
Beyond PID Controllers: PPO with Neuralized PID
Policy for Proton Beam Intensity Control in Mu2e

C. Xu∗, J.YC. Hu∗, J. Jiang, S. Memik, R. Shi, A.M. Shuping, M. Thieme, H. Liu,
Northwestern University†, Evanston, IL USA

M.R. Austin, J.M. Arnold, J.R. Berlioz, P. Hanlet, K.J. Hazelwood, M.A. Ibrahim, J.St. John, J.
Mitrevski, V.P. Nagaslaev, D.J. Nicklaus, G. Pradhan, A.L. Saewert, B.A. Schupbach, K. Seiya, R.M.

Thurman-Keup, N.V. Tran, A. Narayanan,
Fermi National Accelerator Laboratory‡, Batavia, IL USA

Abstract
We introduce a novel Proximal Policy Optimization (PPO) algorithm aimed at
addressing the challenge of maintaining a uniform proton beam intensity deliv-
ery in the Muon to Electron Conversion Experiment (Mu2e) at Fermi National
Accelerator Laboratory (Fermilab). Our primary objective is to regulate the spill
process to ensure a consistent intensity profile, with the ultimate goal of creating
an automated controller capable of providing real-time feedback and calibration
of the Spill Regulation System (SRS) parameters on a millisecond timescale.
We treat the Mu2e accelerator system as a Markov Decision Process suitable for
Reinforcement Learning (RL), utilizing PPO to reduce bias and enhance train-
ing stability. A key innovation in our approach is the integration of neuralized
Proportional-Integral-Derivative (PID) controller into the policy fucntion, resulting
in a significant improvement in the Spill Duty Factor (SDF) by 13.6%, surpassing
the performance of the current PID controller baseline by an additional 1.6%. This
paper presents the preliminary offline results based on a differentiable simulator of
the Mu2e accelerator. It paves the ground works for real-time implementations and
applications, representing a crucial step towards automated proton beam intensity
control for the Mu2e experiment.

1 Introduction
We propose a novel RL-enhanced spill regularization system that incorporates a neuralized PID
policy function to tackle the beam regularization challenge in the Mu2e experiments [Bartoszek et al.,
2015] at Fermilab. Our objective is to create an automated controller that ensures consistent spill
(proton beams) intensity during experiments meeting real-time control requirements [Narayanan
et al., 2021b]. This objective falls under the broader scope of the Accelerator Real-time Edge AI for
Distributed Systems (READS) project [Mitrevski, 2023, Seiya et al., 2021b, Hazelwood et al., 2021a].
To achieve this, we model the Mu2e accelerator system as a Markov Decision Process and employ the
Proximal Policy Optimization (PPO) algorithm [Schulman et al., 2017] to cast the spill regulations as
sequential decision-making problems. Our main contribution is the integration of a neuralized PID
policy function [Zribi et al., 2018] for our RL framework, encompassing the inductive bias of the
standard PID controller (i.e. the proportional, integral, and derivative information) to better capture
states at different stages. Our experiments on the Mu2e simulator show that we observed an average
improvement of 13.6% in the Spill Duty Factor (SDF). Additionally, our method outperforms the
previous PID controller approach [Narayanan et al., 2021b].
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Figure 1: (a): The extraction (or ‘spill’) of protons from the Delivery Ring is noisy (deviates from 1) without
any regulation. (b): A snapshot of the beam in physical space at the extraction location. As the horizontal beam
size increases, a slice of circulating beam (that is past the position of the electrostatic septum) is extracted. (c): To
create the muons, proton pulses are made to hit a production target and muons are obtained from the secondaries.
The proton pulses with the required time structure are created by extracting them from an accelerator ring called
Delivery Ring at Fermilab and sending it to the Mu2e production target.

