FERMILAB-SLIDES-22-157-SCD

Upcoming Storage Features
N ROOT

Philippe Canal and Jakob Blomer for the ROOT team
Snowmass CompF4 Topical Group Workshop, April 2021

ROOT

Data Analysis Framework

LHC

HL-LHC

T5% nominal Lumi

. i
e

Diedes Consolidation
splice consolidation cryolimit LiU ingtallation ! 0
button collimators interaction inner triplet : HieL i
R2E project regions Civil Eng. P1-P5 radiation limit installation

| 2020

ATLAS - CMS
experiment upgrade phase 1 ATLAS - CMS
o nominal Lumi | S moming Lisk ALICE - LHCb jo £ S ol L e " ipen
upgrade

14 TeV

energy

510 7.5 x nominal Lumi I

.’/f,_—q

integrated [REUUTRII
luminosity BELITE

Major I/0O upgrade of the event data file format and access API: TTree = RNTuple

ROOT Foundation Upgrade for HL-LHC

e Major I/O upgrade of the event data file format and access API: TTree = RNTuple
o Target an order of magnitude higher event throughput (storage to compute)
o Give access to novel and future storage technologies

e Generation hand-over of I/O experts to ensure availability of I/O expertise
compatible with the HL-LHC lifetime

e Est. 50 MCHF/year on storage in WLCG
= strong incentive for common, highly efficient I/O layer

e New generation of hardware architecture (GPU, HPC, Object Stores, etc.)

Data Storage in ROOT

e TTree and RNTuple: ROOT classes for columnar storage of event data
o Optimized for selective reads as is typical in analysis
o Since 25 years in ROOT, today a common standard in Big Data tools

e Support for complex objects and nested collections within events
e Assisted by cling: Seamless C++ and Python integration: no hand-coded data

schema
pt_x pt_y pt_z theta
£&<— columns
_ ; : can contain
entries complex c++
orevents — objects
Oor rows

Overview of Foundation Components

_—

Diodes Consolidation on
LIU Installation e triplet HL-LHC Plus: cOmpress.\o
mes, caC\‘\\ﬂgv

Civil Eng. P1-P5 radiation limit installation
sche data
iy oo
5 1o 7.5 x nominal Lumi, mo\lemen

ATLAS - CMS
upgrade phase 1 ATLAS - CMS

14 TeV

energy

ALICE - LHCb 2 xnominal Lum 2 HL upgrads
upgrade i :
RNTuple
PoC fﬁ'st e.g. to develop readers
exposure to " ! in Go, Julia, ...
experiments dlgesscale) .
format BN I”BISI Iiﬁ- |m“_Iﬁ“ﬁ| S eﬁl mi Fﬁﬁglﬂﬂ
transition

TTree: O(IEB) Run 1to Run 3 data - RNTuple: O(10EB) Run 4-6 data

ROOQOT File (local and remote): TFile container format hosting data (TTree, RNTuple) and summary objects (TH1 etc.)
Cling: C++ and Python reflection for user-defined object, common AoS = SoA object mapping
Remote file access: XRootD, Davix for HTTP, X.509 and SciToken authentication
Object store adapters for cloud and HPC (e.g., DAOS, S3)

In-memory adapters (e.g., numpy, Arrow)

RNTuple Targets

Based on 25+ years of TTree experience, redesign of the 1/0 subsystem for
° Less disk and CPU usage for same data content
o 10-20% smaller files, at least x3-5 better single-core performance
o 10 GB/s per node and 500 MB/s per core sustained end-to-end throughput NanoAOD storage efficiency
(compressed data to histograms, based on current HW generation)
° Native support for HPC and cloud object stores
° Lossy compression
° Systematic use of checksumming and exceptions
to prevent silent I/O errors

RNTuple / TTree

z4 zst zma

x1 06 Read Throughput SSD, Di-Muon Analysis on CMS nanoAOD

Full control of the 1/0 layer enables fast adaptation to e 18:

HEP-specific needs, such as g 16;_ .. RNTuple (HW-aceel.-decompr.) -
e Tight RDataFrame integration L%’ 14
PY Support fOI’ rich event data models (EDMS) 12:_ ... R-NTupIe
) Rich metadata: e.g., scale factors, data management information 103—
e \Vertical and horizontal joins (“friends”, “chains”, ...) 8f— ..
e Fast merging of data streams 60
® Good integration with multi-threaded frameworks A N
° Support for code & data evolution over decades 2:*

ot

Comparison of TTree and RNTuple defaults 6

NTuple: Current performance snapshot

(a): LHCbh B2HHH (10/26 branches; compressed) (b): CMS Higgs4Leptons (10/84 branches; compressed)

