although only strictly true for the leading qq̄ component we refer to the full
resummed calculation as N3LLp.

We match the resummation and fixed-order NkLO corrections using a naive additive scheme as
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follows,

σN(k+1)LL+N(k)LO(pveto
T ) = σN(k+1)LL(pveto

T ) + σ∆,k(pveto
T ) , where (3.1)

σ∆(pveto
T ) = σNkLO(pveto

T )− dσN(k+1)LL(pveto
T )

∣∣∣∣
exp. to NkLO

. (3.2)

The matching correction σ∆(pveto
T ) is defined as a function of pveto

T , using the difference between
the fixed-order contribution and the resummed result expanded to the same fixed order. The
limit pveto

T → 0 of σ∆(pveto
T ) is finite, which also allows its use as a higher-order subtraction

scheme.

The use of a naive matching without a transition mechanism that switches off the resummation
at large pveto

T is justified since the matching corrections for all considered cases in this paper are
small; even in the most extreme case they are less than 20%. In other words, the resummation
alone provides a good description of the cross-sections and does not need to be switched off.
Any transition function to turn off the resummation at large pveto

T would have a very small
effect. This is in contrast to transverse-momentum resummation where a transition function is
necessary [31].

3.2 Uncertainty estimates at fixed order

Ultimately the resummed predictions should offer a practical advantage compared to the
fixed-order predictions. In many cases, the quantity log(Q/pveto

T ) is not very large, and it may
not seem worthwhile to use resummed results. However, as we will show, the resummation
works remarkably well on its own and has matching corrections of only up to around 20%, often
much less. The clear separation of scales and the resummation then allow for smaller and more
reliable uncertainty estimates. To set the stage, we first examine perturbative convergence and
uncertainties at fixed order for quark and gluon induced boson processes, as well as for WW

and ZZ production.

Constructing jet-vetoed cross-sections at fixed order requires the combination of different
cross-sections. However, if we naively subtract the jet cross-section from the inclusive result, it
can result in underestimated uncertainties and narrowing uncertainty bands. To avoid this,
different methods have been proposed in the literature, of which we compare the following
two.

One strategy, which we term the "two-scale" approach, is to consider the different relevant
scales Q and pveto

T of the vetoed cross-section σ0, and include both of them in the uncertainty
estimate through a multi-point variation around both scales [8]. To compute this uncertainty,
we separately vary the renormalization scale µr and the factorization scale µf over the values
{µh, 2µh, µh/2, pveto

T , 2pveto
T , pveto

T /2}, where µh depends on the process under consideration. An
estimate of the uncertainty is then obtained by adding in quadrature the maximum deviations
from µr = µf = µh, from µr and µf variation separately.
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Another approach, advocated by Refs. [14, 37], takes the jet-veto efficiency (JVE) as the central
quantity, which is the ratio of jet-vetoed cross-section to total cross-section. By combining the
uncertainties of these two quantities in quadrature, one obtains a more robust estimate of the
uncertainty in the jet-vetoed cross-section. This is because the uncertainties are considered
uncorrelated: the uncertainties in the jet-veto efficiency are typically due to non-cancellation
of real and virtual contributions, while those in the total cross-section are connected with large
corrections from higher orders [14].

For our JVE approach, we follow the simplest formulation (“scheme (a)” of Ref. [14]) to compute
a JVE-based uncertainty. For this we consider variation over the scales {µh, 2µh, µh/2} of σincl

and combine in quadrature the uncertainty from the calculation of the 0-jet efficiency (σ0/σincl)
and the uncertainty from the inclusive calculation. Our final fixed-order uncertainty band is
the envelope of the two-scale and JVE approaches.

With these procedures, our fixed-order results for Z and H production are shown in Fig. 3.
For Z production we use the canonical choice µh = Q, where Q is the invariant mass in the
final state. For Higgs production we use µh = Q/2, guided by the calculation of the inclusive
cross-section where such a choice results in markedly-improved perturbative convergence. We
observe that for Z production the NNLO uncertainty band is wholly contained within the NLO
one, while for the Higgs case the bands at least overlap somewhat throughout the range. For
Higgs production following the combined two-scale and JVE approach results in a significantly
larger uncertainty at both NLO and NNLO, especially at smaller values of pveto

T . On the other
hand, for Z production the additional uncertainty from the JVE approach is very small and
negligible at NNLO.

Predictions for WW and ZZ production (with µh = Q) are shown in Fig. 4. The limited
overlap between the NLO and NNLO bands indicates that uncertainties are underestimated,
even with the generous scale uncertainty procedure that we follow. The additional uncertainty
resulting from the JVE procedure is small, especially at NNLO, because the scale uncertainty
of the inclusive cross-sections is very small.

3.3 Uncertainty estimates at the resummed and matched level

For our central predictions, we set the resummation and factorization scales to µ = pveto
T and

the hard scale (corresponding to the renormalization scale) to µh = Q, where Q is the invariant
mass of the color-singlet final state. The exception is Higgs production, where we choose
µh = Q/2 as previously discussed. For the collinear anomaly coefficient dveto

3 , we use the form
given in Eq. (2.24) [14] with R0 = 1.

Complications arising at fixed order, described in Section 3.2, are not present in the resummed
case and therefore we can follow a simpler approach where we vary all scales in our formalism
and take the envelope, as detailed below. While the matching of resummed predictions to
fixed-order could still introduce a complication, the matching corrections are not dominant.
The bulk of the cross-section comes from the resummation and it allows us to follow the simple
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(a) Z production using the setup of ref. [38]. (b) H production.

Figure 3: Comparison of NLO and NNLO fixed order predictions as a function of the jet veto.
Central predictions solid, uncertainty estimates using either the two-scale approach (dotted)
or the envelope of that and the JVE approach (dashed).

(a) WW production using the setup of ref. [39]. (b) ZZ production using the setup of ref. [40].

Figure 4: Comparison of NLO and NNLO fixed order predictions as a function of the jet veto.
Central predictions solid, uncertainty estimates using either the two-scale approach (dotted)
or the envelope of that and the JVE approach (dashed).
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procedure of varying all scales in the naively obtained (without JVE) jet-veto cross-section
too.

The small and narrowing uncertainty bands at fixed order would typically appear in regions
where the resummation is found to be dominant, i.e. where fixed-order contributes very little
through the matching corrections. In practice we observe that the size of uncertainties are
overall uniform in both the resummation and large pveto

T fixed-order regions, as can be seen in all
of our following predictions. This supports the conclusion that our procedure is sufficient.

Overall, our procedure for estimating uncertainties is as follows.

1. For the resummation (fixed-order) parts we vary both the resummation (factorization)
and hard (renormalization) scales by a factor of two about their central values, adding
the excursions in quadrature to obtain the total scale uncertainty.

2. For the resummation we re-introduce the rapidity scale in Eq. (2.5) by re-writing the
collinear anomaly factor as follows [12, 41]:(

Q

pveto
T

)−2Fii(p
veto
T ,R,µ)

=

(
Q

ν

)−2Fii(p
veto
T ,R,µ)( ν

pveto
T

)−2Fii(p
veto
T ,R,µ)

. (3.3)

For ν ∼ pveto
T the second factor can be expanded since it does not contain a large logarithm.

We vary the rapidity scale ν in the range [pveto
T /2, 2pveto

T ] for gluon-initiated processes
and in the range [pveto

T /6, 6pveto
T ] for quark-initiated processes. The large variation for

quark-initiated processes ensures overlapping uncertainty bands at NNLL and N3LLp;
this is achieved by the range given above, as demonstrated explicitly in Sections 4 and 5.

3. The parameter R0 in dveto
3 is varied between 0.5 and 2.

We first combine the scale uncertainties (1 and 2) in quadrature and then, to obtain our total
uncertainty, add the variation of R0 (3) linearly.

3.4 Effects of cuts on rapidity at fixed order

The usual jet veto resummation described so far imposes no cut on the jet rapidity. This is in
contrast to experimental analyses, see Table 3, which impose such a cut because of limited
detector acceptance and to diminish the effect of pileup. Ref. [42] identifies three different
regimes, depending on pt, Q and ycut.

• For pveto
T /Q � exp(−ycut) standard jet veto resummation should apply, effects due to

the rapidity cut are corrections power suppressed by Q exp(−ycut)/p
veto
T .

• For pveto
T /Q ∼ exp(−ycut) the effects of a rapidity cut must be treated as a leading power

correction.

• For pveto
T /Q � exp(−ycut) the logarithmic structure is changed already at leading log

level, and non-global logarithms appear.
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Table 3: Jet rapidity cuts applied in the experimental studies examined later in this paper.

Process Ref. ycut
Higgs – no study
Z (CMS) [38] 2.4
W (ATLAS) [43] 4.4
WW (CMS) [39] 4.5
WZ (ATLAS) [44] 4.5
WZ (CMS) [45] 2.5
ZZ (CMS) – no study

(a) Z production following the setup of ref. [38]. (b) H production.

Figure 5: Effect of the jet rapidity cut at NNLO with pveto
T = 30 GeV.

We estimate the practical impact of experimentally used jet rapidity cuts at fixed order.
Including the rapidity cut in the resummation requires large changes and ingredients, which
are also only available a low order so far [42].

The effect of the jet rapidity cut for the Z and Higgs production cases is illustrated in Fig. 5.
These calculations are performed at NNLO for pveto

T = 30 GeV. The rapidity cut plays a bigger
role for Higgs production: for example for ycut = 2.5 the cross-section is 11% larger than
the result with no rapidity cut, compared to only 2% for Z production. This is due to the
larger logarithm (log(mH/p

veto
T )/ log(mZ/p

veto
T ) ≈ 1.28) and the larger color prefactor (CA/CF

= 2.25) in Higgs production. However, for ycut = 4.5 the effect of the rapidity cut is negligible
in both cases.
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(a) WW production. (b) ZZ production.

Figure 6: Effect of the jet rapidity cut at NNLO with pveto
T = 30 GeV.

The corresponding results for diboson processes are shown in Fig. 6. In this case, the disparity
between Q and pveto

T is much larger, so the rapidity cut can play a crucial role, although the
effect is still not as important as for Higgs production. For ycut = 2.5 the WW and ZZ

cross-sections 4% larger than the results with no rapidity cut, and the effect of ycut = 4.5 is
negligible.

4 Comparison with JetVHeto

While jet-veto resummed phenomenology has been extensively studied in the literature, the
only public codes that permit detailed predictions use JetVHeto or RadISH. For jet-veto
resummation RadISH implements the analytic JetVHeto resummation formula [5]. The codes
rely on the formalism of the CAESAR approach [4, 46] extended to NNLL [5]. An extension
of the RadISH code has been used to perform joint jet-veto and boson transverse momentum
resummation [47].

For our comparisons we use RadISH version 3.0.0 [48, 49] and JetVHeto version 3.0.0 [5, 14, 37]
including small-R resummation [4, 35] as part of MCFM-RE [16]. Both codes operate at the
level of NNLL and we have checked that they give indeed the same results.

In our comparison, we would like focus on the differences in the resummation part, since
the fixed-order part is identical in each calculation. We explore how central values and
uncertainties compare at NNLL to our results and in how far N3LLp results improve the
perturbative convergence. However, the matching to fixed-order is handled differently in each
formalism. Different matching schemes (e.g. additive or multiplicative schemes of various
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types) probe higher-order effects. It has also been advocated to match at the level of jet-veto
efficiencies [14]. Fortunately, matching corrections are generally small for jet-veto scales of
30 to 40 GeV for all considered boson and di-boson processes. We therefore focus on the
resummation in our comparison.

The JetVHeto formalism considers three scales µR, µF and Q that are all similar in magnitude
to the hard scale. To ensure that the resummation switches off for pveto

T & Q, the resummed
logarithms are modified through the prescription log(Q/pveto

T )→ 1/p log((Q/pveto
T )p + 1). For

JetVHeto p has a default value of 5 [14], while for RadISH the default choice is 4. For comparison
purposes we use p = 5 in both cases. It is evident that for sufficiently small pveto

T the precise
value of p does not matter. Changing this parameter has a similar effect to turning off the
resummation with a transition function. In principle this demands a fully matched calculation,
but the matching corrections of our considered cases are small and we have checked that the
effect of changing p to 3 or 4 is subleading compared to the scale uncertainties. Here we focus
on those scale uncertainties.

