PI Loop Resonance Control For The Dark Photon Experiment at 2 K Using A 2.6 GHz SRF Cavity

C. Contreras-Martinez†, B. Giaccone, O. Melnychuk, A. Netepenko Y. Pischalnikov, S. Posen, and V. Yakovlev, FNAL IL, USA

ccontrer@fnal.gov

Introduction

- Two 2.6 GHz cavities are being used for dark photon search at VTS in FNAL.
- During testing at 2 K the cavities experience frequency detuning caused by microphonics and slow frequency drifts.
- These two cavities are equipped with frequency tuners consisting of three piezo actuators.
- A PI feedback loop was used to control the frequency of the emitter cavity.
- The integration time was also calculated with a simulation.

Setup

![Setup Image](image1)

Table 1: Figures of merit of both cavities, the bandwidth is calculated using the loaded Qs.

<table>
<thead>
<tr>
<th>Cavity</th>
<th>R/Q [Ω]</th>
<th>Bandwidth [Hz]</th>
<th>Qs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emitter</td>
<td>104.7</td>
<td>5.84</td>
<td>4.42 × 10⁹</td>
</tr>
<tr>
<td>Receiver</td>
<td>104.7</td>
<td>0.56</td>
<td>6.46 × 10⁹</td>
</tr>
</tbody>
</table>

Figure 1: (a) Left picture shows the setup of the experiment. The right picture shows a schematic of the process of dark photon production and detection. (b) Actual cavity setup.

Figure 2: Setup of the PI loop for the emitter cavity.

Figure 3: (a) Frequency stability of the receiver cavity using a network analyzer. The cavity frequency drift can be linear or can plateau. (b) Frequency stability of the emitter cavity with a gradient of 15 MV/m and piezo DC voltage of 108 V.

- **Figure 4:** (a) Frequency drift of the emitter cavity is shown in blue and for the receiver it is shown in red. A frequency counter is used to record the frequency on the emitter and NA for the receiver. (b) Voltage of the piezos on the emitter cavity with PI algorithm.

Integration Time Simulation

- The purpose of this simulation is to estimate the field inside the receiver cavity considering the slow frequency drift.

Conclusion

- Result with PI resonance control on the emitter reduce the slow drift from 657 Hz/hr to 0.1 Hz/hr.
- This improvement in frequency stabilization improved the frequency matching capability which will greatly help increase the dark photon detection sensitivity.
- Simulation results show that even with a PI loop after 1 hour the field of the receiver drops to 15 % of its initial value.
- A constrain of integration time is calculated to be about ~200 s.