The goal of Mu2e experiment [Bartoszek et al., 2015, Bernstein, 2019, Narayanan et al., 2021a,
2022] at Fermilab is to search for new physics by studying the decay of muons into electrons. This
intricate experiment places stringent demands on the quality of the proton beam directed at the muon
production target, see Figure 1. These requirements are essential to minimize background particle
physics processes that could obscure the discovery signal. One of the key prerequisites for the Mu2e
experiment includes achieving a highly uniform extracted beam intensity during each spill of protons
with 8 GeV kinetic energy. In order to achieve this, the Spill Regulation System (SRS) [Thieme,
2022, Narayanan et al., 2021b, Ibrahim et al., 2019] is being developed to govern the extraction
process of the beam and mitigate various sources of fluctuations in the spill profile.

The SRS adjusts the power supply currents of three dedicated fast quadrupoles (resulting in varying
its magnetic fields) and this variation results in controlling the variations in the spill intensity
(Figure 1 (c)). Ideally, the SRS aims for the spill intensity to be perfectly uniform.

Our approach involves utilizing a Proximal Policy Optimization model with a differentiable Mu2e
simulator [Narayanan et al., 2021b] to regulate random generated spills. In each episode (or spill), the
simulator generates a series of random spills, each with varying intensities (shown in Figure 1 (a)).
Subsequently, the PPO model intervenes in each individual time step to correct these generated spills
by adjusting the control signal of the Mu2e simulator. The primary goal of our model is to bring
spill rate of all spills as close to a value of 1 as possible. To optimize this objective function, while
mitigating the influence of excessively high or low intensity spills, we implement an exponential
moving average (EMA) to measure the deviation of the sequence (spill rate) from the desired value
of 1. Additionally, we incorporate neuralized PID controller, encompassing proportional, integral,
and derivative components in the state representation. By employing different random seeds, our
simulator can generate a diverse profile of noisy spills, reflecting the real-world scenarios.

We demonstrate superior performance by numerically benchmarking our methods with PID controller.
Specifically, our experiments compare SDF (defined in (2.1)) performance on different seeds. Our
results show that our methods consistently improve the SDF by 13.6% for 9 random generated spills
and achieve 1.6% improvements compared to the PID controller.

The rest of this paper commences by a detailed description of our proposed method. Subsequently,
we present numerical results to showcase the performance of our approach. Finally, we conclude this
paper with a discussion of potential future directions and avenues for further research.
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Figure 2: (a): The Mu2e simulator initially generates the noised spill data. The agent proceeds to adjust the
spill and the code employs this adjusted spill to compute relevant information such as the state and reward.
These pieces of information are instrumental in training the RL agent, which in turn offers new actions for the
subsequent time step to refine the spill. (b): The simulator refines (corrects) the spill derived from noisy data.
It conveys the state and reward, calculated using the corrected spill, to update the value network responsible
for evaluating the quality of the correction. Subsequently, the state and loss generated by the value network
contribute to the adaptation of the policy network. The policy network, in response, generates new actions for
spill regulation.

2 Methodology
In this section, we first introduce the machine learning’s role in optimizing Fermilab’s accelerator
parameters. Then, we provide a detailed design of our RL-enhanced regularization system.

2.1 Problem Setup
Large fluctuations in the proton spill rate result in large fluctuations in the intensity of produced
muons. And this in turn causes background effects that hinder the signals of new physics. To combat
these, we approach the beam intensity regulation challenge, specifically controlling the spill regulation
system, as a tracking control problem. The objective is to keep certain signals (spill intensity) close to
specific reference values (≃ 1) by controlling the quadrupole currents (power supply of 3 dedicated
fast-ramping quadrupoles) in the regulation system. By doing so, we adjust the magnetic field, which
subsequently adjusts the beam intensity throughout the delivery ring, as depicted in Figure 1 (c).

Objective. To handle the constraint challenges posed by Mu2e experiment, we regulate the uniformity
of the extracted spill by increasing its Spill Duty Factor (SDF),

SDF := 1/
(
1 + σ2

spill

)
, (2.1)

by regulating the extraction process (where σspill is the standard deviation in the spill rate). The
ultimate goal for SRS in the Mu2e experiment is to achieve a SDF of 0.6 or higher, with an ideal spill
having a constant spill rate value of 1 and an SDF of 1.

