A Gaseous Argon-Based Near Detector to Enhance the Physics Capabilities of DUNE

Tanaz Angelina Mohayai, for the DUNE Collaboration
Snowmass Community Summer Study Workshop
DUNE and Neutrino Interactions Session
July 23, 2022
why a gaseous-argon based ND

DUNE’s gaseous-argon based ND, ND-GAr (Phase II, ND Upgrade) measures ν-Ar interactions with low threshold and high resolution to enable **5σ sensitivity to CP violation** and provides the basis for a comprehensive and a strong BSM program in DUNE.

DUNE Near Detector, ND Complex

In the early running, a simpler downstream detector can reconstruct muon tracks exiting ND-LAr (Phase I).

DUNE’s highly capable **ND complex** includes **ND-LAr** (see Z. Vallari’s talk [here](#)), **ND-GAr**, **SAND** (see Z. Ghorbanimoghaddam’s talk [here](#)), & **DUNE-PRISM**:

- Precisely measure the ν-energy spectrum and ν-flavor composition of the 1.2 MW (upgradable to 2.4 MW) high-intensity, wide-band ν-beam
- Precisely measure ν-Argon cross-sections (see K. Mahn’s talk [here](#))
A magnetized High Pressure Gas Argon TPC (HPgTPC) surrounded by ECAL and \(\mu \)-tagger:
- Reference design repurposes ALICE multi-wire chambers
- Other designs under consideration, e.g. GEMs
- Main design capabilities:
 - Low threshold
 - Excellent PID, tracking efficiency, momentum resolution
 - \(4\pi\) coverage
 - Minimal secondary interactions
Nucleus is a complicated environment (e.g. specially problematic when using heavy nuclei as target):

- Nuclear effects, e.g. final state interactions not yet fully understood
- Introduces uncertainties in neutrino energy reconstruction and neutrino event rate estimation which need to be constrained
Examples from Existing Experiments

- Cross sections/neutrino interaction model uncertainties from existing experiments (all using high threshold detectors) are too large for DUNE.
- We need to do better – low threshold ND-GAr can help.

<table>
<thead>
<tr>
<th>T2K</th>
<th>https://doi.org/10.1038/s41586-020-2177-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Uncertainty</td>
<td>$\nu_e/\bar{\nu}_e$ Candidate Relative Uncertainty (%)</td>
</tr>
<tr>
<td>Super-K Detector Model</td>
<td>1.5</td>
</tr>
<tr>
<td>Pion Final State Interaction and Rescattering Model</td>
<td>1.6</td>
</tr>
<tr>
<td>Neutrino Production and Interaction Model Constrained by ND280 Data</td>
<td>2.7</td>
</tr>
<tr>
<td>Electron Neutrino and Antineutrino Interaction Model</td>
<td>3.0</td>
</tr>
<tr>
<td>Nucleon Removal Energy in Interaction Model</td>
<td>3.7</td>
</tr>
<tr>
<td>Modeling of Neutral Current Interactions with Single γ Production</td>
<td>1.5</td>
</tr>
<tr>
<td>Modeling of Other Neutral Current Interactions</td>
<td>0.2</td>
</tr>
<tr>
<td>Total Systematic Uncertainty</td>
<td>6.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOvA</th>
<th>https://doi.org/10.1103/PhysRevLett.123.151803</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>ν_e Signal (%)</td>
</tr>
<tr>
<td>Cross-sections</td>
<td>$+4.7/-5.8$</td>
</tr>
<tr>
<td>Detector model</td>
<td>$+3.7/-3.9$</td>
</tr>
<tr>
<td>ND/FD diffs.</td>
<td>$+3.4/-3.4$</td>
</tr>
<tr>
<td>Calibration</td>
<td>$+2.1/-3.2$</td>
</tr>
<tr>
<td>Others</td>
<td>$+1.6/-1.6$</td>
</tr>
<tr>
<td>Total</td>
<td>$+7.4/-8.5$</td>
</tr>
</tbody>
</table>
The Need for the Low Threshold ND-GAr

Lower threshold of **ND-GAr's HPgTPC** than **ND-LAr**:

- Leads to high sensitivity to low energy protons or pions:
- Reveals discrepancies between neutrino event generators, getting us closer to choosing more accurate neutrino-nucleus interaction models and constraining uncertainties in neutrino oscillation measurements

neutrino generator discrepancies at low proton KE, accessible with a GAr-based detector

[Graph showing neutrino generator discrepancies]

credit: J. Raaf
A Wealth of ν-Argon Interaction Data

- Using high-pressure gas-argon as detecting medium allows for an independent sample of ν-interactions on argon and constrains the cross-section systematic uncertainties to the level needed by the oscillation analysis.
 - e.g. high statistics sample of exclusive neutrino interactions without a pion or with some number of pions in final state.