1
1_ —]
RNTuple is both significantly 31 N
faster and has best data 2| . <
. . . /A /m 0.5 il
compression efficiency o i L | o i
0 D S 0 - S
85 Coph¥ s5b Ceph¥

RDF Analysis Prototype:

B RNTuple [TTree WParquet WHDF5/row-wise W HDF5/column-wise

With Distributed RDF reached
50 GB/s using 1024 core of (a) Average size per event in kB (compressed dataset)
CERN H PC I I I : I I B LHCbH B'EIHHH

RNTuple B CMS HiggsdLeptons

TTree

With DAOS reached 70% of parquet
theoretical bandwidth of the nprs/row
cluster (36.5GB/s out of 48 GB/s) HDF5/col

0.10 0.20 0.30 0.40 0.50 0.60 0.70
kB /event

RNTuple Development Plan

~2018-19 ~2019-20 ~2021-22 ~2022-23 ~2023-24
Proof of First Pre- .
concept ooy E exploitation production)} froduction)
Architecture Adoption in ¥ Object store support 0 RDataFrame [l PB scale tests
Review on ROOT::Experimental DAOS (HPC) bulk processing [Automatic optimization
state-of-the-art I/O scheduler for "% S3 (Cloud) 0 Debugging and features
First prototypes local and remote ¥ RNTuple version 1 spec inspection tools [Low-precision floats
access _* RNTupleLite O Metadata API O ML Training: direct GPU
Performance ¥ Schema evolution [Special use case transfer
validation ¢ Disk-to-disk conversion support: e.g. backfill, [End-user training
[Virtual data sets for in-memory adapters I Training and support for
skims and selections ¥ XRootD support code and data migration
= available First exposure to O Validation of
¢ = under development frameworks: feature coverage Expecting stable, if
1 = programme of work CMSSW nanoAOD O Training experiments’ + increasing IO
— =in collaboration with output module core developers no rkload well into
users/experiments Prototyping by O Large-scale wzn A
ATLAS, CMS, LHCb experiment :
I/O experts benchmarks

Growing importance of coordination & collaboration with experiment I/O experts

TTree Development

1. Support

2. Thread-safety and performance improvements
3. TBufferFile larger than 1GB

4. Schema Evolution Improvement

5. Incorporate lossy compression engine (Accelogic)

Key Challenges and Risks I/II

_lChallenge
LJRisk if challenge unmet
LIMitigation

1. Keeping the schedule of the RNTuple implementation plan
o Risks fractured I/O landscape of ad-hoc solutions, likely resulting in increased storage needs,
reduced compute efficiency, and failure in long-term data preservation
o Stable support for 2.5 FTEs until 2025 on TTree, RNTuple, and experiment framework expertise
o Gradual RNTuple rollout from AODs to RAW for agile adjustment of development efforts

2. Long-term retention of TTree and RNTuple I/O experts
o Risks trust erosion and inefficiencies due to work-arounds
o Mitigated by thorough development and documentation discipline
o Mitigated by existing permanent positions in 1/0

3. Design of RNTuple meeting the Run 4 hardware and software requirements
o Risks limitation of HL-LHC computing workflows, in the worst case partial loss of data
o Mitigated by early involvement of experiments in the RNTuple design and format specification
o RNTuple designed informed by years of TTree experience
o Large-scale validation tests
10

Key Challenges and Risks Il/Il

_lChallenge
LJRisk if challenge unmet
LIMitigation

4. Continued support of 3rd party libraries
o Risks limitations of computing workflows involving remote 1/0 and AuthX
o Continued community funding for XRootD and Davix (HTTP) library developers

5. Adoption of RNTuple through experiment and analysis framework adaptations and optimized data
models
o Risks mismatch between experiments’ data model and RNTuple main format and API, thus
fractured landscape with significant maintenance support for both RNTuple and TTree
o Mitigated by investment on both ROOT side and experiment side for close feedback loops
o Seamless analysis code migration through RDataFrame
o We believe that the benefits of RNTuple warrant transition with high priority

6. Evolving ROOT reflection support (cling)
o Risks limitations in the EDMs due to lack of I/0 support for language features
o Mitigated by stable positions for experts on clang/cling and llvm

11

Backup slides

12

Motivation for Investment in I/0O

1. HL-LHC data challenge:
o From 300fb™in run 1-3 to 3000fb™ in run 4-6
o 10B events/year to 100B events/year
o Real data challenge depends on several factors: number of events, analysis
complexity, number of reruns, etc.
m As a starting point, preparing for ten times the current demand

