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Abstract
The Fermilab Main Injector enclosure houses two acceler-

ators, the Main Injector and Recycler Ring. During normal
operation, high intensity proton beams exist simultaneously
in both. The two accelerators share the same beam loss mon-
itors (BLM) and monitoring system. Deciphering the origin
of any of the 260 BLM readings is often difficult. The Ac-
celerator Real-time Edge AI for Distributed Systems project,
or READS, has developed an AI/ML model, and imple-
mented it on fast FPGA hardware, that disentangles mixed
beam losses and attributes probabilities to each BLM as to
which machine(s) the loss originated from in real-time. The
model inferences are then streamed to the Fermilab acceler-
ator controls network (ACNET) where they are available for
operators and experts alike to aid in tuning the machines.

PROJECT OVERVIEW
The Accelerator Real-time Edge AI for Distributed Sys-

tems (READS) project is a collaboration between the Fermi-
lab Accelerator Directorate and Northwestern University. It
aims to implement ML models on edge hardware for use on
the Fermilab accelerator complex. The project consists of
two sub-projects; improving Delivery Ring resonant extrac-
tion regulation [2–5] for the future Mu2e experiment [6] and
aiding in the machine attribution of beam loss in the Main
Injector enclosure [7].

Disentangling Beam Losses
The Fermilab Main Injector enclosure houses two accel-

erators; the Main Injector (MI) and the Recycler Ring (RR)
(Fig. 1). The 8 GeV permanent magnet Recycler Ring acts as
a proton stacker for the 120 GeV synchrotron Main Injector.
To ensure the most protons are delivered to Fermilab’s ex-
periments, the Recycler Ring is loaded with Main Injectors
next pulse of beam while the current MI pulse is accelerated
and then extracted. During normal operations, there are
high intensity proton beams in both Recycler Ring and Main
Injector [8]. The two machines share the same beam loss
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monitors (BLM) and monitoring system. When beam losses
occur, it can be difficult to attribute the origin of the loss
to either machine resulting in delays tuning the machines
and unnecessary downtime. However, machine experts are
often able to decipher loss origin from the time in the cycle
of the loss, the current machine states, local and global loss
patterns and tunnel residual dose rate surveys (Fig. 3) [9, 10].
This suggests that given enough information, a ML model
can be created to replicate, automate and perhaps improve
upon the machine experts ability to attribute beam loss to
the correct machine.

Figure 1: The Main Injector enclosure. Main Injector (bot-
tom), Recycler Ring (top), P1 extraction beamline (middle).

DATASETS
For this project, the ML models were trained using Super-

vised Learning. The training data consists of readings from
all 260 BLMs around the MI enclosure, machine readings
such as Main Injector and Recycler Ring beam intensities,
machine state, Main Injector dipole bus ramp current, and
clock events.

Beam Loss Monitor Location Recording
An assumption made at the beginning of the project was

that any ML model created to attribute losses would be
highly dependent on the placement and location of each
BLM. While most BLMs are securely affixed to the machine,
a good amount of BLM have been attached to moveable
fixtures and experts from time to time have moved these
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(a) BLM floor heights. (b) BLM distance to the MI beampipe. (c) BLM density per 66.67 m.

Figure 2: Main Injector enclosure BLM recording.

BLM as they see fit to try and characterize problematic
losses better. Before any data was collected, the location
and orientation of each BLM in the Main Injector enclosure
was recorded to allow for future administrative control and
tracking. The records show that some BLM are much closer
to either Main Injector or Recycler Ring and thus should be
more sensitive to loss from that machine (Fig. 2a, 2b). Also,
the BLMs are not uniformly ditributed about the enclosure,
with 23 % of BLMs occupying a mere 10 % of the tunnel
(Fig. 2c). The areas with the highest density of BLM tended
to be areas of beam collimation, or injection and extraction
regions.

Figure 3: Location dependency of MI and RR beam loss as
seen from tunnel residual dose rates.

