
hls4ml Demo Lab
DEFCON 30

Andy Meza, Ben Hawks et al. for the hls4ml team
@not_andy_meza, @quantized_bits, and @hls4ml on Twitter!

1

FERMILAB-SLIDES-22-107-SCD

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

hls4ml tutorial Aug 13, 2022

Disclaimers, Warnings, etc.
All opinions and statements made here, around the conference, or anywhere else you find
us are our own! They do not represent or reflect the US Government, US Department of
Energy, Fermilab, Fermi Research Alliance LLC, CERN, University of California San Diego, or
any other affiliated group or collaborator.

All work shown today is open source, and all hardware/vendor tools are off the shelf and
commercially available!

We’re here because we think hls4ml is cool and want to show it to you! Please be nice :)

Work supported by the Fermi National Accelerator Laboratory, managed and operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy. The U.S.
Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the

published form of this manuscript, or allow others to do so, for U.S. Government purposes.

Neither the United States nor the United States Department of Energy, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any data, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.

FERMILAB-SLIDES-22-107-SCD

2

hls4ml tutorial Aug 13, 2022

Introduction
● hls4ml is a package for translating neural networks to FPGA firmware for inference with extremely

low latency on FPGAs
○ https://github.com/fastmachinelearning/hls4ml

○ https://fastmachinelearning.org/hls4ml/

○ pip install hls4ml

● In this session you will get hands on experience with the hls4ml package
● We’ll learn how to:

○ Translate models into synthesizable FPGA code
○ Explore the different handles provided by the tool to optimize the inference

■ Latency, throughput, resource usage
● Demo a real time inference implementation on a low cost, commercially available dev

board!

3

https://github.com/fastmachinelearning/hls4ml
https://fastmachinelearning.org/hls4ml/

hls4ml tutorial Aug 13, 2022

high level synthesis for machine learning

https://fastmachinelearning.org/hls4ml/ 4

https://fastmachinelearning.org/hls4ml/

hls4ml tutorial Aug 13, 2022

What we won’t cover today
● What comes after hls4ml… you would need to integrate the Neural Network

Firmware/’IP Core’ into a larger design
○ For more off-the-shelf boards, integration with system-on-chip or host CPU can be

more straightforward
■ https://github.com/mlcommons/tiny_results_v0.7/tree/main/open/hls4ml-finn

○ For a custom board, you’d need to do this by hand (e.g. CMS L1 Trigger, National
Instruments DAQ framework)

5

https://github.com/mlcommons/tiny_results_v0.7/tree/main/open/hls4ml-finn

Using the Pynq Software stack
(Python api to interact with &
program FPGA, hosts Jupyter
directly on Pynq-Z2 Board)

Have a live webcam running
inferences via HLS4ML accelerator,
outputting to an HDMI display

Demo #1 - Live Pokémon Inference
Class: PIkachu
Confidence 78.23%

“Pokémon” © 1995–2022 Nintendo/Creatures Inc./GAME FREAK inc

7

TUL Pynq-Z2 w/ Xilinx Zynq XC7Z020

ARM Cores (PS)

* Run OS (Ubuntu),
Network, USB, etc.

* Host Jupyter Server w/
Python Code

* Image Capture &
processing

FPGA (PL)
* Perform NN Inference

* Output HDMI

* Image Preprocessing**

AXI DMA

** Capable of accelerating some OpenCV operations, but we ran out of time :)

Demo Hardware - Pynq Z2

Zynq XC7Z020 Block Diagram

8

“RN07” (v0.7):
58,115 parameters
83.5% acc. on CIFAR-10*
(note: removed activations)

Example Model - Image Classification
● This is a 2D Convolutional Neural Network

○ Originally based on Resnet-8…
○ …but we removed the residual connections and

changed the architecture a bit
○ Quantized weights, biases, and inputs to 8b (via

QKeras)
● Trained to distinguish between 10 Classes, originally from

CIFAR-10 (32x32 px, 24b RGB images)
○

etc.
● …but we also retrained it on Pokémon for this live demo

○

“Pokémon” © 1995–2022 Nintendo/Creatures Inc./GAME FREAK inc

https://github.com/google/qkeras

Neural
Network HDMI OutAdd Text

(Prediction)

