
https://root.cern

ROOT
Data Analysis Framework

Upcoming Storage Features
in ROOT

Philippe Canal and Jakob Blomer for the ROOT team
Snowmass CompF4 Topical Group Workshop, April 2021

1

FERMILAB-SLIDES-22-157-SCD

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359
with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

ROOT Foundation Upgrade for HL-LHC

Major I/O upgrade of the event data file format and access API: TTree → RNTuple

2

ROOT Foundation Upgrade for HL-LHC

● Major I/O upgrade of the event data file format and access API: TTree → RNTuple
○ Target an order of magnitude higher event throughput (storage to compute)
○ Give access to novel and future storage technologies

● Generation hand-over of I/O experts to ensure availability of I/O expertise
compatible with the HL-LHC lifetime

● Est. 50 MCHF/year on storage in WLCG
→ strong incentive for common, highly efficient I/O layer

● New generation of hardware architecture (GPU, HPC, Object Stores, etc.)

3

Data Storage in ROOT

pt_x pt_y pt_z theta

entries
or events
or rows

→

columns←
can contain
complex c++

objects

4

● TTree and RNTuple: ROOT classes for columnar storage of event data
○ Optimized for selective reads as is typical in analysis
○ Since 25 years in ROOT, today a common standard in Big Data tools

● Support for complex objects and nested collections within events
● Assisted by cling: Seamless C++ and Python integration: no hand-coded data

schema

Overview of Foundation Components

ROOT File (local and remote): TFile container format hosting data (TTree, RNTuple) and summary objects (TH1 etc.)

TTree: O(1EB) Run 1 to Run 3 data RNTuple: O(10EB) Run 4-6 data

Remote file access: XRootD, Davix for HTTP, X.509 and SciToken authentication

Object store adapters for cloud and HPC (e.g., DAOS, S3)

R
O

O
T

Te
am

3r
d

pa
rty

lib

s

RNTupleLite: low-level C API for reading

e.g. to develop readers
in Go, Julia, ...

In-memory adapters (e.g., numpy, Arrow)

Cling: C++ and Python reflection for user-defined object, common AoS → SoA object mapping

Plus: compression

schemes, caching,

merging, data

movement

Large-scale
format

transition

5

RNTuple
PoC, first

exposure to
experiments

RNTuple Targets

Based on 25+ years of TTree experience, redesign of the I/O subsystem for
● Less disk and CPU usage for same data content

○ 10-20% smaller files, at least x3-5 better single-core performance
○ 10 GB/s per node and 500 MB/s per core sustained end-to-end throughput

(compressed data to histograms, based on current HW generation)
● Native support for HPC and cloud object stores
● Lossy compression
● Systematic use of checksumming and exceptions

to prevent silent I/O errors

Full control of the I/O layer enables fast adaptation to
HEP-specific needs, such as

● Tight RDataFrame integration
● Support for rich event data models (EDMs)
● Rich metadata: e.g., scale factors, data management information
● Vertical and horizontal joins (“friends”, “chains”, ...)
● Fast merging of data streams
● Good integration with multi-threaded frameworks
● Support for code & data evolution over decades

Performance and functionality unmatched
by any other available data format / API

RNTuple compatibility break warranted by a leap in
performance and access to upcoming hardware choices

Comparison of TTree and RNTuple defaults

NanoAOD storage efficiency

x 6.3

x 8.7

6

RNTuple: Current performance snapshot

RNTuple is both significantly
faster and has best data
compression efficiency

RDF Analysis Prototype:

With Distributed RDF reached
50 GB/s using 1024 core of
CERN HPC

With DAOS reached 70% of
theoretical bandwidth of the
cluster (36.5GB/s out of 48 GB/s)

7

R N T u pl e D e v el o p m e nt Pl a n

P r o of of
c o n c e pt

P r ot ot y p e
Fi r st

e x pl oit ati o n
P r e-

p r o d u cti o n
P r o d u cti o n

~ 2 0 1 8- 1 9 ~ 2 0 1 9- 2 0 ~ 2 0 2 1- 2 2 ~ 2 0 2 2- 2 3 ~ 2 0 2 3- 2 4

✅ Ar c hit e ct ur e
✅ R e vi e w o n
 st at e- of-t h e- art
✅ Fir st pr ot ot y p e s