Low Frequency (ACNET) Data
The first training data collected were relatively low fre-

quency (LF) readings, either 15 Hz or 33 Hz, collected from
the Fermilab accelerator controls network (ACNET) during
machine operations [9]. The BLM nodes are capable of
faster readouts, though for only a few BLM readings at a
time due to their limited processing speed.

High Frequency (VME Reader Card) Data
In order to get the fastest possible readout of all the MI

enclosure BLMs, custom cards were designed and built to
listen to the BLM node VME crate backplane, intercept the
crate digitizer readings and stream the high frequency (HF)
readings, real-time over Ethernet (Fig. 8). The cards, known
as VME Reader Cards or Pirate Cards, consist of an Intel

Cyclone5 FPGA and an ARM Hard Processor System (HPS)
[11]. The VME Reader Card FPGA decodes the backplane
BLM signals, and also two front panel cabled signals for the
Fermilab 10 MHz TeVatron Clock (TCLK) [12] and MDAT,
a dedicated 720 Hz copper link that broadcasts select MI and
RR machine readings as well as an epoch second timestamp
(Fig. 4) [13]. The cards do not interfere with the operation
of the BLM nodes that are still relied on daily for tuning
and machine protection. Readings from all 7 of these cards
began streaming reliably early 2023.

Labeling Data
Per machine, per BLM labels were generated using a mul-

tiprocessing script on each (15 Hz | 33 Hz | 320 Hz) sample.
The result were [2, 260] labels where each row corresponded
to a machine, and each column a BLM. Instances where the
labeling logic determined only one machine was capable of
generating loss (i.e. only that machine had beam in it at that
time), that machines row of BLMs were given a value of
1.0, indicating that there was a 100 % probability that the
beam loss originated from that machine. The machine(s)
not capable of loss (and did not contain beam the previous
𝑛 consecutive samples) are given a value of 0.0 for their
row of BLMs. These samples are referred to as "known"
samples and were used for training and validation of ML
models. Samples where the labeling logic could not deter-
mine where the loss originated (i.e. both machines had beam
in them), where given values of 𝑁𝑎𝑁 for each column of
BLM and each machine row. These samples are referred to
as "unknown" samples and are the samples the operator and
expert alike have trouble attributing to a machine and thus
were used for testing and evaluation of ML models.

Beam Loss Studies
The Fermilab accelerator complex always strives to de-

liver the maximum beam intensity and power possible, with
the least amount of beam loss and the highest transmission
efficiency. This means that data collected from machine
operations, baring failures or miss-tuning that the operators
and experts work to prevent, tends to be very homogeneous.
For days or weeks, the machines may run the same events,
at the same beam intensity, with similar loss profiles. For
this reason, studies were performed to sample losses that



Figure 4: VME Reader Card data stream.

while entirely possible, are rare. During these studies, auto-
mated scripts purposefully created moderate localized and
whole ring loss patterns through various miss-configurations
and miss-tunings of the machine. Also, machine events and
timelines were altered to remove occurrences of overlapping
beam in Main Injector and Recycler, allowing for labeling
of data from events that during normal operation could not
be obtained. Two of these studies were performed, once in
2021 and again in 2022. Due to scheduling conflicts and
less than desired machine availability in 2023, no beam loss
study was performed and thus the high frequency dataset
has none of these samples.

MODEL DEVELOPMENT
Over the course of the project, various ML model architec-

tures were explored. Models are evaluated on prediction ac-
curacy, how well they recognize state transitions (i.e. when
beam exits or enters a machine), and during times when
there is no truth, how close does the prediction resemble the
machine experts best estimate.

Architecture Search
Models were initially trained using PyTorch [14] and the

LF data collected from ACNET. Only known data samples
were used for training and validation. The loss metric used
for each models training was the Mean Squared Error (MSE),
between the models predictions and the labels. Accuracy

was defined to be the number of BLM predictions that were
within 20 % of their label divided by the number of BLM
in that sample. Accuracies for Main Injector and Recycler
Ring were tracked separately so as to inform how the model
performed for each machine.

