

IPAC23

Thermionic Sources for Electron Cooling at IOTA

M.K. Bossard¹, N. Banerjee², S. Kladov¹, Y.-K. Kim¹, S. Nagaitsev³, B. Cathey², J. Brandt¹, G. Stancari²

Fermilab

FERMILAB-POSTER-23-039-AD

¹The University of Chicago, ²Fermi National Accelerator Laboratory, ³Thomas Jefferson National Accelerator Facility

We are designing two new thermionic sources for IOTA at Fermilab, which will be useful for both cooling research and hadron beams.

Introduction

Beam cooling causes an increase in particle density, leading to an increased intensity:

 $L, B = \frac{N^2}{\sqrt{\epsilon_x \epsilon_y}}$

• There exist multiple methods of beam cooling: ionization, stochastic, laser, and **thermionic electron cooling**.

Simulations in TRAK

- Electron beam simulations will be used to design an electron source.
- Simulation package **TRAK**: advanced 2D code for charged-particle optics and particle source design.

Cylindrical slice of simulated strong electron source:

• We aim to design and build two thermionic electron sources for cooling of a 2.5 MeV proton beam at the Integrable Optics Test Accelerator (IOTA) at Fermilab.

IOTA Schematic:

Objectives

- **Electron cooling**: beam of hadrons exchanges thermal energy with copropagating beam of electrons and reduces transverse velocity distribution of hadron beam, decreasing the beam divergence.
- Goals:
 - 1. Simple source to use for other IOTA experiments.
 - 2. Strong source to research interplay between electron cooling and space charge.
- Design, manufacture, and test the sources for cooling at IOTA.

- Strong source solutions completed through TRAK.
- To test these and other
 sources, a test stand
 at the University of
 Chicago has been
 developed (Poster by
 S. Kladov: THPL050).

Conclusions

- Electron cooling increases beam intensity, valuable for future of hadron beams.
- IOTA at Fermilab is working to create two thermionic electron sources. One to cool proton beams, and one to investigate electron cooling and space charge.
- To generate appropriate electron beams, we are designing two electron sources.
- We are also building a test stand at the University of Chicago to test the sources.
- Next, we will build, test, and commission these thermionic sources.

- Use simulations to design the cooling beams.
- Build test stand for the sources.
- Manufacture and test the sources with the test stand.

			Ele
	Simple Source	Strong Source	Kine
Current	1.2 mA	80.3 mA	Transv
Radius	14.1 mm	18 mm	Temp
τ _{x,y,z}	7.6, 6.5, 5.3 s	2.5, 2.4, 5.3 s	

Transverse profile view of electron cooling. Red arrows represent protons, Blue dots represent electrons.

Electron Source Parameters			
Kinetic Energy	1.36 keV		
Transverse Profile	Flat		
Temporal Profile	DC		
Source Cathode Temp.	1400 K		

Acknowledgments

This research is funded by the NSF GRFP and travel funds were supplied by the IPAC Student Grant. This project is a collaboration between the University of Chicago and Fermilab.

References

G. Stancari et al, J. Instrum., vol. 16, no. 5, p. 05002, 2021. doi:10.1088/1748-0221/16/05/p05002

N. Banerjee *et al.*, in Proc. IPAC'22, Bangkok, Thailand, Jun. 2022, pp. 2395. doi:10.18429/JACoW-IPAC2022-THOXGD2

S. Antipov et al., J. Instrum., vol. 12, no. 3, p. T03002, 2017. doi:10.1088/1748-0221/12/03/T03002

A. Valishev *et al.*, in Proc. IPAC'21, Campinas, Brazil, May 2021, pp. 19–24. doi:10.18429/JACoW-IPAC2021-MOXB02

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No.~DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

mbossard@uchicago.edu MOPL046

Simulated Current vs. Cathode Radius