In ref. [14] it has been argued that the Q should be varied by a factor of 3
2 around its central

value, based on new insights from convergence at N3LO for Higgs production. For simplicity,
we use a more conservative variation by a factor of two. We independently vary µR, µF and Q
by a factor of two around a central scale of m`` for Z-boson production and around mH/2

for Higgs production. Our uncertainty bands for this comparison are obtained by taking the
envelope of these results.

Z-boson production

For the comparison of Z production we choose a central hard scale of m`` with results shown
in Fig. 7. We find that our MCFM NNLL central values have only marginal compatibility with
our JetVHeto uncertainty estimates, despite having the same logarithmic order. This indicates
that the JetVHeto uncertainties (as estimated according to our procedure just described) do
not fully account for the higher-order corrections. On the other hand, our uncertainties at
NNLL are larger, leading to an overall agreement between the two methods.

At N3LLp uncertainties decrease dramatically compared to NNLL, but they are quite asymmetric,
which suggests that a symmetrization of uncertainties may be necessary in this case. We also
observe that without the large uncertainties at NNLL, there would be no overlap between the
N3LLp results and NNLL. This highlights the importance of carefully estimating and comparing
uncertainties to accurately assess the compatibility of different methods and results.

H-boson production

In our study of Higgs production, we choose a central hard scale of mH/2 and show results in
Fig. 8. All results are computed in the mt →∞ theory and rescaled by a factor of 1.0653 to
account for finite top-quark mass effects, see Eq. (G.5).
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qq → Z → e+e−, s = 13 TeV, µh = me+e−
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Figure 7: Comparison of JetVHeto NNLL resummation with our NNLL and N3LLp results for
Z production with cuts as in Table 4.

The Higgs case is distinct from Z production since it is gluon-gluon initiated instead of
quark-initiated. In this case, our predictions agree well with the JetVHeto results, but our
uncertainties at NNLL are again much larger.

Note that we vary the JetVHeto scale Q by a factor of two, while the JetVHeto authors vary by
a factor of 3/2 in the Higgs case. This difference in the amount of variation may require some
tuning in our formalism, at least at the NNLL level. However, the perturbative convergence is
again excellent with small uncertainties at N3LLp and central predictions that agree well with
NNLL.

5 Phenomenological results

In this section, we present the results of our phenomenological studies, which are based
on the uncertainty procedure, matching to fixed-order, and input parameters described in
Section 3. We compare our findings with experimental results from the literature and discuss
their implications.

5.1 Z and W production

The process of Z production has already been extensively studied in the literature, thus
enabling a variety of cross-checks of our calculation. The implementation of the hard function
and its evolution has been verified by comparison with the explicit results given in Table 1 of
ref. [50]. The full machinery of the resummation and matching procedure can also be compared
with the results of ref. [5], with which we find excellent agreement within uncertainties, see
also Section 4.
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gg → H,  s = 13.6 TeV, µh = mH 2
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Figure 8: Comparison of JetVHeto NNLL resummation with our NNLL and N3LLp results for
non-decaying H production.

Table 4: Cuts used in the analysis of Z production, adapted from ref. [38].

lepton cuts ql1T > 30 GeV, ql2T > 20 GeV, |ηl| < 2.4
lepton pair mass 71 GeV < ml−l+ < 111 GeV

jet veto anti-kT , R = 0.4, 0-jet events only

We first investigate the impact of choosing a time-like hard scale in the resummed result for
Z production. Previous work has shown that choosing a space-like hard scale (µ2

h = Q2)
can lead to significant corrections in the perturbative expansion of some processes, while a
time-like hard scale (µ2

h = −Q2) can resum certain π2 contributions [51] using a complex
strong coupling.

For this comparison we consider purely resummed results at NNLL and N3LLp, only considering
uncertainties originating from scale variation (items 1 and 2 of our uncertainty procedure in
Section 3.3). We consider the process pp→ Z/γ∗ → `−`+, i.e. a final state of definite lepton
flavor. We use the same set of cuts and vetoes as in the

√
s = 13 TeV CMS analysis [38], but

extend the veto to jets of all rapidities, rather than only those with |y| < 2.4. This difference,
and the effect of matching to NNLO, is discussed in detail in Section 5.1.1.

Our results are shown in Fig. 9a as a function of the value of the jet veto. We observe that
the results do not depend strongly on the choice of hard scale, with a difference of about 4%

at NNLL and only 1% at N3LLp. This indicates that resumming the π2 terms results in only
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(a) Predictions are computed using a central choice
for the hard scale given by either µ2

h = Q2 or
µ2
h = −Q2. The lower panel shows the ratio of

the result for µ2
h = −Q2 to the one for µ2

h = Q2.

(b) Predictions and CMS measurement as ratio to
matched result.

Figure 9: Comparison of NNLL and N3LLp predictions for Z production as a function of the
jet veto, using the setup of ref. [38] (central predictions solid, uncertainty estimate according
to the text, dashed).

a small enhancement of the cross-section for W and Z production. Based on these findings,
we use the space-like hard scale (µ2

h = Q2) in our subsequent studies of Z and W boson
production, as it is the more commonly used choice in the literature.

5.1.1 CMS Z production

As previously mentioned, the CMS measurement we are comparing to includes a jet rapidity cut
of |y| < 2.4. To assess the importance of this restriction, we first compare the NNLO predictions
with and without the rapidity cut, as a function of the jet veto value. This comparison, shown
in Table 5, helps us better understand the limitations of our analysis.

We use the quantity ε(pveto
T ) to quantify the increase in the cross-section when the rapidity cut

is applied, defined as

ε(pveto
T ) =

σ0−jet(ycut = 2.4)

σ0−jet(no ycut)
− 1 . (5.1)

The experimental measurement we are comparing to uses a jet veto of pveto
T = 30 GeV, for which

the rapidity cut has only a 3% effect on the cross-section. This suggests that our calculation
with an all-rapidity jet veto is appropriate for comparing to the experimental measurement.
However, as pveto

T decreases, the impact of the rapidity cut becomes more significant, until at
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Table 5: The Z + 0-jet cross-section prediction at NNLO (µ = Q), with and without a jet
rapidity cut.

pveto
T [GeV] 5 10 20 30 40
σ0−jet(no ycut) [pb] 140 347 539 627 675
σ0−jet(ycut = 2.4) [pb] 242 411 569 643 685
ε 0.73 0.18 0.06 0.03 0.01

qq → Z → l+l−, s = 13 TeV, CMS cuts, arXiv:2205.02872

618 ± 17 pb 592−13
+9  pb
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Figure 10: Comparison of Z-boson jet-vetoed predictions with the CMS [38] 13 TeV measure-
ment. Shown are results at fixed-order, purely resummed and matched.

pveto
T = 5 GeV it is no longer appropriate to neglect the rapidity cut. This is consistent with the

arguments of Ref. [42], which suggest that the standard jet veto resummation formalism should
suffice as long as ln(Q/pveto

T )� ycut. In our case, ln(Q/pveto
T ) ranges from 0.8 to 2.9 for pveto

T

from 40 down to 5 GeV, so the standard jet veto resummation should be appropriate, albeit
with sizeable power corrections, for ycut = 2.4 except for the smallest values of pveto

T .

We now turn to a comparison with the CMS result [38], which uses a jet threshold of 30 GeV.
Our comparison with fixed-order, purely resummed and matched predictions is shown in Fig. 10.
We find that the fixed-order and resummed results differ by only a few percent, indicating
that resummation is not necessary for this value of the jet veto. This is because the quantity
ln(MZ/p

veto
T ) = 1.1 is not large enough to require resummation. The CMS measurement yields

a cross-section of 618± 17 pb, while our best prediction is 592+9
−13 pb.

We study the production of Z bosons as a function of the jet veto in Fig. 9b. We observe
that the difference between the resummed and central fixed-order results is small, even for the
smallest values of pveto

T considered. However, the uncertainties in the fixed-order prediction are
larger across the whole range, particularly for small pveto

T . For values of pveto
T in the range of 20

to 40 GeV, which are of practical interest, the N3LLp uncertainty is smaller than the NNLO
uncertainty by about a factor of 1.5.

5.1.2 ATLAS W production

We now perform a comparison with
√
s = 8 TeV ATLAS data on W production [43]. For

this study, jets were identified using the anti-kT algorithm with R = 0.4 and must satisfy
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qq' → W± → eν, s = 8 TeV, ATLAS cuts, arXiv:1711.03296       
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Figure 11: Comparison of W -boson jet-vetoed predictions with the ATLAS [43] 8 TeV mea-
surement. Shown are results at fixed-order, purely resummed and matched.

pT > 30 GeV and |y| < 4.4. We have checked at fixed order that this large rapidity cut has a
negligible impact of a few per mille, i.e. results are unchanged within the numerical precision
to which we work.

Summing over both W charges and including only the decay into electrons we compare our
predictions in Fig. 11. We show results at fixed order, at the resummed level, and at the
matched level. The effect of matching is large and we thus conclude that this value for the jet
veto is outside the sensible range for a purely resummed result, unlike for the Z study in the
previous subsection.

We observe excellent agreement with the theoretical prediction, albeit with a larger experimental
uncertainty. The experimentally measured cross-section is 4.72± 0.30 nb while our best
prediction is 4.71+0.07

−0.10 nb. Since this measurement corresponds to an integrated luminosity of
only 20 fb−1 it is clear that the high-luminosity LHC will eventually be able to provide a much
keener test of perturbative QCD in this process.

5.2 W+W− production

Experimental studies of WW production were performed by both ATLAS [52, 53] and CMS [39,
54]. Here we focus on the CMS analysis of ref. [39] since it provides a measurement of the 0-jet
cross-section as a function of the jet pT veto. This cross-section measurment corresponds to
a sum over both electron and muon decays of the W bosons, which we denote by the label
pp→W−W+ → 2`2ν. In order to account for this in our calculation, we compute the result
for pp→ e−µ+ν̄eνµ at NNLO and multiply it by the factor that accounts exactly for all lepton
combinations through NLO. The impact of ZZ contributions in the same-flavor case results in
a slight enhancement over the naïve factor of four. We find that, independent of the value of
the jet veto in the range that we consider, this factor is equal to 4.15.

The CMS analysis only imposes a jet rapidity cut of ycut = 4.5, so our expectation is that the
standard jet veto resummation formalism should be appropriate for pveto

T values between 60
and 10 GeV, since in this case the logarithm of the ratio of Q to pveto

T are in the range of 1.3
to 3.1. This expectation is supported by the NNLO analysis in Table 6, which shows only a
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small 2% effect from the rapidity cut for pveto
T = 10 GeV (and none for values above that).

Unlike the processes considered so far, Q is no longer set by a resonance mass but is instead a
distribution with a peak slightly above the 2MW threshold. For illustration, we have used an
average value of Q ∼ 220 GeV.

We first fix the value of pveto
T = 30 GeV and study the sensitivity of the pure fixed-order and

resummed calculations to the jet-clustering parameter R. The results are shown in Fig. 12a. At
NLO, there is at most one additional parton, so the NLO result does not depend on the value of
R. However, the NNLL result exhibits a mild dependence on R, which is most noticeable in the
size of the uncertainties. These uncertainties are much larger for smaller values of R, as was
previously observed and discussed in the context of Higgs production in Ref. [12]. At NNLO,
the fixed-order calculation becomes sensitive to the value of R, although the dependence is very
small. At N3LLp, the dependence is reduced compared to NNLL, especially at small R. Overall,
these results suggest that the jet-clustering parameter has a mild effect on the predictions of
the fixed-order and resummed calculations for WW production. We have not investigated the
effect of small R resummation [14] on these results.