Mu2e Simulator. We employ a differentiable simulator proposed in [Narayanan et al., 2021b]
to replicate the beam physics process in Mu2e experiments realistically. This physics simulator
generates spill intensity and the associated data. It subsequently conveys this data to the RL agent,
which aids in training the RL model. Once trained, the RL model transmits control signals back to
the simulator, allowing it to regulate the deviation in the spill rate based on these signals and provide
the modified data to the RL agent. This process is shown in Figure 2 (a).

2.2 Proximal Policy Optimization (PPO) Controller for Spill Regulation System
Reward Function. Let xt be the observation of one single spill signal at time step t and σ = 1 be the
corresponding target reference value. The reward function at t is defined as the exponential moving
average
rt = −EMA(t, α), α ∈ [0, 1] , where EMA(t, α) = α|xt − σ|+ (1− α)EMA(t− 1, α). (2.2)

EMA gives more weight to recent spills and less weight to older spills. This helps in reducing the
impact of short-term fluctuations in the spills, making it easier to identify underlying trends.

PID Controller. A PID controller in discrete-time operation captures past details regarding tracking
errors, their integrals, and derivatives within a linear control strategy. We denote the time series of
spill signal at time t as ot = (x0, x1, · · · , xt). In formal terms, the discrete-time PID controller’s
policy, characterized by its parameters KP , KI , and KD, is expressed as:

πPID(ot) = KP (xt − σ) +KI

t∑
τ=0

(xτ − σ) +KD
(xt − σ)− (xt−1 − σ)

∆t
, (2.3)
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Figure 3: Spill intensity and SDF comparison in different seeds. (LHS): Comparison of Spill Intensity: The
spill intensity corrected by RL is closer to 1 when compared to the PID-corrected spill. (RHS): Comparison of
SDF: After 600 training iterations, the SDF achieved by RL outperforms or nears the SDF obtained through PID.

where KP ,KI ,KD are tuneable scalar coefficients and ∆t is the discrete time interval.

Model: PPO with Neuralized PID Policy. Our model leverages the inductive bias of PID
(Proportional-Integral-Derivative) controller, and propose a neuralized PID policy function. Specif-
ically, we incorporate tracking errors, integrals, and derivatives as components of the state vector
st. Furthermore, we employ a linear network to parametrize the standard PID controller (2.3), and
use it as a part of our policy function. Therefore, the policy function of our model not only enables
the extraction of external information (based on previous actions) but also includes the PID control
signals KP , KI , and KD as its learnable parameters. Remarkably, when learned effectively, our
policy network outperforms the standard PID controller (2.3), making it a highly adaptable solution.

Our approach incorporates three key components: the PPO algorithm, the EMA reward function,
and the neuralized PID controller. The PPO algorithm [Schulman et al., 2017], a reinforcement
learning technique, plays a central role in optimizing policy functions to enhance decision-making in
sequential tasks and we specifically chose PPO to refine our reward function. Rather than relying on
a single spill for reward computation, we employ EMA within the reward function. This approach
allows us to both capture trends across a sequence of spills and mitigate fluctuations. Additionally, we
integrate the neuralized PID bias into our policy network. In this setup, our policy network consists
of a trainable PID controller and a linear projection of past actions. Let’s denote the state at time step
t as st, the action as at. We combine the PID policy πPID and action policy πaction to formulate RL
policies as π. The variable at represents the control signal used for regulating the spill. The state st
encompasses both the previous action at−1 and the time series of the spill signal ot. As a result, the
action at time t, at, can be represented as follows:

at = π(st) = πPID(ot) + πaction(at−1). (2.4)

The learning process is shown in Figure 2 (b).

3 Experimental Studies
We validate our method by using the Mu2e differentialble simulator [Narayanan et al., 2021b] as
the RL environment. Our experiments involve the utilization of both the Mu2e simulator and our
RL-enhanced spill regularization system.

