

hls4ml Demo Lab DEFCON 30

Andy Meza, Ben Hawks et al. for the **hls4ml** team @not_andy_meza, @quantized_bits, and @hls4ml on Twitter!

Disclaimers, Warnings, etc.

<u>All opinions and statements made here, around the conference, or anywhere else you find</u> <u>us are our own!</u> They do not represent or reflect the US Government, US Department of Energy, Fermilab, Fermi Research Alliance LLC, CERN, University of California San Diego, or any other affiliated group or collaborator.

All work shown today is open source, and all hardware/vendor tools are off the shelf and commercially available!

We're here because we think his4ml is cool and want to show it to you! Please be nice :)

Work supported by the Fermi National Accelerator Laboratory, managed and operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for U.S. Government purposes.

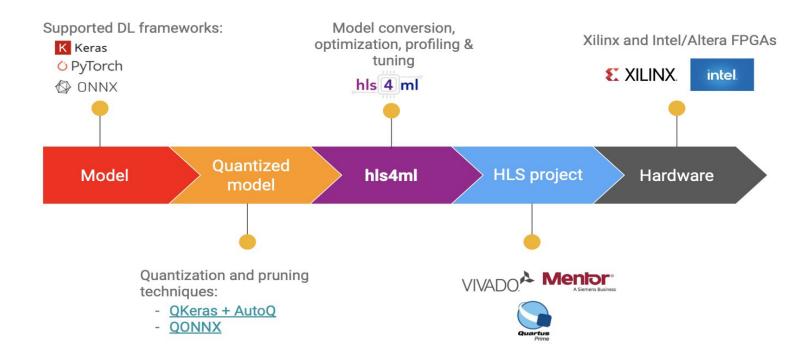
Neither the United States nor the United States Department of Energy, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any data, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.

FERMILAB-SLIDES-22-107-SCD

Introduction

- hls4ml is a package for translating neural networks to FPGA firmware for inference with extremely low latency on FPGAs
 - <u>https://github.com/fastmachinelearning/hls4ml</u>
 - <u>https://fastmachinelearning.org/hls4ml/</u>
 - pip install hls4ml
- In this session you will get hands on experience with the **hls4ml** package
- We'll learn how to:
 - Translate models into synthesizable FPGA code
 - Explore the different handles provided by the tool to optimize the inference
 - Latency, throughput, resource usage
 - Demo a real time inference implementation on a low cost, commercially available dev board!

high level synthesis for machine learning



4

What we won't cover today

- What comes after hls4ml... you would need to integrate the Neural Network Firmware/'IP Core' into a larger design
 - For more off-the-shelf boards, integration with system-on-chip or host CPU can be more straightforward
 - <u>https://github.com/mlcommons/tiny_results_v0.7/tree/main/open/hls4ml-finn</u>
 - For a custom board, you'd need to do this by hand (e.g. CMS L1 Trigger, National Instruments DAQ framework)

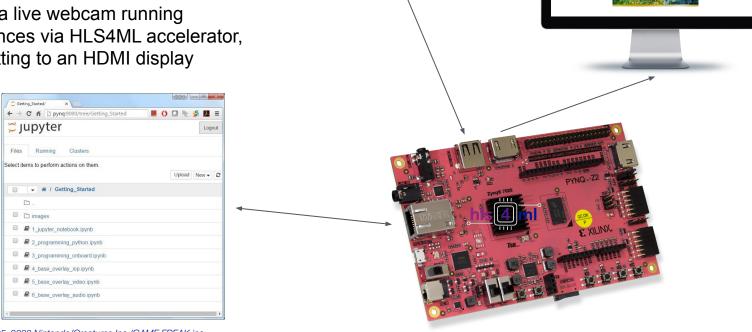
Demo #1 - Live Pokémon Inference

Class: Plkachu Confidence 78 23%

kachu

Using the Pyng Software stack (Python api to interact with & program FPGA, hosts Jupyter directly on Pyng-Z2 Board)

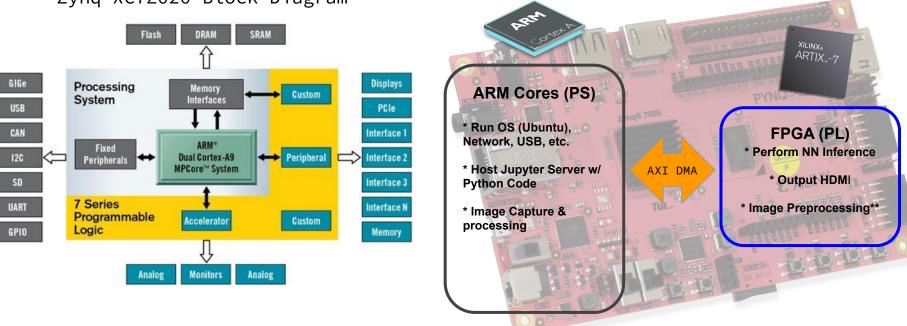
Have a live webcam running inferences via HLS4ML accelerator, outputting to an HDMI display



"Pokémon" © 1995–2022 Nintendo/Creatures Inc./GAME FREAK inc.