✅ A d o pti o n i n
 R O O T:: E x p eri m e nt al
✅ I/ O s c h e d ul er f or
 l o c al a n d r e m ot e
 a c c e s s
✅ P erf or m a n c e
 v ali d ati o n

⛅ O bj e ct st or e s u p p ort
 ✅ D A O S (H P C)
 ⛅ S 3 (Cl o u d)
⛅ R N T u pl e v er si o n 1 s p e c
⛅ R N T u pl e Lit e
⛅ S c h e m a e v ol uti o n
⛅ Di s k-t o- di s k c o n v er si o n
🗋 Virt u al d at a s et s f or
 s ki m s a n d s el e cti o n s
✅ Fir st e x p o s ur e t o
 fr a m e w or k s:
 ✅ C M S S W n a n o A O D
 o ut p ut m o d ul e
 ✅ Pr ot ot y pi n g b y
 A T L A S, C M S, L H C b
 I/ O e x p ert s

🗋 R D at a Fr a m e
 b ul k pr o c e s si n g
🗋 D e b u g gi n g a n d
 i n s p e cti o n t o ol s
🗋 M et a d at a A PI
🗋 S p e ci al u s e c a s e
 s u p p ort: e. g. b a c k fill,
 i n- m e m or y a d a pt er s
⛅ X R o ot D s u p p ort
🗋 V ali d ati o n of
 f e at ur e c o v er a g e
🗋 Tr ai ni n g e x p eri m e nt s’
 c or e d e v el o p er s
🗋 L ar g e- s c al e
 e x p eri m e nt
 b e n c h m ar k s

🗋 P B s c al e t e st s
🗋 A ut o m ati c o pti mi z ati o n
 f e at ur e s
🗋 L o w- pr e ci si o n fl o at s
🗋 M L Tr ai ni n g: dir e ct G P U
 tr a n sf er
🗋 E n d- u s er tr ai ni n g
🗋 Tr ai ni n g a n d s u p p ort f or
 c o d e a n d d at a mi gr ati o n

✅ = a v ail a bl e
⛅ = u n d er d e v el o p m e nt
🗋 = pr o gr a m m e of w or k
— = i n c oll a b or ati o n wit h
 u s er s/ e x p eri m e nt s

Gr o wi n g i m p ort a n c e of c o or di n ati o n & c oll a b or ati o n wit h e x p eri m e nt I/ O e x p ert s

E x p e cti n g st a bl e, if

n ot i n cr e a si n g, I/ O

w or kl o a d w ell i nt o

R u n 4

8

TTree Development

1. Support

2. Thread-safety and performance improvements

3. TBufferFile larger than 1GB

4. Schema Evolution Improvement

5. Incorporate lossy compression engine (Accelogic)

9

Key Challenges and Risks I/II

1. Keeping the schedule of the RNTuple implementation plan
○ Risks fractured I/O landscape of ad-hoc solutions, likely resulting in increased storage needs,

reduced compute efficiency, and failure in long-term data preservation
○ Stable support for 2.5 FTEs until 2025 on TTree, RNTuple, and experiment framework expertise
○ Gradual RNTuple rollout from AODs to RAW for agile adjustment of development efforts

2. Long-term retention of TTree and RNTuple I/O experts
○ Risks trust erosion and inefficiencies due to work-arounds
○ Mitigated by thorough development and documentation discipline
○ Mitigated by existing permanent positions in I/O

3. Design of RNTuple meeting the Run 4 hardware and software requirements
○ Risks limitation of HL-LHC computing workflows, in the worst case partial loss of data
○ Mitigated by early involvement of experiments in the RNTuple design and format specification
○ RNTuple designed informed by years of TTree experience
○ Large-scale validation tests

10

⏹Challenge
⏹Risk if challenge unmet
⏹Mitigation

Key Challenges and Risks II/II

4. Continued support of 3rd party libraries
○ Risks limitations of computing workflows involving remote I/O and AuthX
○ Continued community funding for XRootD and Davix (HTTP) library developers