Settings. We configure various hyperparameters for both the simulator and the RL agent in our
experiment. Specifically, we configure the simulator to generate 430 spills per iteration, equivalent to
10 data points per millisecond within a 43 ms spill duration, aligning closely with realistic settings as
detailed in [Narayanan et al., 2021b]. In terms of reward calculation, we choose a value of α = 0.5
for the EMA component. Regarding the RL agent, we employ the stable-baselines34 PPO
model [Raffin et al., 2021]. The actor network is designed as a single linear layer, while the critic
network took the form of a two-hidden layer (64 × 64) MLP network. The learning rate is set at
1× 10−4. We change the random seed every 1000 (spills) epochs.

Results. In Figure 3, we examine the spill intensity in scenarios involving unregularized, PID-
regularized, and RL-regularized setups. Figure 3 (a) demonstrates that the spill corrected by RL
brings the spill rate closer to the ideal value of 1 when compared to the PID-corrected spill, on the
first random seed configuration. Furthermore, we provide a visual representation of the evolution
of the SDF during the training process. Figure 3 (b) illustrates that the SDF achieved through RL
uniformly surpasses (or approaches) that of PID regulation after 600 episodes.

4https://github.com/DLR-RM/stable-baselines3
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Table 1: Evaluation of the impact of various parameters. “v.s. PID” represents the SDF improvement
by comparing our methods to PID method. “v.s. Noise” is the SDF improvements of our methods
compared to unregularized SDF. NN: neural network policy; PID: neuralized PID policy; EMA:
exponential moving average of errors; α: EMA’s smooth parameter; SUM: sum of errors; PPO:
Proximal Policy Optimization; SAC: Soft-Actor Critic; P: current error; I: sum of errors; D: error
difference; Act: previous action; CD: corrected spill difference; Over-1: number of noisy spill
intensity ≥ 1.

v.s. PID v.s. Noise Policy Network Reward Func. RL Algorthim State

-4.11 7.90 PID -EMA (α=0.1) PPO P, I, D, Act
-11.12 0.89 NN -EMA (α=0.5) PPO P, I, D, Act
1.42 13.55 PID -EMA (α=0.9) PPO P, I, D, Act
1.95 -10.06 PID -SUM PPO P, I, D, Act
1.46 13.47 PID -EMA (α=0.5) PPO P, I, D
5.76 -6.25 PID -EMA (α=0.5) PPO CD, Over-1, P, Act

-12.60 -24.61 PID -EMA (α=0.5) SAC P, I, D, Act

1.65 13.67 PID -EMA (α=0.5) PPO P, I, D, Act

Ablation Study. We systematically vary parameters and model architectural configurations to
differentiate their impact in these four aspects: 1), we compare the usage of PID controller and a
neural network in Policy network’s; 2), we experiment with various values of the smoothing factor
(α) in the Exponential Moving Average (EMA); 3), we explore the effect of employing different
reward functions; 4), we select alternative states from the Mu2e (spills) environment to replace the
usage of inductive biases from the PID; 5), we compare two RL algorthims: Soft-Actor Critic (SAC)
[Haarnoja et al., 2018] and PPO. For all the experiments, we use the same random seed series. We
report the average improvements of SDF of our proposed methods, compared to PID regularized SDF
and unregularized SDF in Table 1.

4 Related Works in Real-time Edge AI for Distributed Systems (READS)
The READS project [Seiya et al., 2021a] includes two primary sub-projects: 1) Beam Loss Deblending
for the Main Injector and Recycler, and 2) Mu2e Spill Regulation, which is the subject of this work.

Beam Loss Deblending for Main Injector and Recycler. In this sub-project, the challenge is
distinguishing between beam losses from two adjacent accelerators (Recycler Ring and Main Injector)
that share the same monitoring system. We summarize some related works in resolving this challenge
bellow. The Deblending model (DBLN) [Hazelwood et al., 2021b] uses a dual-network MLP setup
to classify beam losses and predict their probabilities for each accelerator and beam loss monitor
(BLM). The Many Models [Hazelwood, 2023] employs individual MLP models for each BLM
and aggregates their outputs to enhance local pattern recognition for beam losses. The semantic
regression model [Thieme et al., 2022] uses the U-Net architecture to capture each accelerator’s
localized and extensive beam loss patterns. As for hardware, a series of work on Field Programmable
Gate Array (FPGA)-based edge-AI systems [Berlioz et al., 2022, Ibrahim et al., 2023, Shi et al., 2023,
Arnold et al., 2023] are developed and deployed for real-time identification of beam loss sources in
accelerator complex, enhancing operational accuracy and efficiency.

