Overview: Neutrino Experimental Anomalies (NF02)

July 21, 2022

Georgia Karagiorgi
Columbia University

Bryce Littlejohn
Illinois Institute of Technology

Pedro Machado
Fermilab

Alex Sousa
University of Cincinnati

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.
Standard Model Neutrino Oscillations

- Have a beautiful picture of three oscillating Standard Model neutrinos coming into focus
 - Three mass differences define the relative weights of the different neutrinos
 - Also defines the travel distance required for flavor change to occur
 - Three angles define which flavors are in each mass state
 - Also defines magnitude of flavor changing

\[
\begin{align*}
\Delta m^2_{\text{atm}} & \approx 2.5 \times 10^{-3} \text{ eV}^2 \\
\Delta m^2_{\text{solar}} & \approx 8.3 \times 10^{-5} \text{ eV}^2 \\
\tan^2 \theta_{13} & \approx 0.002
\end{align*}
\]
Sampling Neutrino Flavors

• We got here by sampling neutrino flavors.
 • Want to make sure I taste the flavor that was produced: stout, amber, pilsner?
• For neutrinos, charged current interactions enable this
 • Want to make sure I detect the flavor that was produced: e, μ, or τ?
Many detector technologies can help us taste that flavor:

- Electron = shower-like
- Muon = track-like

MicroBooNE: a liquid argon TPC in a ν_μ beamline
Neutrino Oscillations: L and E

- Have a beautiful picture of three oscillating Standard Model neutrinos coming into focus
- Took many experiments to get us here!
- Baselines (L): >km-scale
- Energies (E): MeV to GeV++!

Example: OPERA

Example: KamLAND
Neutrino Oscillations: L and E

- Have a beautiful picture of three oscillating Standard Model neutrinos coming into focus
- Took many experiments to get us here!
- Baselines (L): >km-scale

- Let’s go HERE!
- WHY go here?
Neutrino Anomalies

- Neutrino fluxes and energies measured at < km disagree with state-of-the-art neutrino predictions
- Indications of something odd beyond ‘SM oscillation’?!
Reactor and Gallium Anomalies

- Deficits in neutrino detection rates at electron-flavor sources
- Sources host only lower (MeV-scale) energy scale processes

\[\bar{\nu}_e \]

Daya Bay: liquid scintillator inverse beta decay detectors

SM neutrino oscillations

Daya Bay, CPC 41 (2016)
MiniBooNE and LSND Anomalies

- Excesses of electron-like events in ~muon-flavor sources
- Sources host some higher (GeV-scale) energy scale processes

MiniBooNE Anomaly
- MiniBooNE (2002-2019) observed low-energy excess (LEE) with 4.8σ (systematics limited) significance
- If LEE is interpreted as ν_e appearance in the primarily ν_µ beam, would suggest 4th (sterile) neutrino

Phys. Rev. D103, 052002

Too many fuzzy rings in MiniBooNE!

Electron Cherenkov ring event in MiniBooNE

MiniBooNE: an oil Cherenkov detector
New Neutrino Mass States?

- Neutrino fluxes and energies measured at < km disagree with state-of-the-art neutrino predictions
- Indications of new physics beyond ‘SM oscillations’?(!)
- New flavor transformations (like sterile osc)? New dark sector interactions?
New Neutrino Mass States?

- Other good reasons to look for new mass states, too
 - Dark matter: could heavy neutral leptons be a viable candidate?
 - See-saw mechanism: heavier neutral leptons help explain why SM neutrinos are so light?

- ``Ultralight'' DM: non-thermal bosonic fields
- ``Light'' DM: dark sectors sterile ν can be thermal
- WIMP
- Composite DM (Q-balls, nuggets, etc)
- Primordial black holes

<table>
<thead>
<tr>
<th>Mass State</th>
<th>Window</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-22} eV</td>
<td>QCD axion classic window</td>
<td>WDM limit</td>
</tr>
<tr>
<td>$10^6 - 10^4$ eV</td>
<td>GeV</td>
<td>unitarity limit</td>
</tr>
<tr>
<td>100 TeV</td>
<td>M_{pl}</td>
<td>$10 M_\odot$</td>
</tr>
</tbody>
</table>
Outline For This Session

• In the Neutrino Frontier, we are excited about these anomalies!

• Our plan for this session:
 • 2 talks summarizing what we’ve learned about anomalies in the last P5 period
 • 1 talk recent describing developments in theory/pheno views of the anomalies
 • A panel discussion aimed at what the next P5 period holds for the sub-field

<table>
<thead>
<tr>
<th>Time</th>
<th>Session Title</th>
<th>Speaker</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:15 AM</td>
<td>Experimental Status: Atmospheric/Accelerator DIF and DAR</td>
<td>Mark Ross-Lonergan</td>
<td>15m</td>
</tr>
<tr>
<td>10:30 AM</td>
<td>Experimental Status: Radioactive Sources and Reactors over the Past 10 Years</td>
<td>Pranava Teja Surukuchi (Yale University)</td>
<td>15m</td>
</tr>
<tr>
<td>10:45 AM</td>
<td>Recent Theory Progress and Interpretation(s)</td>
<td>Matheus Hostert (Perimeter Institute)</td>
<td>20m</td>
</tr>
<tr>
<td>11:05 AM</td>
<td>Panel: Path to Resolution through Neutrino Experiments and Beyond</td>
<td></td>
<td>55m</td>
</tr>
</tbody>
</table>