Demo Hardware - Pynq Z2

TUL Pynq-Z2 w/ Xilinx Zynq XC7Z020



Zynq XC7Z020 Block Diagram

** Capable of accelerating some OpenCV operations, but we ran out of time :)

Example Model - Image Classification

- This is a 2D Convolutional Neural Network
 - Originally based on Resnet-8... 0
 - ... but we removed the residual connections and \cap changed the architecture a bit
 - Quantized weights, biases, and inputs to 8b (via Ο QKeras)
- Trained to distinguish between 10 Classes, originally from CIFAR-10 (32x32 px, 24b RGB images)

bird

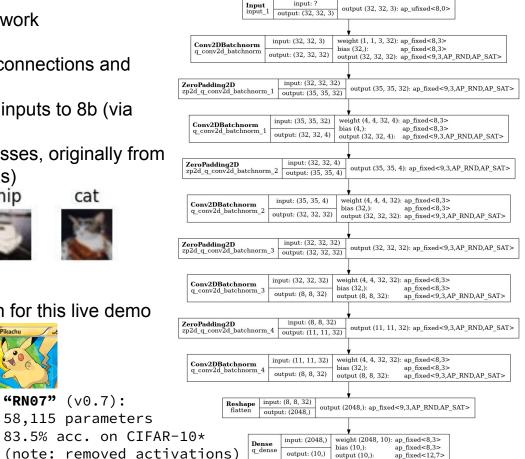
"RN07" (v0.7):

58,115 parameters

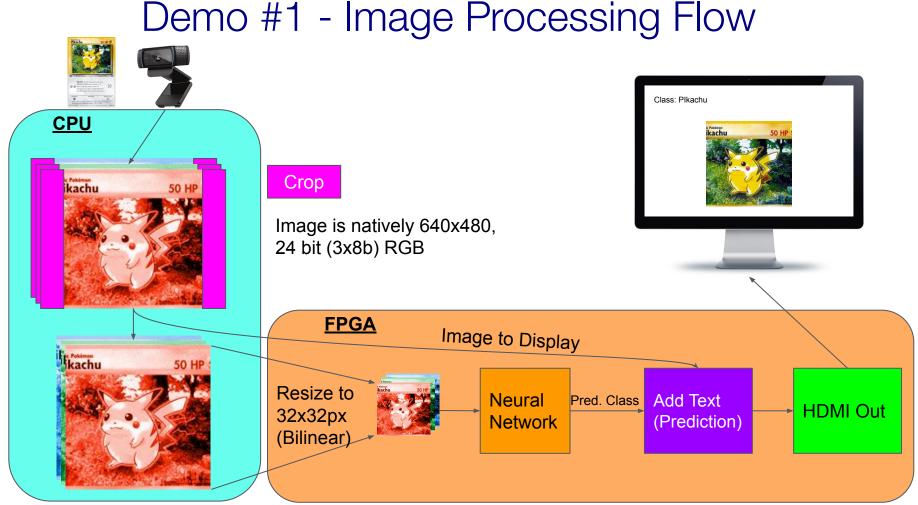
etc.

