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ROOT Foundation Upgrade for HL-LHC

Major I/O upgrade of the event data file format and access API: TTree → RNTuple
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ROOT Foundation Upgrade for HL-LHC

● Major I/O upgrade of the event data file format and access API: TTree → RNTuple
○ Target an order of magnitude higher event throughput (storage to compute)
○ Give access to novel and future storage technologies

● Generation hand-over of I/O experts to ensure availability of I/O expertise 
compatible with the HL-LHC lifetime

● Est. 50 MCHF/year on storage in WLCG 
→ strong incentive for common, highly efficient I/O layer

● New generation of hardware architecture (GPU, HPC, Object Stores, etc.)
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Data Storage in ROOT
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● TTree and RNTuple: ROOT classes for columnar storage of event data
○ Optimized for selective reads as is typical in analysis
○ Since 25 years in ROOT, today a common standard in Big Data tools

● Support for complex objects and nested collections within events
● Assisted by cling: Seamless C++ and Python integration: no hand-coded data 

schema



Overview of Foundation Components

ROOT File (local and remote): TFile container format hosting data (TTree, RNTuple) and summary objects (TH1 etc.)

TTree: O(1EB) Run 1 to Run 3 data RNTuple: O(10EB) Run 4-6 data

Remote file access: XRootD, Davix for HTTP, X.509 and SciToken authentication

Object store adapters for cloud and HPC (e.g., DAOS, S3)
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RNTupleLite: low-level C API for reading

e.g. to develop readers 
in Go, Julia, ...

In-memory adapters (e.g., numpy, Arrow)

Cling: C++ and Python reflection for user-defined object, common AoS → SoA object mapping

Plus: compression 

schemes, caching, 

merging, data 

movement

Large-scale
format 

transition
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RNTuple Targets

Based on 25+ years of TTree experience, redesign of the I/O subsystem for
● Less disk and CPU usage for same data content

○ 10-20% smaller files, at least x3-5 better single-core performance
○ 10 GB/s per node and 500 MB/s per core sustained end-to-end throughput 

(compressed data to histograms, based on current HW generation)
● Native support for HPC and cloud object stores
● Lossy compression
● Systematic use of checksumming and exceptions 

to prevent silent I/O errors

Full control of the I/O layer enables fast adaptation to
HEP-specific needs, such as

● Tight RDataFrame integration
● Support for rich event data models (EDMs)
● Rich metadata: e.g., scale factors, data management information 
● Vertical and horizontal joins (“friends”, “chains”, ...)
● Fast merging of data streams
● Good integration with multi-threaded frameworks
● Support for code & data evolution over decades

Performance and functionality unmatched 
by any other available data format / API

RNTuple compatibility break warranted by a leap in 
performance and access to upcoming hardware choices

Comparison of TTree and RNTuple defaults

NanoAOD storage efficiency

x 6.3

x 8.7

6



RNTuple: Current performance snapshot

RNTuple is both significantly 
faster and has best data 
compression efficiency

RDF Analysis Prototype:

With Distributed RDF reached
50 GB/s using 1024 core of 
CERN HPC

With DAOS reached 70% of 
theoretical bandwidth of the 
cluster ( 36.5GB/s out of 48 GB/s )
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R N T u pl e D e v el o p m e nt Pl a n
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TTree Development

1. Support

2. Thread-safety and performance improvements

3. TBufferFile larger than 1GB

4. Schema Evolution Improvement

5. Incorporate lossy compression engine (Accelogic)

9



Key Challenges and Risks I/II

1. Keeping the schedule of the RNTuple implementation plan
○ Risks fractured I/O landscape of ad-hoc solutions, likely resulting in increased storage needs, 

reduced compute efficiency, and failure in long-term data preservation
○ Stable support for 2.5 FTEs until 2025 on TTree, RNTuple, and experiment framework expertise
○ Gradual RNTuple rollout from AODs to RAW for agile adjustment of development efforts

2. Long-term retention of TTree and RNTuple I/O experts
○ Risks trust erosion and inefficiencies due to work-arounds
○ Mitigated by thorough development and documentation discipline
○ Mitigated by existing permanent positions in I/O