In Fig. 12b, we extend our previous analysis of the jet-veto dependence of WW production,
which was presented in Ref. [55]. The effect of matching is substantial for values of pveto

T greater
than 20 GeV, so for typical jet vetoes in the range of 20 to 40 GeV, matched predictions are
important. We find that the fixed-order description is only capable of providing an adequate
result for the highest value of pveto

T studied here. A comparison with the CMS measurement
shows better agreement with the matched resummed calculation, although the experimental
uncertainties are still substantial, corresponding to an integrated luminosity of 36 fb−1.

We eagerly anticipate a measurement with more statistics in order to hone this comparison.
Future measurements with higher precision and larger data samples will provide a more
stringent test of the theoretical predictions and help to refine our understanding of WW

production at the LHC.

5.3 W±Z production

5.3.1 ATLAS

For W±Z production, we first compare our results with an analysis from the ATLAS collabora-
tion at

√
s = 13 TeV [44]. The 0-jet cross-section is measured with jets defined by the anti-kT

Table 6: The pp → W−W+ → 2`2ν+0-jet cross-section at NNLO, with and without a jet
rapidity cut.

pveto
T [GeV] 10 25 30 35 45 60
σ0−jet(no ycut) [fb] 535 963 1004 1054 1145 1237
σ0−jet(ycut = 4.5) [fb] 548 963 1004 1054 1145 1237
ε 0.02 0.00 0.00 0.00 0.00 0.00
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(a) Jet radius R dependence of fixed-order and
purely resummed results.

(b) Predictions and CMS measurement as a ratio
to the matched result.

Figure 12: Comparison of NNLO, N3LLp and matched N3LLp+NNLO results for W+W−

production.

qq' → W±Z, s = 13 TeV, ATLAS cuts, arXiv:1902.05759     

  31 ± 2.5 fb

29.7−1.2
+0.9 fb   

27
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ATLAS NLO NNLL NNLL+NLO NNLO N3LLp N3LL+NNLO
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Figure 13: Comparison of W±Z jet-vetoed predictions with the ATLAS 13 TeV measurement
[44]. Shown are results at fixed order, purely resummed and matched.

algorithm with pT > 25 GeV, |y| < 4.5, and R = 0.4.

Since ln(Q/pveto
T ) = 2.3 (for pveto

T = 25 GeV, using an average Q of about 240 GeV), we expect
that standard jet veto resummation should be applicable in this case, since ycut = 4.5. We
have checked that the effect of the rapidity cut is at the per mille level, which is less than our
numerical precision.

The ATLAS result is presented for a single leptonic channel and summed over both W charges.
The corresponding theoretical predictions at fixed order, at the resummed level, and at the
matched level are shown in Fig. 13.
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qq' → W±Z, s = 13 TeV, CMS cuts, arXiv:2110.11231     

  166 ± 6 fb
128 ± 8 fb, ycut < ∞

120
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Figure 14: Comparison ofW±Z jet-vetoed predictions with the CMS [45] 13 TeV measurement.
Shown are results at fixed-order, purely resummed and matched, all without a rapidity cut.

Overall, the measurement is in good agreement with both the N3LLp+NNLO and NNLO
predictions, within the mutual uncertainties. Only a more precise measurement would be
able to definitively support the need for resummation in this case. Since the ATLAS analysis
includes only 36 fb−1 of data, it is likely that a more precise measurement will be possible in
the near future.

5.3.2 CMS

We now contrast the ATLAS study of the W±Z process with one from CMS [45]. In the
CMS study, jets are defined by the anti-kT algorithm with pT > 25 GeV, |y| < 2.5, and
R = 0.4.

To assess the applicability of the jet-rapidity inclusive resummation framework, we must com-
pare ln(Q/pveto

T ) = 2.3 with ycut = 2.5. This suggests that the standard jet veto resummation
formalism may not be appropriate in this case, and that the use of ycut-dependent beam
functions [42] may be necessary to provide a reliable theoretical prediction. Despite this, we
still pursue the comparison here, without using ycut-dependent beam functions, to examine
the limitations of our approach.

The CMS result for W±Z production is presented after summing over all lepton flavors and
both W charges. On the theoretical side, we perform a similar analysis, but ignore same-flavor
effects that only enter at the 2% level. To construct the jet-vetoed cross-section for the CMS
measurement, we combine the differential results in Figure 14(c) of Ref. [45] with the inclusive
cross-sections reported in Table 6 of the same reference. Our results are shown in Fig. 14.

We find that neither the resummed prediction nor the NNLO one are in good agreement
with the CMS data, even when the NNLO calculation takes the jet rapidity cut into account
(increasing the NNLO result from 128 fb to 137 fb). This suggests that resummation is required
in this case, and that the use of ycut-dependent beam functions is necessary to provide a reliable
theoretical prediction. Overall, these results highlight the importance of using appropriate
resummation techniques to accurately predict W±Z production at the LHC with a small jet
rapidity cut.
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lepton cuts ql1T > 20 GeV, ql2T > 10 GeV,
q
l3,4
T > 5 GeV, |ηl| < 2.5

lepton pair mass 60 GeV < ml−l+ < 120 GeV
jet veto anti-kT , R = 0.5

Table 7: Fiducial cuts used for the ZZ analysis, taken from the CMS study in Ref. [40].

Table 8: The ZZ + 0-jet cross-section at NNLO (µ = Q), with and without a jet rapidity cut.

pveto
T [GeV] 10 20 30 40 50 60
σ0−jet(no ycut) [fb] 13.3 21.5 25.8 28.4 30.3 31.6
σ0−jet(ycut = 4.5) [fb] 13.4 21.5 25.8 28.4 30.3 31.6
σ0−jet(ycut = 2.5) [fb] 14.9 22.4 26.3 28.8 30.6 31.8
ε(ycut = 4.5) 0.01 0.00 0.00 0.00 0.00 0.00
ε(ycut = 2.5) 0.12 0.04 0.02 0.01 0.01 0.01

5.4 ZZ production

In the absence of jet-vetoed cross-sections for comparison, we use the cuts from a recent CMS
study [40] to investigate our theoretical predictions for ZZ production as a function of pveto

T .
In the results that follow we consider a sum over Z decays into both electrons and muons,
which we denote by pp→ ZZ → 4 leptons, and apply the cuts shown in Table 7.

We expect that standard jet veto resummation should provide good predictions for ycut = 4.5,
since ln(Q/pveto

T ) is in the range of 1.4 to 3.2 for pveto
T values between 60 and 10 GeV, using an

average Q of about 240 GeV. For ycut = 2.5, we expect larger rapidity effects for the smallest
values of pveto

T . This is supported by our analysis in Table 8, which shows only a very small
(1%) effect from a rapidity cut of ycut = 4.5 for pveto

T = 10 GeV (and no effect for higher values).
Even for ycut = 2.5, the rapidity cut has a relevant effect only for pveto

T values below 30 GeV,
and is mostly insignificant beyond that.

Fig. 15a shows a comparison of the dependence on pveto
T for purely-resummed results at two

different logarithmic orders. The central predictions are very similar at NNLL and N3LLp

and are consistent within uncertainties for all values of pveto
T . Fig. 15b compares the matched

N3LLp+NNLO and NNLO results. The NNLO prediction has large uncertainties over the whole
range of pveto

T and only overlaps with N3LLp+NNLO around 40 GeV and higher. The difference
between the central resummed and fixed-order results is significant (around 10%) for typical
values of pveto

T around 30 GeV. For most relevant values of pveto
T at the LHC, resummation is

clearly important for providing a precision prediction for this process.

5.5 Higgs production

For gluon fusion Higgs production an important topic is the inclusion of finite top-quark mass
effects. Although at NNLO these could be included exactly [56, 57], the mass effects are not
relevant in the jet-vetoed case [58] at the current level of precision. A simple overall one-loop
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(a) Purely resummed results. (b) Ratio to matched result.

Figure 15: Comparison of NNLO, N3LLp and matched N3LLp+NNLO results for ZZ production
as a function of the jet veto.

rescaling factor that takes into account the full mass dependence is sufficient to introduce mass
effects into mt →∞ EFT predictions. In the resummation formalism, the coefficient for the
matching of Higgs production in QCD onto SCET can be calculated in two ways, referred to as
one-step and two-step procedures.

5.5.1 One-step and two-step schemes

The one-step procedure is based on the observation that the ratio mH/mt is not large in a
logarithmic sense (c.f. ρ = m2

H/m
2
t ≈ 1/2 and αs log 1/ρ ≈ 0.07). This procedure matches the

full QCD result, typically obtained at higher orders as an expansion in the parameter r, onto
SCET at the scale µh ∼ mH . In this way, terms of order ρ are retained, but logs of mt/mH

are neglected.

In the two-step procedure outlined in Refs. [59–62], the top quark is first integrated out at a
scale µt u mt, and then the QCD effective Lagrangian is matched onto the SCET at a scale
µh u mH . Running between µt and µh allows one to sum logarithms of mt/mH , and finite
top-mass effects are included by scaling the result by a correction factor obtained at leading
order (an increase with respect to the EFT result by a factor of 1.0653, see Eq. (G.5)). Terms
enhanced by powers of mH/mt are thus only included in an approximate fashion at NLO and
beyond. The one-step procedure is described in detail in Appendix G.1 and the two-step
procedure is described in Appendix G.2.

We compare the numerical difference between the one- and two-step schemes, computed at√
s = 13.6 TeV and for R = 0.4 in Fig. 16a. Guided by fixed-order results, and in accord with
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(a) Results in the one- or two-step scheme. The
lower panel shows the ratio of the one-step to the
two-step result.

(b) Results using a central scale of either µ2
h = Q2

or µ2
h = −Q2. The lower panel shows the ratio of

the result for µ2
h = −Q2 to the one for µ2

h = Q2.

Figure 16: Comparison of NNLL and N3LLp predictions for Higgs production at
√
s = 13.6 TeV

as a function of the jet veto.

previous studies of this process [14], we set the hard (renormalization) scale using µh = Q/2.
We observe that the one-step scheme results in a cross-section that is about 1.7–2.3% larger at
NNLL and only 1.6% larger at N3LLp. This small difference occurs if one works rigorously at
a fixed order of αs. Working at a fixed order in αs in the component parts of the two-step
scheme can lead to larger differences, as described in more detail in Appendix G.3.

5.5.2 Time-like vs. space-like µ2
h

We now study the impact of choosing a time-like hard scale for the calculation of the Higgs
cross-section. To do this, we compare µ2

h = (Q/2)2 (the space-like scale) with µ2
h = −(Q/2)2

(the time-like scale). The use of a time-like hard scale allows us to resum certain π2 terms, by
employing a complex strong coupling [51]. For this comparison, we consider purely resummed
results at NNLL and N3LLp accuracy.

Results are shown in Fig. 16b, for the two-step scheme computed at
√
s = 13.6 TeV with

R = 0.4. We observe that at NNLL, the resummation of the π2 terms significantly enhances
the cross-section by 17%. However, at N3LLp accuracy, this resummation only leads to a small
increase of 2% in the cross-section.

Results for the matched vetoed cross-section are shown in Fig. 17. After matching, we
observe substantial agreement between the NNLO and N3LLp+NNLO calculations within
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Figure 17: Comparison of NNLL, N3LLp and N3LLp+NNLO predictions for Higgs production
at
√
s = 13.6 TeV as a function of the jet veto.

uncertainties. The central predictions differ by about 5% across the range, but the uncertainties
are substantially smaller in the resummed calculation.