‘ o
| V-NANDSSD

2. Full exploitation of modern storage hardware
o Ultra fast networks and SSDs: 10GB/s per device reachable (HDD: 250MB/s)
o Flash storage is inherently parallel = asynchronous, parallel I/0O key
o Heterogeneous computing hardware = GPU should be able to load data

directly from SSD, e.g. to feed ML pipeline i@ OPTANEDCO»

o Distributed storage systems move from POSIX to object stores aaad -

P F kP

Blurring between I/O and compute e

PSRRI T TR TS RO HTT D IR

File Format Essential Properties

Robustness Protection against media failure & API misuse

Expressiveness Support for events with nested variable length collections

Speed Columnar layout, merge-friendly, sophisticated I/O scheduling

Stability Backwards and forwards compatibility, hooks for schema evolution
Usability Accessible to novice and expert programmers

Concurrency Facilitate concurrent reading/writing (merging) and (de-)compression
Integration Support for HEP-specific, HPC, and Cloud storage and data mgmt systems

14

Facets of a full 170 system

In addition to deserializing file contents, the full I/O system has many more aspects, such as
¢ Parallel and distributed reading & writing

¢ 1/0O scheduling (read-ahead, request coalescing, etc)

¢ Beyond file system I/O: HTTP, XRootD, object stores

¢ Schema evolution

¢ Data set combinations: chains, friends, indexes, merging

¢ Complex object hierarchies (e.g. for ESD EDMs)

¢ User customizations
® [E.g.skip “transient data members”

® |/O customization rule (transformation of data)

15

HEP Event Data |/0O

Why investin a Example EDM

e (apable of storing the HEP event data model:
nested, inter-dependent collections of data points

e Performance-tuned for HEP analysis workflow (columnar
binary layout, custom compression etc.)

e Automatic schema generation and evolution for
C++ (via cling) and Python (via cling + PyROQOT)

e Integration with federated data management tools
(XRootD etc.)

e long-term maintenance and support

The ROOT File

¢ In ROOQT, objects are written in files (“TFile”)
¢+ TFiles are binary and have: a header, records and can be compressed
(transparently for the user)
¢ TFiles have a logical “file system like” structure
e e.g. directory hierarchy

¢ TFiles are self-descriptive:
e (Can be read without the code of the objects streamed into them
e E.g.can beread from JavaScript

17

ROOT File Description

ROOT File description

[3 [I
o § g Object |£3|“Delefed |2 R
wg gg Data Eg Eg Eg
L | N S '
fBEGIN fEND
File Header | [Logical Record Header (TKEY)
"root": Root File Identifier fNbytes: Length of compressed object
Version: File “mm fVersion: Key version identifier
- fObjLen: Length of uncompressed object
m mhﬁmm m tDatime: Date/Time when written to store

fKeylen: Number of bytes for the key

"'merd my in FREE iCycle : Cycle number

1SeekKey: Pointer to object on file
Nfree: Number of free data records iSeekPdir: Pointer to directory on file
i : me/titl fClassMame: class name of the object
fUnits: Number of hvul- nr polnm fName: name of the object
fCompress: Compression lev fTitle: title of the object

18

ROOT File Specification

Byte Range Record Name Description
1->4 "root" Root file identifier
5->8 fVersion File format version
9->12 fBEGIN Pointer to first data record
13->16 [13->20] | fEND Pointer to first free word at the EOF
17->20 [21->28] | fSeekFree Pointer to FREE data record

21->24 [29->32] | fNbytesFree Number of bytes in FREE data record

25->28 [33->36] | nfree Number of free data records

29->32 [37->40] | fNbytesName Number of bytes in TNamed at creation time

33->33 [41->41] | fUnits Number of bytes for file pointers

34->37 [42->45] | fCompress Compression level and algorithm

38->41 [46->53] | fSeekinfo Pointer to TStreamerinfo record

42->45 [54->57] | fNbytesInfo Number of bytes in TStreamerinfo record
46->63 [68->75] | fUUID Universal Unique ID

19

Event Data and ROOT Files

A ROOQOT file can be seen as a hierarchically organized container of objects
e E.g. afile can contain directories with histograms
In addition, ROQOT files can also contain event data
e E.g., aseriesof TEvent objects for a user-defined TEvent class
Event data stored in a TTree (or RNTuple, see later) is usually written as a set
of many objects
TTree and RNTuple have a custom, internal serialization format
(columnar layout)
A binary format within the TFile binary format

20

Anatomy of a Tree

Cluster Cluster Cluster

File Branch #1 #2 #3 #1 #3 #1 #2 #3

Header Entries 0 .. N-1 0..N-1 0..N-1 N ... 2N-1 N .. 2N-1 2N ... 3N-1 2N .. 3N-1 2N .. 3N-1

Cluster Cluster

f Cluster V Cluster \

#1 Schema
6N ... 6.9*N-1 Meta Data Evolution

File

Support

Basket Baske Basket Basket

ROOT Data Access Options

¢ ROOT can read, write, and represent data in C++

¢+ ROOT can read, write, and represent data in Python through pyROOT
(dynamic binding between C++ and Python)
e (an also export ROOT trees to numpy arrays

