A Collaboration Website for Muon Catalyzed Fusion and Muon Beam Production
Don Flecky, Under Advisor Dr. Carol J. Johnstone, Columbia Basin College
CCI Fall Intern

Introduction
This project sets up a website to support the nascent Muon Catalyzed Fusion collaboration including development of particle accelerators and transport beamlines for muon beams. The website is envisioned as having the general public information pages and private pages for collaboration members. Multimedia elements like images, text animations, and video lectures, covering a broad spectrum of topics will populate the educational site, covering muon facilities, to comprehensive explorations and seminal documents that define the science of Muon Catalyzed Fusion, Acceleration, Applications, Instrumentation, Beamline Design, and beam dynamics design codes.

Prototype Website
<- Main Message
<- Public Sections
<- Private Sections

Single Page Scrolling Website
Notice that the main image doesn’t disappear with scrolling. Scrolling reduces the image, rather than disappearing.

Single Page Scrolling with Video
The same scrolling format is retained but adds streaming capability.

Implementation
This project will maintain public and protected private pages, due to the proprietary nature of the work or research in progress. The public sections will be built to foster dissemination of information and highlight recent work within the NK Labs collaboration, including lectures, published papers, and regular blog posts with open commenting. The private section will support unpublished or nonpublic research, by facilitating collaborative efforts through integrated Google Docs and Python Plotly for shared graphing work. Ultimately, this project strives to make complex scientific knowledge more accessible to the public, foster enhanced collaboration, and serve as a platform for sharing cutting-edge research in Muon Catalyzed Fusion and Accelerators.

Public Website Pages
All the main sections are complete, with final version pending on permission to display muon data and hardware.

Private Website Pages
Main sections have been defined; appropriate security protocols need implementation.

Thanks and Acknowledgements
Special Thanks to my mentor Dr. Carol Johnstone and Ara Knaian, and to my colleagues Jasmine Tang, Wesley Winter and Erica Garcia Badaracco.

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Community College Internships Program (CCI).