6 Conclusions

We have presented a comprehensive study of jet-veto resummation in the production of color
singlet final states using the most up-to-date theoretical ingredients and achieving N3LLp

accuracy. Our implementation in MCFM improves upon previous public NNLL calculations
by reducing theoretical uncertainties, as demonstrated by comparisons with ATLAS and CMS
results. Once the one remaining theoretical element, dveto

3 , becomes available, it will be simple
to upgrade our predictions to full N3LL accuracy.2

The primary motivation for this work comes from the need for reliable and accurate predictions
of jet-veto cross-sections in processes such as Higgs boson and W+W− production, which are
commonly used to study new physics at the LHC. In these processes, the imposition of a jet
veto is often necessary to suppress backgrounds and enhance sensitivity to new physics signals.
Experimental results going beyond these two processes are much less frequent. We encourage
the experimental collaborations to consider measurements of more Standard Model processes
with a jet veto, as larger data samples become available, to better understand the dependence
of these processes on the jet veto parameters pveto

T and R.
2We have shown that the effect of including gluon-induced process in W+W− and ZZ production is

numerically a small effect, so that NLL accuracy is sufficient for these sub-processes.
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In addition to providing improved predictions for jet-veto cross-sections, our work also serves
as a valuable tool for testing and validation of general purpose shower Monte Carlo programs.
Our code allows for a detailed investigation of the dependence on the jet parameters pveto

T and
R, providing a benchmark for assessing the logarithmic accuracy and reliability of Monte Carlo
simulations in this important class of processes.

Our analysis shows that at the currently experimentally used values of pveto
T in W and Z

production, the logarithms are not large enough to justify the use of jet-veto resummation.
In these cases, fixed-order perturbation theory, which can be used to give the results with
a jet veto over a limited range of rapidities, is simpler and sufficient. We have also found
that attempts to resum π2 terms using a timelike renormalization point have little numerical
importance at N3LLp if the pveto

T scale is around 20 to 30 GeV.

The production of a Higgs boson is an exception among single-boson processes. In this case,
the combination of larger corrections from color factors and slightly larger values of the scale
(mH) appearing in the jet veto logarithms make resummation an important tool for improving
the accuracy of predictions. In the appendix we have investigated the differences between the
one-step and two-step procedures for calculating the hard function at the scale of pveto

T . We
find agreement within 2% of these two approaches.

The W+W− production process, where the jet veto has experimental importance, requires
both resummation and matching to NNLO. For the ZZ process resummation is mandatory
but the matching to fixed order is less important. Although this reflects the expectation that
the resummed prediction is more accurate for systems of higher invariant mass, these findings
depend on the exact nature of the cuts for each process. Our work provides a comprehensive
theoretical framework for studying jet vetoes in vector boson pair processes, and as data
becomes available, a comparative experimental study would be of great interest and could help
to validate our theoretical predictions.
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A Reduced beam functions

We have used the two loop beam function in the presence of a jet veto calculated in Ref. [24].
Their calculation, together with the corresponding soft function [25] has been performed in
SCET using the exponential rapidity regulator [27]. The beam function for quark initiated
processes in the presence of a jet veto has also been presented in Mellin space in Ref. [63].

The calculation in Ref. [24] has a perturbative expansion,

Iij =

∞∑
k=0

(αs
4π

)k
I

(k)
ij . (A.1)

The beam functions with a jet veto are decomposed into a reference observable, the beam
function for the transverse momentum of a color singlet observable and a remainder term
accounting for the effects of jet clustering,

Iij(x,Q, p
veto
T , R;µ, ν) = I⊥ij (x,Q, p

veto
T ;µ, ν) + ∆Iij(x,Q, p

veto
T , R;µ, ν) . (A.2)

Since the divergence structure of the reference observable is the same as the beam function
with a jet veto, ∆Iij can be calculated in four dimensions. Results for the reference observable
are available in Refs. [64, 65].

The reduced beam function kernels Ī as used in our setup are extracted from the coefficient I
as

Īij(z, p
veto
T , R, µ) = e−h

A(pveto
T ,µ) Iij(z, p

veto
T , R, µ) . (A.3)

They similarly follow a perturbative expansion

Īik(z, p
veto
T , R, µ) = δik δ(1− z) +

αs
4π
Ī

(1)
ik (z, pveto

T , µ) +
(αs

4π

)2
Ī

(2)
ik (z, pveto

T , R, µ) +O(α3
s) . (A.4)

Contributions at order αs

The αs contributions to Ī were first obtained in Refs. [3, 50] and read,

Īij(z, p
veto
T , R, µ) = δ(1− z) δij +

αs
4π

[
−2P

(1)
ij (z)L⊥ +R

(1)
ij (z)

]
+O(α2

s) , (A.5)

where L⊥ = 2 ln(µ/pveto
T ). R is the jet measure used in Eq. (2.1) and R(1)(z) is a remainder

function given below. At this order there is no dependence on the jet radius, R.

Throughout this paper we expand in powers of αs/(4π). The one exception to this rule are
the perturbative DGLAP splitting functions,

Pij(z) =
αs
2π
P (1)(z) +

(αs
2π

)2
P (2)(z) + . . . (A.6)
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Explicit expressions for P (1) and P (2) are given in Appendices C.2 and C.3. The remainder
functions at order αS are [66]

R(1)
qq (z) = CF

[
2(1− z)− π2

6
δ(1− z)

]
, R(1)

qg (z) = 4TF z(1− z) ,

R(1)
gg (z) = −CA

π2

6
δ(1− z) , R(1)

gq (z) = 2CF z . (A.7)

where CA = 3, CF = 4
3 , TF = 1

2 .

Contributions at order α2
s

At order α2
s we have

Ī
(2)
ik (z, pveto

T , R, µ) =
[
2P

(1)
ij (x)⊗ P (1)

jk (y)− β0P
(1)
ik (z)

]
L2
⊥

+
[
− 4P

(2)
ik (z) + β0R

(1)
ik (z)− 2R

(1)
ij (x)⊗ P (1)

jk (y)
]
L⊥ +R

(2)
ik (z,R) . (A.8)

In this equation ⊗ represents a convolution,

f(x)⊗ g(y) =

∫ 1

0
dx

∫ 1

0
dyf(x) g(y) δ(z − xy) =

∫ 1

z

dy

y
f(z/y) g(y) . (A.9)

Explicit expressions for P (1) and P (2) are given in Appendices C.2 and C.3. The expressions
for P (1) ⊗ P (1), R(1) ⊗ P (1) are given in appendix C.4.

The results from Refs. [24, 25] recast in the language of reduced beam functions allow us to
extract R(2)

ik (z,R). We have checked that the reduced beam functions have the form predicted
by Eqs. (A.5) and (A.8). In addition, we have confirmed the known results for the α2

s R-
dependent contribution to the collinear anomaly exponent. The result for the collinear anomaly
exponent is given in Section 2.1.

A.1 Structure of the two-loop reduced beam function

While a numerical evaluation of the analytical formulas for the reduced beam functions is
possible, we choose to perform a spline interpolation for improved numerical efficiency.

The reduced beam functions contain distributions of the following structure,

Ī
(2)
ij (z, pveto

T , R, µ) = Ī
(2)
ij,−1(pveto

T , R, µ) δ(1− z) + Ī
(2)
ij,0(pveto

T , R, µ)D0(1− z)

+ Ī
(2)
ij,1(pveto

T , R, µ)D1(1− z) + Ī
(2)
ij,2(z, pveto

T , R, µ) , (A.10)

where,

D0(1− z) =
1

[1− z]+
, D1(1− z) =

[
ln(1− z)
(1− z)

]
+

. (A.11)

Ī
(2)
ij,2(z, pveto

T , R, µ) contains terms which are regular at z = 1.
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The analytic results for the beam function of Ref. [24] are presented as a power series in
R up to powers of R8. The functions themselves contain powers of 1/(1 − z)n, in certain
cases up to n = 7 or 8. However, these singularities at z = 1 are fictitious as can be seen by
explicit expansion. The beam functions require special treatment in this region for numerical
stability.

The dominant region in the convolution of the function Ī with the parton distributions is
precisely the region z ∼ 1. If we assume a parton distribution f(x) ∼ 1/x we have,

Ī ⊗ f =

∫ 1

x

dz

z
Ī(z) f(x/z) ∼ 1

x

∫ 1

x
dz Ī(z) , (A.12)

showing that all regions of z contribute equally to the integral. However if, as expected, the
parton distribution function falls off more rapidly as x→ 1, say f(x) ∼ (1− x)n/x,

Ī ⊗ f =

∫ 1

x

dz

z
Ī(z) f(x/z) ∼ 1

x

∫ 1

x
dz Ī(z) (1− x/z)n . (A.13)

Thus, it is precisely the large values of z which are crucial for the integral. In other words,
the parton shower process is dominated by cascade from nearby values of x. Larger cascades
from more distant points are suppressed by the fall-off of the parton distributions. In view of
the importance of the region z = 1, for numerical stability we perform an expansion about
z = 1.

The absolute value of R(2) for the various parton transitions is shown in Fig. 18. Individual
R-dependent terms contain expressions of the form R2n/(1− z)k where k can be a high power.
However, the singularity at z = 1 is only apparent. The resultant limiting forms obtained by
series expansion about z = 1 are shown by the dashed lines in the figures. In practice, we
switch to the expanded form at z = 0.9, although the figures demonstrate that the expanded
forms are accurate down to much smaller values of z.

B Definition of the beta function and anomalous dimensions

The coefficients βn, ΓAn and γgn have perturbative expansions in powers of the renormalized
coupling. Details are presented below.

B.1 Expansion of β-function

The beta function is defined as,

dαs(µ)

d lnµ
= β(µ) = −2αs(µ)

∞∑
n=0

βn

(αs
4π

)n+1

= −2αs(µ)
αs(µ)

4π

[
β0 + β1

αs(µ)

4π
+ β2

(αs(µ)

4π

)2
+ β3

(αs(µ)

4π

)3
+ . . .

]
. (B.1)
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(a) gg case. (b) qq case

(c) gq case. (d) qg case

(e) q̄q case. (f) q′q case.

Figure 18: Absolute value of R(2) for jet measure R = 0.5. The q̄′q case is the same as the
q′q case. The sign of the contribution in the various regions is indicated.

The coefficients of the MS β function to four loops are [67–69],

β0 =
11

3
CA −

4

3
TF nf ,
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β1 =
34

3
C2
A −

(20

3
CA + 4CF

)
TF nf ,

β2 =
2857

54
C3
A +

(
C2
F −

205

18
CFCA −

1415

54
C2
A

)
2TF nf +

(11

9
CF +

79

54
CA

)
4T 2

F n
2
f ,
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+
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+
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+
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Fn

2
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17152
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+
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+
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3
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243
CFT

3
Fn

3
f
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NA

(
−80

9
+

704
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ζ3
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dabcdF dabcdA

NA
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9
− 1664

3
ζ3

)
+n2

f

dabcdF dabcdF
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(
−704

9
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3
ζ3
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. (B.2)

For the normalization of the SU(N) generators, the conventions of Refs. [69, 70] are,

dabcdA dabcdA

NA
=
N2(N2 + 36)

24
,

dabcdF dabcdA

NA
=
N(N2 + 6)

48
,

dabcdF dabcdF

NA
=
N4 − 6N2 + 18

96N2
,

NA = N2 − 1 , NF = N. (B.3)

Numerical values for the β-function coefficients are,

β0 = 11− 2

3
nf ,

β1 = 102− 38

3
nf ,

β2 =
2857

2
− 5033

18
nf +

325

54
n2
f ,

β3 =
149753

6
+ 3564ζ3 −

(1078361

162
+

6508

27
ζ3

)
nf +

(50065

162
+

6472

81
ζ3

)
n2
f

+
1093

729
n3
f . (B.4)

B.2 Cusp Anomalous Dimension

The cusp anomalous dimension depends on the label B which takes the two values, B = A,F

for gluons and quarks, respectively. Its perturbative expansion is,

ΓBcusp(µ) =

∞∑
n=0

ΓBn

(αs
4π

)n+1
. (B.5)
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The coefficients up to four loops are [71, 72],

ΓB0 = 4CB , (B.6)

ΓB1 = 16CB

{
(CA

(
67

36
− π2

12

)
− 5

9
nfTF

}
, (B.7)

ΓB2 = 64CB

{
C2
A

(
11ζ3

24
+

245

96
− 67π2

216
+

11π4

720

)
+ nfTFCF

(
ζ3 −

55

48

)
+ nfTFCA

(
−7ζ3

6
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216
+
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54

