
Quota management in dCache or making a 
perfectly normal file system normal

Authors:  DMITRY LITVINTSEV, Albert Rossi(FNAL); Svenja Meyer, Paul Millar, Tigran 
Mkrtchyan, Lea Morschel, Marina Sahakyan (DESY); Krishnaveni Chitrapu (NSC)

From its inception dCache was designed as a caching
disk buffer to a tertiary tape storage system with an
assumption that the latter has virtually unlimited
capacity. No provisions for storge quota were made. In
disk-only (or hybrid) configuration the need to manage
space usage by users and groups has come to the fore.
Here we present details of implementation of user and
group quotas in dCache.

dCache is architected as an ensemble of microservices
implemented in Java and communicating with each
other by messages over TPC/IP network. Each
microservice performs specific functions and together
they act in concert to deliver data to/from clients over
the network.

The core components of the system:
• I/O portals, or doors that implement a specific

protocol - (G)FTP, WebDAV, NFS, XRootD etc.
• Namespace (aka PnfsManager) that uses database

back-end to store file metadata, directory structure
and file locations.

• PoolManager that selects destination (or source)
data server based various selection criteria and pool
cost function.

• Pool(s) – data severs that store data in complete
files (called file replicas) on data partitions deliver
data to/from clients and manager file repository
cache. File replicas on pools play roles of inodes to
dCache namespace entries.

On upload a client connects to a door to initiate a
transfer to a destination path in dCache namespace.
The door sends a message to the namespace server
to check permissions in the destination directory,
receives reply. If OK, a namespace entry is created
and the door messages PoolManager to select a pool.
The PoolManager selects the pool based on pool cost
matrix and sends message to the selected pool to start
a mover. The pool starts the mover, replies to
PoolManager with mover socket address. PoolManager
replies to the door with message containing the mover
address. The door replies to the client with the mover
address and client writes data to that socket.
Following WLCG SRM specification the lifecycle of file
replicas in dCache is determined by their Access
Latency (AL) and Retention Policy (RP).
ONLINE/REPLICA files have disk-only replicas that are
always in cache. NEARLINE/CUSTODIAL files have at
least one replica stored on tape. Once stored on tape
the cached replicas are subject to cache expungement
based on LRU access time.

T

Motivation

dCache in a nutshell

Requirements
Objects in dCache namespace are owned by users
identified by UIDs and GIDs. UID and GID of dCache
user is determined by mapping of credentials presented
by the client to dCache authn/authz service.
The requirements to storage quota system reflect
budgetary and fair use concerns. Experiments
requested to be able to:
• Control amount of data written to tape by a

user/group.
• Control amount of disk-only space that a user/group

can use.
• Quota check and aggregation must not slow down

per file namespace operations.

A quota handler has been added to PnfsManager
service. It implements put/get/modify/remove functions
that allow to manipulate user and group quota limits on
a data store which is part of namespace database
scheme. It functions as follows:
• Schedules periodic scans of all namespace entries

to aggregate file sizes by UID, GID and Retention
Policy (RP).
• Updates underlying data store with the resulting

usage data.
• Maintains memory cache of aggregated data as

map<id, Quota>. The Quota data structure
contains space usage numbers and their limits for
RP.({REPLICA, CUSTODIAL, OUTPUT}).

• When PnfsManager executes create entry function,
the quota handler checks if used space for a given
UID, GID and RP does not exceed a limit. If it does,
the create entry call fails with “Quota exceeded”
message.

The periodic collection of usage data has been chosen
to avoid adverse impact on the performance of per file
operations that would be especially noticeable when
performing bulk operations interactively (e.g. rm *) if
the usage space were to be re-calculated on each
create/remove. The downside of this solution is that the
quota usage numbers are always lagging behind. The
severity of the lag can be mitigated by adjusting the
frequency of the quota aggregation scans.
If user goes over quota the effect is not immediate and
a user will still be able to write until next scan completes
and usage numbers update. Conversely, once over
quota, removal of the data will not enable the user to
resume writing until next scan has completed.

Implementation

Admin and user interface
PnfsManager admin interface has been augmented
with remove/show/set commands allowing admin to
manipulate user and group quota limits.

Users and admins can interact with quota handler using
dCache REST API
(Consult https://dcache.org:3880/api/v1 for
example usage and documentation):

https://dcache.org:3880

We have implemented storage quota in dCache
allowing to control how much disk-only and tape
resident data a user/group can store in the system.
Multi-user, multi-VO installations are expected to benefit
from this feature.
The quota feature has been rolled out in version 7.2 of
dCache where it was not enabled by default. In version
8.2 it is enabled by default.

FERMILAB-POSTER-23-033-CSAID

REST API

dCache View

Conclusion

This work was produced by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy. Publisher acknowledges the U.S. Government 
license to provide public access under the DOE Public Access Plan DOE Public Access Plan

https://example.org:3880/api/v1
https://example.org:3880/api/v1
https://www.energy.gov/downloads/doe-public-access-plan