 \cap

...but we also retrained it on Pokémon for this live demo

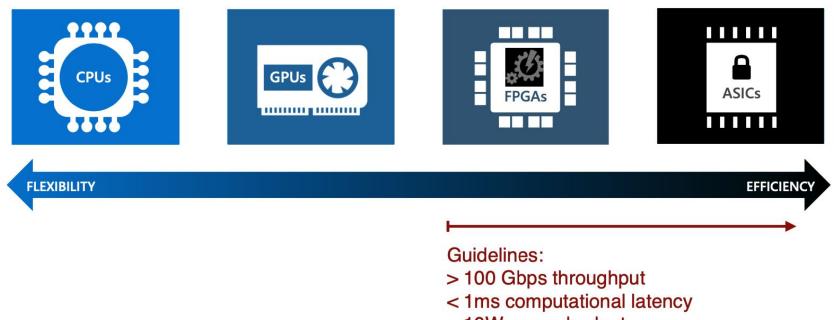


"Pokémon" © 1995–2022 Nintendo/Creatures Inc./GAME FREAK inc



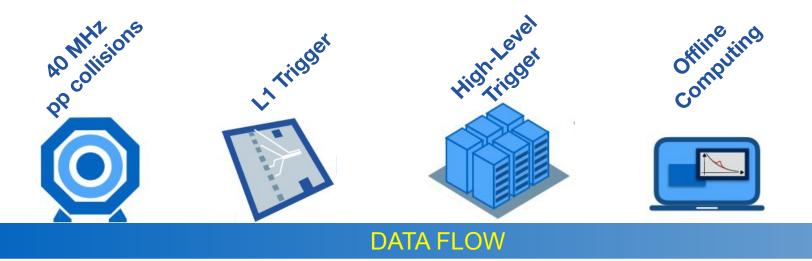
"Pokémon" © 1995–2022 Nintendo/Creatures Inc./GAME FREAK inc

Why FPGAs?



< 10W power budget

LHC Experiment Data Flow

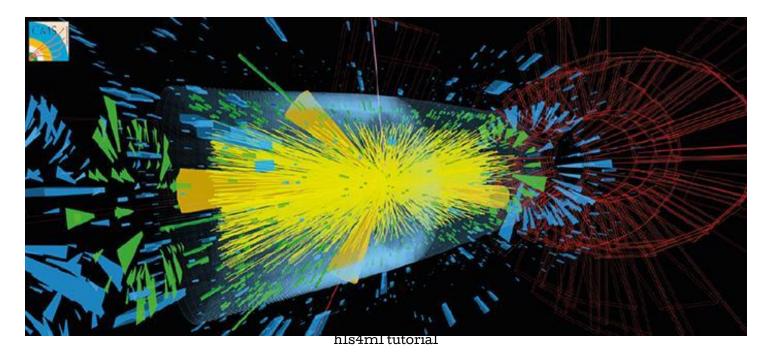


L1 trigger:

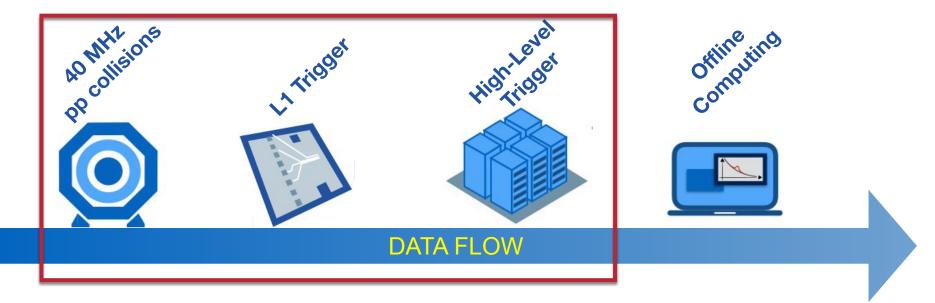
- ·40 MHz in / 100 KHz out (GB Data/ per event)
- Process 100s TB/s
- Trigger decision to be made in ≈ 10 µs

hls4ml origins: triggering at (HL-)LHC

Extreme collision frequency of 40 MHz → extreme data rates O(100 TB/s) Most collision "events" don't produce interesting physics "Triggering" = filter events to reduce data rates to manageable levels



LHC Experiment Data Flow

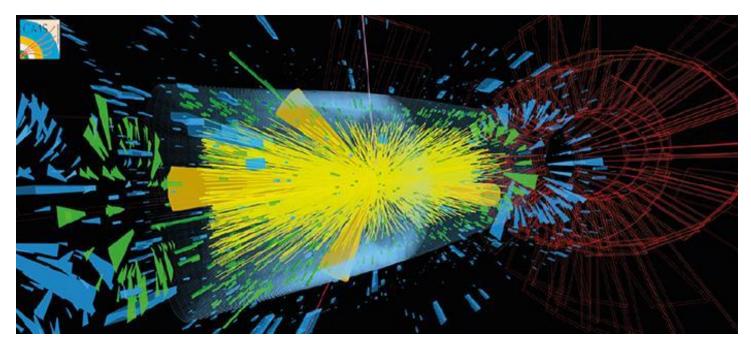


Deploy ML algorithms very early in the game Challenge: strict latency constraints!

The challenge: triggering at (HL-)LHC

The trigger discards events *forever*, so selection must be very precise ML can improve sensitivity to rare physics Needs to be *fast*!