5. Adoption of RNTuple through experiment and analysis framework adaptations and optimized data
models

○ Risks mismatch between experiments’ data model and RNTuple main format and API, thus
fractured landscape with significant maintenance support for both RNTuple and TTree

○ Mitigated by investment on both ROOT side and experiment side for close feedback loops
○ Seamless analysis code migration through RDataFrame
○ We believe that the benefits of RNTuple warrant transition with high priority

6. Evolving ROOT reflection support (cling)
○ Risks limitations in the EDMs due to lack of I/O support for language features
○ Mitigated by stable positions for experts on clang/cling and llvm

11

⏹Challenge
⏹Risk if challenge unmet
⏹Mitigation

Backup slides

12

Motivation for Investment in I/O

1. HL-LHC data challenge:
○ From 300fb-1 in run 1-3 to 3000fb-1 in run 4-6
○ 10B events/year to 100B events/year
○ Real data challenge depends on several factors: number of events, analysis

complexity, number of reruns, etc.
■ As a starting point, preparing for ten times the current demand

2. Full exploitation of modern storage hardware
○ Ultra fast networks and SSDs: 10GB/s per device reachable (HDD: 250MB/s)
○ Flash storage is inherently parallel → asynchronous, parallel I/O key
○ Heterogeneous computing hardware → GPU should be able to load data

directly from SSD, e.g. to feed ML pipeline
○ Distributed storage systems move from POSIX to object stores

Blurring between I/O and compute

13

File Format Essential Properties

Robustness Protection against media failure & API misuse

Expressiveness Support for events with nested variable length collections

Speed Columnar layout, merge-friendly, sophisticated I/O scheduling

Stability Backwards and forwards compatibility, hooks for schema evolution

Usability Accessible to novice and expert programmers

Concurrency Facilitate concurrent reading/writing (merging) and (de-)compression

Integration Support for HEP-specific, HPC, and Cloud storage and data mgmt systems

14

Facets of a full I/O system

In addition to deserializing file contents, the full I/O system has many more aspects, such as

🔹 Parallel and distributed reading & writing

🔹 I/O scheduling (read-ahead, request coalescing, etc)

🔹 Beyond file system I/O: HTTP, XRootD, object stores

🔹 Schema evolution

🔹 Data set combinations: chains, friends, indexes, merging

🔹 Complex object hierarchies (e.g. for ESD EDMs)

🔹 User customizations

● E.g. skip “transient data members”

● I/O customization rule (transformation of data)

15

16

HEP Event Data I/O

Why invest in a tailor-made I/O system

● Capable of storing the HEP event data model:
nested, inter-dependent collections of data points

● Performance-tuned for HEP analysis workflow (columnar
binary layout, custom compression etc.)

● Automatic schema generation and evolution for
C++ (via cling) and Python (via cling + PyROOT)

● Integration with federated data management tools
(XRootD etc.)

● Long-term maintenance and support

TTree & RNTuple
Example EDM

The ROOT File

🔹 In ROOT, objects are written in files (“TFile”)
🔹 TFiles are binary and have: a header, records and can be compressed

(transparently for the user)
🔹 TFiles have a logical “file system like” structure

● e.g. directory hierarchy
🔹 TFiles are self-descriptive:

● Can be read without the code of the objects streamed into them
● E.g. can be read from JavaScript

17

ROOT File Description

18

ROOT File Specification

19

Event Data and ROOT Files

🔹 A ROOT file can be seen as a hierarchically organized container of objects
● E.g. a file can contain directories with histograms

🔹 In addition, ROOT files can also contain event data
● E.g., a series of TEvent objects for a user-defined TEvent class

🔹 Event data stored in a TTree (or RNTuple, see later) is usually written as a set
of many objects

🔹 TTree and RNTuple have a custom, internal serialization format
(columnar layout)

🔹 A binary format within the TFile binary format

20

Anatomy of a Tree

21

Branch #1
Entries 0 .. N-1

File
Header

#2
0 .. N-1

#3
0 .. N-1

#1
N ... 2N-1

#2
N .. 2N-1

#3
N .. 2N-1

Cluster Cluster

TTree
Meta Data

File
Schema
Evolution
Support

#1
4N ...