DBLN Model The first architecture investigated, the
Deblending Model or DBLN, was a simple MLP model.
It’s input data consisted of all machine, clock and BLM
readings. The model recognized some state transitions but
showed limited loss pattern recognition during unknown
samples (Fig. 5a).

Many Models Due to the geometry of the Main Injector
tunnel, a beam loss at any one location is only recorded by a
limited number of BLMs before the beam loss, projecting
from the beamline at a tangent, is intercepted by the concrete
enclosure wall. This fact inspired the creation of the Many
Models architecture. Many Models consists of a separate
MLP model for each BLM, ingesting readings for a limited
window of its surrounding BLMs. The output of each model
is aggregated and then 𝐴𝑁𝐷 with the output of a network
dedicated to state of the machines. Many Models excelled
at state transitions and showed much more local pattern
recognition. However, the model was less accurate than
desired on known samples and the large amount of individual
networks made for a very large model, unlikely to fit within
the limited resources of the FPGA it was to be deployed on
(Fig. 5b).

UNet Model Though individual beam losses are not
recorded by all BLMs, experts know that sometimes local
loss patterns can often indicate a larger miss-tuning of the
machines, and are actually part of a global or regional ma-
chine loss pattern. The UNet architecture, commonly used
for medical imaging to label individual pixels or regions
of pixels as abnormal tissue, was chosen as a next candi-
date, attempting to recognize both local and global beam
loss patterns that the machines create [15]. After being
trained on 9 M samples [15], the model had accuracies of
85 % and 94 % for Main Injector and Recycler Ring respect-
fully. The UNet architecture was the best performing of all
the architectures explored. The model is fairly confident at
state transitions and in regions of unknown loss attribution
truth, the model attributes loss to likely locations of the ma-
chine that experts know to be were beam is purposefully
collimated or has been identified to be a problem spot either
from tuning or from residual dose rate surveys taken in the
enclosure (Fig. 5c).

Omitting State Information During Training
During initial UNet training, both state and BLM data

were used. However, with the possibility of the model pick-
ing up on global loss patterns, it was theorized that the model
may not require state information. Further training was done
omitting the state information; no appreciable degradation of



(a) DBLN (b) Many Models (c) UNet

Figure 5: Progression of ML model architectures.

the model’s ability to recognize state transitions and bound-
aries was noticed. Omitting the state information not only
allowed for a smaller model parameter size, but excluding
this information may actually create a model more resilient
to changes in mode of operation of the machines. Altering
the clock events and machine states to accommodate a new
beam request of the machines is a fairly common occurrence.
One concern with building a model to disentangle losses was
that it may be dependent on these states and thus need more
frequent re-training. If one assumes that the loss patterns
the model is recognizing is dominated by the geometry and
imperfections in the build of the machine, these alterations
to the machine are less frequent and thus may allow more
time between retraining.

MODEL IMPLEMENTATION
In order to achieve true real-time inferences, the UNet

ML model had to be implemented on an FPGA.

High Frequency Data UNet Model
The model architecture search utilized the LF ACNET

data for training models. This was due to the long lead time
to design, procure, populate, program and deploy the VME
Reader Cards. Once the VME Reader Cards came online, the
UNet architecture was used to train the model intended for de-
ployment on the edge inference hardware. However, before
training could begin, the UNet model architecture, originally
defined in PyTorch, had to be translated to Keras [16]. The
package intended to synthesize the trained model had much
better support for Keras models and layers, namely convo-
lutional layers, than for PyTorch. Translation of the model
between packages was less trivial than originally thought,
some layers did not have one-for-one counterparts. Once
satisfied that the model had been translated, training was

done using millions of random standardized BLM samples
from approximately 6 months of machine operations.