Crop

Resize to
32x32px
(Bilinear)

Image is natively 640x480,
24 bit (3x8b) RGB

Image to Display

Pred. Class

Demo #1 - Image Processing Flow

FPGA

CPU
Class: PIkachu

“Pokémon” © 1995–2022 Nintendo/Creatures Inc./GAME FREAK inc

hls4ml tutorial Aug 13, 2022
10

Why FPGAs?

hls4ml tutorial

DATA FLOW

40
 M

Hz

pp co
llis

ions

LHC Experiment Data Flow

L1 T
rig

ger

High-L
ev

el

Tr
igger Offl

ine

Com
putin

g

L1 trigger:
∙ 40 MHz in / 100 KHz out (GB Data/ per event)
∙ Process 100s TB/s
∙ Trigger decision to be made in ≈ 10 μs

11

hls4ml tutorial

hls4ml origins: triggering at (HL-)LHC

Extreme collision frequency of 40 MHz → extreme data rates O(100 TB/s)
Most collision “events” don’t produce interesting physics

“Triggering” = filter events to reduce data rates to manageable levels

12

hls4ml tutorial

DATA FLOW

40
 M

Hz

pp co
llis

ions

LHC Experiment Data Flow

L1 T
rig

ger

High-L
ev

el

Tr
igger Offl

ine

Com
putin

g

Deploy ML algorithms very early in the game
Challenge: strict latency constraints!

13

hls4ml tutorial

The challenge: triggering at (HL-)LHC
The trigger discards events forever, so selection must be very precise

ML can improve sensitivity to rare physics
Needs to be fast!

Enter: hls4ml (high level synthesis for machine learning)

14

hls4ml tutorial Aug 13, 2022

hls4ml: progression
● Previous slides showed the original motivation for hls4ml

○ Extreme low latency, high throughput domain
● Since then, we have been expanding!

○ Longer latency domains, larger models, resource constrained
○ Different FPGA vendors
○ New applications, new architectures

● While maintaining core characteristics:
○ “Layer-unrolled” HLS library → not another DPU
○ Extremely configurable: precision, resource vs latency/throughput tradeoff
○ Research project, application- and user-driven
○ Accessible, easy to use

15

hls4ml tutorial Aug 13, 2022

Coming Soon
● A few exciting new things are being developed

and should become available soon:
○ Intel Quartus HLS, Mentor Catapult HLS,

Intel One API ‘Backends’
○ Recurrent Neural Networks
○ More integrated ‘end-to-end’ flow with

bitfile generation and host bindings for
platforms like Alveo, PYNQ
■ What we’re showing today 😉

16

https://github.com/fastmachinelearning/hls4ml/pull/245
https://github.com/fastmachinelearning/hls4ml/pull/212

hls4ml tutorial Aug 13, 2022

What are FPGAs?
Field Programmable Gate Arrays are reprogrammable
integrated circuits

Contain many different building blocks (‘resources’) which are
connected together as you desire

Originally popular for prototyping ASICs, but now also for high
performance computing

FPGA diagram

17

hls4ml tutorial Aug 13, 2022

What are FPGAs?
Field Programmable Gate Arrays are reprogrammable
integrated circuits

Logic cells / Look Up Tables perform arbitrary functions on
small bitwidth inputs (2-6)

These can be used for boolean operations, arithmetic, small
memories

Flip-Flops register data in time with the clock pulse

FPGA diagram

Logic cell

Flip-flop
Look-up

table
(logic) (registers)

18

hls4ml tutorial Aug 13, 2022

What are FPGAs?
Field Programmable Gate Arrays are reprogrammable integrated
circuits

DSPs (Digital Signal Processor) are specialized units for
multiplication and arithmetic

Faster and more efficient than using LUTs for these types of
operations

And for Neural Nets, DSPs are often the most scarce

FPGA diagram

DSP
(multiplication)

19

hls4ml tutorial Aug 13, 2022

What are FPGAs?
Field Programmable Gate Arrays are reprogrammable
integrated circuits