)
− 1

27
(nfTF )2

}
, (B.8)

ΓB3 = 256CB
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C3
A
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+
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− 11π4

720

)
+ nfTFC

2
F

(
37ζ3

24
− 5ζ5

2
+

143

288

)
+ (nfTF )2CA

(
35ζ3

27
− 7π4

1080
− 19π2

972
+

923

5184

)
+ (nfTF )2CF

(
−10ζ3

9
+

π4

180
+

299

648

)
+ (nfTF )3

(
− 1

81
+

2ζ3

27

)}
+ 256

dabcdB dabcdA

NB

(
ζ3

6
− 3ζ2

3

2
+

55ζ5

12
− π2

12
− 31π6

7560

)
+ 256nf

dabcdB dabcdF

NB

(
π2

6
− ζ3

3
− 5ζ5

3

)
. (B.9)

In addition to the relations in Eq. (B.3) we need the related quantities,

dabcdF dabcdA

NF
=

(N2 − 1)(N2 + 6)

48
,

dabcdF dabcdF

NF
=

(N2 − 1)(N4 − 6N2 + 18)

96N3
. (B.10)

B.3 Non-cusp anomalous dimension

The non-cusp anomalous dimension has the expansion,

γq,g(µ) =
∞∑
n=0

γq,gn

(αs
4π

)n+1
. (B.11)
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We take the coefficients up to three loops from ref. [73] Eq. I.4,

γq0 = −3CF , (B.12)

γq1 = C2
F

(
2π2 − 3

2
− 24ζ3

)
+ CFCA

(
26ζ3 −

961

54
− 11π2

6

)
+ CFTFnf

(130

27
+

2π2

3

)
, (B.13)

γq2 = C3
F

(
− 29

2
− 3π2 − 8π4

5
− 68ζ3 +

16π2

3
ζ3 + 240ζ5

)
+ C2

FCA

(
− 151

4
+

205π2

9
+

247π4

135
− 844

3
ζ3 −

8π2

3
ζ3 − 120ζ5

)
+ CFC

2
A

(
− 139345

2916
− 7163π2

486
− 83π4

90
+

3526

9
ζ3 −

44π2

9
ζ3 − 136ζ5

)
+ C2

FTFnf

(2953

27
− 26π2

9
− 28π4

27
+

512

9
ζ3

)
+ CFCATFnf

(
− 17318

729
+

2594π2

243
+

22π4

45
− 1928

27
ζ3

)
+ CFT

2
Fn

2
f

(9668

729
− 40π2

27
− 32

27
ζ3

)
. (B.14)

From ref. [74], Eq A5 we take,

γg0 = −β0 , (B.15)

γg1 = C2
A

(11π2

18
− 692

27
+ 2ζ3

)
+ CATFnf

(256

27
− 2π2

9

)
+ 4CFTFnf

= C2
A

(
2ζ3 −

59

9

)
+ CAβ0

(π2

6
− 19

9

)
− β1 , (B.16)

γg2 = C3
A

(
− 97186

729
+

6109π2

486
− 319π4

270
+

122

3
ζ3 −

20π2

9
ζ3 − 16ζ5

)
+ C2

ATFnf

(30715

729
− 1198π2

243
+

82π4

135
+

712

27
ζ3

)
+ CACFTFnf

(2434

27
− 2π2

3
− 8π4

45
− 304

9
ζ3

)
− 2C2

FTFnf + CAT
2
Fn

2
f

(
− 538

729
+

40π2

81
− 224

27
ζ3

)
− 44

9
CFT

2
Fn

2
f . (B.17)

Primary references for the calculation of these coefficients can be found in Ref. [73].

We now present results for γS and γt which are needed for the implementation of the two-step
calculation of the hard function for Higgs boson production. Following Ref. [61] we have, for
the first three expansion coefficients of the anomalous dimension γS that enters the evolution
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equation of the hard matching coefficient CS (see also [59, 60]),

γS0 = 0 , (B.18)

γS1 = C2
A

(
−160

27
+

11π2

9
+ 4ζ3

)
+ CATFnf

(
−208

27
− 4π2

9

)
− 8CFTFnf , (B.19)

γS2 = C3
A

[
37045

729
+

6109π2

243
− 319π4

135
+

(
244

3
− 40π2

9

)
ζ3 − 32ζ5

]
+ C2

ATFnf

(
−167800

729
− 2396π2

243
+

164π4

135
+

1424

27
ζ3

)
+ CACFTFnf

(
1178

27
− 4π2

3
− 16π4

45
− 608

9
ζ3

)
+ 8C2

FTFnf

+ CAT
2
Fn

2
f

(
24520

729
+

80π2

81
− 448

27
ζ3

)
+

176

9
CFT

2
Fn

2
f . (B.20)

The function γt is given by,

γt(αs) = α2
s

d

dαs

(
β(αs)

α2
s

)
= −2β1

(αs
4π

)2
− 4β2

(αs
4π

)3
− 6β3

(αs
4π

)4
+O(α5

s) . (B.21)

As shown in Eq. (G.22) µ independence provides the constraint,

2γg(αs) = γt(αs) + γS(αs) + β(αs)/αs , (B.22)

leading to the simple relationship between the coefficients in γg and γS ,

γS0 = 2γg0 + 2β0 , γ
S
1 = 2γg1 + 4β1 , γ

S
2 = 2γg2 + 6β2, γ

S
3 = 2γg3 + 8β3 . (B.23)

C Definitions for beam function ingredients

C.1 Exponent h

We define the auxiliary functions hB for B = F,A which, when combined with the hard
function and the collinear anomaly factor, will yield a renormalization group invariant hard
function. hF/A is defined to satisfy the RGE equation,

d

d lnµ
hF/A(pveto

T , µ) = 2 ΓF/Acusp(µ) ln
µ

pveto
T

− 2 γq/g(µ) , (C.1)

The factor h removes logarithms from the beam function and has a perturbative expansion in
terms of the renormalized coupling,

hB(pveto
T , µ) =

αs
4π
hB0 +

(αs
4π

)2
hB1 +

(αs
4π

)3
hB2 +

(αs
4π

)4
hB3 + . . . . (C.2)
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Thus for the particular case B = F we have that,

hF0 (pveto
T , µ) =

1

4
ΓF0 L

2
⊥ − γ

q
0L⊥ ,

hF1 (pveto
T , µ) =

1

12
ΓF0 β0L

3
⊥ +

1

4
(ΓF1 − 2γq0β0)L2

⊥ − γ
q
1L⊥ ,

hF2 (pveto
T , µ) =

1

24
ΓF0 β

2
0L

4
⊥ + (

1

12
ΓF0 β1 +

1

6
ΓF1 β0 −

1

3
γq0β

2
0)L3

⊥

+ (
1

4
ΓF2 −

1

2
γq0β1 − γq1β0)L2

⊥ − γ
q
2L⊥ ,

hF3 (pveto
T , µ) = +

1

40
ΓF0 β

3
0L

5
⊥ + (

5

48
ΓF0 β0β1 +

1

8
ΓF1 β

2
0 −

1

4
γq0β

3
0)L4

⊥

+ (
1

12
ΓF0 β2 +

1

6
ΓF1 β1 +

1

4
ΓF2 β0 −

5

6
γq0β0β1 − γq1β

2
0)L3

⊥

+ (
1

4
ΓF3 −

1

2
γq0β2 − γq1β1 −

3

2
γq2β0)L2

⊥ − γ
q
3L⊥ , (C.3)

where L⊥ = 2 ln(µ/pveto
T ). The corresponding result for B = A, q = g, (i.e. for incoming gluons)

is given by a similar expression mutatis mutandis. The expansion coefficients of the β-function,
Γ
F/A
cusp and γq/g, used in Eq. (C.3), are as given in Appendices B.1,B.2 and B.3.

C.2 One loop splitting functions

The one-loop DGLAP splitting functions as defined in [75] are

P (1)
qq (z) = CF

(
1 + z2

1− z

)
+

, (C.4)

P (1)
qg (z) = TF

[
z2 + (1− z)2

]
, (C.5)

P (1)
gg (z) = 2CA

[
z

(1− z)+

+
1− z
z

+ z(1− z)
]

+
β0

2
δ(1− z) , (C.6)

P (1)
gq (z) = CF

1 + (1− z)2

z
, (C.7)

C.3 Two loop splitting functions

Now we turn to the two-loop anomalous dimensions that contribute at sub-leading log level to
the transitions between parton types. In the quark sector there are four independent transitions
that we must produce values for (viz. q′ ← q,q̄′ ← q,q ← q and q̄ ← q). They are expressed in
terms of four functions,

P
(2)
q′q = PS(2)

qq , P
(2)
q̄′q = P

S(2)
q̄q , P (2)

qq = P V (2)
qq + PS(2)

qq , P
(2)
q̄q = P

V (2)
q̄q + P

S(2)
q̄q . (C.8)
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At next-to-leading order, the functions PSqq and PSq̄q are non-zero, but we have the additional
relation, PSqq = PSq̄q. To facilitate the presentation we define the auxiliary functions,

pqq(z) =
2

1− z
− 1− z , p(r)

qq (z) = −1− z , (C.9)

pqg(z) = z2 + (1− z)2 , (C.10)

pgq(z) =
1 + (1− z)2

z
, (C.11)

pgg(z) =
1

1− z
+

1

z
− 2 + z(1− z), p(r)

gg (z) =
1

z
− 2 + z(1− z) . (C.12)

The two valence functions needed for the quark sector are, [76–78],

P V (2)
qq (z) = C2

F

{
−

[
2 ln z ln(1− z) +

3

2
ln z

]
pqq(z)

−

(
3

2
+

7

2
z

)
ln z − 1

2
(1 + z) ln2 z − 5(1− z)

}

+CFCA

{
(1 + z) ln z +

20

3
(1− z) +

[
1

2
ln2 z +

11

6
ln z

]
pqq(z)

+

[
67

18
− π2

6

]( 1

(1− z)+
+ p(r)

qq (z)
)}

−CFTFnf

{
4

3
(1− z) +

2

3
pqq(z) ln z +

10

9

( 1

(1− z)+
+ p(r)

qq (z)
)}

+

{
C2
F

[
3

8
− π2

2
+ 6ζ3

]
+ CFCA

[
17

24
+

11π2

18
− 3ζ3

]

−CFTFnf

[
1

6
+

2π2

9

]}
δ(1− z) , (C.13)

P
V (2)
q̄q (z) = CF

(
CF −

CA
2

){
2pqq(−z)S2(z) + 2(1 + z) ln z + 4(1− z)

}
, (C.14)

and for the singlet function we have,

PS(2)
qq = CFTF

{
20

9z
− 2 + 6z − 56

9
z2 + (1 + 5z +

8

3
z2) ln z − (1 + z) ln2 z

}
. (C.15)

The other three transitions are simply given by,

P (2)
qg = CFTF

{
2− 9

2
z − (

1

2
− 2z) ln z − (

1

2
− z) ln2 z + 2 ln(1− z)
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+

[
ln2

(
1− z
z

)
− 2 ln

(
1− z
z

)
− π2

3
+ 5

]
pqg(z)

}

+CATF

{
91

9
+

7

9
z +

20

9z
+

(
68

3
z − 19

3

)
ln z

−2 ln(1− z)− (1 + 4z) ln2 z + pqg(−z)S2(z)

+

[
− 1

2
ln2 z +

22

3
ln z − ln2(1− z) + 2 ln(1− z) +

π2

6
− 109

9

]
pqg(z)

}
, (C.16)

P (2)
gq (z) = C2

F

{
− 5

2
− 7z

2
+

(
2 +

7

2
z

)
ln z −

(
1− 1

2
z

)
ln2 z

− 2z ln(1− z)−

[
3 ln(1− z) + ln2(1− z)

]
pgq(z)

}

+CFCA

{
28

9
+

65

18
z +

44

9
z2 −

(
12 + 5z +

8

3
z2

)
ln z

+(4 + z) ln2 z + 2z ln(1− z) + S2(z)pgq(−z)

