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Abstract
The Accelerator Real-time Edge AI for Distributed Sys-

tems (READS) project’s goal is to create a Artificial Intelli-
gence (AI) system for real-time beam loss de-blending within
the accelerator enclosure, which houses two accelerators:
the Main Injector (MI) and the Recycler Ring (RR).

In periods of joint operation, when both machines con-
tain high intensity beam, radioactive beam losses from MI
and RR overlap on the enclosure’s beam loss monitoring
Beam Loss Monitor (BLM) system, making it difficult to at-
tribute those losses to a single machine. Incorrect diagnoses
result in unnecessary downtime that incurs both financial
and experimental cost. The ML system will automatically
disentangle each machine’s contributions to those measured
losses, while not disrupting the existing operations-critical
functions of the BLM system.

This paper will focus on the evolution of the architectures,
which provided the high-frequency, low-latency collection of
synchronized data streams to make real-time inferences. The
ML models, used for learning both local and global machine
signatures and producing high quality inferences based on
raw BLM loss measurements, will only be discussed at a
high-level.

INTRODUCTION

Accelerator Complex
After the Collider Physics program [1] ended in 2011,

RR was re-purposed as a proton stacker for Main Injector,
delivering 8-120 GeV beam to multiple experiments and
facilities. The RR is directly installed above MI, such that
their beam lines’ centers are physically separated by only
about 120 cm. As a result, when high intensity beams are in
both machines simultaneously, understanding beam losses
becomes a significant concern during normal operation of
the accelerator complex (Fig. 1).
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Figure 1: Plot of localized beam losses based on tunnel
residual dose rates.

Beam Loss Monitoring
Real-time localized beam losses for both the MI and RR

are monitored by over 250 argon gas ionization chamber-type
BLM detectors. These signals are received, processed, and
instrumented within a Versa Module Eurocard (VME)-based
architecture, forming a distributed network of 7 VME "front-
end nodes" around the 2.2 mile complex. Together, they
capture and report spatially-identifiable and time-correlated
integrated beam loss measurements on all BLM detectors
within the enclosure for display and analysis [2].

Figure 2: Example to overlay beam events and expected
losses during a machine cycle.

Although the origin of radioactive losses measured on
any operational BLM can be difficult to attribute to a single
machine, experts can often manually decipher and attribute
losses to either MI or RR, based on timing, machine state,
and physical location within the ring (Fig. 2).
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READS DISTRIBUTED NETWORK
The current BLM VME nodes were not designed to simul-

taneously output all BLM measurements to ACNET [3], at
their VME digitizers’ maximum polling frequency of 320 Hz.
Instead, through the ACNET Data Pool Managers (DPM),
the time resolution of the integrated loss measurements is
relatively course (33 Hz, max).

Figure 3: Block diagram of READS distributed network.

Consequently, READS Distributed Network (Fig. 3) pro-
vides a separate data path, which does not disturb normal
operations of the BLM system. The main components of this
network are Remote Data Aquisition (DAQ) Nodes, Central
Deblending Node, and Training Nodes.

CLIENT-SERVER MODEL
The Distributed Data Communications Protocol (DDCP)

(Fig. 4) is a lightweight User Datagram Protocol (UDP)
application layer protocol, used within the READS network
to establish client-server relationships between the Remote
DAQ Nodes and ML-related nodes (i.e. the Training Node
and Central Deblending Node).

Figure 4: Block diagram of DDCP Ethernet stack.

DAQ nodes act as DDCP servers while ML-related nodes
act as DDCP clients. While DDCP had been previously used
to read and write parameters between operational nodes
of other systems, development was needed to implement
a streaming service. This feature pushes data from the
server to the client automatically after just one client request.
Furthermore, each server can connect to multiple clients;
clients can connect to multiple servers. Optimizations were
also needed to preserve configuration compliance across
the READS network, ensuring packets can be efficiently
aggregated and correctly correlated.

REMOTE DAQ NODE
Uniquely registered within the Controls Network, a VME

Reader Card is integrated into each BLM VME node and
serves as a Remote DAQ Node within the READS network.
Utilizing a Critical Link MitySOM-5CSX System On Module
(SOM) (Fig. 5), it passively monitors the VME backplane as
well as generates data streams of User Datagram Protocol
(UDP) packets with a customized application layer [4].

Figure 5: Block diagram of SOC architecture of Remote
DAQ Node.

The SOM hosts an Altera Cyclone V System On Chip
(SOC), which is a highly-integrated infrastructure of both
a Field Programmable Gate Array (FPGA) and dual-core
ARM Cortex-A9 Hard Processor Subsystem (HPS). The ar-
chitecture of the Remote DAQ Node was implemented and
optimized to provide consistent Ethernet performance to sup-
port the multiple clients, DDCP data streams, and remote
troubleshooting.