BRAMs are small, fast memories - RAMs, ROMs, FIFOs (18Kb
each in Xilinx)

Memories using BRAMs more efficient than using LUTs

A big FPGA has nearly 100Mb of BRAM, chained together as
needed

FPGA diagram

20

hls4ml tutorial Aug 13, 2022

What are FPGAs?
In addition, there are specialised blocks for I/O, making FPGAs
popular in embedded systems and HEP triggers

High speed transceivers with Tb/s total bandwidth
PCIe, (Multi) Gigabit Ethernet, Infiniband

AND: Support highly parallel algorithm implementations

Low power per Op (relative to CPU/GPU)

FPGA diagram

21

hls4ml tutorial Aug 13, 2022

How are FPGAs programmed?

Hardware Description Languages

HDLs are programming languages which describe electronic
circuits

High Level Synthesis

Compile from C/C++ to VHDL

Pre-processor directives and constraints used to optimize the
design

Drastic decrease in firmware development time!

Today we’ll use Xilinx Vivado HLS [*]

[*] https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug902-vivado-high-level-synthesis.pdf
22

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug902-vivado-high-level-synthesis.pdf

hls4ml tutorial Aug 13, 2022

Why are FPGAs Fast?
● Fine-grained / resource parallelism

○ Use the many resources to work on
different parts of the problem
simultaneously

○ Allows us to achieve low latency
● Most problems have at least some sequential

aspect, limiting how low latency we can go
○ But we can still take advantage of it

with…
● Pipeline parallelism

○ Use the register pipeline to work on
different data simultaneously

○ Allows us to achieve high throughput

Like a production line for data…

23

Using the Pynq Software stack
(Python api to interact with &
program FPGA, hosts Jupyter
directly on Pynq)

Run a sample model on the
accelerator & MCU with live
representation on screen to demo
speed of accelerator vs a regular
MCU

DDR3 RAM

Power

ACCELERATOR
Inferences/Second: XX
Progress: 45/100 Images

MICROCONTROLLER
Inferences/Second: XX
Progress: 32/100 Images

Demo #2 - Inference Race

hls4ml tutorial
Part 1: Model Conversion

25

hls4ml tutorial Aug 18, 2021

Physics case: jet tagging
Study a multi-classification task to be implemented on FPGA: discrimination between highly
energetic (boosted) q, g, W, Z, t initiated jets

Jet = collimated ‘spray’ of particles

 top other quarkZ W gluon

t→bW→bqq

3-prong jet

Reconstructed as one massive jet with substructure

q/g backgroundW→qqZ→qq

2-prong jet 2-prong jet no substructure
and/or mass ~ 0

26

hls4ml tutorial Aug 18, 2021

Physics case: jet tagging

● Fully connected neural network with 16 expert-level inputs:
○ Relu activation function for intermediate layers
○ Softmax activation function for output layer

AUC = area under ROC curve
(100% is perfect, 20% is random)

● We’ll train the five class multi-classifier on a sample of ~ 1M events with two boosted
WW/ZZ/tt/qq/gg anti-kT jets

○ Dataset DOI: 10.5281/zenodo.3602254
○ OpenML: https://www.openml.org/d/42468

better

27

hls4ml Tutorial
Part 2: Advanced Configuration

28

hls4ml Tutorial
Part 4: Quantization

29

hls4ml tutorial Aug 13, 2022

Would you like to know more?
● We have a collection of hands on tutorial Jupyter notebooks!

○ They step through, in much more detail, the process of using hls4ml, along with how to
optimize your model even more for hardware implementation!

● You can find these tutorial notebooks to run locally at:
https://github.com/fastmachinelearning/hls4ml-tutorial

● You can run the tutorial Docker image yourself like:
○ docker run -p 8888:8888 gitlab-registry.cern.ch/ssummers/hls4ml-tutorial:18.v
○ 15 GB download! Or remove ‘.v’ for a much smaller image but without Xilinx tools (so no ‘build’)

● Use hls4ml in your own environment: pip install hls4ml[profiling]
○ The version of hls4ml used in today’s demo is slightly different, and merging the changes into

the main branch is currently in progress. If you’re trying to replicate the demo, you can use this
branch here: https://github.com/hls4ml-finn-mlperftiny/hls4ml

30

https://github.com/fastmachinelearning/hls4ml-tutorial

hls4ml tutorial Aug 13, 2022

Thanks!
Thank you for giving us some of your time and attention, and we hope you found this interesting and
even useful!