+

[
1

2
− 2 ln z ln(1− z) +

1

2
ln2 z +

11

3
ln(1− z) + ln2(1− z)− π2

6

]
pgq(z)

}

+CFTFnf

{
− 4

3
z −

[
20

9
+

4

3
ln(1− z)

]
pgq(z)

}
, (C.17)

P (2)
gg (z) = CFTFnf

{
− 16 + 8z +

20

3
z2 +

4

3z
− (6 + 10z) ln z − (2 + 2z) ln2 z

}

+CATFnf

{
2− 2z +

26

9

(
z2 − 1

z

)
− 4

3
(1 + z) ln z

−20

9

( 1

(1− z)+
+ p(r)

gg (z)
)}

+C2
A

{
27

2
(1− z) +

67

9

(
z2 − 1

z

)
−

(
25

3
− 11

3
z +

44

3
z2

)
ln z

+4(1 + z) ln2 z + 2pgg(−z)S2(z)

+

[
ln2 z − 4 ln z ln(1− z)

]
pgg(z) +

[
67

9
− π2

3

]( 1

(1− z)+
+ p(r)

gg (z)
)}

+

{
C2
A

[8

3
+ 3ζ3

]
− CFTFnf −

4

3
CATFnf

}
δ(1− z) . (C.18)
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The function S2(z) is defined by

S2(z) =

∫ 1
1+z

z
1+z

dy

y
ln

(
1− y
y

)
. (C.19)

In terms of the dilogarithm function

Li2(z) = −
∫ z

0

dy

y
ln(1− y) , (C.20)

we have

S2(z) = −2Li2(−z) +
1

2
ln2 z − 2 ln z ln(1 + z)− π2

6
. (C.21)

C.4 P (1) ⊗ P (1) and R(1) ⊗ P (1)

We give here expressions for the convolutions of functions appearing in the beam functions.
The convolutions are defined as in Eq. (A.9). Similar expressions have been given in [1, 12]
The convolutions of the one-loop DGLAP kernels from Eqs. (C.4) are,

P (1)
qq ⊗ P (1)

qg = CFTF

(
2z − 1

2
+ (2z − 4z2 − 1) ln z + (2− 4z(1− z)) ln(1− z)

)
, (C.22)

P (1)
qg ⊗ P (1)

gg = CATF

(
2(1 + 4z) ln z +

4

3z
+ 1 + 8z − 31

3
z2
)

+
(
2CA ln(1− z) +

β0

2

)
P (1)
qg (z) , (C.23)

P (1)
gq ⊗ P (1)

qq = C2
F

(
2− 1

2
z + (2− z) ln z

)
+ 2CFP

(1)
gq (z) ln(1− z)

)
, (C.24)

P (1)
gg ⊗ P (1)

gq = CACF

(
8 + z +

(4z3 − 31)

3z
− 4(1 + z + z2)

z
ln z
)

+
(
2CA ln(1− z) +

β0

2

)
P (1)
gq (z) , (C.25)

P (1)
qg ⊗ P (1)

gq = CFTF

(
2(1 + z) ln z + 1− z +

4

3

(1− z3)

z

)
, (C.26)

P (1)
qq ⊗ P (1)

qq = C2
F

(
8
[ ln(1− z)

(1− z)

]
+
− 4(1 + z) ln(1− z)− 2(1− z)

+
(
3 + 3z − 4

(1− z)
)

ln z
)

+ 3CFP
(1)
qq (z)− C2

F (
9

4
+ 4ζ2)δ(1− z) , (C.27)

P (1)
gg ⊗ P (1)

gg = 4C2
A

(
2
[ ln(1− z)

(1− z)

]
+

+ 2(
(1− z)
z

+ z(1− z)− 1) ln(1− z) + 3(1− z)

− (
1

1− z
+

1

z
− z2 + 3z) ln z − 11(1− z3)

3z

)
+ β0P

(1)
gg (z)− (

β2
0

4
+ 4C2

Aζ2)δ(1− z) . (C.28)

The convolutions of lowest order DGLAP kernels, Eq. (C.4) with the one-loop finite terms in
the beam functions, Eq. (A.7) are,

R(1)
gg ⊗ P (1)

gg = −CAζ2P
(1)
gg (z) , (C.29)
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R(1)
gq ⊗ P (1)

qg = 2CFTF

(
(1− z)(1 + 2z) + 2z ln z

)
, (C.30)

R(1)
qq ⊗ P (1)

qq = CF

(
CF (1− z)(4 ln(1− z)− 2 ln z − 1)− ζ2P

(1)
qq (z)

)
, (C.31)

R(1)
qg ⊗ P (1)

gq = −4CFTF

(
1 + z ln z − (1 + 2z3)

3z

)
, (C.32)

R(1)
qg ⊗ P (1)

gg = −CATF (16z ln z − 68

3
z2 + 20z + 4− 4

3z
)

+ (2CA ln(1− z) +
β0

2
)R(1)

qg (z) , (C.33)

R(1)
qq ⊗ P (1)

qg = CFTF (2z2 + 2z − 4− (2 + 4z) ln z)− CF ζ2P
(1)
qg (z) , (C.34)

R(1)
gq ⊗ P (1)

qq = −C2
F (2z ln z − 4z ln(1− z)− z − 2) , (C.35)

R(1)
gg ⊗ P (1)

gq = −CAζ2P
(1)
gq (z) . (C.36)

D Rapidity anomalous dimension

Solving the collinear anomaly RG equation (Eq. (2.13)) as an expansion in αs (Eq. (2.15)) we
have that,

F (0)
gg (pveto

T , µh) = ΓA0 L⊥ + dveto
1 (R,A) ,

F (1)
gg (pveto

T , µh) =
1

2
ΓA0 β0L

2
⊥ + ΓA1 L⊥ + dveto

2 (R,A) ,

F (2)
gg (pveto

T , µh) =
1

3
ΓA0 β

2
0L

3
⊥ +

1

2
(ΓA0 β1 + 2ΓA1 β0)L2

⊥

+ (ΓA2 + 2β0d
veto
2 (R,A))L⊥ + dveto

3 (R,A) ,

F (3)
gg (pveto

T , µh) =
1

4
β3

0ΓA0 L
4
⊥ + (ΓA1 β

2
0 +

5

6
ΓA0 β0β1)L3

⊥

+ (
1

2
ΓA0 β2 + ΓA1 β1 +

3

2
ΓA2 β0 + 3dveto

2 (R,A)β2
0)L2

⊥

+ (ΓA3 + 3dveto
3 (R,A)β0 + 2dveto

2 (R,A)β1)L⊥ + dveto
4 (R,A) . (D.1)

where L⊥ = 2 ln(µh/p
veto
T ). The corresponding result for Fqq is given in Eq. (2.16). Because

Fgg appears in the exponent, we see that dveto
1 contributes in NLL, dveto

2 in NNLL, and dveto
3 in

N3LL.
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D.1 dveto
2 expansion

The expansion coefficients for dveto
2 , which is defined in Eq. (2.18), are given by [4, 5, 12],

cAL =
131

72
− π2

6
− 11

6
ln 2 = −1.096259 ,

cA0 = −805

216
+

11π2

72
+

35

18
ln 2 +

11

6
ln2 2 +

ζ3

2
= 0.6106495 ,

cA2 =
1429

172800
+
π2

48
+

13

180
ln 2 = 0.263947 ,

cA4 = − 9383279

406425600
− π2

3456
+

587

120960
ln 2 = −0.0225794 ,

cA6 =
74801417

97542144000
− 23

67200
ln 2 = 5.29625 · 10−4 ,

cA8 = − 50937246539

2266099089408000
− π2

24883200
+

28529

1916006400
ln 2 = −1.25537 · 10−5 ,

cA10 =
348989849431

243708656615424000
− 3509

3962649600
ln 2 = 8.18201 · 10−7 . (D.2)

and

cfL = −23

36
+

2

3
ln 2 = −0.1767908 ,

cf0 =
157

108
− π2

18
− 8

9
ln 2− 2

3
ln2 2 = −0.03104049 ,

cf2 =
3071

86400
− 7

360
ln 2 = 0.0220661 ,

cf4 = − 168401

101606400
+

53

30240
ln 2 = −4.42544 · 10−4 ,

cf6 =
7001023

48771072000
− 11

100800
ln 2 = 6.79076 · 10−5 ,

cf8 = − 5664846191

566524772352000
+

4001

479001600
ln 2 = −4.20958 · 10−6 ,

cf10 =
68089272001

83774850711552000
− 13817

21794572800
ln 2 = 3.73334 · 10−7 , (D.3)

We see that for values of the jet radius R < 1 the terms c6, c8 and c10 can be dropped.

For the gluon case the expansion of the function in numerical form is,

f(R,A) = − (1.0963CA + 0.1768TFnf ) lnR+ (0.6106CA − 0.0310TFnf )

+ (−0.5585CA + 0.0221TFnf )R2

+ (0.0399CA − 0.0004TFnf )R4 + . . . , (D.4)

whereas for the quark case we have

f(R,F ) = − (1.0963CA + 0.1768TFnf ) lnR+ (0.6106CA − 0.0310TFnf )

+ (−0.8225CF + 0.2639CA + 0.0221TFnf )R2

+ (0.0625CF − 0.02258CA − 0.0004TFnf )R4 + . . . . (D.5)
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E Renormalization Group Evolution

The evolution equation matching for a generic hard matching coefficient C has the form,

d

d lnµ
lnC(Q2, µ) =

[
Γcusp(αs(µ)) ln

Q2

µ2
+ γ(αs(µ))

]
. (E.1)

Following ref. [26] the solution to the evolution equation Eq. (E.1) is,

C(Q2, µ) = exp [2S(µh, µ)− aγ(µh, µ)]

(
Q2

µ2
h

)−aΓ(µh,µ)

C(Q2, µh) , (E.2)

lnC(Q2, µ) = 2S(µh, µ)− aγ(µh, µ)− aΓ(µh, µ) ln

(
Q2

µ2
h

)
+ lnC(Q2, µh) , (E.3)

where µh ∼ Q is a hard matching scale at which the Wilson coefficient C is calculated using
fixed-order perturbation theory. The Sudakov exponent S and the exponents aγ , aΓ are the
solutions to the auxiliary differential equations,

d

d lnµ
S(ν, µ) = −Γcusp

(
αs(µ)

)
ln
µ

ν
, (E.4)

d

d lnµ
aΓ(ν, µ) = −Γcusp

(
αs(µ)

)
, (E.5)

d

d lnµ
aγ(ν, µ) = −γ

(
αs(µ)

)
. (E.6)

with the boundary conditions S(ν, ν) = aΓ(ν, ν) = aγ(ν, ν) = 0 at µ = ν. Differentiating
Eq. (E.3) we recover Eq. (E.1).

The solutions to the evolution equation are conveniently expressed in terms of the running
coupling,

aΓ(ν, µ) = −
αs(µ)∫
αs(ν)

dα
Γcusp(α)

β(α)
, (E.7)

S(ν, µ) = −
αs(µ)∫
αs(ν)

dα
Γcusp(α)

β(α)

α∫
αs(ν)

dα′

β(α′)
. (E.8)

Substituting the values for the beta function coefficients in the MS scheme given in Appendix B.1
and the values for cusp anomalous dimension given in Appendix B.2 into Eq. (E.7) we
obtain,

aΓ(µh, µ) = aΓ
0 + aΓ

1 + aΓ
2 + aΓ

3 , (E.9)
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where the coefficients in the expansion are,

aΓ
0 =

Γ0 ln(r)

2β0
, r = αs(µ)/αs(µh) , (E.10)

aΓ
1 =

αs(µh)(r − 1)(β0Γ1 − β1Γ0)

8πβ2
0

, (E.11)

aΓ
2 =

α2
s(µh)(r2 − 1)

(
−β0β1Γ1 + β0(β0Γ2 − β2Γ0) + β2

1Γ0

)
64π2β3

0

, (E.12)

aΓ
3 = −α3

s(µh)
(
r3 − 1

)
×
(
β2

0(−β0Γ3 + β2Γ1 + β3Γ0)− β0β
2
1Γ1 + β0β1(β0Γ2 − 2β2Γ0) + β3

1Γ0

)
384π3β4

0

. (E.13)

The solution for aγ follows from the one for aΓ by making the replacement Γk → γk. The
non-cusp anomalous dimensions γ are given in Appendix B.3.