Enter: hls4ml (high level synthesis for machine learning)

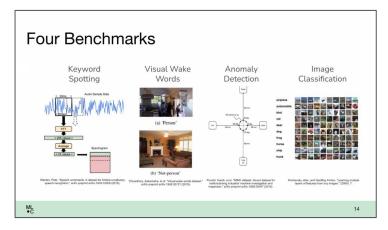


hls4ml: progression

- Previous slides showed the original motivation for hls4ml
 - Extreme low latency, high throughput domain
- Since then, we have been expanding!
 - Longer latency domains, larger models, resource constrained
 - Different FPGA vendors
 - New applications, new architectures
- While maintaining core characteristics:
 - "Layer-unrolled" HLS library \rightarrow not another DPU
 - Extremely configurable: precision, resource vs latency/throughput tradeoff
 - Research project, application- and user-driven
 - Accessible, easy to use

Coming Soon

- A few exciting new things are being developed and should become available soon:
 - Intel Quartus HLS, Mentor Catapult HLS, Intel One API 'Backends'
 - Recurrent Neural Networks
 - More integrated 'end-to-end' flow with bitfile generation and host bindings for platforms like Alveo, PYNQ
 - What we're showing today

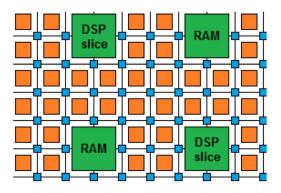


Field Programmable Gate Arrays are reprogrammable integrated circuits

Contain many different building blocks ('resources') which are connected together as you desire

Originally popular for prototyping ASICs, but now also for high performance computing

FPGA diagram



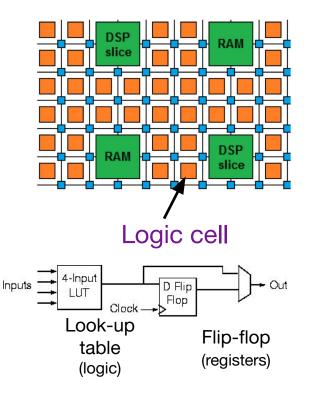
Field Programmable Gate Arrays are reprogrammable integrated circuits

Logic cells / Look Up Tables perform arbitrary functions on small bitwidth inputs (2-6)

These can be used for boolean operations, arithmetic, small memories

Flip-Flops register data in time with the clock pulse

FPGA diagram

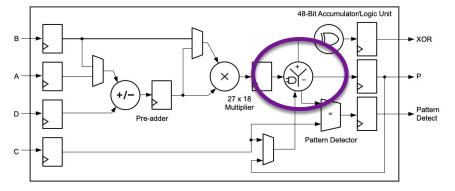


Field Programmable Gate Arrays are reprogrammable integrated circuits

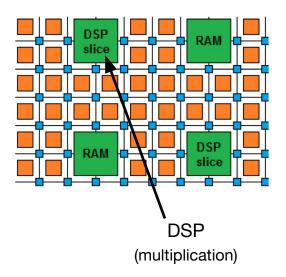
DSPs (Digital Signal Processor) are specialized units for multiplication and arithmetic

Faster and more efficient than using LUTs for these types of operations

And for Neural Nets, DSPs are often the most scarce



FPGA diagram



hls4mltutorial

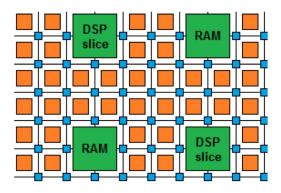
Field Programmable Gate Arrays are reprogrammable integrated circuits

BRAMs are small, fast memories - RAMs, ROMs, FIFOs (18Kb each in Xilinx)

Memories using BRAMs more efficient than using LUTs

A big FPGA has nearly 100Mb of BRAM, chained together as needed

FPGA diagram

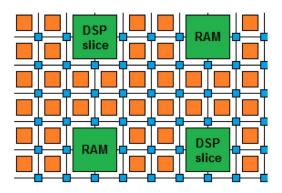


In addition, there are specialised blocks for I/O, making FPGAs popular in embedded systems and HEP triggers

<u>High speed transceivers</u> with Tb/s total bandwidth PCIe, (Multi) Gigabit Ethernet, Infiniband

AND: Support highly parallel algorithm implementations

Low power per Op (relative to CPU/GPU)



How are FPGAs programmed?