The FPGA is responsible for the receiving integrated sums
from the BLMs as well as encoded signals from the global
event system and frame links, in order to generate each
packet’s payload. Each packet’s data payload include epoch
second, millisecond time-stamping, event-based counters,
decoded global clock events, machine readings and state in-
formation for proper synchronization and correlation (Fig. 6).
Also, the streams are aligned, with respect to a single, asyn-
chronous global clock event, which regularly occurs at 5 sec
intervals. Assembly of the READ data packets, and seri-
alized transmission of packets into data streams, and man-
agement of other Ethernet communication falls to the HPS.
Other supported services are Trivial File Transfer Protocol
(TFTP) for remote programming and booting, Kerberized
Secure Shell Protocol (SSH) for expert accessibility, and
ping for verifying proper network registration.

TRAINING NODES
The Training Node is a designated server on the general

network, that receives and archives data streamed from the
Remote DAQ Nodes into a storage device. Functionally,
the server mimics the DPM but provides for faster data col-
lection rates at 333 Hz. These Training Data Sets are then
used offline to develop, train, and optimize an U-Net-based
ML model, which was prototyped using Sample Data Sets



Figure 6: Display of data collected and streamed from a
Remote DAQ Node.

collected at 33 Hz from the existing BLM System via the
ACNET DPM [5]. Training data sets capture measurements
collected during normal operation but also during special
study times. During such times, the beam event timeline
is manipulated to purposefully keep events for RR and MI
from overlapping, thus only having beam in one machine
at a time. Moreover, to ensure that a broad range of loss
conditions are captured, moderate beam losses were also
generated at all locations in both machines using various
miss-configurations of the machines. This allowed for verifi-
cation of the model on data that is possible but not generated
during normal operations.

CENTRAL DE-BLENDING NODE
A Central De-blending Node ingests streamed packets

from the Remote DAQ nodes to output inferences, which
attributes the origin of the loss at each BLM location [6].
The Central Node uses a REFLEX CES Achilles Arria10SoC
SOM, which is a mezzanine card that mounts onto a carrier
board in a rack-wide chassis [7]. As in the Remote DAQ
Node, this SOM also provides an embedded systems envi-
ronment with both a FPGA and a dual-core ARM Cortex-A9
HPS (Fig. 7). However, the Central Node hosts an Altera
Arria 10 SOC.

Figure 7: Block diagram of SOC architecture of Central
Deblending Node.

The FPGA implements an embedded inference engine
based on the trained model. Optimizations at the algorithm
level, high-level synthesis level, and communication proto-
col level improved the overall node’s speed, power consump-
tion, and resource usage.

Packets, containing the engine’s required inputs, are re-
ceived, deserialized, correlated in time, and queued for input
by the HPS. The engine outputs real-time inferences back
to the HPS. These inferences are in percentages, attributing
the likelihood of the integrated beam loss at each BLM to
either the MI or RR. Then, the HPS provides these results
to control system for display within the Main Control Room.
Development in the HPS focused on minimizing the latency
and optimizing the consistency of the arbitration of state ma-
chines handling Ethernet interface and lightweight bridge
interfaces.

ML Model Implementation
A workflow was developed to integrate open-source tools,

which have been successfully used to implement neural net-
works on Xilinx chips, with Intel FPGA compilation and
build tools (Fig. 8). HLS4ML was used to translate the orig-
inal U-Net model, written in Keras, to High Level Synthesis
(HLS) for the Intel HLS compiler.

Figure 8: Block diagram of Keras to HLS4ML workflow.

Beam studies have confirmed that the ML model works
well for ring-wide loss attribution, but not for narrower lo-
calized losses. The implemented neural network had a maxi-
mum latency of 1.74 ms and average latency of 1.2 ms meet-
ing the required specification. Transfers between HPS and
FPGA were about 200 µs.

Control System Interface
The resulting inferences need to be accessible to Main

Control Room operators and experts thru existing tools used



to tune and diagnose the accelerators. In order to do so,
the Central Node establishes a connection to a RE mote DI
ctionary S erver (REDIS) server, which acts a versatile data
structure server that can be used as a database, cache, stream-
ing engine, and message broker to ACNET. In this manner,
arrayed ACNET devices for the inferences are updated in
real time and are available for fast time plotting via a READS
JAVA Open Access Client (OAC). The fully deployed system
satisfies the 3 ms latency requirement for the complete data
signal path through the READS network (Fig. 9).

Figure 9: Dath Path to and from READS network to ACNET
Control System.

CONCLUSION
READS successfully implemented and deployed the first

operational FPGA-based edge-AI system in the Fermilab
accelerator complex. Distributed remote nodes create and
stream BLM readings from around the accelerator complex
to perform near real-time inferences at a centralized node,
which feed ACNET devices available to operators. Also,
dedicated beam studies confirmed that ML model imple-
mentation agrees with the offline predictions from the Keras
model. As a result, operators have a new tool to attribute
percentages of beam loss, from each BLM, in MI and RR
(Fig. 10). The system is expected to reduce pulse inefficien-
cies during tuning as well as unnecessary downtime due to
tripping off the incorrect machine.
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Figure 10: Real-time ML inferences on Fast Time Plot dis-
play - I:LDP232C and R:LDP232C are the loss percentage
attribution for 232C BLM.
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