● hls4ml on Github: https://github.com/fastmachinelearning/hls4ml
● hls4ml documentation: https://fastmachinelearning.org/hls4ml/
● The FastMachineLearning community: https://fastmachinelearning.org/
● Is there a feature that you want added to hls4ml? We happily welcome contributions, pull requests,

and collaboration!
○ If you want to work with the maintaining organizations to directly build a project, add

features/support for something you need, and more, many of them offer
“Technology/Knowledge Transfer” Programs! You can contact:

■ Us! bhawks@fnal.gov, anmeza@ucsd.edu
■ Fermilab: https://partnerships.fnal.gov/
■ CERN: https://kt.cern/

● Massive thank you to all the people who worked on this demo who couldn’t be here today!
Micol Rigatti, Javier Campos, Giuseppe Di Guglielmo, Jules Muhizi, Jovan Mitrevski, and all of our
summer students!

31

https://github.com/fastmachinelearning/hls4ml
https://fastmachinelearning.org/hls4ml/
https://fastmachinelearning.org/
https://github.com/fastmachinelearning/hls4ml/blob/main/CONTRIBUTING.md
https://github.com/fastmachinelearning/hls4ml/blob/main/CONTRIBUTING.md
mailto:bhawks@fnal.gov
mailto:anmeza@ucsd.edu
https://partnerships.fnal.gov/
https://kt.cern/

hls4ml tutorial Aug 13, 2022
32

Backup Slides!

hls4ml tutorial Aug 13, 2022

high level synthesis for machine learning

https://fastmachinelearning.org/hls4ml/ 33

Python HLS (C++) VHDL/Verilog

Catapult
Coming Soon

Bitfile
(FPGA)

Completed Design

RTL
(ASIC)

https://fastmachinelearning.org/hls4ml/

hls4ml tutorial Aug 13, 2022

Jargon
● LUT - Look Up Table aka ‘logic’ - generic functions on small bitwidth inputs. Combine many to build the

algorithm
● FF - Flip Flops - control the flow of data with the clock pulse. Used to build the pipeline and achieve high

throughput
● DSP - Digital Signal Processor - performs multiplication and other arithmetic in the FPGA
● BRAM - Block RAM - hardened RAM resource. More efficient memories than using LUTs for more than a few

elements
● HLS - High Level Synthesis - compiler for C, C++, SystemC into FPGA IP cores
● HDL - Hardware Description Language - low level language for describing circuits
● RTL - Register Transfer Level - the very low level description of the function and connection of logic gates
● Latency - time between starting processing and receiving the result

○ Measured in clock cycles or seconds
● II - Initiation Interval - time from accepting first input to accepting next input

34

hls4ml tutorial Aug 13, 2022

Neural network inference

precomputed and
stored in BRAMs

DSPs logic cells

L1

Ln

LN

35

hls4ml tutorial Aug 13, 2022

There are multiple ways to optimize a network :

-compression: reduce number of synapses or neurons

-quantization: reduces the precision of the calculations (inputs,
weights, biases)

-parallelization: tune how much to parallelize to make the inference
faster/slower versus FPGA resources

Efficient NN design for FPGAs
FPGAs provide huge flexibility
Performance depends on how well you take
advantage of this

Constraints:
Input bandwidth
FPGA resources
Latency

NN training

FPGA project

design

36

hls4ml tutorial Aug 13, 2022
37

Efficient NN design: quantization

hls4ml tutorial Aug 13, 2022

Efficient NN design: quantization
∙ In the FPGA we use fixed point representation

− Operations are integer ops, but we can represent fractional
values

∙ But we have to make sure we’ve used the correct data types!