C, C++, Hardware Description Languages algorithm HDLs are programming languages which describe electronic circuits **E** XILINX **Vivado HLS High Level Synthesis** Compile from C/C++ to VHDL Pre-processor directives and constraints used to optimize the design VHDL/Verilog Drastic decrease in firmware development time! Today we'll use Xilinx Vivado HLS [*]

[*] <u>https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug902-vivado-high-level-synthesis.pdf</u>

hls4ml tutorial

Constraints/

Directives

Vivado "

Firmware block

Why are FPGAs *Fast*?

- Fine-grained / resource parallelism
 - Use the many resources to work on different parts of the problem simultaneously
 - Allows us to achieve low latency
- Most problems have at least some sequential aspect, limiting how low latency we can go
 - But we can still take advantage of it with...
- Pipeline parallelism
 - Use the register pipeline to work on different data simultaneously
 - Allows us to achieve high throughput

Like a production line for data...

Demo #2 - Inference Race

Using the Pynq Software stack (Python api to interact with & program FPGA, hosts Jupyter directly on Pynq)

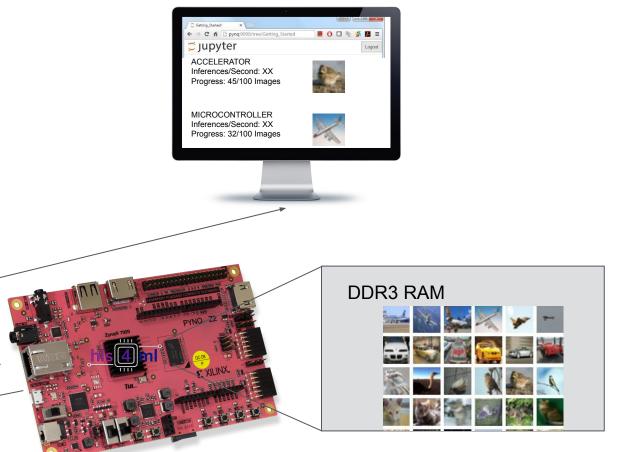
Run a sample model on the accelerator & MCU with live representation on screen to demo speed of accelerator vs a regular

pload New - O

MCU

Power

← → C # D pyrq30303000
 jupyter
 Files Rozening Clusters
 incl. Demo to perform actions on 0

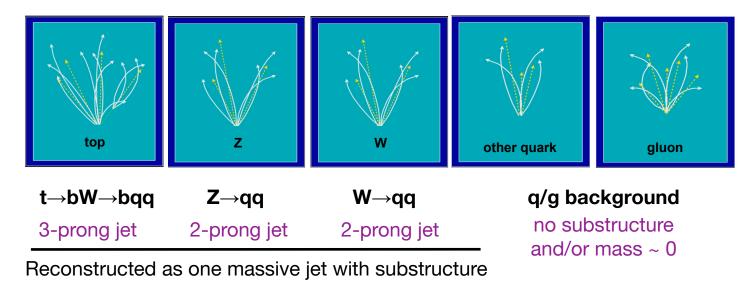


hls4ml tutorial Part 1: Model Conversion

Physics case: jet tagging

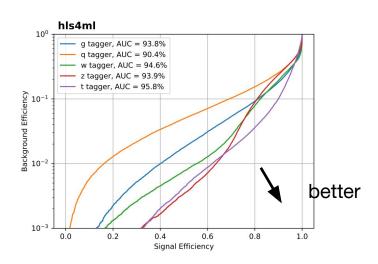
Study a <u>multi-classification task to be implemented on FPGA</u>: discrimination between highly energetic (boosted) *q*, *g*, *W*, *Z*, *t* initiated *jets*

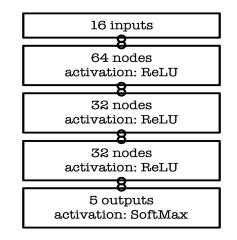
Jet = collimated 'spray' of particles



Physics case: jet tagging

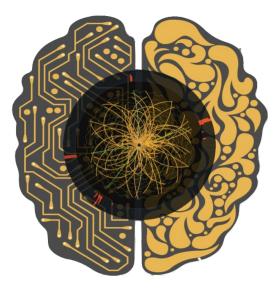
- We'll train the five class multi-classifier on a sample of ~ 1M events with two boosted WW/ZZ/tt/qq/gg anti- k_{τ} jets
 - Dataset DOI: 10.5281/zenodo.3602254
 - OpenML: https://www.openml.org/d/42468
- Fully connected neural network with 16 expert-level inputs:
 - Relu activation function for intermediate layers
 - Softmax activation function for output layer





AUC = area under ROC curve (100% is perfect, 20% is random)

hls4ml tutorial



hls4ml Tutorial Part 2: Advanced Configuration

hls4ml Tutorial Part 4: Quantization

Would you like to know more?