Evaluating Eq. (E.8) to obtain the evolution for S we get,

S(µh, µ) = S0 + S1 + S2 . (E.14)

with,

S0 =
1

8β3
0

(
8πβ0Γ0(r + r(− ln(r))− 1)

αs(µh)r
+ 2(r − 1)(β1Γ0 − β0Γ1)

+ ln(r)(2β0Γ1 + β1Γ0 ln(r)− 2β1Γ0)

)
, (E.15)

S1 = −αs(µh)

32πβ4
0

(
2 ln(r)

(
−β0β1Γ1r + β0β2Γ0 + β2

1Γ0(r − 1)
)

+ (r − 1)
(
−β0β1Γ1(r − 3) + β0(β0(r − 1)Γ2 − β2Γ0(r + 1)) + β2

1Γ0(r − 1)
))

,(E.16)

S2 =
α2
s(µh)

256π2β5
0

(
2 ln(r)

(
β1r

2
(
−β0β1Γ1 + β0(β0Γ2 − β2Γ0) + β2

1Γ0

)
− Γ0

(
β2

0β3 − 2β0β1β2 + β3
1

) )
+ (r − 1)

(
β2

0(2(β0(r + 1)Γ3 − 2β2Γ1)− β3Γ0(r + 1)) + β0β
2
1Γ1(r + 5)

+ β0β1(β2Γ0(r + 5)− 3β0(r + 1)Γ2)− 4β3
1Γ0

))
. (E.17)

E.1 Recovery of the double log formula

As we have seen S satisfies a RGE given by Eq. (E.4) with a solution given by Eq. (E.8). The
leading term in S0, Eq. (E.15) is

S0 ≈
πΓ0

β2
0αs(µh)

(
1 + ln

(1

r

)
− 1

r

)
, (E.18)

– 45 –



where r = αs(µ)/αs(µh). In this form the presence of a double log is obscured. We can easily
recover the double log by retaining only the leading terms. The leading expression for r is
given by solving the equation for the beta function,

1

r
= 1− αs(µh)

2π
β0 ln

(µh
µ

)
, (E.19)

S0 ≈
πΓ0

β2
0αs(µh)

[αs(µh)

2π
β0 ln

(µh
µ

)
+ ln

(
1− αs(µh)

2π
β0 ln

(µh
µ

))]
. (E.20)

Expanding for small αs(µh) ln(µh/µ) we get,

S(µh, µ) ≈ −Γ0

2

αS(µh)

4π
ln2
(µh
µ

)
. (E.21)

This gives the expected log squared with a negative sign.

F The hard function for the Drell-Yan process

The form factors of the vector current have been presented several places in the literature [79–84].
The bare form factor is given as,

F q,bare(q2, µ2) = 1 +

(
αbare
s

4π

)
(∆)εFq1 +

(
αbare
s

4π

)2

(∆)2εFq2 +O(α3
s) , (F.1)

where,

∆ = 4πe−γE

(
µ2

−q2 − i0

)
. (F.2)

In the following we will drop 4πe−γE , so that all poles should be understood in the MS sense.
The values found for the bare coefficients are,

Fq1 = CF

[
− 2

ε2
− 3

ε
+ ζ2 − 8 + ε

(
3ζ2

2
+

14ζ3

3
− 16

)

+ ε2
(

47ζ2
2

20
+ 4ζ2 + 7ζ3 − 32

)]
+O(ε3) , (F.3)

Fq2 = C2
F

[
2

ε4
+

6

ε3
− 1

ε2

(
2ζ2 −

41

2

)
− 1

ε

(
64ζ3

3
− 221

4

)

−
(

13ζ2
2 −

17ζ2

2
+ 58ζ3 −

1151

8

)]

+ CFCA

[
− 11

6ε3
+

1

ε2

(
ζ2 −

83

9

)
− 1

ε

(
11ζ2

6
− 13ζ3 +

4129

108

)

+

(
44ζ2

2

5
− 119ζ2

9
+

467ζ3

9
− 89173

648

)]

+ CFnf

[
1

3ε3
+

14

9ε2
+

1

ε

(
ζ2

3
+

353

54

)
+

(
14ζ2

9
− 26ζ3

9
+

7541

324

)]
+O(ε) . (F.4)
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The renormalized form factor can then be written as,

F q(µ2, q2, ε) = 1 +

(
αs(µ)

4π

)
F q1 (µ2, q2, ε) +

(
αs(µ)

4π

)2

F q2 (µ2, q2, ε) +O(α3
s) . (F.5)

where,

F q1 (µ2, q2, ε) = ∆εFq1 ,

F q2 (µ2, q2, ε) = ∆2εFq2 −
β0

ε
∆εFq1 . (F.6)

In the full theory the matrix element between on-shell massless quark and gluon states, after
charge renormalization is given by F q(µ2, q2, ε). Charge renormalization has removed the UV
poles, but the renormalized form factor still contains IR poles.

The matrix element in the effective theory involves only scaleless, dimensionally regulated
integrals and hence is equal to zero. This vanishing can be interpreted as a cancellation between
ultra-violet and infrared poles:

1

εIR
− 1

εUV
. (F.7)

After matching, the IR poles in the on-shell matrix element are effectively transformed into UV
poles and need to be renormalized as follows,

CV (αs(µ
2), µ2, q2) = lim

ε→0

(
ZV (ε, µ2q2)

)−1
F q(µ2, q2, ε) ,

ln
[
CV (αs(µ

2), µ2, q2)
]

= ln
[
Fq(µ

2, q2, ε)
]
− ln

[
ZV (ε, µ2, q2)

]
. (F.8)

The renormalization constant, ZV contains only pure pole terms,

lnZV (ε, µ2, q2) =
(αs

4π

)[
− ΓF0

2ε2
+

1

2ε

(
ΓF0 L+ 2γq0

)]

+
(αs

4π

)2[3ΓF0 β0

8ε3
− 1

ε2

[ΓF0 β0

4
L− CF

(
CA(

16

9
+ ζ2

)
+

4

9
nf )
]

+
1

4ε

(
ΓF1 L+ 2γq1

)]
, (F.9)

where L = ln((−q2 − i0)/µ2).

The matching coefficients have a perturbative expansion in terms of the renormalized cou-
pling,

CV (αs(µ
2), µ2, q2) = 1 +

∞∑
n=1

(
αs(µ

2)

4π

)n
CVn (µ2, q2). (F.10)

The matching coefficients, which are known to two loop order [85, 86] (and beyond [84]) for
Drell-Yan production, can be obtained from Eq. (F.8):

CV1 = CF

(
− L2 + 3L− 8 + ζ2

)
, (F.11)

– 47 –



CV2 = C2
F

(
1

2
L4 − 3L3 +

(
25

2
− ζ2

)
L2 +

(
− 45

2
+ 24ζ3 − 9ζ2

)
L

+
255

8
− 30ζ3 + 21ζ2 −

83

10
ζ2

2

)
+CFCA

(
11

9
L3 +

(
− 233

18
+ 2ζ2

)
L2 +

(
2545

54
− 26ζ3 +

22

3
ζ2

)
L

− 51157

648
+

313

9
ζ3 −

337

18
ζ2 +

44

5
ζ2

2

)
+ CFnf

(
− 2

9
L3 +

19

9
L2 +

(
− 209

27
− 4

3
ζ2

)
L+

4085

324
+

2

9
ζ3 +

23

9
ζ2

)
, (F.12)

where L = ln((−q2 − i0)/µ2). CV satisfies the renormalization group equation,

d

d lnµ
ln[CV (αs(µ

2), µ2, q2)] = ΓFcusp(µ) ln
(−q2 − i0

µ2

)
+ 2γq(µ) , (F.13)

with the anomalous dimensions as given in Appendix B.2 and Appendix B.3.

The derivation of the hard function for boson pair processes has been described in Ref. [87].

G The hard function for Higgs production

G.1 Implementation of one-step procedure

The one-step procedure [1, 13] is based on the observation that the ratio mt/mH is not large.
For an on-shell Higgs boson the parameter, m2

H/m
2
t ≈ 1

2 whereas αs ln(m2
t /m

2
H) ≈ 0.65αs,

indicating that power corrections should be more important than resumming logarithms. The
matching is performed at a scale µh by integrating out the top quark and all gluons and light
quarks with off-shellness above µh.

The hard Wilson coefficient so defined satisfies the RGE,

µ
d

dµ
lnCH(m2

t , q
2, µ2) = ΓAcusp(αs(µ)) ln

−q2 − i0

µ2
+ 2γg[αs(µ)] , (G.1)

where Γcusp and γg are given in Eqs. (B.5) and (B.11). As a consequence of Eq. (G.1) the
Wilson coefficient has the following structure,

CH(m2
t , q

2, µ2
h) = αs(µh)FH0

( q2

4m2
t

){
1 +

αs(µh)

4π

[
CH1

(−q2 − i0

µ2
h

)
+ FH1

( q2

4m2
t

)]

+

(
αs(µh)

(4π)

)2[
CH2

(−q2 − i0

µ2
h

,
q2

4m2
t

)
+ FH2

( q2

4m2
t

)]}
, (G.2)

The finite terms can be derived from Ref. [88],

FH0 (z) =
3

2z
− 3

2z

∣∣∣1− 1

z

∣∣∣{arcsin2(
√
z) , 0 < z ≤ 1 ,

ln2[−i(
√
z +
√
z − 1)] , z > 1 ,

(G.3)
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≈ 1 +
7z

30
+

2z2

21
+

26z3

525
+

512z4

17325
+O(z5), z < 1 . (G.4)

For the values of mt and mH in Table 2,

|FH0 (z0)|2 = 1.0653 , z0 =
m2
H

4m2
t

. (G.5)

The coefficients CH1 and CH2 are fixed by the Eq. (G.1).

CH1 (L) = CA

(
−L2 +

π2

6

)
, (G.6)

CH2 (L, z) =
1

2
C2
AL

4 +
1

3
CAβ0L

3 + CA

[(
−4

3
+
π2

6

)
CA −

5

3
β0 − F1(z)

]
L2

+
[(59

9
− 2ζ3

)
C2
A +

(19

9
− π2

3

)
CAβ0 − F1(z)β0

]
L . (G.7)

where z = q2/4/m2
t and L = ln[(−q2 − i0)/µ2

h].