3. Design of RNTuple meeting the Run 4 hardware and software requirements
○ Risks limitation of HL-LHC computing workflows, in the worst case partial loss of data
○ Mitigated by early involvement of experiments in the RNTuple design and format specification
○ RNTuple designed informed by years of TTree experience
○ Large-scale validation tests
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Key Challenges and Risks II/II

4. Continued support of 3rd party libraries
○ Risks limitations of computing workflows involving remote I/O and AuthX
○ Continued community funding for XRootD and Davix (HTTP) library developers

5. Adoption of RNTuple through experiment and analysis framework adaptations and optimized data 
models

○ Risks mismatch between experiments’ data model and RNTuple main format and API, thus 
fractured landscape with significant maintenance support for both RNTuple and TTree

○ Mitigated by investment on both ROOT side and experiment side for close feedback loops
○ Seamless analysis code migration through RDataFrame
○ We believe that the benefits of RNTuple warrant transition with high priority

6. Evolving ROOT reflection support (cling)
○ Risks limitations in the EDMs due to lack of I/O support for language features
○ Mitigated by stable positions for experts on clang/cling and llvm
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Backup slides
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Motivation for Investment in I/O

1. HL-LHC data challenge:
○ From 300fb-1 in run 1-3 to 3000fb-1 in run 4-6
○ 10B events/year to 100B events/year
○ Real data challenge depends on several factors: number of events, analysis 

complexity, number of reruns, etc.
■ As a starting point, preparing for ten times the current demand

2. Full exploitation of modern storage hardware
○ Ultra fast networks and SSDs: 10GB/s per device reachable (HDD: 250MB/s)
○ Flash storage is inherently parallel → asynchronous, parallel I/O key
○ Heterogeneous computing hardware → GPU should be able to load data 

directly from SSD, e.g. to feed ML pipeline
○ Distributed storage systems move from POSIX to object stores

 

Blurring between I/O and compute
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File Format Essential Properties

Robustness Protection against media failure & API misuse

Expressiveness Support for events with nested variable length collections

Speed Columnar layout, merge-friendly, sophisticated I/O scheduling

Stability Backwards and forwards compatibility, hooks for schema evolution

Usability Accessible to novice and expert programmers

Concurrency Facilitate concurrent reading/writing (merging) and (de-)compression

Integration Support for HEP-specific, HPC, and Cloud storage and data mgmt systems
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Facets of a full I/O system

In addition to deserializing file contents, the full I/O system has many more aspects, such as

🔹 Parallel and distributed reading & writing

🔹 I/O scheduling (read-ahead, request coalescing, etc)

🔹 Beyond file system I/O: HTTP, XRootD, object stores

🔹 Schema evolution

🔹 Data set combinations: chains, friends, indexes, merging

🔹 Complex object hierarchies (e.g. for ESD EDMs)

🔹 User customizations

● E.g. skip “transient data members”

● I/O customization rule (transformation of data)
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HEP Event Data I/O

Why invest in a tailor-made I/O system

● Capable of storing the HEP event data model: 
nested, inter-dependent collections of data points

● Performance-tuned for HEP analysis workflow (columnar 
binary layout, custom compression etc.)

● Automatic schema generation and evolution for
C++ (via cling) and Python (via cling + PyROOT)

● Integration with federated data management tools 
(XRootD etc.)

● Long-term maintenance and support

TTree & RNTuple
Example EDM



The ROOT File

🔹 In ROOT, objects are written in files (“TFile”)
🔹 TFiles are binary and have: a header, records and can be compressed 

(transparently for the user)
🔹 TFiles have a logical “file system like” structure

● e.g. directory hierarchy
🔹 TFiles are self-descriptive:

● Can be read without the code of the objects streamed into them
● E.g. can be read from JavaScript
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ROOT File Description
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ROOT File Specification
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Event Data and ROOT Files

🔹 A ROOT file can be seen as a hierarchically organized container of objects
● E.g. a file can contain directories with histograms