- We have a collection of hands on tutorial Jupyter notebooks!
 - They step through, in much more detail, the process of using hls4ml, along with how to optimize your model even more for hardware implementation!
- You can find these tutorial notebooks to run locally at: https://github.com/fastmachinelearning/hls4ml-tutorial
- You can run the tutorial Docker image yourself like:
 - o docker run -p 8888:8888 gitlab-registry.cern.ch/ssummers/hls4ml-tutorial:18.v
 - 15 GB download! Or remove '.v' for a much smaller image but without Xilinx tools (so no 'build')
- Use hls4ml in your own environment: pip install hls4ml[profiling]
 - The version of hls4ml used in today's demo is slightly different, and merging the changes into the main branch is currently in progress. If you're trying to replicate the demo, you can use this branch here: https://github.com/hls4ml-finn-mlperftiny/hls4ml

Thanks!

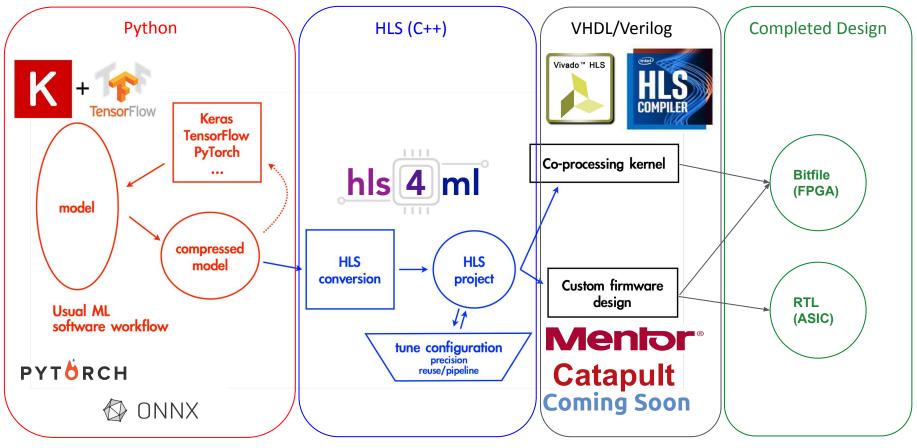
Thank you for giving us some of your time and attention, and we hope you found this interesting and even useful!

- hls4ml on Github: <u>https://github.com/fastmachinelearning/hls4ml</u>
- hls4ml documentation: <u>https://fastmachinelearning.org/hls4ml/</u>
- The FastMachineLearning community: <u>https://fastmachinelearning.org/</u>
- Is there a feature that you want added to hls4ml? We happily welcome <u>contributions, pull requests</u>, <u>and collaboration!</u>
 - If you want to work with the maintaining organizations to directly build a project, add features/support for something you need, and more, many of them offer "Technology/Knowledge Transfer" Programs! You can contact:
 - Us! <u>bhawks@fnal.gov</u>, <u>anmeza@ucsd.edu</u>
 - Fermilab: <u>https://partnerships.fnal.gov/</u>
 - CERN: <u>https://kt.cern/</u>
- Massive thank you to all the people who worked on this demo who couldn't be here today! Micol Rigatti, Javier Campos, Giuseppe Di Guglielmo, Jules Muhizi, Jovan Mitrevski, and all of our summer students!

hls4ml tutorial

Backup Slides!

