

FERMILAB-SLIDES-22-202-SQMS-TD

First measurements of HiPIMS Nb film-coated 3D cavity at 1.3 GHz down to 40 mK

Grigory Eremeev, Bektur Abdisatarov, Hani Elsayed-Ali, Anna Grassellino, Jaeyel Lee, Andrei Lunin, Akshay Murthy, Alexander Romanenko, Guillaume Rosaz, Zuhawn Sung

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

The motivation of this study is to isolate one loss channel

- Superconducting qubits comprise a number of materials
- Coherence time is one of the key figures of merit for superconducting qubits
- It is difficult to evaluate contributions of different loss mechanisms from the performance of qubits
- We would like to isolate different materials, so that we can study and quantify each loss mechanism

2 12/20/2022 Grigory Eremeev | First measurements of HiPIMS Nb film-coated 3D cavity

3D cavities can be used to isolate different loss mechanisms

Romanenko et al., Phys. Rev. Applied 13, 034032

Checchin et al., Phys. Rev. Applied 18, 034013

www.S

SUPERCONDUCTING QUANTUM MATERIALS & SYSTEMS CENTER

3 12/20/2022 **Fermilab** Grigory Eremeev | First measurements of HiPIMS Nb film-coated 3D cavity

Niobium film developments for FCC

LHC Nb film:

• $Q_0 > 2 \cdot 10^9 @ E_{acc} = 5 MV/m @ 4.5 K$

FCC Nb film target:

 $Q_0 > 3 \cdot 10^9 @ E_{acc} = 12 MV/m @ 4.5 K$

Workpackages

- Cavity Engineering & Fabrication
- Push the limits of fabrication technologies: seamless, internal welding, precision machining, 3D printing Built a cavity for Z
- machine

- SRF & Substrate Preparation
- Establish the limits of surface preparation and Nb coatings
- **Optimize HIPIMS** coatings using 1.3 **GHz** seamless cavities
- · Pursue exploration of A15
- · Prepare and validate a cavity for Z machine

Grigory Eremeev | First measurements of HiPIMS Nb film-coated 3D cavity

3/15/2021

Qualification of a 1.3 GHz niobium cavity for film studies

- Electropolishing treatment for a welded bulk niobium cavity
- A typical behavior of an SRF cavity after electropolishing
- Limited by the high field Q-slope at high fields
- Residual resistance is $\sim 1 n\Omega$

Cavity coating with HiPIMS niobium film @ CERN

Cell coating: Thickness: 6µm

Coating technique: Biased-HiPIMS

- Main pulse duration: 200us
- Bias voltage: -75V
- Peak current: ~170A
- Bias current: ~51A
- Power: ~1.2kW
- Gas Kr
- Pressure: 3 10⁻³ mbar
- Coating duration: 6 hours
- Target: Nb RRR300
- Magnetron: standard cylindrical magnet (50mm long, 30mm diameter)

12/20/2022

Fermilab

HiPIMS niobium film measurements in "accelerator" regime

HiPIMS film structure and composition

- 6 µm thick niobium film
- 1 μm grain size on the surface
 - ~ four orders of magnitude more grains than bulk niobium
- RRR ~ 30 vs RRR ~ 300 for bulk niobium

8 12/20/2022 **Fermilab** Grigory Eremeev | First measurements of HiPIMS Nb film-coated 3D cavity

ab 🙅S 🧕

•

HiPIMS niobium film results down to mK temperatures

- Surface resistance is BCS dominated above 1.5 K
- Anomalous loss below 1.5K

ilab

- It was difficult to control DR temperature between 2 K and 3 K
- Because of the fixed couplers, the transmission becomes too weak above 8 K to collect reliable data

Grigory Eremeev | First measurements of HiPIMS Nb film-coated 3D cavity

12/20/2022

g

HiPIMS niobium film comparison with bulk niobium

- Similar temperature dependence of the surface resistance between bulk niobium and film niobium
- Surface resistance decrease with temperature below 1.5 K
- Surface resistance is ~ 100 n Ω at 40 mK in film cavity, corresponding to $\tau \simeq 100$ msec

T [K] Bulk niobium results from Romanenko et al., Phys. Rev. Applied 13, 034032

Fermilab Grigory Eremeev | First measurements of HiPIMS Nb film-coated 3D cavity

12/20/2022

10

Conclusion

- 3D cavity at 1.3 GHz is used to isolate and evaluate microwave loss of HiPIMS niobium film down to 40 mK
- Microwave loss of HiPIMS film exhibited temperature dependence similar to bulk niobium at low temperatures
- Surface resistance of HiPIMS film was measured at about 100 nΩ at 40 mK, corresponding to τ ~ 100 msec, significantly longer than the typical coherence times of 2D superconducting qubits
- Studies continue to evaluate how microwave losses change after different surface treatments

Grigory Eremeev | First measurements of HiPIMS Nb film-coated 3D cavity

Thank you!

This material is based upon work supported by the U.S. Department of Energy, Office of Science, National Quantum Information Science Research Centers, Superconducting **Quantum Materials and** Systems Center (SQMS) under contract number DE-AC02-07CH11359