¢ ROOT can read and represent trees and the most common classes
(histograms, graphs, etc.) in JavaScript with [SROOT
e (an also export objects in JSON

22

3rd Party Implementations of ROOT /0O

. There are several projects that re-implement parts of the ROOT file

format
e Julia: unroot
e Python: uproot
e Go: hep/groot
e Java/Scala: FreeHEP rootio
e Rust: alice-rs/root-io

. Typically supported features: reading of simple objects (histograms)
and trees with a simple structure (numerical types and vectors
thereof)

23

RNTuple Class Design

Seamless transition from TTree to RNTuple

Modular storage layer that supports
files as data containers but also
file-less systems (object stores)

Event iteration
Reading and writing in event loops and througl{RDataFrame
RNTupleDataSource, RNTupleView, RNTupleRea@er/Writer

’Approximate translation between TTree and
ERRTIE z RNTuple classes:
Primitives layer / simple types P
“Columns” containing elements of fundamental types (float, int,...) TTree ~ RNTupleReader
grouped into (compressed) pages and clusters RNTupleWriter
RColumn, RColumnElement, RPage TTreeReader ~~ RNTupleView
TBranch ~ RField
TBasket ~ RPage
Storage layer / byte ranges
RPageStorage, RCluster, RNTupleDescriptor L Lhestagie = RUlusebool)

— RNTuple v1 Format Specification

24

RNTuple Format Evolution

e experimenting with “split floats”
e Little-endian values (allows for
mmap())

User-defined classes
More classes planned
(e.g. std::chrono timepoints)

+ Key binary layout changes wrt. ¢ Supported types
TTree e Boolean
e More efficient nested collections ¢ Integer-s, floating point
e More efficient boolean values * std:string
(bitfield), interesting for trigger bits ° std::vegtor, std::array

e std:variant
[]
(]

Implementation uses templates to slash
memory copies and virtual function calls in
common I/0 paths

Fully composable (including aggregation,
inheritance) within the supported type system

25

libRNTupleLite (under development)

e The libRNTuplelLite library is built just
libROOTNTuple like any other ROOT libraries in ROOT
proper (including modules, dictionaries
etc)
libRIO liIbROOTNTupleLite
= e The libRNTupleLite does not use any
;—,E) infrastructure from libCore but only
libCore libROOTIOLite O from libROOTFoundation
e Functionality:
libROOTFoundation o RIOLite: RRawFile without
support for plugins, i.e. only
local files
. Depends on LLVM/cling o ROOTNTupleLite: Provide

access to meta-data (schema
etc.) and data pages

26

libRNTupleLite C API

e C APl header and dynamic library libROOTNTuplelLite.so
o Header files will be in
m io/iolite/inc/ROOT/IOLite.h
m tree/ntuplelite/inc/ROOT/NTupleLite.h

e Provides a C wrapper to the C++ [ibROOTRNTupleLite.so

e Provided functionality:
o Open an RNTuple that is stored in a local ROOT file
o Read the schema: fields, columns, pages, and their relationships
o Read pages into void * memory areas given column id and page id
m Takes care of decompressing and unpacking pages along the way

e Aims at being a building block for 3rd party tool builders
27

ROOT I/O: Support

Full support by the ROOT Team:
I/0 through the ROOT C++ library

L 4

L 4

pyROOT
¢ Conversion of simple structures to numpy arrays

JSROOT

2

L 4

JSON serialization of objects

L 4

In the future: C API provided by RNTupleLite

Indirect support (“support the maintainers”)

¢ Third-party implementation of the binary format (uproot, unroot, Java, Go, ...) -

RNTuple Format Breakdown

Dataset / File
I I
| " S I
Header Page C++ collections become offset columns Footer
I I struct Event {
Cluster int £1d:
vector<Particle> fPtcls;
Approximate translation between TTree and RNTuple concepts: }:
Basket ~ Page struct Particle {
Leaf ~ Column float fE;
Cluster = Clugter vector<int> fIds;
};
Cluster:
+ Block of consecutive complete events Page/Basket:

¢ Unit of memory mapping or (de)compression

¢ Unit of thread parallelization (read & write) + Typically tens of kilobytes

+ Typically tens of megabytes
29

Comparison With Other I/0O Systems

ROOT PB SQlite HDF5 Parquet Avro
Well-defined encoding v v v v v v
C/C++ Library v v v v v v
Self-describing v N s & i N
Nested types v v ? ? v v
Columnar layout v M M ? v M
Compression v v M ? v v
Schema evolution v I v M ? ?

v/ = supported
= unsupported
7 = difficult / unclear

J. Blomer, A guantitative review of data formats for HEP analyses ACAT 2017 30