high level synthesis for machine learning

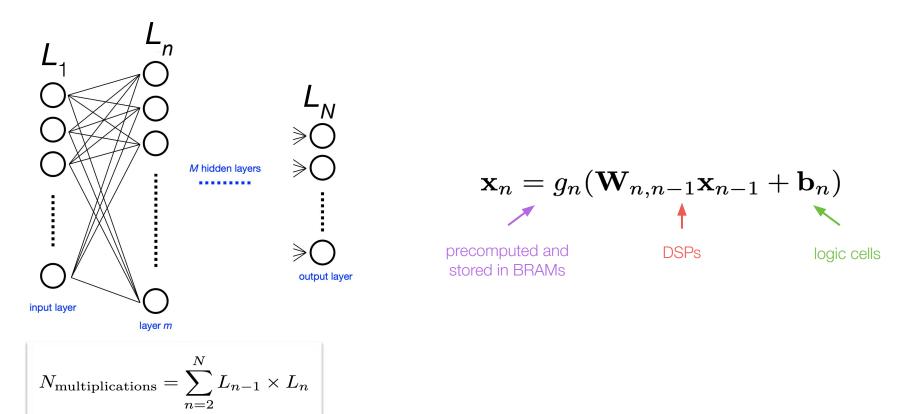


hls4ml tutorial

Jargon

- LUT Look Up Table aka 'logic' generic functions on small bitwidth inputs. Combine many to build the algorithm
- **FF Flip Flops** control the flow of data with the clock pulse. Used to build the pipeline and achieve high throughput
- **DSP Digital Signal Processor** performs multiplication and other arithmetic in the FPGA
- **BRAM Block RAM** hardened RAM resource. More efficient memories than using LUTs for more than a few elements
- HLS High Level Synthesis compiler for C, C++, SystemC into FPGA IP cores
- HDL Hardware Description Language low level language for describing circuits
- **RTL** Register Transfer Level the very low level description of the function and connection of logic gates
- Latency time between starting processing and receiving the result
 - Measured in clock cycles or seconds
- II Initiation Interval time from accepting first input to accepting next input

Neural network inference



hls4ml tutorial

Efficient NN design for FPGAs

FPGAs provide huge flexibility

Performance depends on how well you take advantage of this

Constraints: Input bandwidth FPGA resources Latency

There are multiple ways to optimize a network :

- -compression: reduce number of synapses or neurons
- -quantization: reduces the precision of the calculations (inputs, weights, biases)

-parallelization: tune how much to parallelize to make the inference faster/slower versus FPGA resources

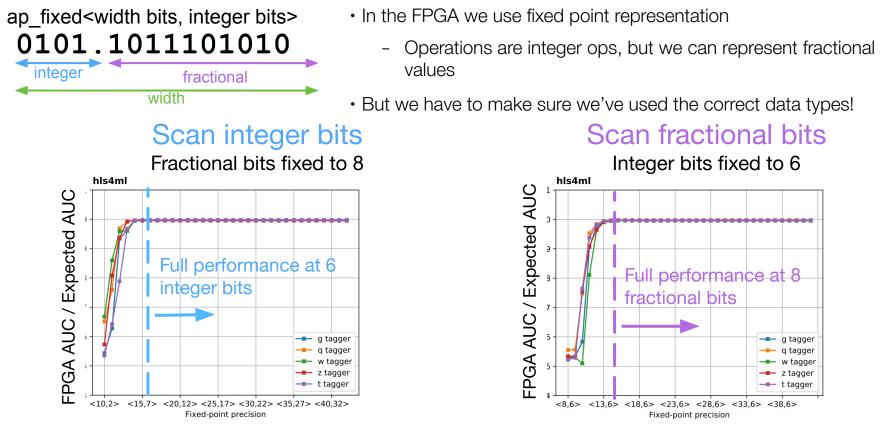
FPGA project design

Efficient NN design: quantization

		Relati	ve Energ	gy Cost	
Operation:	Energy (pJ)				
8b Add	0.03				
16b Add	0.05				
32b Add	0.1				
16b FP Add	0.4				
32b FP Add	0.9				
8b Mult	0.2				
32b Mult	3.1				
16b FP Mult	1.1				
32b FP Mult	3.7				
32b SRAM Read (8KB)	5				
32b DRAM Read	640				
	1	10	100	1000	10000