Figure 7 shows the offline performance of the HF UNet
model. Figure 7a shows the beam intensities in both Main
Injector and Recycler Ring as well as the per sample (fre-
quency tick) beam loss sums. Figure 7b gives the values of
the individual BLMs around the machine at each sample.
Figures 7c and 7e give the labels applied to those samples,
with Red and Blue representing Recycler Ring and Main
Injectors BLM probabilities of 1.0 respectfully. White re-
gions represent BLM probabilities of 0.0 and Grey regions
are where the labeling logic is unable to determine beam
loss machine origin. Figures 7d and 7f show the models in-
ferences as to the probability at each sample and each BLM
where the loss originated.

Figure 6: Aria10 FPGA inference latencies.

The model does does fairly well at recognizing state tran-
sitions confidently, especially when machine losses are el-
evated. For samples when the loss origin is unknown, the
areas indicated by Grey, experts believe the model is doing
well predicting the origin of loss as the time of the predic-
tions agree with events in the cycle that would cause loss
then and in the machines predicted. The model appears to be



Figure 7: Offline HF UNet model inferences. The model
shows great global beam loss pattern and state transition
recognition but performs poorly on more localized losses.

preferring to apply probabilities uniformly to one machine or
the other at any given sample, though not entirely. Experts
know that at times both machines can be creating loss simul-
taneously so one would expect a more mixed prediction of
loss attribution at limited times during the machine cycle.
However, when the probabilities are multiplied by the BLM
loss sums at each tick, the machine loss sum attributions
look very believable and match the experts expectations,
especially for the most difficult times to attribute loss where
some fraction of the loss sum is applied to both machines
(Fig. 7g). The disentangled loss sums consistently account
for >= 99.5 % of the total loss sum, assuring that most beam
loss is accounted for (Fig. 7g).

Work is still underway to improve the HF UNet mod-
els performance and attempt to regain the mixed localized
probability predictions that experts believe should be more
prevalent and were seen from the LF UNet model. Some
avenues of approach are to complete a beam loss study and
collect HF data to train on, curate the HF dataset better to in-
clude more unique samples during training, transferring the
weights from the LF UNet model and weighing training loss
higher for samples with rare beam loss profiles. With it’s
deficiencies known, it was felt that the model was accurate
enough to implement on the edge hardware.

Synthesis
Synthesis of the trained HF UNet model was done us-

ing hls4ml, a package that converts ML models trained via
various popular opensource ML platforms, into High Level
Synthesis (HLS) code that can be integrated into a FPGAs
firmware [17].

Layer Precision Tuning
To ensure the HF UNet model fit within the limited re-

sources of the Central Node’s Aria10 FPGA, post training,
per layer bit precision tuning was performed. Each layers
number of floating point bits were minimized, decreasing
the models resource foot print and ensuring the models in-
ference took as little time as possible to complete while also
ensuring the firmware’s output matched that of the origi-
nal Keras model for the same input (Fig. 9). The resulting
model fit comfortably on chip and had an average latency of
approximately 1.7 mS, well within or specification of less
than 3.125 mS (320 Hz) between inferences (Fig. 6).

In the future, quantization aware training of the HF UNet
model will be done to hopefully avoid the need to do the per
layer precision tuning which is very labor intensive.

Central Node Deployment
The synthesized HF UNet model was implemented on an

Aria10 FPGA System On Module (SOM) that also includes
dual ARM HPS cores [18]. The SOM lays upon a custom
carrier board designed for both READS sub-projects, that
provides power and IO (Fig. 8), though for the beam loss
disentangling sub-project, much of the ADC available on
the board is unused and Ethernet is the main data path.

The first ARM HPS is responsible for initiating data
streams from the 7 VME Reader Cards. The HPS then
ingests the streams, aligning all 7 streams to common sam-
ples using stream headers that contain an epoch timestamp
second, a 1.3 mS resolution fractional second, and a mi-
crosecond counter each card increments and resets on a
common TCLK event. Once a full sample is assembled, the
HPS passes the sample to the HF UNet model implemented
on the FPGA. The FPGA, upon inference completion passes
the inference back to the HPS where it is packaged with the
original sample data the inference was made on (Fig. 8). The
packaged data is then streamed from the Central Node to a
Redis server (Fig. 8).