The full analytic mt dependence of the virtual two-loop corrections to gg → H in terms of
harmonic polylogarithms were obtained in Refs. [89–91]. For our purposes the results expanded
in m2

H/m
2
t from Refs. [88, 92, 93] will be sufficient. The functions FH1 (z), FH2 (z) which,

together with FH0 (z) in Eq. (G.4) encode the mt dependence of the hard Wilson coefficient in
Eq. (G.2). Following the procedure described in Appendix F they are easily extracted from
Ref. [88],

FH1 (z) =
(

5− 38

45
z − 1289

4725
z2 − 155

1134
z3 − 5385047

65488500
z4
)
CA

+
(
−3 +

307

90
z +

25813

18900
z2 +

3055907

3969000
z3 +

659504801

1309770000
z4
)
CF +O(z5) (G.8)

FH2 (z) =
(
7C2

A + 11CACF − 6CFβ0

)
ln(−4z − i0) +

(
−419

27
+

7π2

6
+
π4

72
− 44ζ3

)
C2
A

+
(
−217

2
− π2

2
+ 44ζ3

)
CACF +

(2255

108
+

5π2

12
+

23ζ3

3

)
CAβ0 −

5

6
CATF

+
27

2
C2
F +

(41

2
− 12ζ3

)
CFβ0 −

4

3
CFTF

+ z
[
C2
A

(11723

384
ζ3 −

404063

14400
− 223

108
ln(−4z − i0)− 19

135
π2
)

+ CFCA

(2297

16
ζ3 −

1099453

8100
− 242

135
ln(−4z − i0)− 953

540
π2 +

28

15
π2 ln 2

)
+ C2

F

(13321

96
ζ3 −

36803

240
+

7

3
π2 − 56

15
π2 ln 2

)
+ CF

(77

12
ζ3 −

4393

405
− 7337

2700
β0 +

39

10
ln(−4z − i0)β0 +

28

45
π2 +

7

15
π2β0

)
+ CA

( 77

384
ζ3 −

64097

129600
− 269

75
β0 +

2

15
ln(−4z − i0)− 31

180
ln(−4z − i0)β0

)]
+ z2

[
C2
A

(110251

9216
ζ3 −

3084463261

254016000
− 2869

4536
ln(−4z − i0)− 1289

28350
π2
)
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+ CFCA

(2997917

23040
ζ3 −

55535378557

381024000
− 18337

28350
ln(−4z − i0)− 128447

113400
π2 +

1714

1575
π2 ln 2

)
+ C2

F

(36173

192
ζ3 −

95081911

453600
+

857

630
π2 − 3428

1575
π2 ln 2

)
+ CA

( 265053121

1524096000
− 16177

92160
ζ3 −

45617

47250
β0 +

16

315
ln(−4z − i0)− 623

5400
ln(−4z − i0)β0

)
+ CF

(21973

7680
ζ3 −

8108339

1555200
− 509813

3969000
β0 −

8

15
ln(−4z − i0) +

29147

18900
ln(−4z − i0)β0

+
1714

4725
π2 +

857

3150
π2β0

)]
+O(z3) . (G.9)

We can assess the quality of the expansion in z by numerical evaluation,

CH(m2
t , q

2, q2) = αs(q)F0(z)
[
1 + 15.9348

αs
4π

(1 + 0.0158(8z) + .00098312(8z)2)

+ 97.0371
(αs

4π

)2
(1 + 0.1883(8z) + 0.0120(8z)2)

+ 143.466
(αs

4π

)2 ln(−8z − i0)

π
(1 + 0.0288(8z) + 0.001462(8z)2)

]
. (G.10)

In the vicinity of the Higgs boson pole (8z ≈ 1) subsequent terms in the z expansion are
expected to contribute below the percent level.

G.2 Implementation of the two-step procedure

In the two-step procedure of Refs. [59–62] one first integrates out the top quark at a scale
µt u mt and subsequently matches from the QCD effective Lagrangian onto SCET at µh u mH .
Running between µh and µt allows one to sum logarithms of mt/mH , but one neglects power
of mH/mt.

G.2.1 Ct(m2
t , µ

2
t )

For a heavy top quark the effective Lagrangian for the production of a top quark is given
by,

Leff = Ct(m2
t , µ

2
t )
H

v

αs(µ
2
t )

12π
Gµν aG

µν
a , (G.11)

where v ≈ 246 GeV is the Higgs boson vacuum expectation value. The hard matching scale
µt at which the Wilson coefficient can be computed perturbatively is of order mt. The short
distance coefficient Ct(m2

t , µ
2) obeys the RGE,

d

d lnµ
Ct(m2

t , µ
2) = γt(αs)C

t(m2
t , µ

2), γt(αs) = α2
s

d

dαs

(β(αs)

α2
s

)
. (G.12)

The expressions for the short-distance coefficient Ct(m2
t , µ

2
t ) at NNLO is,

Ct(m2
t , µ

2
t ) = 1 +

αs(µt)

4π
Ct1 +

(
αs(µt)

4π

)2

Ct2(m2
t , µ

2
t ) + . . . , (G.13)

where (c.f. Eq. (12) of Ref. [61]),

Ct1 = 5CA − 3CF
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Ct2(m2
t , µ

2
t ) =

27

2
C2
F +

(
11 ln

m2
t

µ2
t

− 100

3

)
CFCA −

(
7 ln

m2
t

µ2
t

− 1063

36

)
C2
A

−4

3
CFTF −

5

6
CATF −

(
8 ln

m2
t

µ2
t

+ 5

)
CFTFnf −

47

9
CATFnf . (G.14)

The evolution of these coefficients to the resummation scale µ is described in Appendix A of
Ref. [3]. The solution to the evolution equation Eq. (G.12) for Ct at scale µ is,

Ct(m2
t , µ

2) =
β(αs(µ))

α2
s(µ)

α2
s(µt)

β(αs(µt))
Ct(m2

t , µ
2
t ) . (G.15)

The result at NNLO for the square of the coefficient function is,[
Ct(m2

t , µ
2)
]2

= 1 +
(αs

4π

)[
2Ct1 + 2(rt − 1)

β1

β0

]
+
(αs

4π

)2[
(Ct1)2 + 2Ct2(m2

t , µ
2
t ) +

(2β2β0 + β2
1)

β2
0

(rt − 1)2

+ 2
(2β2β0 + 2β1β0C

t
1 − β2

1)

β2
0

(rt − 1)
]
, (G.16)

where rt = αs(µ)/αs(µt). This extends the NLO result in Eq. (2) of Ref. [3].

G.2.2 CS(−q2, µh)

CS is the Wilson coefficient matching the two gluon operator in Eq. (G.11) to an operator
in SCET in which all the hard modes have been integrated out. The result for the matching
coefficient CS from Eqs.(16) and (17) of Ref. [61]. It is given by,

CS(−q2, µ2
h) = 1 +

∞∑
n=1

CSn (L)

(
αs(µ

2
h)

4π

)n
. (G.17)

The coefficient CS obeys the renormalization equation,

d

d lnµ
CS(−q2 − iε, µ2) =

[
ΓAcusp(αs) ln

−q2 − iε
µ2

+ γS(αs)

]
CS(−q2 − iε, µ2) , (G.18)

with L = ln(−q2 − i0)/µ2
h and γS is given in Eq (B.20).

The logarithmic terms are determined by Eq. (G.18). The full results for the one- and two-loop
coefficients are,

CS1 = CA

(
− L2 +

π2

6

)
, (G.19)

CS2 = C2
A

[L4

2
+

11

9
L3 +

(
− 67

9
+
π2

6

)
L2 +

(80

27
− 11π2

9
− 2ζ3

)
L

+
5105

162
+

67π2

36
+
π4

72
− 143

9
ζ3

]
+ CFTFnf

(
4L− 67

3
+ 16ζ3

)
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+ CATFnf

[
− 4

9
L3 +

20

9
L2 +

(104

27
+

4π2

9

)
L− 1832

81
− 5π2

9
− 92

9
ζ3

]
. (G.20)

The full result for the renormalization group invariant hard function in the two-step scheme
is,

H̄(mt,mH , p
veto
T ) =

(
αs(µ)

αs(pveto
T )

)2

(Ct(m2
t , µ))2

∣∣CS(−m2
H , µ)

∣∣2
×
(
mH

pveto
T

)−2Fgg(pveto
T ,µ)

e2hA(pveto
T ,µ) . (G.21)

The µ-independence of this hard function can be used to constrain γS ,

d

d lnµ
H̄(mt,mH , p

veto
T ) = 0 . (G.22)

Using Eqs. (B.1,G.12,G.18,2.13,C.1) we can derive the relation between the collinear anomalous
dimensions,

2γg(αs) = γt(αs) + γS(αs) + β(αs)/αs . (G.23)

This relation could be cast in a more transparent form by noting that the quantity (αsC
S)

obeys a similar evolution equation to Eq. (G.18),

d

d lnµ

[
αs(µ)CS(−m2

H − iε, µ2)
]

=

αs(µ)

[
ΓAcusp(αs) ln

−m2
H − iε
µ2

+ γS(αs)

]
CS(−m2

H − iε, µ2) + β(αs)C
S(−m2

H − iε, µ2)

=

[
ΓAcusp(αs) ln

−m2
H − iε
µ2

+ γS
′
(αs)

] [
αs(µ)CS(−m2

H − iε, µ2)
]
, (G.24)

but with anomalous dimension γS
′
(αs) = γS(αs) + β(αs)/αs. We then have the relation

2γg(αs) = γt(αs) + γS
′
(αs). This indicates that after the second matching, the evolution

down to a lower scale satisfies the same renormalization equation in both the one-step and the
two-step schemes.

G.3 Assessment of the two schemes for the Higgs hard function

The two schemes for the calculation of the hard function have application in jet veto resum-
mation but also in the resummation of the Higgs boson transverse momentum. A complete
discussion of the error budget for Higgs boson production including scale dependence, parton
distribution dependence, the influence of loops of b-quarks and electroweak corrections is
beyond the scope of this paper. Here we shall simply compare and contrast the one-step and
the two-step scheme, in the Higgs on shell region where m2

H ≈ m2
t /2.

It is easy to check the internal consistency of the two schemes in the limit where we drop
terms of order q2/(4m2

t ). Setting z = 0 in Eq. (G.2) and evaluating all coefficient functions at
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a common scale µ, we have that,

αs(µ)Ct(m2
t , µ

2)CS(−q2, µ2) = CH(m2
t , q

2, µ2)z=0 +O(α4
s) . (G.25)

We can test this equivalence numerically. We start by fixing µ2 = q2 and consider the quantities
that enter the calculation of the cross-section, i.e. the square of the absolute values. In the
two-step scheme we have,

|Ct(m2
t , q

2)|2 = 1 + 0.1957 + 0.0204 ,

|Cs(−q2, q2)|2 = 1 + 0.6146 + 0.2155 , (G.26)

where the second and third terms represent the O(αs) and O(α2
s) terms respectively, evaluated

using αs(q2) = 0.1118. In the one-step case we get,

|CHz=0(m2
t , q

2, q2)/αs(q)|2 = 1 + 0.8104 + 0.3563 . (G.27)

Performing a strict fixed-order truncation of the product of the two-step result we have,[
|Ct(m2

t , q
2)|2|Cs(−q2, q2)|2

]
expanded = 1 + 0.8104 + 0.3563 , (G.28)

which is in perfect agreement with the one-step case. This indicates that the numerical
implementation of the two procedures is correct. If we instead evaluate the product after the
individual expansions have been performed, a choice of equal formal accuracy, we have,

|Ct(m2
t , q

2)|2expanded |Cs(−q2, q2)|2expanded = 1 + 0.9306 + 0.2953 . (G.29)

This results in a significant difference. We therefore work with with the strict fixed-order
truncation throughout this paper.

We now restore the z-dependence in FH1 and FH2 in Eq. (G.2), but still keep z = 0 in the
overall factor FH0 (z). We then find that the ratio of the one-step to the two-step becomes
1.0028 at NLO and 1.0053 at NNLO, i.e. these corrections are very small. Now we allow the
matching scale for the top quark, µt to take its natural value, µt = mt and find one/two-step
ratios of 1.0054 at NLO and 1.0073 at NNLO, again a small effect. Finally, we reinstate the
hard evolution down to the resummation scale and find that the ratio of the one-step to the
two-step (at pveto

T = 25 GeV) is 1.0177 at NLO and 1.0125 at NNLO. The cumulative effect at
this point is noticeable but still small. However, we note that we have so far kept z = 0 in
the overall factor FH0 (z). The one-step procedure is recovered by re-instating FH0 (z). This
implies that, in order to obtain the level of agreement quoted above between the two schemes,
the overall factor of FH0 (z) must also be applied to give a modified version of the two-step
scheme. Neglecting this step would result in a significant difference, since |FH0 (z)|2 = 1.0653

see Eq.(G.5).

Our overall conclusion on the two schemes is in line with the known result that Higgs boson
production has substantial corrections. Accounting for the most important mass effects by
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rescaling the two-step result by the exact result at leading order, the one-step procedure
gives a larger result than the two-step procedure for pveto

T = 25 GeV at the level of 1.3%.
Any substantial difference between the two methods beyond this level is most likely due to
uncontrolled higher order effects.
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