🔹 In addition, ROOT files can also contain event data
● E.g., a series of TEvent objects for a user-defined TEvent class

🔹 Event data stored in a TTree (or RNTuple, see later) is usually written as a set 
of many objects

🔹 TTree and RNTuple have a custom, internal serialization format 
(columnar layout)

🔹 A binary format within the TFile binary format
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Anatomy of a Tree
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ROOT Data Access Options

🔹 ROOT can read, write, and represent data in C++

🔹 ROOT can read, write, and represent data in Python through pyROOT 
(dynamic binding between C++ and Python)
● Can also export ROOT trees to numpy arrays

🔹 ROOT can read and represent trees and the most common classes 
(histograms, graphs, etc.) in JavaScript with JSROOT
● Can also export objects in JSON
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3rd Party Implementations of ROOT I/O

🔹 There are several projects that re-implement parts of the ROOT file 
format
● Julia: unroot
● Python: uproot
● Go: hep/groot
● Java/Scala: FreeHEP rootio
● Rust: alice-rs/root-io

🔹 Typically supported features: reading of simple objects (histograms) 
and trees with a simple structure (numerical types and vectors 
thereof)
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RNTuple Class Design
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Modular storage layer that supports 
files as data containers but also 
file-less systems (object stores)

Seamless transition from TTree to RNTuple

→ RNTuple v1 Format Specification



RNTuple Format Evolution
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🔹 Key binary layout changes wrt. 
TTree

● More efficient nested collections
● More efficient boolean values 

(bitfield), interesting for trigger bits
● experimenting with “split floats”
● Little-endian values (allows for 

mmap())

Implementation uses templates to slash 
memory copies and virtual function calls in 

common I/O paths
 

🔹 Supported types
● Boolean
● Integers, floating point
● std::string
● std::vector, std::array
● std::variant
● User-defined classes
● More classes planned 

(e.g. std::chrono timepoints)

Fully composable (including aggregation, 
inheritance) within the supported type system



libRNTupleLite (under development)
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libROOTFoundation

libCore libROOTIOLite

libROOTNTupleLitelibRIO

libROOTNTuple

Depends on LLVM/cling

● The libRNTupleLite library is built just 
like any other ROOT libraries in ROOT 
proper (including modules, dictionaries 
etc)

● The libRNTupleLite does not use any 
infrastructure from libCore but only 
from libROOTFoundation

● Functionality:
○ RIOLite: RRawFile without 

support for plugins, i.e. only 
local files

○ ROOTNTupleLite: Provide 
access to meta-data (schema 
etc.) and data pages
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● C API header and dynamic library libROOTNTupleLite.so
○ Header files will be in 

■ io/iolite/inc/ROOT/IOLite.h
■ tree/ntuplelite/inc/ROOT/NTupleLite.h

● Provides a C wrapper to the C++ libROOTRNTupleLite.so

● Provided functionality:
○ Open an RNTuple that is stored in a local ROOT file
○ Read the schema: fields, columns, pages, and their relationships
○ Read pages into void * memory areas given column id and page id

■ Takes care of decompressing and unpacking pages along the way

● Aims at being a building block for 3rd party tool builders

libRNTupleLite C API



ROOT I/O: Support 

Full support by the ROOT Team:

🔹 I/O through the ROOT C++ library

🔹 pyROOT

🔹 Conversion of simple structures to numpy arrays

🔹 JSROOT 

🔹 JSON serialization of objects

🔹 In the future: C API provided by RNTupleLite

Indirect support (“support the maintainers”)

🔹 Third-party implementation of the binary format (uproot, unroot, Java, Go, ...)
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RNTuple Format Breakdown
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Cluster:
🔹 Block of consecutive complete events
🔹 Unit of thread parallelization (read & write)
🔹 Typically tens of megabytes

Page/Basket:
🔹 Unit of memory mapping or (de)compression
🔹 Typically tens of kilobytes



Comparison With Other I/O Systems

30J. Blomer, A quantitative review of data formats for HEP analyses ACAT 2017