Accelerator Controls System (ACNET) Integration
One of the primary goals of this project was to provide

real-time predictions as to beam loss origin to the operators
in the Main Control Room (MCR) and have those readings
readable and plot-able from the same tools they use to tune
and monitor the machines everyday (Fig. 10).

Redis Redis is a lightweight message brokering frame-
work that enables streaming of data to multiple clients [19].
Redis provided a very flexible way to essentially create an
Ethernet fieldbus serving Central Node readings (Fig. 8).



Figure 8: Complete beam loss disentangling network.

Figure 9: Differences between Keras, HLS, and FPGA out-
put.

Open Access Client (OAC) Open Access Clients
(OAC) are ACNET Java virtual Front Ends (FE) that are com-
monly used to translate Ethernet instrumentation to ACNET.
For this project, there was need to translate and re-package
the readings coming from the Central Node via Redis for use
in ACNET. An entirely new OAC was written that consumed
the Central Node Redis streams and translated those structs
into 520+ individual ACNET devices, one for each BLM per
machine, plus additional array, state, and machine reading
devices. Fast Time Plot (FTP) data buffers, a legacy plot
data protocol in ACNET where timestamps are 100 uS bins
relative to a periodic TCLK event, were created for each
device. (Fig. 8)

EPICS IOC The Fermilab accelerator complex has
been controlled and monitored almost exclusively since the
1980’s with ACNET. However, the PIP-II linear accelerator
[20, 21] currently being built at Fermilab has decided that it
will rely on EPICS for the bulk of it’s controls [22]. With
EPICS increasing in use at Fermilab, it was decided to at-
tempt to create an IOC in parallel to our OAC as a proof
of concept serving remote real-time inferences via an IOC

at Fermilab. The project successfully created a basic Redis
driver for EPICS and served up Channel Access (CA) vari-
ables for anyone to consume. As another proof of concept,
the CA variables were consumed by the project’s OAC and
used to populate ACNET inference readings, demonstrating
another viable path to getting inference readings to the MCR
(Fig. 8).

Figure 10: First live, 320 Hz beam loss disentangling in-
ferences read through the ACNET controls system. Read-
ings for the Main Injector and Recycler beam intensities are
shown alongside the MI and RR loss attribution inferences
for one BLM location at 232C.

PRELIMINARY TESTING
The Fermilab 2022-2023 accelerator run ended the second

week of July 2023. The complete beam loss disentangling
network was brought online just a few days before beam was
turned off for that years summer maintenance period. In
those last few days of beam, many experiments had already
turned off, or in the case of the g-2 experiment, completed
their experiment, testing out the beam loss disentangling
network was difficult. However, a few small scale tests were
performed to evaluate the online models performance. The
inferences read out from ACNET as well as Redis streams
saved to disk showed the expected output. More testing and
evaluation of the system is planned for when beam returns.



As seen in Figure 10, per BLM inferences are available to
the operators using their existing FTP plotting client. This
allows the operators to plot any other accelerator instruments
and correlate them with the disentangled beam loss infer-
ences.

SUMMARY
The READS project has designed, trained, synthesized,

implemented and deployed a real-time edge AI/ML model
on the Fermilab accelerator controls network (ACNET); a
first of its kind for the Fermilab accelerator complex.

Custom VME Reader Cards were built to enable streaming
320 Hz BLM readings from legacy beam loss monitoring
systems without interfering with their functionality.

The ML model, a UNet type architecture trained to high
accuracy, disentangles mixed beam losses during times of
simultaneous high intensity beams in Main Injector and
Recycler Ring and attributes probabilities per BLM as to
which machine the loss originated from.

A Custom Central Node was created to implement the
synthesized and layer precision tuned ML model on an
FPGA and output real-time inferences. These inferences
are streamed via Redis for any number of clients to con-
sume.

An Open Access Client translates the Redis inference
stream to 520+ individual ACNET devices which may be
read or plotted within the Fermilab Main Control Room
using the same tools operators use everyday to tune, monitor
and diagnose failures on the accelerators.
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