Mu2e Spill Regulation. There are some related works in solving challenges (as described in Section
2.1) in Mu2e Spill Regulation project. The PID method [Narayanan et al., 2021b] employs a hybrid
machine learning approach that integrates a neural network (NN) to optimize PID controller gains
within an end-to-end machine learning (ML) differentiable simulator simulator, thereby enhancing
the spill quality of a slow extraction system for proton delivery. The GRU network [Narayanan
et al., 2022] ingests a history of spill intensity observations as input and makes predictions for the
quadrupole adjustments based on these inputs.

5 Conclusion
We present an innovative RL-enhanced spill control system, utilizing a neural PID controller as
the policy function, to tackle beam regulation issues in Mu2e experiments. To simulate real-world
spill control scenarios, we utilize a differentiable Mu2e simulator to create spills, improve spill
adjustments, and establish reward signals. Furthermore, we harness an RL-based controller for fine-
tuning control signals during the regularization process. Our approach outperforms the PID-based
regularization model, achieving a 1.6% higher SDF performance, with a 13.6% improvement in the
SDF of unregularized spills, confirmed across nine different settings with random seeds.
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A Future Directions

We outline two potential directions for future investigations toward a model-free RL controller for the
Mu2e experiments.

Pretrained Transformers. A main motivation for our method is the sequential modeling of noisy
spill rate hard to converge for naive RL algorithms. This challenge persists even with the simplified
simulator environment [Narayanan et al., 2021b]. While our approach incorporates model-based
inductive bias (such as PID), another popular method in the literature involves using transformers
[Vaswani et al., 2017] for generative trajectory modeling in RL [Paischer et al., 2022, Janner et al.,
2021, Chen et al., 2021]. This approach is beneficial for our problem: it scales up easily using existing
transformer-based language and vision models like BERT [Zhou et al., 2023, Ji et al., 2021, Devlin
et al., 2018] and GPT [Wei et al., 2021], enables stable training [Zhai et al., 2023], and addresses the
challenges of short-sighted behavior and long-term credit assignment in RL [Chen et al., 2021].

However, a major issue with training transformers solely on observed samples from the environment
is their tendency to overfit, especially given the typically limited data generated by the current policy
[Chen et al., 2021]. To circumvent this, we propose using a Transformer pre-trained on extensive
observations/samples without any fine-tuning or weight adjustments [Paischer et al., 2022]. Modern
Hopfield networks [Hu et al., 2023, Paischer et al., 2022, Ramsauer et al., 2020] provide a natural
approach for utilizing frozen transformers via their associative memory interpretation. We notice that
there are works in (i) employing “frozen” modern Hopfield networks with pre-trained transformers
for RL [Paischer et al., 2022], and (ii) addressing noisy sequence modeling using sparse modern
Hopfield models [Hu et al., 2023]. We would like to explore the integration of (i) & (ii) in the future.

Feature Programming. A key innovation in our approach is the integration of model-based
inductive bias from PID controllers into our policy network’s architecture. This involves manually
crafting features (PID parameters) from sequences of spills. However, this method risks missing
other crucial features and may introduce instability in the training process, as evidenced in Table 1.
To more effectively identify and leverage informative features for RL model training, we propose
employing Feature Programming [Reneau et al., 2023], an automated feature engineering framework
for noisy multivariate time series. This framework will be used to (i) generate informative features
from noisy spill sequences and (ii) incorporate model-based inductive bias from PID controllers. In
future work, we aim to combine both (i) and (ii) to develop a model-free RL controller for the Mu2e
experiments.
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