Relative Energy Cost

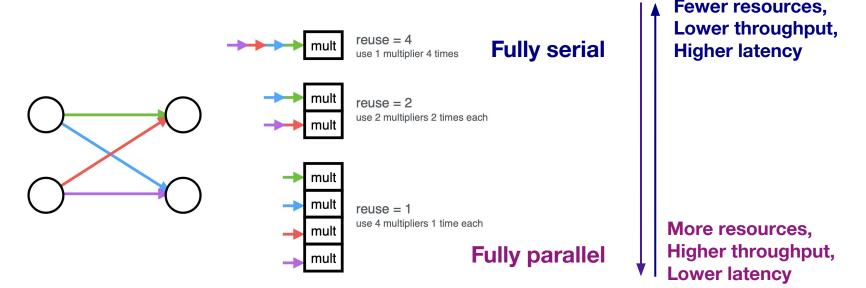
Efficient NN design: quantization



hls4ml tutorial

Efficient NN design: parallelization

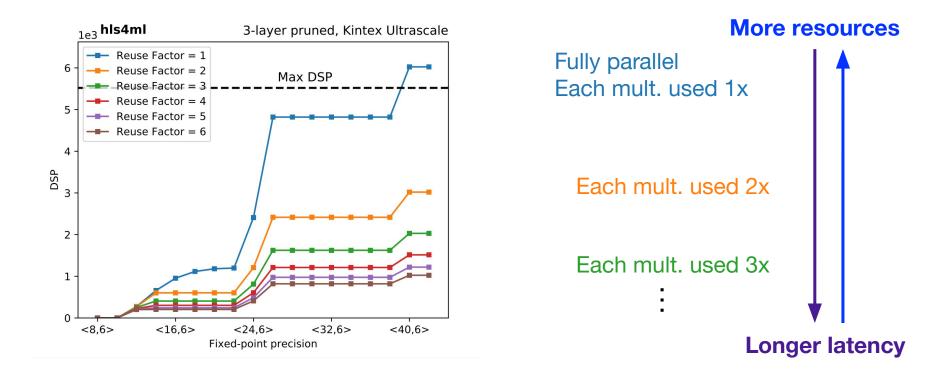
- Trade-off between latency and FPGA resource usage determined by the parallelization of the calculations in each layer
- Configure the "reuse factor" = number of times a multiplier is used to do a computation



Reuse factor: how much to parallelize operations in a hidden layer

hls4ml tutorial

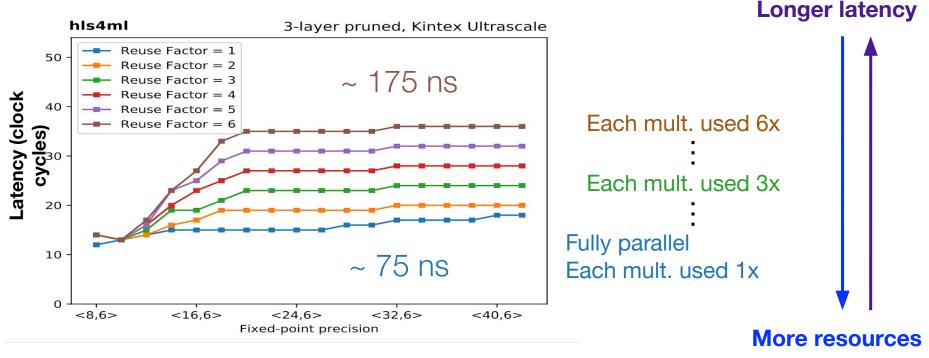
Parallelization: DSP usage



Parallelization: Timing

Latency of layer m

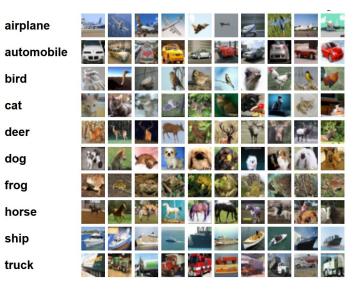
$$L_m = L_{\text{mult}} + (R - 1) \times II_{\text{mult}} + L_{\text{activ}}$$



hls4ml tutorial

Dataset - CIFAR 10

- The CIFAR-10 and CIFAR-100 are labeled subsets of the 80 million tiny images dataset. They were collected by Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton.
- The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test images.
 - The dataset is divided into five training batches and one test batch, each with 10000 images.
 - The test batch contains exactly 1000 randomly-selected images from each class.
 - The training batches contain the remaining images in random order, but some training batches may contain more images from one class than another.
 - Between them, the training batches contain exactly 5000 images from each class.
 - The classes are completely mutually exclusive. There is no overlap between automobiles and trucks.
 "Automobile" includes sedans, SUVs, things of that sort. "Truck" includes only big trucks. Neither includes pickup trucks.



Example images of each class

Dataset, images, and text from: <u>https://www.cs.toronto.edu/~kriz/cifar.html</u>

hls4mltutorial

Dataset - Pokémon

- Training Dataset, ~23k images for 151 pokemon
 - using 0.25 Train/Val split during training
 - ~2600 images for 10 class set
 - Bulbasaur, Charmander, Eevee, Gengar, Jigglypuff, Mewtwo, Onix, Pikachu, Snorlax, Squirtle
 - <u>https://www.kaggle.com/datasets/unexpectedscepticism/</u> <u>11945-pokemon-from-first-gen</u>
 - <u>https://www.kaggle.com/datasets/thedagger/pokemon-ge</u> <u>neration-one</u>
 - <u>https://www.kaggle.com/datasets/lantian773030/pokemo</u> nclassification
- Test Dataset, ~525 Images for 10 classes, downloaded pokemon card images from online, light processing (cropping)
 - Code to reproduce here:

https://github.com/ben-hawks/pokedex_scraper

Example images of each (test) class