1 ton fiducial mass for 1 year of ν-mode running with a 1.2MW Beam Power

<table>
<thead>
<tr>
<th>Event class</th>
<th>Number of events per ton-year</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν_μ CC</td>
<td>1.6×10^6</td>
</tr>
<tr>
<td>$\bar{\nu}_\mu$ CC</td>
<td>7.1×10^4</td>
</tr>
<tr>
<td>$\nu_e + \bar{\nu}_e$ CC</td>
<td>2.9×10^4</td>
</tr>
<tr>
<td>NC total</td>
<td>5.5×10^5</td>
</tr>
<tr>
<td>ν_μ CC0π</td>
<td>5.9×10^5</td>
</tr>
<tr>
<td>ν_μ CC1π±</td>
<td>4.1×10^5</td>
</tr>
<tr>
<td>ν_μ CC1π0</td>
<td>1.6×10^5</td>
</tr>
<tr>
<td>ν_μ CC2π</td>
<td>2.1×10^5</td>
</tr>
<tr>
<td>ν_μ CC3π</td>
<td>9.2×10^4</td>
</tr>
<tr>
<td>ν_μ CC other</td>
<td>1.8×10^5</td>
</tr>
</tbody>
</table>

A detailed view of the ν-interaction vertex.

DUNE ND HPGTPC
Run: 1/0
Event: 1
UTC: Wed Jun 17 1981
12:40:26.287119056

Pion stops outside TPC. Decays at rest to a muon.
Superb PID for γ-Ar Interaction Measurements

- dE/dx resolution: 0.8 keV/cm
- Excellent PID combined with low threshold feature allows ND-GAr to help with correctly identifying the different final state topologies e.g. pion multiplicities very well

BSM Reach

- In addition to precise measurements of neutrino-argon cross sections, ND-GAr also enables a rich BSM physics program in DUNE, e.g. rare events such as:
 ★ Neutrino tridents
 ★ Heavy neutral leptons, HNL
 ★ Anomalous Tau neutrinos
 ★ Light dark matter
 ★ Heavy axions

M. Breitbach, L. Buonocore, C. Frugiuele, J. Kopp and L. Mittnacht, Searching for physics beyond the standard model in an off-axis dune near detector, 2102.03383
Projected Performance

- A full end-to-end simulation and reconstruction already exists (GArSoft)!
- Momentum resolution and tracking efficiency from a sample of muon neutrino events: 2.7% & >90% for tracks with >40 MeV/c momenta, respectively
- Proton tracking efficiency from a sample of isotropic protons at the vertex: >80% for proton tracks with >10 MeV energies

ECAL can efficiently tag/reject π^0s, γs (background to electron-neutrinos), neutrons – without ECAL, sensitivity to neutral particles is almost non-existent.

Can also tag/reject outside of fiducial volume backgrounds using timing.

Projected Performance

Bulk of the charge readout R&D focused on optimizing the ALICE inner (IROC) and outer (OROC) multiwire chambers, CROC's need to be built. But there are opportunities for exploring alternate designs, e.g. Gas-electron multipliers, GEMs (T. Mohayai FNAL New Initiatives R&D award).
R&D Efforts

- What is involved in the charge readout optimization studies:
 - Testing the chambers @ various pressures up to 10 atm (e.g. ALICE chambers previously operated at 1 atm)

IROC Gain T. Mohayai

![IROC Gain Graph](image1)

- electroncs under development by Pittsburg, Fermilab, & Imperial

DUNE Work in Progress

OROC Gain, A. Ritchie-Yates

![OROC Gain Graph](image2)

- Royal Holloway Test Stand, housing an OROC, moving to Fermilab Test Beam
What is involved in the charge readout optimization studies:

- Testing the chambers @ various pressures up to 10 atm (e.g. ALICE chambers previously operated at 1 atm)
- Defining a base gas mixture – reference is argon-based gas with 10% CH$_4$ admixture (97% of interactions on Ar) but can be optimized to:
 - Control pile up (drift velocity) and improve spatial resolution (diffusion)

What is involved in the charge readout optimization studies:

- Testing the chambers at various pressures up to 10 atm (e.g., ALICE chambers previously operated at 1 atm)
- Defining a base gas mixture – reference is argon-based gas with 10% CH₄ admixture (97% of interactions on Ar) but can be optimized to:
 - Control pile up (drift velocity) and improve spatial resolution (diffusion)
 - Maximize gas gain
R&D Efforts

What is involved in the charge readout optimization studies:

- Testing the chambers @ various pressures up to 10 atm (e.g. ALICE chambers previously operated at 1 atm)
- Defining a base gas mixture – reference is argon-based gas with 10% CH₄ admixture (97% of interactions on Ar) but can be optimized to:
 - Control pile up (drift velocity) and improve spatial resolution (diffusion)
 - Maximize gas gain, while minimizing gas electrical breakdown

![Graph showing the relationship between voltage and pressure-length for Ar/CH₄ (90%/10%) gas mixtures.](image)

<table>
<thead>
<tr>
<th>Projected Breakdown Voltage at 10 bar, 1 cm (kV)</th>
<th>Ar</th>
<th>Xe</th>
<th>Ar-CF₄</th>
<th>Ar-CH₄</th>
<th>Ar-CO₂</th>
<th>CO₂</th>
<th>CF₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>Townsend</td>
<td>52.6</td>
<td>75.4</td>
<td>61.7</td>
<td>63.9</td>
<td>68.6</td>
<td>129.5</td>
<td>179.7</td>
</tr>
<tr>
<td>Meek</td>
<td>69.9</td>
<td>98.9</td>
<td>72.1</td>
<td>80.3</td>
<td>87.3</td>
<td>171.2</td>
<td>212.2</td>
</tr>
</tbody>
</table>
What is involved in the charge readout optimization studies:

- Testing the chambers @ various pressures up to 10 atm (e.g. ALICE chambers previously operated at 1 atm)
- Defining a base gas mixture – reference is argon-based gas with 10% CH$_4$ admixture (97% of interactions on Ar) but can be optimized to:
 - Control pile up (drift velocity) and improve spatial resolution (diffusion)
 - Maximize gas gain, while minimizing gas electrical breakdown
 - Ability to operate with a hydrogen-rich gas mixture to probe more fundamental neutrino-hydrogen interactions

What is involved in the charge readout optimization studies:

- Testing the chambers at various pressures up to 10 atm (e.g. ALICE chambers previously operated at 1 atm)
- Defining a base gas mixture – reference is argon-based gas with 10% CH₄ admixture (97% of interactions on Ar) but can be optimized to:
 - Control pile up (drift velocity) and improve spatial resolution (diffusion)
 - Maximize gas gain, while minimizing gas electrical breakdown
 - Ability to operate with a hydrogen-rich gas mixture to probe more fundamental neutrino-hydrogen interactions

Optical readout & light collection:

- Choose an admixture/dopant that will not quench the scintillation signal
- Benefits: t₀ time-tag, BSM searches, improved track matching with ND-LAr, neutral particle reconstruction via time-of-flight, NC interaction
Summary

- The DUNE ND-GAr unique design includes components that enable:
 - DUNE to reach 5σ sensitivity to CP violation
 - A close-up view of ν-Ar interactions to more precisely identify and resolve the discrepancies in neutrino-nucleus interaction models
 - A comprehensive search for rare decays and symmetries beyond the standard model

- A wide range of detector R&D efforts are underway to build a highly capable ND-GAr:
 - Besides R&D on the acquired ALICE multiwire readout chambers, we are exploring various new detector R&D areas, including GEM development & optical readout

Additional Slides
High-momentum muons and pions will range out of ECAL
A muon tagger can achieve a purity of 100% above 1 GeV/c

Low Threshold ND-GAr

- Lower threshold of ND-GAr's HPgTPC than ND-LAr:
 - Leads to a high sensitivity to low energy protons or pions:

A GAr-based detector sees lower KE protons than a LArTPC

credit: J. Raaf
Gas Multiplication Gain Concept

Ionization

Electron Drift

Drift Volume

Gas Amplification

H.V. (-100 kV)

Drift Field

Field Cage

Charged Particle Track

Gating Plane (-140V)

Cathode Plane (0V)

Anode Plane (+1.3kV)

Pad Plane

Pad Signal

DUNE
DEEP UNDERGROUND
NEUTRINO EXperiment

T. A. Mohayai

Fermilab

IROC/OROC

CATHODE PLANE
ANODE PLANE
GROUND ELECTRODE
PAD PLANE
GATING GRID
COVER ELECTRODE

z = v₀t

[Diagram showing the concepts of ionization, electron drift, and gas amplification in a detector setup.]