#2
4N ...

#3
4N …

Cluster
#1

3N ...

#2
3N
…

#3
3N
…

Cluster

#1
2N ... 3N-1

#2
2N .. 3N-1

#3
2N .. 3N-1

Cluster

#1
5N ...

#2
5N ...

#3
5N ...

Cluster

#1
6N ... 6.9*N-1

#2
6N …

#3
6N …

Cluster
#1

7N …
#2

7N …

#3
7N
…

Cluster
#1

6.9*N ...

BasketBasket Basket Basket

ROOT Data Access Options

🔹 ROOT can read, write, and represent data in C++

🔹 ROOT can read, write, and represent data in Python through pyROOT
(dynamic binding between C++ and Python)
● Can also export ROOT trees to numpy arrays

🔹 ROOT can read and represent trees and the most common classes
(histograms, graphs, etc.) in JavaScript with JSROOT
● Can also export objects in JSON

22

3rd Party Implementations of ROOT I/O

🔹 There are several projects that re-implement parts of the ROOT file
format
● Julia: unroot
● Python: uproot
● Go: hep/groot
● Java/Scala: FreeHEP rootio
● Rust: alice-rs/root-io

🔹 Typically supported features: reading of simple objects (histograms)
and trees with a simple structure (numerical types and vectors
thereof)

23

RNTuple Class Design

24

Modular storage layer that supports
files as data containers but also
file-less systems (object stores)

Seamless transition from TTree to RNTuple

→ RNTuple v1 Format Specification

RNTuple Format Evolution

25

🔹 Key binary layout changes wrt.
TTree

● More efficient nested collections
● More efficient boolean values

(bitfield), interesting for trigger bits
● experimenting with “split floats”
● Little-endian values (allows for

mmap())

Implementation uses templates to slash
memory copies and virtual function calls in

common I/O paths

🔹 Supported types
● Boolean
● Integers, floating point
● std::string
● std::vector, std::array
● std::variant
● User-defined classes
● More classes planned

(e.g. std::chrono timepoints)

Fully composable (including aggregation,
inheritance) within the supported type system

libRNTupleLite (under development)

26

libROOTFoundation

libCore libROOTIOLite

libROOTNTupleLitelibRIO

libROOTNTuple

Depends on LLVM/cling

● The libRNTupleLite library is built just
like any other ROOT libraries in ROOT
proper (including modules, dictionaries
etc)

● The libRNTupleLite does not use any
infrastructure from libCore but only
from libROOTFoundation

● Functionality:
○ RIOLite: RRawFile without

support for plugins, i.e. only
local files

○ ROOTNTupleLite: Provide
access to meta-data (schema
etc.) and data pages

C
 S

hi
m

27

● C API header and dynamic library libROOTNTupleLite.so
○ Header files will be in

■ io/iolite/inc/ROOT/IOLite.h
■ tree/ntuplelite/inc/ROOT/NTupleLite.h

● Provides a C wrapper to the C++ libROOTRNTupleLite.so

● Provided functionality:
○ Open an RNTuple that is stored in a local ROOT file
○ Read the schema: fields, columns, pages, and their relationships
○ Read pages into void * memory areas given column id and page id

■ Takes care of decompressing and unpacking pages along the way

● Aims at being a building block for 3rd party tool builders

libRNTupleLite C API

ROOT I/O: Support

Full support by the ROOT Team:

🔹 I/O through the ROOT C++ library

🔹 pyROOT

🔹 Conversion of simple structures to numpy arrays

🔹 JSROOT

🔹 JSON serialization of objects

🔹 In the future: C API provided by RNTupleLite

Indirect support (“support the maintainers”)

🔹 Third-party implementation of the binary format (uproot, unroot, Java, Go, ...)
28

RNTuple Format Breakdown

29

Cluster:
🔹 Block of consecutive complete events
🔹 Unit of thread parallelization (read & write)
🔹 Typically tens of megabytes

Page/Basket:
🔹 Unit of memory mapping or (de)compression
🔹 Typically tens of kilobytes

Comparison With Other I/O Systems

30J. Blomer, A quantitative review of data formats for HEP analyses ACAT 2017