0101.1011101010

width
fractionalinteger

Full performance at 6
integer bits

Scan integer bits
Fractional bits fixed to 8

Scan fractional bits
Integer bits fixed to 6

Full performance at 8
fractional bits

FP
G

A
 A

U
C

 /
Ex

pe
ct

ed
 A

U
C

FP
G

A
 A

U
C

 /
 E

xp
ec

te
d

A
U

C
ap_fixed<width bits, integer bits>

38

hls4ml tutorial Aug 13, 2022

Efficient NN design: parallelization
∙ Trade-off between latency and FPGA resource usage determined by the parallelization of the
calculations in each layer

∙ Configure the “reuse factor” = number of times a multiplier is used to do a computation

Reuse factor: how much to parallelize operations in a hidden layer

Fully parallel

Fully serial

Fewer resources,
Lower throughput,
Higher latency

More resources,
Higher throughput,
Lower latency

39

hls4ml tutorial Aug 13, 2022

Parallelization: DSP usage

Fully parallel
Each mult. used 1x

Each mult. used 2x

Each mult. used 3x

…

Longer latency

More resources

40

hls4ml tutorial Aug 13, 2022

Parallelization: Timing

Fully parallel
Each mult. used 1x

Each mult. used 3x

Each mult. used 6x

…

~ 175 ns

~ 75 ns

…La
te

nc
y

(c
lo

ck

cy
cl

es
)

Longer latency

More resources

Latency of layer m

41

hls4ml tutorial Aug 13, 2022

Dataset - CIFAR 10
● The CIFAR-10 and CIFAR-100 are labeled subsets of the 80

million tiny images dataset. They were collected by Alex
Krizhevsky, Vinod Nair, and Geoffrey Hinton.

● The CIFAR-10 dataset consists of 60000 32x32 colour
images in 10 classes, with 6000 images per class. There are
50000 training images and 10000 test images.

○ The dataset is divided into five training batches and
one test batch, each with 10000 images.

○ The test batch contains exactly 1000
randomly-selected images from each class.

○ The training batches contain the remaining images in
random order, but some training batches may contain
more images from one class than another.

○ Between them, the training batches contain exactly
5000 images from each class.

○ The classes are completely mutually exclusive. There
is no overlap between automobiles and trucks.
"Automobile" includes sedans, SUVs, things of that
sort. "Truck" includes only big trucks. Neither includes
pickup trucks.

Example images of each class

42

Dataset, images, and text from:
https://www.cs.toronto.edu/~kriz/cifar.html

https://www.cs.toronto.edu/~kriz/cifar.html

hls4ml tutorial Aug 13, 2022

Dataset - Pokémon
● Training Dataset, ~23k images for 151 pokemon

○ using 0.25 Train/Val split during training
○ ~2600 images for 10 class set

■ Bulbasaur, Charmander, Eevee, Gengar, Jigglypuff,
Mewtwo, Onix, Pikachu, Snorlax, Squirtle

○ https://www.kaggle.com/datasets/unexpectedscepticism/
11945-pokemon-from-first-gen

○ https://www.kaggle.com/datasets/thedagger/pokemon-ge
neration-one

○ https://www.kaggle.com/datasets/lantian773030/pokemo
nclassification

● Test Dataset, ~525 Images for 10 classes, downloaded pokemon
card images from online, light processing (cropping)

○ Code to reproduce here:
https://github.com/ben-hawks/pokedex_scraper Example images of each (test) class

43“Pokémon” © 1995–2022 Nintendo/Creatures Inc./GAME FREAK inc

https://www.kaggle.com/datasets/unexpectedscepticism/11945-pokemon-from-first-gen
https://www.kaggle.com/datasets/unexpectedscepticism/11945-pokemon-from-first-gen
https://www.kaggle.com/datasets/thedagger/pokemon-generation-one
https://www.kaggle.com/datasets/thedagger/pokemon-generation-one
https://www.kaggle.com/datasets/lantian773030/pokemonclassification
https://www.kaggle.com/datasets/lantian773030/pokemonclassification
https://github.com/ben-hawks/pokedex_scraper

